Feynman path integral related to stochastic schroedinger equation
International Nuclear Information System (INIS)
Belavkin, V.P.; Smolyanov, O.G.
1998-01-01
The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru
Efficient stochastic thermostatting of path integral molecular dynamics.
Ceriotti, Michele; Parrinello, Michele; Markland, Thomas E; Manolopoulos, David E
2010-09-28
The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
International Nuclear Information System (INIS)
Lin, T.L.; Wang, R.; Bi, W.P.; El Kaabouchi, A.; Pujos, C.; Calvayrac, F.; Wang, Q.A.
2013-01-01
We investigate, by numerical simulation, the path probability of non dissipative mechanical systems undergoing stochastic motion. The aim is to search for the relationship between this probability and the usual mechanical action. The model of simulation is a one-dimensional particle subject to conservative force and Gaussian random displacement. The probability that a sample path between two fixed points is taken is computed from the number of particles moving along this path, an output of the simulation, divided by the total number of particles arriving at the final point. It is found that the path probability decays exponentially with increasing action of the sample paths. The decay rate increases with decreasing randomness. This result supports the existence of a classical analog of the Feynman factor in the path integral formulation of quantum mechanics for Hamiltonian systems
Path integral methods for the dynamics of stochastic and disordered systems
DEFF Research Database (Denmark)
Hertz, John A.; Roudi, Yasser; Sollich, Peter
2017-01-01
We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey...
Path integrals for inertialess classical particles under-going rapid stochastic trembling. I
International Nuclear Information System (INIS)
Bezak, V.
1978-01-01
Feynman path integrals are studied in reference to the Fokker-Planck (Smoluchowski) equation. Examples are presented including the motion of an inertialess classical charged particle between electrodes in plate and cylindrical capacitors with charges fluctuating rapidly as Gaussian white-noise stochastic processes. Another example concerns magnetodiffusion of a charged particle in an non-polarized electromagnetic beam characterized by a white-noise spectrum. (author)
Path integral methods for the dynamics of stochastic and disordered systems
International Nuclear Information System (INIS)
Hertz, John A; Roudi, Yasser; Sollich, Peter
2017-01-01
We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey of the perturbative, i.e. diagrammatic, approach to dynamics and how this formalism can be used for studying soft spin models. We review the supersymmetric formulation of the Langevin dynamics of these models and discuss the physical implications of the supersymmetry. We also describe the key steps involved in studying the disorder-averaged dynamics. Finally, we discuss the path integral approach for the case of hard Ising spins and review some recent developments in the dynamics of such kinetic Ising models. (topical review)
International Nuclear Information System (INIS)
DeWitt-Morette, C.
1983-01-01
Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)
Kleinert, H.; Zatloukal, V.
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
International Nuclear Information System (INIS)
Wehner, M.F.
1983-01-01
A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs
Roldán, Édgar; Gupta, Shamik
2017-08-01
We study the dynamics of overdamped Brownian particles diffusing in conservative force fields and undergoing stochastic resetting to a given location at a generic space-dependent rate of resetting. We present a systematic approach involving path integrals and elements of renewal theory that allows us to derive analytical expressions for a variety of statistics of the dynamics such as (i) the propagator prior to first reset, (ii) the distribution of the first-reset time, and (iii) the spatial distribution of the particle at long times. We apply our approach to several representative and hitherto unexplored examples of resetting dynamics. A particularly interesting example for which we find analytical expressions for the statistics of resetting is that of a Brownian particle trapped in a harmonic potential with a rate of resetting that depends on the instantaneous energy of the particle. We find that using energy-dependent resetting processes is more effective in achieving spatial confinement of Brownian particles on a faster time scale than performing quenches of parameters of the harmonic potential.
Gratton, Steven
2011-09-01
In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain “Youngness Paradox”-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.
International Nuclear Information System (INIS)
Gratton, Steven
2011-01-01
In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain ''Youngness Paradox''-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.
Moix, Jeremy M; Ma, Jian; Cao, Jianshu
2015-03-07
A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.
Stochastic control with rough paths
International Nuclear Information System (INIS)
Diehl, Joscha; Friz, Peter K.; Gassiat, Paul
2017-01-01
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
Stochastic control with rough paths
Energy Technology Data Exchange (ETDEWEB)
Diehl, Joscha [University of California San Diego (United States); Friz, Peter K., E-mail: friz@math.tu-berlin.de [TU & WIAS Berlin (Germany); Gassiat, Paul [CEREMADE, Université Paris-Dauphine, PSL Research University (France)
2017-04-15
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
International Nuclear Information System (INIS)
Ferrari, Franco; Paturej, Jaroslaw
2009-01-01
The dynamics of a freely jointed chain in the continuous limit is described by a field theory which closely resembles the nonlinear sigma model. The generating functional Ψ[J] of this field theory contains nonholonomic constraints, which are imposed by inserting in the path integral expressing Ψ[J] a suitable product of delta functions. The same procedure is commonly applied in statistical mechanics in order to enforce topological conditions on a system of linked polymers. The disadvantage of this method is that the contact with the stochastic process governing the diffusion of the chain is apparently lost. The main goal of this work is to re-establish this contact. For this purpose, it is shown here that the generating functional Ψ[J] coincides with the generating functional of the correlation functions of the solutions of a constrained Langevin equation. In the discrete case, this Langevin equation describes as expected the Brownian motion of beads connected together by links of fixed length
Directory of Open Access Journals (Sweden)
Donald C. Boone
2017-10-01
Full Text Available This computational research study will analyze the multi-physics of lithium ion insertion into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and quantum level. The electron coherent states and a quantum field version of photon density waves will be the joining theories that will explain the electron-photon interaction within the lithium-silicon lattice structure. These two quantum particles will be responsible for the photon absorption rate of silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent bonds that ultimately leads to volume expansion. It will be demonstrated through the combination of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112> orthogonal directions confirms the findings ascertained in previous works made by other research groups. The computational findings presented in this work are similar to those which were discovered experimentally using transmission electron microscopy (TEM and simulation models that used density functional theory (DFT and molecular dynamics (MD. The refractive index and electric susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations and appears frequently throughout this research presentation, which should serve to demonstrate the importance of these parameters in the understanding of this component in lithium ion batteries.
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
The properties of path integrals associated with the allowance for nonstandard terms reflecting the operator nature of the canonical variables are considered. Rules for treating such terms (''equivalence rules'') are formulated. Problems with a boundary, the behavior of path integrals under canonical transformations, and the problem of quantization of dynamical systems with constraints are considered in the framework of the method
Feynman's path integrals and Bohm's particle paths
International Nuclear Information System (INIS)
Tumulka, Roderich
2005-01-01
Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)
Path probability of stochastic motion: A functional approach
Hattori, Masayuki; Abe, Sumiyoshi
2016-06-01
The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.
Reparametrization in the path integral
International Nuclear Information System (INIS)
Storchak, S.N.
1983-01-01
The question of the invariance of a measure in the n-dimensional path integral under the path reparametrization is considered. The non-invariance of the measure through the jacobian is suggeste. After the path integral reparametrization the representatioq for the Green's function of the Hamilton operator in terms of the path integral with the classical Hamiltonian has been obtained
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms
Note on path integral quantization of hydrogen atom
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
For path integrals whose integration measures are generated by stochastic processes of a definite form (Stratonovich-type equations are a local form for stochastic differential equations of these processes) it has been shown that under quantization of hydrogen atom the reparametrization and reduction Jacobians are mutually cancelled. 12 refs
Propagators and path integrals
Energy Technology Data Exchange (ETDEWEB)
Holten, J.W. van
1995-08-22
Path-integral expressions for one-particle propagators in scalar and fermionic field theories are derived, for arbitrary mass. This establishes a direct connection between field theory and specific classical point-particle models. The role of world-line reparametrization invariance of the classical action and the implementation of the corresponding BRST-symmetry in the quantum theory are discussed. The presence of classical world-line supersymmetry is shown to lead to an unwanted doubling of states for massive spin-1/2 particles. The origin of this phenomenon is traced to a `hidden` topological fermionic excitation. A different formulation of the pseudo-classical mechanics using a bosonic representation of {gamma}{sub 5} is shown to remove these extra states at the expense of losing manifest supersymmetry. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)
2016-04-29
The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.
International Nuclear Information System (INIS)
Mignemi, S.; Štrajn, R.
2016-01-01
The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.
Ranking shortest paths in Stochastic time-denpendent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Andersen, Kim Allan; Pretolani, Daniele
A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks, the ...... present a computational comparison of time-adaptive and a priori route choices, pointing out the effect of travel time and cost distributions. The reported results show that, under realistic distributions, our solution methods are effective.......A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks...
K shortest paths in stochastic time-dependent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Pretolani, Daniele; Andersen, Kim Allan
2004-01-01
A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks, the ...... present a computational comparison of time-adaptive and a priori route choices, pointing out the effect of travel time and cost distributions. The reported results show that, under realistic distributions, our solution methods are effective.......A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks...
Perfect discretization of path integrals
International Nuclear Information System (INIS)
Steinhaus, Sebastian
2012-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Perfect discretization of path integrals
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Path integration in conical space
International Nuclear Information System (INIS)
Inomata, Akira; Junker, Georg
2012-01-01
Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.
Perfect discretization of path integrals
Steinhaus, Sebastian
2011-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...
Path integrals on curved manifolds
International Nuclear Information System (INIS)
Grosche, C.; Steiner, F.
1987-01-01
A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)
Ranking paths in stochastic time-dependent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Andersen, Kim Allan; Pretolani, Daniele D.
2014-01-01
In this paper we address optimal routing problems in networks where travel times are both stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. Nevertheless, in...
Path integration on hyperbolic spaces
Energy Technology Data Exchange (ETDEWEB)
Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
1991-11-01
Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).
Path integration on hyperbolic spaces
International Nuclear Information System (INIS)
Grosche, C.
1991-11-01
Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)
Path integrals in curvilinear coordinates
International Nuclear Information System (INIS)
Prokhorov, L.V.
1984-01-01
Integration limits are studied for presenting the path integral curvilinear coordinates. For spherical (and topoloqically equivalent) coordinates it is shown that in formulas involving classical action in the exponent integration over all variables should be carried out within infinite limits. Another peculiarity is associated with appearance of the operator q which provides a complete definition of the wave functions out of the physical region. arguments are given upporting the validity of the cited statament in the general case
Path Integrals in Quantum Mechanics
International Nuclear Information System (INIS)
Louko, J
2005-01-01
Jean Zinn-Justin's textbook Path Integrals in Quantum Mechanics aims to familiarize the reader with the path integral as a calculational tool in quantum mechanics and field theory. The emphasis is on quantum statistical mechanics, starting with the partition function Tr exp(-β H) and proceeding through the diffusion equation to barrier penetration problems and their semiclassical limit. The 'real time' path integral is defined via analytic continuation and used for the path-integral representation of the nonrelativistic S-matrix and its perturbative expansion. Holomorphic and Grassmannian path integrals are introduced and applied to nonrelativistic quantum field theory. There is also a brief discussion of path integrals in phase space. The introduction includes a brief historical review of path integrals, supported by a bibliography with some 40 entries. As emphasized in the introduction, mathematical rigour is not a central issue in the book. This allows the text to present the calculational techniques in a very readable manner: much of the text consists of worked-out examples, such as the quartic anharmonic oscillator in the barrier penetration chapter. At the end of each chapter there are exercises, some of which are of elementary coursework type, but the majority are more in the style of extended examples. Most of the exercises indeed include the solution or a sketch thereof. The book assumes minimal previous knowledge of quantum mechanics, and some basic quantum mechanical notation is collected in an appendix. The material has a large overlap with selected chapters in the author's thousand-page textbook Quantum Field Theory and Critical Phenomena (2002 Oxford: Clarendon). The stand-alone scope of the present work has, however, allowed a more focussed organization of this material, especially in the chapters on, respectively, holomorphic and Grassmannian path integrals. In my view the book accomplishes its aim admirably and is eminently usable as a textbook
Stochastic integration and differential equations
Protter, Philip E
2003-01-01
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...
Computing the optimal path in stochastic dynamical systems
International Nuclear Information System (INIS)
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-01-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.
A Fractionally Integrated Wishart Stochastic Volatility Model
M. Asai (Manabu); M.J. McAleer (Michael)
2013-01-01
textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of
International Nuclear Information System (INIS)
Canright, G.S.
1992-01-01
I offer a pedagogical review of the homotopy arguments for fractional statistics in two dimensions. These arguments arise naturally in path-integral language since they necessarily consider the properties of paths rather than simply permutations. The braid group replaces the permutation group as the basic structure for quantum statistics; hence properties of the braid group on several surfaces are briefly discussed. Finally, the question of multiple (real-space) occupancy is addressed; I suggest that the ''traditional'' treatment of this question (ie, an assumption that many-anyon wavefunctions necessarily vanish for multiple occupancy) needs reexamination
Distribution definition of path integrals
International Nuclear Information System (INIS)
Kerler, W.
1979-01-01
By starting from quantum mechanics it turns out that a rather general definition of quantum functional integrals can be given which is based on distribution theory. It applies also to curved space and provides clear rules for non-linear transformations. The refinements necessary in usual definitions of path integrals are pointed out. Since the quantum nature requires special care with time sequences, it is not the classical phase space which occurs in the phase-space form of the path integral. Feynman's configuration-space form only applies to a highly specialized situation, and therefore is not a very advantageous starting point for general investigations. It is shown that the commonly used substitutions of variables do not properly account for quantum effects. The relation to the traditional ordering problem is clarified. The distribution formulation has allowed to treat constrained systems directly at the quantum level, to complete the path integral formulation of the equivalence theorem, and to define functional integrals also for space translation after the transition to fields. (orig.)
Stochastic integration by parts and functional Itô calculus
Vives, Josep
2016-01-01
This volume contains lecture notes from the courses given by Vlad Bally and Rama Cont at the Barcelona Summer School on Stochastic Analysis (July 2012). The notes of the course by Vlad Bally, co-authored with Lucia Caramellino, develop integration by parts formulas in an abstract setting, extending Malliavin's work on abstract Wiener spaces. The results are applied to prove absolute continuity and regularity results of the density for a broad class of random processes. Rama Cont's notes provide an introduction to the Functional Itô Calculus, a non-anticipative functional calculus that extends the classical Itô calculus to path-dependent functionals of stochastic processes. This calculus leads to a new class of path-dependent partial differential equations, termed Functional Kolmogorov Equations, which arise in the study of martingales and forward-backward stochastic differential equations. This book will appeal to both young and senior researchers in probability and stochastic processes, as well as to pract...
Robust Path Planning and Feedback Design Under Stochastic Uncertainty
Blackmore, Lars
2008-01-01
Autonomous vehicles require optimal path planning algorithms to achieve mission goals while avoiding obstacles and being robust to uncertainties. The uncertainties arise from exogenous disturbances, modeling errors, and sensor noise, which can be characterized via stochastic models. Previous work defined a notion of robustness in a stochastic setting by using the concept of chance constraints. This requires that mission constraint violation can occur with a probability less than a prescribed value.In this paper we describe a novel method for optimal chance constrained path planning with feedback design. The approach optimizes both the reference trajectory to be followed and the feedback controller used to reject uncertainty. Our method extends recent results in constrained control synthesis based on convex optimization to solve control problems with nonconvex constraints. This extension is essential for path planning problems, which inherently have nonconvex obstacle avoidance constraints. Unlike previous approaches to chance constrained path planning, the new approach optimizes the feedback gain as wellas the reference trajectory.The key idea is to couple a fast, nonconvex solver that does not take into account uncertainty, with existing robust approaches that apply only to convex feasible regions. By alternating between robust and nonrobust solutions, the new algorithm guarantees convergence to a global optimum. We apply the new method to an unmanned aircraft and show simulation results that demonstrate the efficacy of the approach.
Reparametrization in the path integral over finite dimensional manifold with a time-dependent metric
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
The path reparametrization procedure in the path integral is considered using the methods of stochastic processes for diffusion on finite dimensional manifold with a time-dependent metric. the reparametrization Jacobian has been obtained. The formulas of reparametrization for a symbolic presentation of the path integral have been derived
Factorization-algebraization-path integration
International Nuclear Information System (INIS)
Inomata, A.; Wilson, R.
1986-01-01
The authors review the method of factorization proposed by Schroedinger of a quantum mechanical second-order linear differential equation into a product of two first-order differential operators, often referred to as ladder operators, as well as the modifications made to Schroedinger's method by Infeld and Hull. They then review the group theoretical treatments proposed by Miller of the Schroedinger-Infeld-Hull factorizations and go on to demonstrate the application of dynamical symmetry to path integral calculations. 30 references
Conditionally solvable path integral problems
International Nuclear Information System (INIS)
Grosche, C.
1995-05-01
Some specific conditionally exactly solvable potentials are discussed within the path integral formalism. They generalize the usually known potentials by the incorporation of a fractional power behaviour and strongly anharmonic terms. We find four different kinds of such potentials, the first is related to the Coulomb potential, the second is an anharmonic confinement potential, and the third and the fourth are related to the Manning-Rosen potential. (orig.)
Path Integrals in Quantum Mechanics
International Nuclear Information System (INIS)
Chetouani, L
2005-01-01
By treating path integrals the author, in this book, places at the disposal of the reader a modern tool for the comprehension of standard quantum mechanics. Thus the most important applications, such as the tunnel effect, the diffusion matrix, etc, are presented from an original point of view on the action S of classical mechanics while having it play a central role in quantum mechanics. What also emerges is that the path integral describes these applications more richly than are described traditionally by differential equations, and consequently explains them more fully. The book is certainly of high quality in all aspects: original in presentation, rigorous in the demonstrations, judicious in the choice of exercises and, finally, modern, for example in the treatment of the tunnel effect by the method of instantons. Moreover, the correspondence that exists between classical and quantum mechanics is well underlined. I thus highly recommend this book (the French version being already available) to those who wish to familiarize themselves with formulation by path integrals. They will find, in addition, interesting topics suitable for exploring further. (book review)
Nonperturbative path integral expansion II
International Nuclear Information System (INIS)
Kaiser, H.J.
1976-05-01
The Feynman path integral representation of the 2-point function for a self-interacting Bose field is investigated using an expansion ('Path Integral Expansion', PIE) of the exponential of the kinetic term of the Lagrangian. This leads to a series - illustrated by a graph scheme - involving successively a coupling of more and more points of the lattice space commonly employed in the evaluation of path integrals. The values of the individual PIE graphs depend of course on the lattice constant. Two methods - Pade approximation and Borel-type extrapolation - are proposed to extract information about the continuum limit from a finite-order PIE. A more flexible PIE is possible by expanding besides the kinetic term a suitably chosen part of the interaction term too. In particular, if the co-expanded part is a mass term the calculation becomes only slightly more complicated than in the original formulation and the appearance of the graph scheme is unchanged. A significant reduction of the number of graphs and an improvement of the convergence of the PIE can be achieved by performing certain sums over an infinity of graph elements. (author)
Explore Stochastic Instabilities of Periodic Points by Transition Path Theory
Cao, Yu; Lin, Ling; Zhou, Xiang
2016-06-01
We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.
Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games
Jaleel, Hassan
2018-04-08
Stochastic stability is a popular solution concept for stochastic learning dynamics in games. However, a critical limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We address this limitation for the first time and develop a framework for the comparative analysis of stochastic learning dynamics with different update rules but same steady-state behavior. We present the framework in the context of two learning dynamics: Log-Linear Learning (LLL) and Metropolis Learning (ML). Although both of these dynamics have the same stochastically stable states, LLL and ML correspond to different behavioral models for decision making. Moreover, we demonstrate through an example setup of sensor coverage game that for each of these dynamics, the paths to stochastically stable states exhibit distinctive behaviors. Therefore, we propose multiple criteria to analyze and quantify the differences in the short and medium run behavior of stochastic learning dynamics. We derive and compare upper bounds on the expected hitting time to the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the comparative behavior of the two dynamics.
Lecture notes in topics in path integrals and string representations
Botelho, Luiz C L
2017-01-01
Functional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
A path integral approach to the Hodgkin-Huxley model
Baravalle, Roman; Rosso, Osvaldo A.; Montani, Fernando
2017-11-01
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.
Path Integral Formulation of Anomalous Diffusion Processes
Friedrich, Rudolf; Eule, Stephan
2011-01-01
We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...
Integrated assignment and path planning
Murphey, Robert A.
2005-11-01
A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Path integrals and geometry of trajectories
International Nuclear Information System (INIS)
Blau, M.; Keski-Vakkuri, E.; Niemi, A.J.
1990-01-01
A geometrical interpretation of path integrals is developed in the space of trajectories. This yields a supersymmetric formulation of a generic path integral, with the supersymmetry resembling the BRST supersymmetry of a first class constrained system. If the classical equation of motion is a Killing vector field in the space of trajectories, the supersymmetry localizes the path integral to classical trajectories and the WKB approximation becomes exact. This can be viewed as a path integral generalization of the Duistermaat-Heckman theorem, which states the conditions for the exactness of the WKB approximation for integrals in a compact phase space. (orig.)
Classical Solutions of Path-Dependent PDEs and Functional Forward-Backward Stochastic Systems
Directory of Open Access Journals (Sweden)
Shaolin Ji
2013-01-01
Full Text Available In this paper we study the relationship between functional forward-backward stochastic systems and path-dependent PDEs. In the framework of functional Itô calculus, we introduce a path-dependent PDE and prove that its solution is uniquely determined by a functional forward-backward stochastic system.
New framework for the Feynman path integral
International Nuclear Information System (INIS)
Shaharir, M.Z.
1986-01-01
The well-known Fourier integral solution of the free diffusion equation in an arbitrary Euclidean space is reduced to Feynmannian integrals using the method partly contained in the formulation of the Fresnelian integral. By replacing the standard Hilbert space underlying the present mathematical formulation of the Feynman path integral by a new Hilbert space, the space of classical paths on the tangent bundle to the Euclidean space (and more general to an arbitrary Riemannian manifold) equipped with a natural inner product, we show that our Feynmannian integral is in better agreement with the qualitative features of the original Feynman path integral than the previous formulations of the integral
Generalized measures and the Feynman path integral
International Nuclear Information System (INIS)
Maslov, V.P.; Chebotarev, A.M.
1976-01-01
Generalizations are obtained for the earlier results by the authors concerning the inclusion of the Feynmann path integral in the momentum representation into the general integration theory. Feynmann path integrals are considered which do not represent T-products. Generalized Feynmann measure in the configuration representation is introduced
Path integrals for arbitrary canonical transformations
International Nuclear Information System (INIS)
Oliveira, L.A.R. de.
1980-01-01
Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt
Techniques and applications of path integration
Schulman, L S
2005-01-01
A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra
A numerical scheme for optimal transition paths of stochastic chemical kinetic systems
International Nuclear Information System (INIS)
Liu Di
2008-01-01
We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples
Path integral for relativistic particle theory
International Nuclear Information System (INIS)
Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.
1990-06-01
An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs
Path integral representations on the complex sphere
Energy Technology Data Exchange (ETDEWEB)
Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2007-08-15
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
Path integral representations on the complex sphere
International Nuclear Information System (INIS)
Grosche, C.
2007-08-01
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
Set-Valued Stochastic Lebesque Integral and Representation Theorems
Directory of Open Access Journals (Sweden)
Jungang Li
2008-06-01
Full Text Available In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral, we shall introduce a new definition of Lebesgue integral of a set-valued stochastic process with respect to the time t . Finally we shall prove the presentation theorem of set-valued stochastic integral and dis- cuss further properties that will be useful to study set-valued stochastic differential equations with their applications.
Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming
National Research Council Canada - National Science Library
Fu, Michael C; Jin, Xing
2005-01-01
.... These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition...
Eco-reliable path finding in time-variant and stochastic networks
International Nuclear Information System (INIS)
Li, Wenjie; Yang, Lixing; Wang, Li; Zhou, Xuesong; Liu, Ronghui; Gao, Ziyou
2017-01-01
This paper addresses a route guidance problem for finding the most eco-reliable path in time-variant and stochastic networks such that travelers can arrive at the destination with the maximum on-time probability while meeting vehicle emission standards imposed by government regulators. To characterize the dynamics and randomness of transportation networks, the link travel times and emissions are assumed to be time-variant random variables correlated over the entire network. A 0–1 integer mathematical programming model is formulated to minimize the probability of late arrival by simultaneously considering the least expected emission constraint. Using the Lagrangian relaxation approach, the primal model is relaxed into a dualized model which is further decomposed into two simple sub-problems. A sub-gradient method is developed to reduce gaps between upper and lower bounds. Three sets of numerical experiments are tested to demonstrate the efficiency and performance of our proposed model and algorithm. - Highlights: • The most eco-reliable path is defined in time-variant and stochastic networks. • The model is developed with on-time arrival probability and emission constraints. • The sub-gradient and label correcting algorithm are integrated to solve the model. • Numerical experiments demonstrate the effectiveness of developed approaches.
Shortest Path Problems in a Stochastic and Dynamic Environment
National Research Council Canada - National Science Library
Cho, Jae
2003-01-01
.... Particularly, we develop a variety of algorithms to solve the expected shortest path problem in addition to techniques for computing the total travel time distribution along a path in the network...
The transformation techniques in path integration
International Nuclear Information System (INIS)
Inomata, A.
1989-01-01
In this paper general remarks are made concerning the time transformation techniques in path integration and their implementations. Time transformations may be divided into two classes: global (integrable) time transformations and local (nonintegrable) time transformations. Although a brief account of global time transformations is given, attention is focused on local transformations. First, time transformations in the classical Kepler problem are reviewed. Then, problems encountered in implementing a local time transformation in quantum mechanics are analyzed. A several propositions pertinent to the implementation of local time transformations, particularly basic to the local time rescaling trick in a discretized path integral, are presented
Path integral solution of the Dirichlet problem
International Nuclear Information System (INIS)
LaChapelle, J.
1997-01-01
A scheme for functional integration developed by Cartier/DeWitt-Morette is first reviewed and then employed to construct the path integral representation for the solution of the Dirichlet problem in terms of first exit time. The path integral solution is then applied to calculate the fixed-energy point-to-point transition amplitude both in configuration and phase space. The path integral solution can also be derived using physical principles based on Feynman close-quote s original reasoning. We check that the Fourier transform in energy of the fixed-energy point-to-point transition amplitude gives the well known time-dependent transition amplitude, and calculate the WKB approximation. copyright 1997 Academic Press, Inc
Integrated robust controller for vehicle path following
Energy Technology Data Exchange (ETDEWEB)
Mashadi, Behrooz; Ahmadizadeh, Pouyan, E-mail: p-ahmadizadeh@iust.ac.ir; Majidi, Majid, E-mail: m-majidi@iust.ac.ir [Iran University of Science and Technology, School of Automotive Engineering (Iran, Islamic Republic of); Mahmoodi-Kaleybar, Mehdi, E-mail: m-mahmoodi-k@iust.ac.ir [Iran University of Science and Technology, School of Mechanical Engineering (Iran, Islamic Republic of)
2015-02-15
The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties.
Integrated robust controller for vehicle path following
International Nuclear Information System (INIS)
Mashadi, Behrooz; Ahmadizadeh, Pouyan; Majidi, Majid; Mahmoodi-Kaleybar, Mehdi
2015-01-01
The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties
Perfect discretization of reparametrization invariant path integrals
International Nuclear Information System (INIS)
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-01-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Perfect discretization of reparametrization invariant path integrals
Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian
2011-05-01
To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2016-01-01
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.
Integrated path towards geological storage
International Nuclear Information System (INIS)
Bouchard, R.; Delaytermoz, A.
2004-01-01
Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these
Which coordinate system for modelling path integration?
Vickerstaff, Robert J; Cheung, Allen
2010-03-21
Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd
Canonical transformations and hamiltonian path integrals
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms
Field theory a path integral approach
Das, Ashok
2006-01-01
This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.
Diffusion in periodic potentials with path integral hyperdynamics.
Ikonen, T; Khandkar, M D; Chen, L Y; Ying, S C; Ala-Nissila, T
2011-08-01
We consider the diffusion of brownian particles in one-dimensional periodic potentials as a test bench for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate of activated rare events. To this end, we study the diffusion of a single brownian particle moving in a spatially periodic potential in the high-friction limit at low temperature. We demonstrate that the boost factor as compared to straight molecular dynamics (MD) has nontrivial behavior as a function of the bias force. Instead of growing monotonically with the bias, the boost attains an optimal maximum value due to increased error in the finite path sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice of numerical integration algorithm. As the second case, we consider parallel resampling of multiple bias force values in the case of a brownian particle in a periodic potential subject to an external ac driving force. We confirm that there is no stochastic resonance in this system. However, while the PIHD method allows one to obtain data for multiple values of the ac bias, the boost with respect to MD remains modest due to the simplicity of the equation of motion in this case.
Stochastic B-series and order conditions for exponential integrators
DEFF Research Database (Denmark)
Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne
2018-01-01
We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting...
Path integral quantization of parametrized field theory
International Nuclear Information System (INIS)
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
The formal path integral and quantum mechanics
International Nuclear Information System (INIS)
Johnson-Freyd, Theo
2010-01-01
Given an arbitrary Lagrangian function on R d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.
Feynman path integral formulation of quantum mechanics
International Nuclear Information System (INIS)
Mizrahi, M.M.
1975-01-01
The subject of this investigation is Feynman's path integral quantization scheme, which is a powerful global formalism with great intuitive appeal. It stems from the simple idea that a probability amplitude for a system to make a transition between two states is the ''sum'' of the amplitudes for all the possible ways the transition can take place
Covariant path integrals on hyperbolic surfaces
Schaefer, Joe
1997-11-01
DeWitt's covariant formulation of path integration [B. De Witt, "Dynamical theory in curved spaces. I. A review of the classical and quantum action principles," Rev. Mod. Phys. 29, 377-397 (1957)] has two practical advantages over the traditional methods of "lattice approximations;" there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli-DeWitt curvature correction term arises, as in DeWitt's work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman-Kac formula for the automorphic Schrödinger equation on the Riemann surface ΓH. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47-90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, "The path integral on the Poincare upper half plane and for Liouville quantum mechanics," Phys. Lett. A 123, 319-328 (1987).
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2017-01-01
Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
Path integration on space times with symmetry
International Nuclear Information System (INIS)
Low, S.G.
1985-01-01
Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform
Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games
Jaleel, Hassan; Shamma, Jeff S.
2018-01-01
dynamics: Log-Linear Learning (LLL) and Metropolis Learning (ML). Although both of these dynamics have the same stochastically stable states, LLL and ML correspond to different behavioral models for decision making. Moreover, we demonstrate through
A taxonomy of integral reaction path analysis
Energy Technology Data Exchange (ETDEWEB)
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.
Path Integrals and Anomalies in Curved Space
International Nuclear Information System (INIS)
Louko, Jorma
2007-01-01
Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a
Path integral quantization in the temporal gauge
International Nuclear Information System (INIS)
Scholz, B.; Steiner, F.
1983-06-01
The quantization of non-Abelian gauge theories in the temporal gauge is studied within Feynman's path integral approach. The standard asymptotic boundary conditions are only imposed on the transverse gauge fields. The fictituous longitudinal gauge quanta are eliminated asymptotically by modified boundary conditions. This abolishes the residual time-independent gauge transformations and leads to a unique fixing of the temporal gauge. The resulting path integral for the generating functional respects automatically Gauss's law. The correct gauge field propagator is derived. It does not suffer from gauge singularities at n x k = 0 present in the usual treatment of axial gauges. The standard principal value prescription does not work. As a check, the Wilson loop in temporal gauge is calculated with the new propagator. To second order (and to all orders in the Abelian case) the result agrees with the one obtained in the Feynman and Coulomb gauge. (orig.)
An alternative path integral for quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Chethan; Kumar, K.V. Pavan; Raju, Avinash [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)
2016-10-10
We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.
Rapidly converging path integral formalism. Pt. 1
International Nuclear Information System (INIS)
Bender, I.; Gromes, D.; Marquard, U.
1990-01-01
The action to be used in the path integral formalism is expanded in a systematic way in powers of the time spacing ε in order to optimize the convergence to the continuum limit. This modifies and extends the usual formalism in a transparent way. The path integral approximation to the Green function obtained by this method approaches the continuum Green function with a higher power of ε than the usual one. The general theoretical derivations are exemplified analytically for the harmonic oscillator and by Monte Carlo methods for the anharmonic oscillator. We also show how curvilinear coordinates and curved spaces can naturally be treated within this formalism. Work on field theory is in progress. (orig.)
How to solve path integrals in quantum mechanics
International Nuclear Information System (INIS)
Grosche, C.
1994-10-01
A systematic classification of Feynman path integrals in quantum mechanics is presented and a table of solvable path integrals is given which reflects the progress made during the last 15 years, including, of course, the main contributions since the invention of the path integral by Feynman in 1942. An outline of the general theory is given which will serve as a quick reference for solving path integrals. Explicit formulae for the so-called basic path integrals are presented on which our general scheme to classify and calculate path integrals in quantum mechanics is based. (orig.)
The intrinsic stochasticity of near-integrable Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu
1989-09-01
Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).
Anomaly extraction from the path integral
International Nuclear Information System (INIS)
Christos, G.A.
1983-01-01
Fujikawa's recently proposed derivation of the anomaly from the path integral is examined. It is attempted to give a better understanding of his work. In particular, evasions of his result are discussed; for example it is shown how chiral U(1) axial invariance can be maintained by employing a gauge variant regularization prescription. A brief connection with the point-splitting method is also made. (orig.)
Path integral measure for gravitational interactions
Directory of Open Access Journals (Sweden)
Kazuo Fujikawa
1983-10-01
Full Text Available It is pointed out that the path-integral variables as well as the local measure for gravitational interactions are uniquely specified if one imposes the anomaly-free condition on the Becchi-Rouet-Stora supersymmetry associated with general coordinate transformations. This prescription is briefly illustrated for the Einstein gravity and supergravity in four space-time dimensions and the relativistic string theory in two dimensions.
Covariant path integrals on hyperbolic surfaces
International Nuclear Information System (INIS)
Schaefer, J.
1997-01-01
DeWitt close-quote s covariant formulation of path integration [B. De Witt, open-quotes Dynamical theory in curved spaces. I. A review of the classical and quantum action principles,close quotes Rev. Mod. Phys. 29, 377 endash 397 (1957)] has two practical advantages over the traditional methods of open-quotes lattice approximations;close quotes there is no ordering problem, and classical symmetries are manifestly preserved at the quantum level. Applying the spectral theorem for unbounded self-adjoint operators, we provide a rigorous proof of the convergence of certain path integrals on Riemann surfaces of constant curvature -1. The Pauli endash DeWitt curvature correction term arises, as in DeWitt close-quote s work. Introducing a Fuchsian group Γ of the first kind, and a continuous, bounded, Γ-automorphic potential V, we obtain a Feynman endash Kac formula for the automorphic Schroedinger equation on the Riemann surface Γ backslash H. We analyze the Wick rotation and prove the strong convergence of the so-called Feynman maps [K. D. Elworthy, Path Integration on Manifolds, Mathematical Aspects of Superspace, edited by Seifert, Clarke, and Rosenblum (Reidel, Boston, 1983), pp. 47 endash 90] on a dense set of states. Finally, we give a new proof of some results in C. Grosche and F. Steiner, open-quotes The path integral on the Poincare upper half plane and for Liouville quantum mechanics,close quotes Phys. Lett. A 123, 319 endash 328 (1987). copyright 1997 American Institute of Physics
Path integral for gauge theories with fermions
International Nuclear Information System (INIS)
Fujikawa, K.
1980-01-01
The Atiyah-Singer index theorem indicates that a naive unitary transformation of basis vectors for fermions interacting with gauge fields is not allowed in general. On the basis of this observation, it was previously shown that the path-integral measure of a gauge-invariant fermion theory is transformed nontrivially under the chiral transformation, and thus leads to a simple derivation of ''anomalous'' chiral Ward-Takahashi identities. We here clarify some of the technical aspects associated with the discussion. It is shown that the Jacobian factor in the path-integral measure, which corresponds to the Adler-Bell-Jackiw anomaly, is independent of any smooth regularization procedure of large eigenvalues of D in Euclidean theory; this property holds in any even-dimensional space-time and also for the gravitational anomaly. The appearance of the anomaly and its connection with the index theorem are thus related to the fact that the primary importance is attached to the Lorentz-covariant ''energy'' operator D and that D and γ 5 do not commute. The abnormal behavior of the path-integral measure at the zero-frequency sector in the presence of instantons and its connection with spontaneous symmetry breaking is also clarified. We comment on several other problems associated with the anomaly and on the Pauli-Villars regularization method
Path-integral computation of superfluid densities
International Nuclear Information System (INIS)
Pollock, E.L.; Ceperley, D.M.
1987-01-01
The normal and superfluid densities are defined by the response of a liquid to sample boundary motion. The free-energy change due to uniform boundary motion can be calculated by path-integral methods from the distribution of the winding number of the paths around a periodic cell. This provides a conceptually and computationally simple way of calculating the superfluid density for any Bose system. The linear-response formulation relates the superfluid density to the momentum-density correlation function, which has a short-ranged part related to the normal density and, in the case of a superfluid, a long-ranged part whose strength is proportional to the superfluid density. These facts are discussed in the context of path-integral computations and demonstrated for liquid 4 He along the saturated vapor-pressure curve. Below the experimental superfluid transition temperature the computed superfluid fractions agree with the experimental values to within the statistical uncertainties of a few percent in the computations. The computed transition is broadened by finite-sample-size effects
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Flexible integration of path-planning capabilities
Stobie, Iain C.; Tambe, Milind; Rosenbloom, Paul S.
1993-05-01
Robots pursuing complex goals must plan paths according to several criteria of quality, including shortness, safety, speed and planning time. Many sources and kinds of knowledge, such as maps, procedures and perception, may be available or required. Both the quality criteria and sources of knowledge may vary widely over time, and in general they will interact. One approach to address this problem is to express all criteria and goals numerically in a single weighted graph, and then to search this graph to determine a path. Since this is problematic with symbolic or uncertain data and interacting criteria, we propose that what is needed instead is an integration of many kinds of planning capabilities. We describe a hybrid approach to integration, based on experiments with building simulated mobile robots using Soar, an integrated problem-solving and learning system. For flexibility, we have implemented a combination of internal planning, reactive capabilities and specialized tools. We illustrate how these components can complement each other's limitations and produce plans which integrate geometric and task knowledge.
Path integral measure for first-order and metric gravities
International Nuclear Information System (INIS)
Aros, Rodrigo; Contreras, Mauricio; Zanelli, Jorge
2003-01-01
The equivalence between the path integrals for first-order gravity and the standard torsion-free, metric gravity in 3 + 1 dimensions is analysed. Starting with the path integral for first-order gravity, the correct measure for the path integral of the metric theory is obtained
Path integration on the upper half-plane
International Nuclear Information System (INIS)
Kubo, Reijiro.
1987-06-01
Feynman's path integral is considered on the Poincare upper half-plane. It is shown that the fundamental solution to the heat equation δf/δt = Δ H f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly. (author)
Path Integration on the Upper Half-Plane
Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University
1987-01-01
Feynman's path integral is considered on the Poincare upper half-plane. It is shown that the fundamental solution to the heat equation ∂f/∂t=Δ_Hf can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.
Noncommutative quantum electrodynamics in path integral framework
Energy Technology Data Exchange (ETDEWEB)
Bourouaine, S; Benslama, A [Departement de Physique, Faculte des Sciences, Universite Mentouri, Constantine (Algeria)
2005-08-19
In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative {theta} matrix.
Noncommutative quantum electrodynamics in path integral framework
International Nuclear Information System (INIS)
Bourouaine, S; Benslama, A
2005-01-01
In this paper, the dynamics of a relativistic particle of spin 1/2, interacting with an external electromagnetic field in noncommutative space, is studied in the path integral framework. By adopting the Fradkin-Gitman formulation, the exact Green's function in noncommutative space (NCGF) for the quadratic case of a constant electromagnetic field is computed, and it is shown that its form is similar to its counterpart given in commutative space. In addition, it is deduced that the effect of noncommutativity has the same effect as an additional constant field depending on a noncommutative θ matrix
Feynman path integral and the interaction picture
International Nuclear Information System (INIS)
Pugh, R.E.
1986-01-01
The role of interaction-picture fields in the construction of coherent states and in the derivation of the Feynman path integral for interacting scalar quantum fields is examined. Special attention is paid to the dependence of the integrand on the intermediate times and it is shown that the Feynman rules are valid prior to taking the limit wherein the number of intermediate times goes to infinity; thus, this number does not act as a cutoff in divergent amplitudes. Specific normalization factors are determined
On the simplified path integral on spheres
Energy Technology Data Exchange (ETDEWEB)
Bastianelli, Fiorenzo [Universita di Bologna, Dipartimento di Fisica ed Astronomia, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany); Corradini, Olindo [Universita degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany)
2017-11-15
We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d = 14 and d = 16. (orig.)
Path integral for multi-field inflation
Energy Technology Data Exchange (ETDEWEB)
Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Department of Physics, Postech, Pohang 37673 (Korea, Republic of); Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science, 34051 Daejeon (Korea, Republic of); Shiu, Gary [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Department of Physics & Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)
2016-07-20
We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.
Introduction to stochastic analysis integrals and differential equations
Mackevicius, Vigirdas
2013-01-01
This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion pro
Path integral discussion for Smorodinsky-Winternitz potentials. Pt. 1
International Nuclear Information System (INIS)
Grosche, C.; Pogosyan, G.S.; Sissakian, A.N.
1994-02-01
Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimensional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integralformulation is not possible, we list in all soluble cases the path integral evaluations explicity in terms of the propagators and the spectral expansions into the wave-functions. (orig.)
Comment on 'Path integral solution for a Mie-type potential'
International Nuclear Information System (INIS)
Steiner, F.
1985-01-01
We comment on several incorrect results given in a recent paper by Erkoc and Sever (ES). In particular, it is pointed out that their path integral formula for the one-dimensional Mie-Lennard-Jones potential is wrong, since a quantum correction proportional to (h/2π) 2 - which is a consequence of the stochastic nature of the Feynman paths - has been overlooked. The correct expression can be obtained from a general path integral formula, which we have derived in a previous paper. For the particular potential discussed in detail by ES, we give a complete path integral treatment, which allows us to derive the energies and normalized wave functions of the discrete spectrum. (orig.)
Quantum gravitation. The Feynman path integral approach
International Nuclear Information System (INIS)
Hamber, Herbert W.
2009-01-01
The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)
Meerson, Baruch; Smith, Naftali R.
2018-01-01
De la Cruz et al. [Phys. Rev. Lett. 120, 128102 (2018); arXiv:1705.08683] studied a noise-induced transition in an oscillating stochastic population undergoing birth- and death-type reactions. They applied the Freidlin-Wentzell WKB formalism to determine the most probable path to the noise-induced escape from a limit cycle predicted by deterministic theory, and to find the probability distribution of escape time. Here we raise a number of objections to their calculations.
A note on "Multicriteria adaptive paths in stochastic, time-varying networks"
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...... that does not hold in general. Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem. We give a simplified algorithm which is linear in the input size....
Path integral approach to multidimensional quantum tunnelling
International Nuclear Information System (INIS)
Balantekin, A.B.; Takigawa, N.
1985-01-01
Path integral formulation of the coupled channel problem in the case of multidimensional quantum tunneling is presented and two-time influence functionals are introduced. The two-time influence functionals are calculated explicitly for the three simplest cases: Harmonic oscillators linearly or quadratically coupled to the translational motion and a system with finite number of equidistant energy levels linearly coupled to the translational motion. The effects of these couplings on the transmission probability are studied for two limiting cases, adiabatic case and when the internal system has a degenerate energy spectrum. The condition for the transmission probability to show a resonant structure is discussed and exemplified. Finally, the properties of the dissipation factor in the adiabatic limit and its correlation with the friction coefficient in the classically accessible region are studied
Path integrals over phase space, their definition and simple properties
International Nuclear Information System (INIS)
Tarski, J.; Technische Univ. Clausthal, Clausthal-Zellerfeld
1981-10-01
Path integrals over phase space are defined in two ways. Some properties of these integrals are established. These properties concern the technique of integration and the quantization rule isup(-I)deltasub(q) p. (author)
Mixed time slicing in path integral simulations
International Nuclear Information System (INIS)
Steele, Ryan P.; Zwickl, Jill; Shushkov, Philip; Tully, John C.
2011-01-01
A simple and efficient scheme is presented for using different time slices for different degrees of freedom in path integral calculations. This method bridges the gap between full quantization and the standard mixed quantum-classical (MQC) scheme and, therefore, still provides quantum mechanical effects in the less-quantized variables. Underlying the algorithm is the notion that time slices (beads) may be 'collapsed' in a manner that preserves quantization in the less quantum mechanical degrees of freedom. The method is shown to be analogous to multiple-time step integration techniques in classical molecular dynamics. The algorithm and its associated error are demonstrated on model systems containing coupled high- and low-frequency modes; results indicate that convergence of quantum mechanical observables can be achieved with disparate bead numbers in the different modes. Cost estimates indicate that this procedure, much like the MQC method, is most efficient for only a relatively few quantum mechanical degrees of freedom, such as proton transfer. In this regime, however, the cost of a fully quantum mechanical simulation is determined by the quantization of the least quantum mechanical degrees of freedom.
Path integral formulation and Feynman rules for phylogenetic branching models
Energy Technology Data Exchange (ETDEWEB)
Jarvis, P D; Bashford, J D; Sumner, J G [School of Mathematics and Physics, University of Tasmania, GPO Box 252C, 7001 Hobart, TAS (Australia)
2005-11-04
A dynamical picture of phylogenetic evolution is given in terms of Markov models on a state space, comprising joint probability distributions for character types of taxonomic classes. Phylogenetic branching is a process which augments the number of taxa under consideration, and hence the rank of the underlying joint probability state tensor. We point out the combinatorial necessity for a second-quantized, or Fock space setting, incorporating discrete counting labels for taxa and character types, to allow for a description in the number basis. Rate operators describing both time evolution without branching, and also phylogenetic branching events, are identified. A detailed development of these ideas is given, using standard transcriptions from the microscopic formulation of non-equilibrium reaction-diffusion or birth-death processes. These give the relations between stochastic rate matrices, the matrix elements of the corresponding evolution operators representing them, and the integral kernels needed to implement these as path integrals. The 'free' theory (without branching) is solved, and the correct trilinear 'interaction' terms (representing branching events) are presented. The full model is developed in perturbation theory via the derivation of explicit Feynman rules which establish that the probabilities (pattern frequencies of leaf colourations) arising as matrix elements of the time evolution operator are identical with those computed via the standard analysis. Simple examples (phylogenetic trees with two or three leaves), are discussed in detail. Further implications for the work are briefly considered including the role of time reparametrization covariance.
Path integral formulation and Feynman rules for phylogenetic branching models
International Nuclear Information System (INIS)
Jarvis, P D; Bashford, J D; Sumner, J G
2005-01-01
A dynamical picture of phylogenetic evolution is given in terms of Markov models on a state space, comprising joint probability distributions for character types of taxonomic classes. Phylogenetic branching is a process which augments the number of taxa under consideration, and hence the rank of the underlying joint probability state tensor. We point out the combinatorial necessity for a second-quantized, or Fock space setting, incorporating discrete counting labels for taxa and character types, to allow for a description in the number basis. Rate operators describing both time evolution without branching, and also phylogenetic branching events, are identified. A detailed development of these ideas is given, using standard transcriptions from the microscopic formulation of non-equilibrium reaction-diffusion or birth-death processes. These give the relations between stochastic rate matrices, the matrix elements of the corresponding evolution operators representing them, and the integral kernels needed to implement these as path integrals. The 'free' theory (without branching) is solved, and the correct trilinear 'interaction' terms (representing branching events) are presented. The full model is developed in perturbation theory via the derivation of explicit Feynman rules which establish that the probabilities (pattern frequencies of leaf colourations) arising as matrix elements of the time evolution operator are identical with those computed via the standard analysis. Simple examples (phylogenetic trees with two or three leaves), are discussed in detail. Further implications for the work are briefly considered including the role of time reparametrization covariance
Bosonic path integral for spin-1/2 particles
International Nuclear Information System (INIS)
Jacobson, T.
1989-01-01
The 3D Dirac propagator is expressed as a path integral over curves of commuting two-component spinors. This is related to the path integral recently employed by Polyakov to demonstrate Fermi-Bose transmutation for solitons in the gauged CP 1 model with Chern-Simons term. Several difficulties concerning the latter path integral are identified and corrected from our point of view. (orig.)
Polymer quantum mechanics some examples using path integrals
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2014-01-01
In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
Continuous local martingales and stochastic integration in UMD Banach spaces
Veraar, M.C.
2007-01-01
Recently, van Neerven, Weis and the author, constructed a theory for stochastic integration of UMD Banach space valued processes. Here the authors use a (cylindrical) Brownian motion as an integrator. In this note we show how one can extend these results to the case where the integrator is an
Integrating out the standard Higgs field in the path integral
International Nuclear Information System (INIS)
Dittmaier, S.
1996-01-01
We integrate out the Higgs boson in the electroweak standard model at one loop and construct a low-energy effective Lagrangian assuming that the Higgs mass is much larger than the gauge-boson masses. Instead of applying diagrammatical techniques, we integrate out the Higgs boson directly in the path integral, which turns out to be much simpler. By using the background-field method and the Stueckelberg formalism, we directly find a manifestly gauge-invariant result. The heavy-Higgs effects on fermionic couplings are derived, too. At one loop the log M H terms of the heavy-Higgs limit of the electroweak standard model coincide with the UV-divergent terms in the gauged non-linear σ-model, but vertex functions differ in addition by finite constant terms. Finally, the leading Higgs effects to some physical processes are calculated from the effective Lagrangian. (orig.)
Quantum mechanics on the half-line using path integrals
International Nuclear Information System (INIS)
Clark, T.E.; Menikoff, R.; Sharp, D.H.
1980-01-01
We study the Feynman path-integral formalism for the constrained problem of a free particle moving on the half-line. It is shown that the effect of the boundary condition at the origin can be incorporated into the path integral by a simple modification of the action. The small-time behavior of the Green's function can be obtained from the stationary-phase evaluation of our expression for the path integral, which in this case includes contributions from both the direct and reflected classical paths
Path integral representation of the symmetric Rosen-Morse potential
International Nuclear Information System (INIS)
Duru, I.H.
1983-09-01
An integral formula for the Green's function of symmetric Rosen-Morse potential is obtained by solving path integrals. The correctly normalized wave functions and bound state energy spectrum are derived. (author)
Space-time transformations in radial path integrals
International Nuclear Information System (INIS)
Steiner, F.
1984-09-01
Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)
Differential neural network configuration during human path integration
Arnold, Aiden E. G. F; Burles, Ford; Bray, Signe; Levy, Richard M.; Iaria, Giuseppe
2014-01-01
Path integration is a fundamental skill for navigation in both humans and animals. Despite recent advances in unraveling the neural basis of path integration in animal models, relatively little is known about how path integration operates at a neural level in humans. Previous attempts to characterize the neural mechanisms used by humans to visually path integrate have suggested a central role of the hippocampus in allowing accurate performance, broadly resembling results from animal data. However, in recent years both the central role of the hippocampus and the perspective that animals and humans share similar neural mechanisms for path integration has come into question. The present study uses a data driven analysis to investigate the neural systems engaged during visual path integration in humans, allowing for an unbiased estimate of neural activity across the entire brain. Our results suggest that humans employ common task control, attention and spatial working memory systems across a frontoparietal network during path integration. However, individuals differed in how these systems are configured into functional networks. High performing individuals were found to more broadly express spatial working memory systems in prefrontal cortex, while low performing individuals engaged an allocentric memory system based primarily in the medial occipito-temporal region. These findings suggest that visual path integration in humans over short distances can operate through a spatial working memory system engaging primarily the prefrontal cortex and that the differential configuration of memory systems recruited by task control networks may help explain individual biases in spatial learning strategies. PMID:24808849
Path integral solution for some time-dependent potential
International Nuclear Information System (INIS)
Storchak, S.N.
1989-12-01
The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs
A new type of phase-space path integral
International Nuclear Information System (INIS)
Marinov, M.S.
1991-01-01
Evolution of Wigner's quasi-distribution of a quantum system is represented by means of a path integral in phase space. Instead of the Hamiltonian action, a new functional is present in the integral, and its extrema in the functional space are also given by the classical trajectories. The phase-space paths appear in the integral with real weights, so complex integrals are not necessary. The semiclassical approximation and some applications are discussed briefly. (orig.)
Defect-vectors and path integrals in fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1979-01-01
It seems necessary to introduce the J integral without hypothesis on material behavior. The aim of this paper is this introduction and its consequences. Successively are presented: introduction to defect-vectors and defect-momentum, definition of J(K) and J(L) integrals, equilibrium and energy momentum tensor, energetic signification of the path J and L integrals, and local aspects of the criteria based on path integrals [fr
Integration of stochastic generation in power systems
Papaefthymiou, G.; Schavemaker, P.H.; Sluis, van der L.; Kling, W.L.; Kurowicka, D.; Cooke, R.M.
2006-01-01
Stochastic generation, i.e., electrical power production by an uncontrolled primary energy source, is expected to play an important role in future power systems. A new power system structure is created due to the large-scale implementation of this small-scale, distributed, non-dispatchable
International Nuclear Information System (INIS)
Utama, Briandhika; Purqon, Acep
2016-01-01
Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods. (paper)
Ray and wave optics of integrable and stochastic systems
International Nuclear Information System (INIS)
McDonald, S.W.; Kaufman, A.N.
1979-07-01
The generalization of WKB methods to more than one dimension is discussed in terms of the integrability or non-integrability of the geometrical optics (ray Hamiltonian) system derived in the short-wave approximation. In the two-dimensional case the ray trajectories are either regular or stochastic, and the qualitative differences between these types of motion are manifested in the characteristics of the spectra and eigenfunctions. These are examined for a model system which may be integrable or stochastic, depending on a single parameter
Two-path plasmonic interferometer with integrated detector
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
Set-Valued Stochastic Equation with Set-Valued Square Integrable Martingale
Directory of Open Access Journals (Sweden)
Li Jun-Gang
2017-01-01
Full Text Available In this paper, we shall introduce the stochastic integral of a stochastic process with respect to set-valued square integrable martingale. Then we shall give the Aumann integral measurable theorem, and give the set-valued stochastic Lebesgue integral and set-valued square integrable martingale integral equation. The existence and uniqueness of solution to set-valued stochastic integral equation are proved. The discussion will be useful in optimal control and mathematical finance in psychological factors.
A stochastic-programming approach to integrated asset and liability ...
African Journals Online (AJOL)
This increase in complexity has provided an impetus for the investigation into integrated asset- and liability-management frameworks that could realistically address dynamic portfolio allocation in a risk-controlled way. In this paper the authors propose a multi-stage dynamic stochastic-programming model for the integrated ...
A Key Event Path Analysis Approach for Integrated Systems
Directory of Open Access Journals (Sweden)
Jingjing Liao
2012-01-01
Full Text Available By studying the key event paths of probabilistic event structure graphs (PESGs, a key event path analysis approach for integrated system models is proposed. According to translation rules concluded from integrated system architecture descriptions, the corresponding PESGs are constructed from the colored Petri Net (CPN models. Then the definitions of cycle event paths, sequence event paths, and key event paths are given. Whereafter based on the statistic results after the simulation of CPN models, key event paths are found out by the sensitive analysis approach. This approach focuses on the logic structures of CPN models, which is reliable and could be the basis of structured analysis for discrete event systems. An example of radar model is given to characterize the application of this approach, and the results are worthy of trust.
Model selection for integrated pest management with stochasticity.
Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel
2018-04-07
In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Path-integral approach to resonant electron-molecule scattering
International Nuclear Information System (INIS)
Winterstetter, M.; Domcke, W.
1993-01-01
A path-integral formulation of resonant electron-molecule scattering is developed within the framework of the projection-operator formalism of scattering theory. The formation and decay of resonances is treated in real time as a quantum-mechanical electronic-tunneling process, modified by the coupling of the electronic motion with the nuclear degrees of freedom. It is shown that the electronic continuum can be summed over in the path-integral formulation, resulting formally in the path integral for an effective two-state system with coupling to vibrations. The harmonic-oscillator approximation is adopted for the vibrational motion in the present work. Approximation methods are introduced which render the numerical evaluation of the sum over paths feasible for up to ∼10 3 elementary time slices. The theory is numerically realized for simple but nontrivial models representing the 2 Π g d-wave shape resonance in e - +N 2 collisions and the 2 Σ u + p-wave shape resonance in e - +H 2 collisions, respectively. The accuracy of the path-integral results is assessed by comparison with exact numerical reference data for these models. The essential virtue of the path-integral approach is the fact that the computational effort scales at most linearly with the number of vibrational degrees of freedom. The path-integral method is thus well suited to treat electron collisions with polyatomic molecules and molecular aggregates
Purely geometric path integral for spin-foams
International Nuclear Information System (INIS)
Shirazi, Atousa Chaharsough; Engle, Jonathan
2014-01-01
Spin-foams are a proposal for defining the dynamics of loop quantum gravity via path integral. In order for a path integral to be at least formally equivalent to the corresponding canonical quantization, at each point in the space of histories it is important that the integrand have not only the correct phase—a topic of recent focus in spin-foams—but also the correct modulus, usually referred to as the measure factor. The correct measure factor descends from the Liouville measure on the reduced phase space, and its calculation is a task of canonical analysis. The covariant formulation of gravity from which spin-foams are derived is the Plebanski–Holst formulation, in which the basic variables are a Lorentz connection and a Lorentz-algebra valued 2-form, called the Plebanski 2-form. However, in the final spin-foam sum, one usually sums over only spins and intertwiners, which label eigenstates of the Plebanski 2-form alone. The spin-foam sum is therefore a discretized version of a Plebanski–Holst path integral in which only the Plebanski 2-form appears, and in which the connection degrees of freedom have been integrated out. We call this a purely geometric Plebanski–Holst path integral. In prior work in which one of the authors was involved, the measure factor for the Plebanski–Holst path integral with both connection and 2-form variables was calculated. Before one discretizes this measure and incorporates it into a spin-foam sum, however, one must integrate out the connection in order to obtain the purely geometric version of the path integral. To calculate this purely geometric path integral is the principal task of the present paper, and it is done in two independent ways. Background independence of the resulting path integral is discussed in the final section, and gauge-fixing is discussed in appendix B. (paper)
Defect vectors and path integrals in fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1979-01-01
Several criteria have been proposed in Elastic Plastic Fracture Mechanics. One of the most interesting ones is the J 1 criterion where J 1 is a path integral surrounding the crack tip. Other path integrals (or surface integrals in 3D problems) can be used. But all these integrals are introduced on an elastic basis, though they are applied in plasticity. This paper shows that it is possible to introduce these integrals without any reference to the elastic behavior of the material. The method is based on the 'defect vector theory' which is an extension of the energy-momentum tensor theory. (orig.)
Variational nature, integration, and properties of Newton reaction path.
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-21
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Variational nature, integration, and properties of Newton reaction path
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-01
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
An operator expansion technique for path integral analysis
International Nuclear Information System (INIS)
Tsvetkov, I.V.
1995-01-01
A new method of path integral analysis in the framework of a power series technique is presented. The method is based on the operator expansion of an exponential. A regular procedure to calculate the correction terms is found. (orig.)
Remembered landmarks enhance the precision of path integration
Directory of Open Access Journals (Sweden)
Shannon O´Leary
2005-01-01
Full Text Available When navigating by path integration, knowledge of ones position becomes increasingly uncertain as one walks from a known location. This uncertainty decreases if one perceives a known landmark location nearby. We hypothesized that remembering landmarks might serve a similar purpose for path integration as directly perceiving them. If this is true, walking near a remembered landmark location should enhance response consistency in path integration tasks. To test this, we asked participants to view a target and then attempt to walk to it without vision. Some participants saw the target plus a landmark during the preview. Compared with no-landmark trials, response consistency nearly doubled when participants passed near the remembered landmark location. Similar results were obtained when participants could audibly perceive the landmark while walking. A control experiment ruled out perceptual context effects during the preview. We conclude that remembered landmarks can enhance path integration even though they are not directly perceived.
Application of Stochastic Sensitivity Analysis to Integrated Force Method
Directory of Open Access Journals (Sweden)
X. F. Wei
2012-01-01
Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.
A path-integral approach to inclusive processes
International Nuclear Information System (INIS)
Sukumar, C.V.
1995-01-01
The cross section for an inclusive scattering process may be expressed in terms of a double path integral. Evaluation of the double path integral by the stationary-phase approximation yields classical equations of motion for the stationary trajectories and a classical cross section for the inclusive process which depends on the polarization of the initial state. Polarization analyzing powers are calculated from this theory and the results are compared with those obtained in an earlier paper. ((orig.))
An alternative derivation of the Faddeev-Popov path integral
International Nuclear Information System (INIS)
Cabo, A.; Martinez, D.L.; Chaichian, M.; Presnajder, P.
1991-01-01
A new derivation of the Faddeev-Popov path integral is presented. The use of gauge invariant transformations and gauge fixing conditions in the phase space allows to introduce straightforwardly Lorentz invariant gauge conditions into the path integral, thus avoiding the necessity of going first through a Coulomb-like gauge as it is usually done. The case of systems with finite degrees of freedom and the abelian (QED) one are also presented for illustration. (orig.)
User's guide to Monte Carlo methods for evaluating path integrals
Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan
2018-04-01
We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.
Path Integration Applied to Structural Systems with Uncertain Properties
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Köylüoglu, H. Ugur
Path integration (cell-to-cell mapping) method is applied to evaluate the joint probability density function (jpdf) of the response of the structural systems, with uncertain properties, subject to white noise excitation. A general methodology to deal with uncertainties is outlined and applied...... to the friction controlled slip of a structure on a foundation where the friction coefficient is modelled as a random variable. Exact results derived using the total probability theorem are compared to the ones obtained via path integration....
Some instructive examples of Mayer's interference in path integral
International Nuclear Information System (INIS)
Fiziev, P.P.
1984-01-01
A new technique of path integral evaluation by a discretization procedure is proposed. It is based on the requirement, found previously, to single out the set of classical trajectories over which the summation is performed. The notion of Mayer's interference is introduced and illustrated by a number of simple examples. The choice of the set of paths is shown to induce a corresponding quantization procedure and this line is followed to demonstrate its connection with the symmetries of the problem. The possibility of extracting information on the space of quantum states from path integrals has been reviewed. A class of paths has been found; the summation over these paths within the framework of the suggested approach produces the well known results for the motion in a homogeneous field and for the harmonic oscillator
Medial temporal lobe roles in human path integration.
Directory of Open Access Journals (Sweden)
Naohide Yamamoto
Full Text Available Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.
A unified approach to stochastic integration on the real line
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas; Graversen, Svend-Erik; Pedersen, Jan
Stochastic integration on the predictable σ-field with respect to σ-finite L0-valued measures, also known as formal semimartingales, is studied. In particular, the triplet of such measures is introduced and used to characterize the set of integrable processes. Special attention is given to Lévy...... processes indexed by the real line. Surprisingly, many of the basic properties break down in this situation compared to the usual R+ case....
Spatial Updating Strategy Affects the Reference Frame in Path Integration.
He, Qiliang; McNamara, Timothy P
2018-06-01
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.
Rules for integrals over products of distributions from coordinate independence of path integrals
International Nuclear Information System (INIS)
Kleinert, H.; Chervyakov, A.
2001-01-01
In perturbative calculations of quantum-mechanical path integrals in curvilinear coordinates, one encounters Feynman diagrams involving multiple temporal integrals over products of distributions which are mathematically undefined. In addition, there are terms proportional to powers of Dirac δ-functions at the origin coming from the measure of path integration. We derive simple rules for dealing with such singular terms from the natural requirement of coordinate independence of the path integrals. (orig.)
Response of Non-Linear Systems to Renewal Impulses by Path Integration
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Iwankiewicz, R.
The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... point process has not independent increments the state vector of the system, consisting of the generalized displacements and velocities, is not a Markov process. Initially it is shown how the indicated systems can be converted to an equivalent Poisson driven system at the expense of introducing...... additional discrete-valued state variables for which the stochastic equations are also formulated....
Stochastic integration in Banach spaces theory and applications
Mandrekar, Vidyadhar
2015-01-01
Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...
Low level constraints on dynamic contour path integration.
Directory of Open Access Journals (Sweden)
Sophie Hall
Full Text Available Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°, temporal (200 ms, colour (over 10 colours and luminance (-25% to 25% information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.
Path integral for a relativistic-particle theory
International Nuclear Information System (INIS)
Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M.
1991-01-01
An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + ∞ limits
Path integral for a relativistic-particle theory
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E.S. (AN SSSR, Moscow (SU)); Gitman, D.M. (Moskovskij Inst. Radiotekhniki, Ehlektroniki i Automatiki, Moscow (SU)); Shvartsman, S.M. (Tomskij Pedagogicheskij Inst., Tomsk (SU))
1991-06-01
An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + {infinity}) limits.
Some illustrative examples of Mayer's interference in the path integral
International Nuclear Information System (INIS)
Fizichev, P.P.
1983-01-01
A new technique is proposed for evaluation of path integrals by means of a discretization procedure. It is based on the previously established necessity to single out the set of classical trajectories along which the summation is performed. The notion of Mayer interference is introduced and is illustrated on a number of simple examples. It is shown that the choice of the set of paths induced a corresponding quantization prosymmetries of the problem. The possibility is shown of extracting information about the space of quantum states from the path integral. A class of paths is established the summation over which in the framework of the suggested approach leads to the well-known results for the motion is a homogeneous field and for the harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Cotter, Simon L., E-mail: simon.cotter@manchester.ac.uk
2016-10-15
Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is an ongoing area for research, and is the source of many theoretical and computational challenges. In this paper, we present a significant improvement to the constrained approach, which is a method for computing effective dynamics of slowly changing quantities in these systems, but which does not rely on the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems where the difference in timescales between the “fast” and “slow” variables is not so pronounced. This new application of the constrained approach allows us to compute the effective generator of the slow variables, without the need for expensive stochastic simulations. This is achieved by finding the null space of the generator of the constrained system. For complex systems where this is not possible, or where the constrained subsystem is itself multiscale, the constrained approach can then be applied iteratively. This results in breaking the problem down into finding the solutions to many small eigenvalue problems, which can be efficiently solved using standard methods. Since this methodology does not rely on the quasi steady-state assumption, the effective dynamics that are approximated are highly accurate, and in the case of systems with only monomolecular reactions, are exact. We will demonstrate this with some numerics, and also use the effective generators to sample paths of the slow variables which are conditioned on their endpoints, a task which would be computationally intractable for the generator of the full system.
Integrated Schools: Finding a New Path
Orfield, Gary; Frankenberg, Erica; Siegel-Hawley, Genevieve
2010-01-01
Research shows that schools remain a powerful tool for shoring up individual opportunity and for attaining a thriving, multiracial democratic society. The authors point to social science evidence that demonstrates how segregated schooling limits the prospects of both minority and majority students and how integrated education can close the…
Numerical calculations in elementary quantum mechanics using Feynman path integrals
International Nuclear Information System (INIS)
Scher, G.; Smith, M.; Baranger, M.
1980-01-01
We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient
PathSys: integrating molecular interaction graphs for systems biology
Directory of Open Access Journals (Sweden)
Raval Alpan
2006-02-01
Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.
The DOZZ formula from the path integral
Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent
2018-05-01
We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.
Semi-classical approximation to path integrals - phases and catastrophes
International Nuclear Information System (INIS)
Levit, S.
1977-01-01
Problems of phases and catastrophes were encountered when trying to apply the classical S-matrix theory to the scattering phenomena in nuclear physics. The path integral formulation provided a suitable basis for the treatment of these and related problems. Within conventional mathematical language it was possible to give practical prescriptions and discuss their limitations. Since the semi-classical (stationary phase) approximation is commonly used in any application of the path integral method, the results are not restricted to the scattering problems and may be of general interest. The derivation of the uniform approximations in the energy representation should use the exact path integral expression as the starting point, rather than performing Fourier transforms on the expressions derived in the present lecture. (B.G.)
Recent developments in the path integral approach to anomalies
International Nuclear Information System (INIS)
Fujikawa, Kazuo.
1986-08-01
After a brief summary of the path integral approach to anomalous identities, some of the recent developments in this approach are discussed. The topics discussed include (i) Construction of the effective action by means of the covariant current, (ii) Gauss law constraint in anomalous gauge theories, (iii) Path integral approach to anomalies in superconformal transformations, (iv) Conformal and ghost number anomalies in string theory in analogy with the instanton calculation, (v) Covariant local Lorentz anomaly and its connection with the mathematical construction of the consistent anomaly. (author)
Functional approach without path integrals to finite temperature free fermions
International Nuclear Information System (INIS)
Souza, S.M. de; Santos, O. Rojas; Thomaz, M.T.
1999-01-01
Charret et al applied the properties of Grassmann generators to develop a new method to calculate the coefficients of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d ≥1). The methodology explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. we apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the β-independent and μindependent infinities that plague the continuum path integral formulation. (author)
Path integral theory and deep inelastic scattering of nuclei
International Nuclear Information System (INIS)
Neto, J.L.
1981-10-01
A formalism, based on Feynman's path integral, is developed and used in the theory of deep inelastic collisions of nuclei. Having shown how to express the propagator of the Wigner function of an isolated system as a (double) path integral in phase space, random processes are considered and the influence functional in interacting systems is discussed. A semi-classical description for the reduced Wigner and a generalized Langevin equation are given. Finally, the formalism is used in a random matrix model for deep inelastic collisions. (U.K.)
Entropic sampling in the path integral Monte Carlo method
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Lyubartsev, A P
2003-01-01
We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced
Stochastic Integration H∞ Filter for Rapid Transfer Alignment of INS.
Zhou, Dapeng; Guo, Lei
2017-11-18
The performance of an inertial navigation system (INS) operated on a moving base greatly depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of large initial attitude errors and uncertain observation noise statistics poses a great challenge for the estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear filter, namely the stochastic integration H ∞ filter (SIH ∞ F) for improving both the accuracy and robustness of RTA. In this new nonlinear H ∞ filter, the stochastic spherical-radial integration rule is incorporated with the framework of the derivative-free H ∞ filter for the first time, and the resulting SIH ∞ F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity and large uncertainty. Comparisons between the SIH ∞ F and previously well-known methodologies are carried out by means of numerical simulation and a van test. The results demonstrate that the newly-proposed method outperforms the cubature H ∞ filter. Moreover, the SIH ∞ F inherits the benefit of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.
Age differences in virtual environment and real world path integration
Directory of Open Access Journals (Sweden)
Diane E Adamo
2012-09-01
Full Text Available Accurate path integration requires the integration of visual, proprioceptive, and vestibular self-motion cues and age effects associated with alterations in processing information from these systems may contribute to declines in path integration abilities. The present study investigated age-related differences in path integration in conditions that varied as a function of available sources of sensory information. Twenty-two healthy, young (23.8 ± 3.0 yrs. and 16 older (70.1 ± 6.4 yrs. adults participated in distance reproduction and triangle completion tasks performed in a virtual environment and two real world conditions: guided walking and wheelchair propulsion. For walking and wheelchair propulsion conditions, participants wore a blindfold and wore noise-blocking headphones and were guided through the workspace by the experimenter. For the virtual environment (VE condition, participants viewed self-motion information on a computer monitor and used a joystick to navigate through the environment. For triangle completion tasks, older compared to younger individuals showed greater errors in rotation estimations performed in the wheelchair condition; and for rotation and distance estimations in the VE condition. Distance reproduction tasks, in contrast, did not show any age effects. These findings demonstrate that age differences in path integration vary as a function of the available sources of information and by the complexity of outbound pathway.
An analysis of 3D particle path integration algorithms
International Nuclear Information System (INIS)
Darmofal, D.L.; Haimes, R.
1996-01-01
Several techniques for the numerical integration of particle paths in steady and unsteady vector (velocity) fields are analyzed. Most of the analysis applies to unsteady vector fields, however, some results apply to steady vector field integration. Multistep, multistage, and some hybrid schemes are considered. It is shown that due to initialization errors, many unsteady particle path integration schemes are limited to third-order accuracy in time. Multistage schemes require at least three times more internal data storage than multistep schemes of equal order. However, for timesteps within the stability bounds, multistage schemes are generally more accurate. A linearized analysis shows that the stability of these integration algorithms are determined by the eigenvalues of the local velocity tensor. Thus, the accuracy and stability of the methods are interpreted with concepts typically used in critical point theory. This paper shows how integration schemes can lead to erroneous classification of critical points when the timestep is finite and fixed. For steady velocity fields, we demonstrate that timesteps outside of the relative stability region can lead to similar integration errors. From this analysis, guidelines for accurate timestep sizing are suggested for both steady and unsteady flows. In particular, using simulation data for the unsteady flow around a tapered cylinder, we show that accurate particle path integration requires timesteps which are at most on the order of the physical timescale of the flow
Stochastic programming problems with generalized integrated chance constraints
Czech Academy of Sciences Publication Activity Database
Branda, Martin
2012-01-01
Roč. 61, č. 8 (2012), s. 949-968 ISSN 0233-1934 R&D Projects: GA ČR GAP402/10/1610 Grant - others:SVV(CZ) 261315/2010 Institutional support: RVO:67985556 Keywords : chance constraints * integrated chance constraints * penalty functions * sample approximations * blending problem Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.707, year: 2012 http://library.utia.cas.cz/separaty/2012/E/branda-stochastic programming problems with generalized integrated.pdf
Path-integral invariants in abelian Chern–Simons theory
International Nuclear Information System (INIS)
Guadagnini, E.; Thuillier, F.
2014-01-01
We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants
Chiral symmetry in the path-integral approach
International Nuclear Information System (INIS)
Schaposnik, F.A.
1987-01-01
The derivation of anomalous Ward-Takahashi identities related to chiral symmetries in the path-integral framework is presented. Some two-dimensional models in both abelian and non-abelian cases are discussed. The quantization of such theories using Weyl fermions is also presented. (L.C.) [pt
Potential theory, path integrals and the Laplacian of the indicator
R.-J. Lange (Rutger-Jan)
2012-01-01
markdownabstractThis paper links the field of potential theory — i.e. the Dirichlet and Neumann problems for the heat and Laplace equation — to that of the Feynman path integral, by postulating the some seemingly ill-defined potential. The Laplacian of the indicator can be interpreted using the
General new time formalism in the path integral
International Nuclear Information System (INIS)
Pak, N.K.; Sokmen, I.
1983-08-01
We describe a general method of applying point canonical transformations to the path integral followed by the corresponding new time transformations aimed at reducing an arbitrary one-dimensional problem into an exactly solvable form. Our result is independent of operator ordering ambiguities by construction. (author)
A discrete history of the Lorentzian path integral
Loll, R.
2003-01-01
In these lecture notes, I describe the motivation behind a recent formulation of a non-perturbative gravitational path integral for Lorentzian (instead of the usual Euclidean) space-times, and give a pedagogical introduction to its main features. At the regularized, discrete level this approach
On the path integral in imaginary Lobachevsky space
International Nuclear Information System (INIS)
Grosche, C.
1993-10-01
The path integral on the single-sheeted hyperboloid, i.e. in D-dimensional imaginary Lobachevsky space, is evaluated. A potential problem which we call 'Kepler-problem', and the case of a constant magnetic field are also discussed. (orig.)
Fourier path-integral Monte Carlo methods: Partial averaging
International Nuclear Information System (INIS)
Doll, J.D.; Coalson, R.D.; Freeman, D.L.
1985-01-01
Monte Carlo Fourier path-integral techniques are explored. It is shown that fluctuation renormalization techniques provide an effective means for treating the effects of high-order Fourier contributions. The resulting formalism is rapidly convergent, is computationally convenient, and has potentially useful variational aspects
Worldline path integrals for fermions with general couplings
International Nuclear Information System (INIS)
D'Hoker, E.; Gagne, D.G.
1996-01-01
We derive a worldline path integral representation for the effective action of a multiplet of Dirac fermions coupled to the most general set of matrix-valued scalar, pseudoscalar, vector, axial vector and antisymmetric tensor background fields. By representing internal degrees of freedom in terms of worldline fermions as well, we obtain a formulation which manifestly exhibits chiral gauge invariance. (orig.)
Preregularization and the path integral approach to the chiral anomaly
International Nuclear Information System (INIS)
Elias, V.; McKeon, G.; Steele, T.; Mann, R.B.; Treml, T.F.; Sherry, T.N.
1987-01-01
We explore the connection between perturbative and non-perturbative (path-integral) approaches to the axial anomaly. In particular, we show how the Jacobian associated with the fermionic measure corresponding to local axial transformations may be calculated directly from shift-of-integration-variable surface terms in four Euclidean dimensions. No regularization (explicit parametrization of UV infinities) is required in this approach, but invariance of the Jacobian under vector gauge transformations (i.e. preregularization) is required to remove a variable-of-integration ambiguity within the expression for the Jacobian of the fermionic measure. (orig.)
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
Ryder, Lewis
2004-06-01
In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed
An estimator for the relative entropy rate of path measures for stochastic differential equations
Energy Technology Data Exchange (ETDEWEB)
Opper, Manfred, E-mail: manfred.opper@tu-berlin.de
2017-02-01
We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.
Rigorous time slicing approach to Feynman path integrals
Fujiwara, Daisuke
2017-01-01
This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schrödinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved. The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schrödinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schrödinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by...
Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach
Directory of Open Access Journals (Sweden)
Carlo Lucheroni
2018-03-01
Full Text Available We propose a system level approach to value the impact on costs of the integration of intermittent renewable generation in a power system, based on expected breakeven cost and breakeven cost risk. To do this, we carefully reconsider the definition of Levelized Cost of Electricity (LCOE when extended to non-dispatchable generation, by examining extra costs and gains originated by the costly management of random power injections. We are thus lead to define a ‘system LCOE’ as a system dependent LCOE that takes properly into account intermittent generation. In order to include breakeven cost risk we further extend this deterministic approach to a stochastic setting, by introducing a ‘stochastic system LCOE’. This extension allows us to discuss the optimal integration of intermittent renewables from a broad, system level point of view. This paper thus aims to provide power producers and policy makers with a new methodological scheme, still based on the LCOE but which updates this valuation technique to current energy system configurations characterized by a large share of non-dispatchable production. Quantifying and optimizing the impact of intermittent renewables integration on power system costs, risk and CO 2 emissions, the proposed methodology can be used as powerful tool of analysis for assessing environmental and energy policies.
Mathematical theory of Feynman path integrals an introduction
Albeverio, Sergio A; Mazzucchi, Sonia
2008-01-01
Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.
High-density amorphous ice: A path-integral simulation
Herrero, Carlos P.; Ramírez, Rafael
2012-09-01
Structural and thermodynamic properties of high-density amorphous (HDA) ice have been studied by path-integral molecular dynamics simulations in the isothermal-isobaric ensemble. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Quantum nuclear motion is found to affect several observable properties of the amorphous solid. At low temperature (T = 50 K) the molar volume of HDA ice is found to increase by 6%, and the intramolecular O-H distance rises by 1.4% due to quantum motion. Peaks in the radial distribution function of HDA ice are broadened with respect to their classical expectancy. The bulk modulus, B, is found to rise linearly with the pressure, with a slope ∂B/∂P = 7.1. Our results are compared with those derived earlier from classical and path-integral simulations of HDA ice. We discuss similarities and discrepancies with those earlier simulations.
Dynamics on the group manifolds and path integral
International Nuclear Information System (INIS)
Marinov, M.S.; Terentyev, M.V.
1979-01-01
Classical and quantum dynamics onn the compact simple Lie group and on the sphere of arbitrary dimensionality are considered. The accuracy of the semiclassical approximation for Green functions is discussed. Various path integral representations of the Green functions are presented. The special features of these representations due to the compactness and curvature are analysed. Basic results of the theory of Lie algebras and Lie groups used in the main text are presented
Path integral analysis of Jarzynski's equality: Analytical results
Minh, David D. L.; Adib, Artur B.
2009-02-01
We apply path integrals to study nonequilibrium work theorems in the context of Brownian dynamics, deriving in particular the equations of motion governing the most typical and most dominant trajectories. For the analytically soluble cases of a moving harmonic potential and a harmonic oscillator with a time-dependent natural frequency, we find such trajectories, evaluate the work-weighted propagators, and validate Jarzynski’s equality.
International Nuclear Information System (INIS)
Kleinert, H.; Chervyakov, A.
2003-01-01
In perturbative calculations of quantum-statistical zero-temperature path integrals in curvilinear coordinates one encounters Feynman diagrams involving multiple temporal integrals over products of distributions, which are mathematically undefined. In addition, there are terms proportional to powers of Dirac δ-functions at the origin coming from the measure of path integration. We give simple rules for integrating products of distributions in such a way that the results ensure coordinate independence of the path integrals. The rules are derived by using equations of motion and partial integration, while keeping track of certain minimal features originating in the unique definition of all singular integrals in 1-ε dimensions. Our rules yield the same results as the much more cumbersome calculations in 1-ε dimensions where the limit ε→0 is taken at the end. They also agree with the rules found in an independent treatment on a finite time interval
Stringer, Simon M; Rolls, Edmund T
2006-12-01
A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.
Unified path integral approach to theories of diffusion-influenced reactions
Prüstel, Thorsten; Meier-Schellersheim, Martin
2017-08-01
Building on mathematical similarities between quantum mechanics and theories of diffusion-influenced reactions, we develop a general approach for computational modeling of diffusion-influenced reactions that is capable of capturing not only the classical Smoluchowski picture but also alternative theories, as is here exemplified by a volume reactivity model. In particular, we prove the path decomposition expansion of various Green's functions describing the irreversible and reversible reaction of an isolated pair of molecules. To this end, we exploit a connection between boundary value and interaction potential problems with δ - and δ'-function perturbation. We employ a known path-integral-based summation of a perturbation series to derive a number of exact identities relating propagators and survival probabilities satisfying different boundary conditions in a unified and systematic manner. Furthermore, we show how the path decomposition expansion represents the propagator as a product of three factors in the Laplace domain that correspond to quantities figuring prominently in stochastic spatially resolved simulation algorithms. This analysis will thus be useful for the interpretation of current and the design of future algorithms. Finally, we discuss the relation between the general approach and the theory of Brownian functionals and calculate the mean residence time for the case of irreversible and reversible reactions.
Polymer density functional approach to efficient evaluation of path integrals
DEFF Research Database (Denmark)
Brukhno, Andrey; Vorontsov-Velyaminov, Pavel N.; Bohr, Henrik
2005-01-01
A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly......, the path integral problem can, in principle, be solved exactly by making use of the two-particle pair correlation function (2p-PCF) for the ends of an open polymer, half of the original. This way the exact data for one-dimensional quantum harmonic oscillator are reproduced in a wide range of temperatures....... The exact solution is not, though, reachable in three dimensions (3D) because of a vast amount of storage required for 2p-PCF. In order to treat closed paths in 3D, we introduce a so-called "open ring" approximation which proves to be rather accurate in the limit of long chains. We also employ a simple self...
Stochastic simulation and robust design optimization of integrated photonic filters
Directory of Open Access Journals (Sweden)
Weng Tsui-Wei
2016-07-01
Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.
International Nuclear Information System (INIS)
Smith, Eric
2011-01-01
The meaning of thermodynamic descriptions is found in large-deviations scaling (Ellis 1985 Entropy, Large Deviations, and Statistical Mechanics (New York: Springer); Touchette 2009 Phys. Rep. 478 1-69) of the probabilities for fluctuations of averaged quantities. The central function expressing large-deviations scaling is the entropy, which is the basis both for fluctuation theorems and for characterizing the thermodynamic interactions of systems. Freidlin-Wentzell theory (Freidlin and Wentzell 1998 Random Perturbations in Dynamical Systems 2nd edn (New York: Springer)) provides a quite general formulation of large-deviations scaling for non-equilibrium stochastic processes, through a remarkable representation in terms of a Hamiltonian dynamical system. A number of related methods now exist to construct the Freidlin-Wentzell Hamiltonian for many kinds of stochastic processes; one method due to Doi (1976 J. Phys. A: Math. Gen. 9 1465-78; 1976 J. Phys. A: Math. Gen. 9 1479) and Peliti (1985 J. Physique 46 1469; 1986 J. Phys. A: Math. Gen. 19 L365, appropriate to integer counting statistics, is widely used in reaction-diffusion theory. Using these tools together with a path-entropy method due to Jaynes (1980 Annu. Rev. Phys. Chem. 31 579-601), this review shows how to construct entropy functions that both express large-deviations scaling of fluctuations, and describe system-environment interactions, for discrete stochastic processes either at or away from equilibrium. A collection of variational methods familiar within quantum field theory, but less commonly applied to the Doi-Peliti construction, is used to define a 'stochastic effective action', which is the large-deviations rate function for arbitrary non-equilibrium paths. We show how common principles of entropy maximization, applied to different ensembles of states or of histories, lead to different entropy functions and different sets of thermodynamic state variables. Yet the relations among all these levels of
Path integral for Dirac particle in plane wave field
International Nuclear Information System (INIS)
Zeggari, S.; Boudjedaa, T.; Chetouani, L.
2001-01-01
The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)
Path integral for Dirac particle in plane wave field
Energy Technology Data Exchange (ETDEWEB)
Zeggari, S.; Boudjedaa, T.; Chetouani, L. [Mentouri Univ., Constantine (Algeria). Dept. of Physique
2001-10-01
The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)
Path integral formulation of the Hodge duality on the brane
International Nuclear Information System (INIS)
Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai; Oh, Phillial
2001-01-01
In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework
Connection between Fourier coefficient and Discretized Cartesian path integration
International Nuclear Information System (INIS)
Coalson, R.D.
1986-01-01
The relationship between so-called Discretized and Fourier coefficient formulations of Cartesian path integration is examined. In particular, an intimate connection between the two is established by rewriting the Discretized formulation in a manifestly Fourier-like way. This leads to improved understanding of both the limit behavior and the convergence properties of computational prescriptions based on the two formalisms. The performance of various prescriptions is compared with regard to calculation of on-diagonal statistical density matrix elements for a number of prototypical 1-d potentials. A consistent convergence order among these prescriptions is established
Self-Gravitating Stellar Collapse: Explicit Geodesics and Path Integration
International Nuclear Information System (INIS)
Balakrishna, Jayashree; Bondarescu, Ruxandra; Moran, Christine C.
2016-01-01
We extend the work of Oppenheimer and Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like, and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.
Self-Gravitating Stellar Collapse: Explicit Geodesics and Path Integration
Energy Technology Data Exchange (ETDEWEB)
Balakrishna, Jayashree [Department of Mathematics and Natural Sciences, College of Arts and Sciences, Harris-Stowe State University, St. Louis, MO (United States); Bondarescu, Ruxandra [Department of Physics, University of Zurich, Zurich (Switzerland); Moran, Christine C., E-mail: corbett@tapir.caltech.edu [TAPIR, Department of Theoretical Astrophysics, California Institute of Technology, Pasadena, CA (United States)
2016-11-25
We extend the work of Oppenheimer and Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like, and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.
Investigation of the spinfoam path integral with quantum cuboid intertwiners
Bahr, Benjamin; Steinhaus, Sebastian
2016-05-01
In this work, we investigate the 4d path integral for Euclidean quantum gravity on a hypercubic lattice, as given by the spinfoam model by Engle, Pereira, Rovelli, Livine, Freidel and Krasnov. To tackle the problem, we restrict to a set of quantum geometries that reflects the large amount of lattice symmetries. In particular, the sum over intertwiners is restricted to quantum cuboids, i.e. coherent intertwiners which describe a cuboidal geometry in the large-j limit. Using asymptotic expressions for the vertex amplitude, we find several interesting properties of the state sum. First of all, the value of coupling constants in the amplitude functions determines whether geometric or nongeometric configurations dominate the path integral. Secondly, there is a critical value of the coupling constant α , which separates two phases. In both phases, the diffeomorphism symmetry appears to be broken. In one, the dominant contribution comes from highly irregular, in the other from highly regular configurations, both describing flat Euclidean space with small quantum fluctuations around them, viewed in different coordinate systems. On the critical point diffeomorphism symmetry is nearly restored, however. Thirdly, we use the state sum to compute the physical norm of kinematical states, i.e. their norm in the physical Hilbert space. We find that states which describe boundary geometry with high torsion have an exponentially suppressed physical norm. We argue that this allows one to exclude them from the state sum in calculations.
The product form for path integrals on curved manifolds
Grosche, C.
1988-03-01
A general and simple framework for treating path integrals on curved manifolds is presented. The crucial point will be a product ansatz for the metric tensor and the quantum hamiltonian, i.e. we shall write g αβ = h αγh βγ and H = (1/2m)h αγp αp βh βγ + V + ΔV , respectively, a prescription which we shall call “product form” definition. The p α are hermitian momenta and Δ V is a well-defined quantum correction. We shall show that this ansatz, which looks quite special, is in fact - under reasonable assumptions in quantum mechanics - a very general one. We shall derive the lagrangian path integral in the “product form” definition and shall also prove that the Schro¨dinger equation can be derived from the corresponding short-time kernel. We shall discuss briefly an application of this prescription to the problem of free quantum motion on the Poincare´upper half-plane.
Defect forces, defect couples and path integrals in fracture mechanics
International Nuclear Information System (INIS)
Roche, R.L.
1979-07-01
In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr
The Role of Spatial Memory and Frames of Reference in the Precision of Angular Path Integration
Arthur, Joeanna C.; Philbeck, John W.; Kleene, Nicholas J.; Chichka, David
2012-01-01
Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatia...
Hippocampal “Time Cells”: Time versus Path Integration
Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.
2014-01-01
SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613
Path integral approach to electron scattering in classical electromagnetic potential
International Nuclear Information System (INIS)
Xu Chuang; Feng Feng; Li Ying-Jun
2016-01-01
As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. (paper)
Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals
Ivancevic, Vladimir G
2008-01-01
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...
Ordering, symbols and finite-dimensional approximations of path integrals
International Nuclear Information System (INIS)
Kashiwa, Taro; Sakoda, Seiji; Zenkin, S.V.
1994-01-01
We derive general form of finite-dimensional approximations of path integrals for both bosonic and fermionic canonical systems in terms of symbols of operators determined by operator ordering. We argue that for a system with a given quantum Hamiltonian such approximations are independent of the type of symbols up to terms of O(ε), where ε of is infinitesimal time interval determining the accuracy of the approximations. A new class of such approximations is found for both c-number and Grassmannian dynamical variables. The actions determined by the approximations are non-local and have no classical continuum limit except the cases of pq- and qp-ordering. As an explicit example the fermionic oscillator is considered in detail. (author)
Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.
Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F
2018-02-13
Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.
International Nuclear Information System (INIS)
Zaytsev, S A
2010-01-01
The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.
Fishman, Louis
2000-11-01
The role of mathematical modeling in the physical sciences will be briefly addressed. Examples will focus on computational acoustics, with applications to underwater sound propagation, electromagnetic modeling, optics, and seismic inversion. Direct and inverse wave propagation problems in both the time and frequency domains will be considered. Focusing on fixed-frequency (elliptic) wave propagation problems, the usual, two-way, partial differential equation formulation will be exactly reformulated, in a well-posed manner, as a one-way (marching) problem. This is advantageous for both direct and inverse considerations, as well as stochastic modeling problems. The reformulation will require the introduction of pseudodifferential operators and their accompanying phase space analysis (calculus), in addition to path integral representations for the fundamental solutions and their subsequent computational algorithms. Unlike the more traditional, purely numerical applications of, for example, finite-difference and finite-element methods, this approach, in effect, writes the exact, or, more generally, the asymptotically correct, answer as a functional integral and, subsequently, computes it directly. The overall computational philosophy is to combine analysis, asymptotics, and numerical methods to attack complicated, real-world problems. Exact and asymptotic analysis will stress the complementary nature of the direct and inverse formulations, as well as indicating the explicit structural connections between the time- and frequency-domain solutions.
Diagrammatical methods within the path integral representation for quantum systems
International Nuclear Information System (INIS)
Alastuey, A
2014-01-01
The path integral representation has been successfully applied to the study of equilibrium properties of quantum systems for a long time. In particular, such a representation allowed Ginibre to prove the convergence of the low-fugacity expansions for systems with short-range interactions. First, I will show that the crucial trick underlying Ginibre's proof is the introduction of an equivalent classical system made with loops. Within the Feynman-Kac formula for the density matrix, such loops naturally emerge by collecting together the paths followed by particles exchanged in a given cyclic permutation. Two loops interact via an average of two- body genuine interactions between particles belonging to different loops, while the interactions between particles inside a given loop are accounted for in a loop fugacity. It turns out that the grand-partition function of the genuine quantum system exactly reduces to its classical counterpart for the gas of loops. The corresponding so-called magic formula can be combined with standard Mayer diagrammatics for the classical gas of loops. This provides low-density representations for the quantum correlations or thermodynamical functions, which are quite useful when collective effects must be taken into account properly. Indeed, resummations and or reorganizations of Mayer graphs can be performed by exploiting their remarkable topological and combinatorial properties, while statistical weights and bonds are purely c-numbers. The interest of that method will be illustrated through a brief description of its application to two long-standing problems, namely recombination in Coulomb systems and condensation in the interacting Bose gas.
Path integral quantization of the Symplectic Leaves of the SU(2)*Poisson-Lie Group
International Nuclear Information System (INIS)
Morariu, B.
1997-01-01
The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parameterizations and also compare the results with the path integral quantization of spin
δ'-function perturbations and Neumann boundary-conditions by path integration
International Nuclear Information System (INIS)
Grosche, C.
1994-02-01
δ'-function perturbations and Neumann boundary conditions are incorporated into the path integral formalism. The starting point is the consideration of the path integral representation for the one dimensional Dirac particle together with a relativistic point interaction. The non-relativistic limit yields either a usual δ-function or a δ'-function perturbation; making their strengths infinitely repulsive one obtains Dirichlet, respectively Neumann boundary conditions in the path integral. (orig.)
Geometry, heat equation and path integrals on the Poincare upper half-plane
International Nuclear Information System (INIS)
Kubo, Reijiro.
1987-08-01
Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation δf/δt = Δ H f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's proof that Feynman's path integral satisfies the Schroedinger equation is also valid for our case. (author)
Geometry, Heat Equation and Path Integrals on the Poincare Upper Half-Plane
Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University
1988-01-01
Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation ∂f/∂t=Δ_Hf is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrodinger equation is also valid for our case.
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-01-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration
A transformed path integral approach for solution of the Fokker-Planck equation
Subramaniam, Gnana M.; Vedula, Prakash
2017-10-01
A novel path integral (PI) based method for solution of the Fokker-Planck equation is presented. The proposed method, termed the transformed path integral (TPI) method, utilizes a new formulation for the underlying short-time propagator to perform the evolution of the probability density function (PDF) in a transformed computational domain where a more accurate representation of the PDF can be ensured. The new formulation, based on a dynamic transformation of the original state space with the statistics of the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-time properties of the underlying stochastic process. New update equations for the state PDF in a transformed space and the parameters of the transformation (including mean and covariance) that better accommodate nonlinearities in drift and non-Gaussian behavior in distributions are proposed (based on properties of the SDE). Owing to the choice of transformation considered, the proposed method maps a fixed grid in transformed space to a dynamically adaptive grid in the original state space. The TPI method, in contrast to conventional methods such as Monte Carlo simulations and fixed grid approaches, is able to better represent the distributions (especially the tail information) and better address challenges in processes with large diffusion, large drift and large concentration of PDF. Additionally, in the proposed TPI method, error bounds on the probability in the computational domain can be obtained using the Chebyshev's inequality. The benefits of the TPI method over conventional methods are illustrated through simulations of linear and nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the error in the PDF are also characterized.
Krishnan, Venkatarama
2005-01-01
Most useful for graduate students in engineering and finance who have a basic knowledge of probability theory, this volume is designed to give a concise understanding of martingales, stochastic integrals, and estimation. It emphasizes applications. Many theorems feature heuristic proofs; others include rigorous proofs to reinforce physical understanding. Numerous end-of-chapter problems enhance the book's practical value.After introducing the basic measure-theoretic concepts of probability and stochastic processes, the text examines martingales, square integrable martingales, and stopping time
Scheduling of Power System Cells Integrating Stochastic Power Generation
International Nuclear Information System (INIS)
Costa, L.M.
2008-12-01
Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the
Parton degrees of freedom from the path-integral formalism
International Nuclear Information System (INIS)
Liu, Keh-Fei
2000-01-01
We formulate the hadronic tensor W μν of deep inelastic scattering in the path-integral formalism. It is shown that there are 3 gauge invariant and topologically distinct contributions. In addition to the valence contribution, there are two sources for the sea--one in the connected insertion and the other in the disconnected insertion. The operator product expansion is carried out in this formalism. The operator rescaling and mixing reveal that the connected sea partons evolve the same way as the valence; i.e., their evolution is decoupled from the disconnected sea and the gluon distribution functions. We explore the phenomenological consequences of this classification in terms of the small x behavior, Gottfried sum rule violation, and flavor dependence. In particular, we point out that in the nucleon u(bar sign) and d(bar sign) partons have both connected and disconnected sea contributions, whereas the s(bar sign) parton has only the disconnected sea contribution. This difference between u(bar sign)+d(bar sign) and s(bar sign), as far as we know, has not been taken into account in the fitting of parton distribution functions to experiments. (c) 2000 The American Physical Society
Thermal properties of graphene from path-integral simulations
Herrero, Carlos P.; Ramírez, Rafael
2018-03-01
Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and "real" surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient αp of the in-plane area, which is negative at low temperatures and becomes positive for T ≳ 1000 K.
Path integral measure and triangulation independence in discrete gravity
Dittrich, Bianca; Steinhaus, Sebastian
2012-02-01
A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.
Stochastic Sizing of Energy Storage Systems for Wind Integration
Directory of Open Access Journals (Sweden)
D. D. Le
2018-06-01
Full Text Available In this paper, we present an optimal capacity decision model for energy storage systems (ESSs in combined operation with wind energy in power systems. We use a two-stage stochastic programming approach to take into account both wind and load uncertainties. The planning problem is formulated as an AC optimal power flow (OPF model with the objective of minimizing ESS installation cost and system operation cost. Stochastic wind and load inputs for the model are generated from historical data using clustering technique. The model is tested on the IEEE 39-bus system.
Path integral approach to eikonal and next-to-eikonal exponentiation
Laenen, E.; Stavenga, G.; White, C.D.
2009-01-01
We approach the issue of exponentiation of soft gauge boson corrections to scattering amplitudes from a path integral point of view. We show that if one represents the amplitude as a first quantized path integral in a mixed coordinate-momentum space representation, a charged particle interacting
Regularizing Feynman path integrals using the generalized Kontsevich-Vishik trace
Hartung, Tobias
2017-12-01
A fully regulated definition of Feynman's path integral is presented here. The proposed re-formulation of the path integral coincides with the familiar formulation whenever the path integral is well defined. In particular, it is consistent with respect to lattice formulations and Wick rotations, i.e., it can be used in Euclidean and Minkowski space-time. The path integral regularization is introduced through the generalized Kontsevich-Vishik trace, that is, the extension of the classical trace to Fourier integral operators. Physically, we are replacing the time-evolution semi-group by a holomorphic family of operators such that the corresponding path integrals are well defined in some half space of C . The regularized path integral is, thus, defined through analytic continuation. This regularization can be performed by means of stationary phase approximation or computed analytically depending only on the Hamiltonian and the observable (i.e., known a priori). In either case, the computational effort to evaluate path integrals or expectations of observables reduces to the evaluation of integrals over spheres. Furthermore, computations can be performed directly in the continuum and applications (analytic computations and their implementations) to a number of models including the non-trivial cases of the massive Schwinger model and a φ4 theory.
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
International Nuclear Information System (INIS)
Penney, Mark D; Koh, Dax Enshan; Spekkens, Robert W
2017-01-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits. (paper)
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization
Directory of Open Access Journals (Sweden)
Xuefeng Yan
2013-01-01
Full Text Available The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.
Relation between the Polyakov and the Fradkin-Vilkoviski path integrals for the bosonic string
Energy Technology Data Exchange (ETDEWEB)
Jaskolski, Z.; Rytel, L.; Klimek, M.
1988-07-21
The relation between Polyakov's path integral and the Fradkin-Vilkoviski integral in extended phase space is analyzed on an example of a free closed bosonic string. It is shown in D=26 that locally, in every Teichmueller sector, both methods provide the same result. Beyond D=26 the Fradkin-Vilkoviski path integral appears to be depending on the gauge fixing.
Feynman path integrals - from the prodistribution definition to the calculation of glory scattering
International Nuclear Information System (INIS)
DeWitt-Morette, C.
1984-01-01
In these lectures I present a path integral calculation, starting from a global definition of Feynman path integrals and ending at a scattering cross section formula. Along the way I discuss some basic issues which had to be resolved to exploit the computational power of the proposed definition of Feynman integrals. I propose to compute the glory scattering of gravitational waves by black holes. (orig./HSI)
Path integrals in quantum mechanics, statistics, polymer physics, and financial markets
Kleinert, Hagen
2009-01-01
This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying p
Path integrals and coherent states of SU(2) and SU(1,1)
Inomata, Akira; Kuratsuji, Hiroshi
1992-01-01
The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta
Power Series Expansion of Propagator for Path Integral and Its Applications
International Nuclear Information System (INIS)
Ou Yuanjin; Liang Xianting
2007-01-01
In this paper we obtain a propagator of path integral for a harmonic oscillator and a driven harmonic oscillator by using the power series expansion. It is shown that our result for the harmonic oscillator is more exact than the previous one obtained with other approximation methods. By using the same method, we obtain a propagator of path integral for the driven harmonic oscillator, which does not have any exact expansion. The more exact propagators may improve the path integral results for these systems.
Piloting and Path Integration within and across Boundaries
Mou, Weimin; Wang, Lin
2015-01-01
Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…
Wang, Fei; Chen, Hong; Guo, Konghui; Cao, Dongpu
2017-09-01
The path following and directional stability are two crucial problems when a road vehicle experiences a tire blow-out or sudden tire failure. Considering the requirement of rapid road vehicle motion control during a tire blow-out, this article proposes a novel linearized decoupling control procedure with three design steps for a class of second order multi-input-multi-output non-affine system. The evaluating indicators for controller performance are presented and a performance related control parameter distribution map is obtained based on the stochastic algorithm which is an innovation for non-blind parameter adjustment in engineering implementation. The analysis on the robustness of the proposed integrated controller is also performed. The simulation studies for a range of driving conditions are conducted, to demonstrate the effectiveness of the proposed controller.
Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions
International Nuclear Information System (INIS)
Jackson, P.S.; Moelling, D.S.
1984-01-01
A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology
Rotational error in path integration: encoding and execution errors in angle reproduction.
Chrastil, Elizabeth R; Warren, William H
2017-06-01
Path integration is fundamental to human navigation. When a navigator leaves home on a complex outbound path, they are able to keep track of their approximate position and orientation and return to their starting location on a direct homebound path. However, there are several sources of error during path integration. Previous research has focused almost exclusively on encoding error-the error in registering the outbound path in memory. Here, we also consider execution error-the error in the response, such as turning and walking a homebound trajectory. In two experiments conducted in ambulatory virtual environments, we examined the contribution of execution error to the rotational component of path integration using angle reproduction tasks. In the reproduction tasks, participants rotated once and then rotated again to face the original direction, either reproducing the initial turn or turning through the supplementary angle. One outstanding difficulty in disentangling encoding and execution error during a typical angle reproduction task is that as the encoding angle increases, so does the required response angle. In Experiment 1, we dissociated these two variables by asking participants to report each encoding angle using two different responses: by turning to walk on a path parallel to the initial facing direction in the same (reproduction) or opposite (supplementary angle) direction. In Experiment 2, participants reported the encoding angle by turning both rightward and leftward onto a path parallel to the initial facing direction, over a larger range of angles. The results suggest that execution error, not encoding error, is the predominant source of error in angular path integration. These findings also imply that the path integrator uses an intrinsic (action-scaled) rather than an extrinsic (objective) metric.
Electrical crosstalk in integrated Mach-Zehnder modulators caused by a shared ground path
Yao, W.; Gilardi, G.; Smit, M.K.; Wale, M.J.
2015-01-01
We show that the majority of electrical crosstalk between integrated Mach-Zehnder modulators can be caused by a shared ground path and demonstrate that in its absence crosstalk and related transmission penalty is greatly reduced.
Simplified path integral for supersymmetric quantum mechanics and type-A trace anomalies
Bastianelli, Fiorenzo; Corradini, Olindo; Iacconi, Laura
2018-05-01
Particles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the nonlinear kinetic term with a purely quadratic kinetic term (linear sigma model). This happens at the expense of introducing a suitable effective scalar potential, which contains the information on the curvature of the space. The simplified path integral provides a sensible gain in the efficiency of perturbative calculations. Here we extend the construction to models with N = 1 supersymmetry on the worldline, which are applicable to the first quantized description of a Dirac fermion. As an application we use the simplified worldline path integral to compute the type-A trace anomaly of a Dirac fermion in d dimensions up to d = 16.
Introduction to functional and path integral methods in quantum field theory
International Nuclear Information System (INIS)
Strathdee, J.
1991-11-01
The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs
On some mathematical problems in the definition of Feynman path integral
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue-Collin, M.
1976-07-01
It is shown how integration on a Hilbert space of paths can be performed to get exact evolution of non relativistic quantum systems for a rather large class of potentials including polynomial interaction
The relation between Polyakov's and Fradkin's path integrals for bosonic string
International Nuclear Information System (INIS)
Jaskolski, Z.; Rytel, L.; Klimek, M.
1987-04-01
The relation between Polyakov's path integral and Fradkin's integral in extended phase space is analyzed on an example of a free closed bosonic string. It is shown in D=26 that locally, in every Teichmueller sector, both methods provide the same result. Beyond D=26 Fradkin's integral appears to be depending on the gauge fixing. (author). 12 refs
International Nuclear Information System (INIS)
Nissimov, E.; Pacheva, S.; Solomon, S.
1989-02-01
By further study of the geometry of the harmonic superspace constraints, we make explicit the relation between the operator and path integral approaches to the manifestly covariant harmonic superstring. In particular we find the correct complete set of functionally independent gauge symmetries for the auxiliary variables and identify the ones corresponding to the harmonic superfield postulate in the operator formalism. Then, we deduce in a systematic way the lagrangian path integral from the well defined covariant hamiltonian formulation of the GS superstring. (authors)
Phase-space path-integral calculation of the Wigner function
International Nuclear Information System (INIS)
Samson, J H
2003-01-01
The Wigner function W(q, p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the midpoint of their ends; short paths where the midpoint is close to (q, p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle-point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Approximation of itô integrals arising in stochastic time-delayed systems
Bagchi, Arunabha
1984-01-01
Likelihood functional for stochastic linear time-delayed systems involve Itô integrals with respect to the observed data. Since the Wiener process appearing in the standard observation process model for such systems is not realizable and the physically observed process is smooth, one needs to study
Definition of path integrals and rules for non-linear transformations
International Nuclear Information System (INIS)
Kerler, W.
1978-01-01
Functional integrals are defined as the limit of multidimensional integrals based on fundamental generating distributions. The 'lattice choice' is put into a suitable functional form. The independence of the particular choice and the necessity of this fact are shown. Various forms of the path integrals are derived and discussed. The relation to the traditional ordering problem is pointed out. The mechanism of non-linear transformations of variables is investigated and rules are given. In the case of fields it turns out that the path integrals can also be considered for space translations. (Auth.)
Setting the right path and pace for integration.
Cwiek, Katherine A; Inniger, Meredith C; Zismer, Daniel K
2014-04-01
Far from being a monolithic trend, integration in health care today is progressing in various forms, and at different rates in different markets within and across the range of healthcare organizations. Each organization should develop a tailored strategy that delineates the level and type of integration it will pursue and at what pace to pursue it. This effort will require evaluation of external market conditions with respect to integration and competition and a candid assessment of intraorganizational integration. The compared results of the two analyses will provide the basis for formulating strategy.
Stochastic quantization of gravity and string fields
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)
Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique
2010-06-30
The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France.
Brownian motion and stochastic calculus
Karatzas, Ioannis
1998-01-01
This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...
Integral projection models for finite populations in a stochastic environment.
Vindenes, Yngvild; Engen, Steinar; Saether, Bernt-Erik
2011-05-01
Continuous types of population structure occur when continuous variables such as body size or habitat quality affect the vital parameters of individuals. These structures can give rise to complex population dynamics and interact with environmental conditions. Here we present a model for continuously structured populations with finite size, including both demographic and environmental stochasticity in the dynamics. Using recent methods developed for discrete age-structured models we derive the demographic and environmental variance of the population growth as functions of a continuous state variable. These two parameters, together with the expected population growth rate, are used to define a one-dimensional diffusion approximation of the population dynamics. Thus, a substantial reduction in complexity is achieved as the dynamics of the complex structured model can be described by only three population parameters. We provide methods for numerical calculation of the model parameters and demonstrate the accuracy of the diffusion approximation by computer simulation of specific examples. The general modeling framework makes it possible to analyze and predict future dynamics and extinction risk of populations with various types of structure, and to explore consequences of changes in demography caused by, e.g., climate change or different management decisions. Our results are especially relevant for small populations that are often of conservation concern.
International Nuclear Information System (INIS)
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2016-01-01
The uncertainties of renewable energy have brought great challenges to power system commitment, dispatches and reserve requirement. This paper presents a comparative study on integration of renewable generation uncertainties into SCUC (stochastic security-constrained unit commitment) considering reserve and risk. Renewable forecast uncertainties are captured by a list of PIs (prediction intervals). A new scenario generation method is proposed to generate scenarios from these PIs. Different system uncertainties are considered as scenarios in the stochastic SCUC problem formulation. Two comparative simulations with single (E1: wind only) and multiple sources of uncertainty (E2: load, wind, solar and generation outages) are investigated. Five deterministic and four stochastic case studies are performed. Different generation costs, reserve strategies and associated risks are compared under various scenarios. Demonstrated results indicate the overall costs of E2 is lower than E1 due to penetration of solar power and the associated risk in deterministic cases of E2 is higher than E1. It implies the superimposed effect of uncertainties during uncertainty integration. The results also demonstrate that power systems run a higher level of risk during peak load hours, and that stochastic models are more robust than deterministic ones. - Highlights: • An extensive comparative study for renewable integration is presented. • A novel scenario generation method is proposed. • Wind and solar uncertainties are represented by a list of prediction intervals. • Unit commitment and dispatch costs are discussed considering reserve and risk.
International Nuclear Information System (INIS)
Seddighi, Amir Hossein; Ahmadi-Javid, Amir
2015-01-01
This paper presents a multistage stochastic programming model to address sustainable power generation and transmission expansion planning. The model incorporates uncertainties about future electricity demand, fuel prices, greenhouse gas emissions, as well as possible disruptions to which the power system is subject. A number of sustainability regulations and policies are considered to establish a framework for the social responsibility of the power system. The proposed model is applied to a real-world case, and several sensitivity analyses are carried out to provide managerial insights into different aspects of the model. The results emphasize the important role played by sustainability policies on the configuration of the power grid. - Highlights: • This paper considers integrated power generation and transmission expansion planning. • Sustainability aspects are incorporated into a multiperiod stochastic setting. • A stochastic mathematical programming model is developed to address the problem. • The model is applied to a real-world case and numerical studies are carried out
Bennett, Ilana J; Stark, Craig E L
2016-03-01
Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network. Copyright © 2015 Elsevier Inc. All rights reserved.
Differential equations driven by rough paths with jumps
Friz, Peter K.; Zhang, Huilin
2018-05-01
We develop the rough path counterpart of Itô stochastic integration and differential equations driven by general semimartingales. This significantly enlarges the classes of (Itô/forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.
International Nuclear Information System (INIS)
LaChapelle, J.
2004-01-01
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette
Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals
International Nuclear Information System (INIS)
Chen Zhide; Liang, J.-Q.; Pu, F.-C.
2003-01-01
Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved
A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.
Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E
2018-06-20
Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Rezende, J.
1983-01-01
We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)
Path integral in area tensor Regge calculus and complex connections
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
2006-01-01
Euclidean quantum measure in Regge calculus with independent area tensors is considered using example of the Regge manifold of a simple structure. We go over to integrations along certain contours in the hyperplane of complex connection variables. Discrete connection and curvature on classical solutions of the equations of motion are not, strictly speaking, genuine connection and curvature, but more general quantities and, therefore, these do not appear as arguments of a function to be averaged, but are the integration (dummy) variables. We argue that upon integrating out the latter the resulting measure can be well-defined on physical hypersurface (for the area tensors corresponding to certain edge vectors, i.e. to certain metric) as positive and having exponential cutoff at large areas on condition that we confine ourselves to configurations which do not pass through degenerate metrics
Data Integration: Charting a Path Forward to 2035
2011-02-14
new computing landscape. Dr Gray crusaded ―It‘s the data stupid ‖ and pushed for integration of scientific discovery and computation. The goal...friendly and accessible format. 14 WWT is not alone, other data aggregators include Google Sky; similar capabilities are emerging for
Enforcing Integrity of Agent Migration Paths by Distribution of Trust
Warnier, M.E.; Oey, M.A.; Timmer, R.J.; Overeinder, B.J.; Brazier, F.M.
2008-01-01
Agent mobility is the ability of an agent to migrate from one location to another across a network. Though conceptually relatively straightforward, in practice security of mobile agents is a challenge: from transport layer security to preservation of integrity in open environments. This paper
On the path integral representation of the Wigner function and the Barker–Murray ansatz
International Nuclear Information System (INIS)
Sels, Dries; Brosens, Fons; Magnus, Wim
2012-01-01
The propagator of the Wigner function is constructed from the Wigner–Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) , we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation. -- Highlights: ► We derive the quantum mechanical propagator of the Wigner function in the path integral representation. ► We show that the Barker–Murray ansatz is incomplete, explain the error and provide an alternative. ► An example of a Monte Carlo simulation of the semiclassical path integral is included.
Introduction to path integrals, matrix models and strings
International Nuclear Information System (INIS)
Jevicki, A.
1995-01-01
The major strength of the theory is then that it is integrable and exactly solvable. Its integrable nature leads to understanding of a w ∞ algebra as a space-time symmetry of string theory. This algebra acts in a nonlinear way on the basic collective field representing a massless tachyon. It is interpreted as a spectrum-generating algebra allowing to build an infinite sequence of discrete imaginary energy states which turn out to be remnants of higher string modes in two dimensions. The presence and interplay of discrete modes with the scalar tachyon are particularly interesting. The w ∞ symmetry is seen to serve as an organizational principle and is of much broader relevance. (orig.)
A boundary integral formalism for stochastic ray tracing in billiards
International Nuclear Information System (INIS)
Chappell, David J.; Tanner, Gregor
2014-01-01
Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain
Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition
Directory of Open Access Journals (Sweden)
Malinowski Marek T.
2015-01-01
Full Text Available We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors. The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.
Double path-integral migration velocity analysis: a real data example
International Nuclear Information System (INIS)
Costa, Jessé C; Schleicher, Jörg
2011-01-01
Path-integral imaging forms an image with no knowledge of the velocity model by summing over the migrated images obtained for a set of migration velocity models. Double path-integral imaging migration extracts the stationary velocities, i.e. those velocities at which common-image gathers align horizontally, as a byproduct. An application of the technique to a real data set demonstrates that quantitative information about the time migration velocity model can be determined by double path-integral migration velocity analysis. Migrated images using interpolations with different regularizations of the extracted velocities prove the high quality of the resulting time-migration velocity information. The so-obtained velocity model can then be used as a starting model for subsequent velocity analysis tools like migration tomography or other tomographic methods
A Neural Path Integration Mechanism for Adaptive Vector Navigation in Autonomous Agents
DEFF Research Database (Denmark)
Goldschmidt, Dennis; Dasgupta, Sakyasingha; Wörgötter, Florentin
2015-01-01
Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long-distance...... of autonomous agent navigation, but it also reproduces various aspects of animal navigation. Finally, we discuss how the proposed path integration mechanism may be used as a scaffold for spatial learning in terms of vector navigation.......Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long...
International Nuclear Information System (INIS)
Grosche, C.
1993-10-01
In this paper path integration in two- and three-dimensional spaces of constant curvature is discussed: i.e. the flat spaces R 2 and R 3 , the two- and three-dimensional sphere and the two- and three dimensional pseudosphere. The Laplace operator in these spaces admits separation of variables in various coordinate systems. In all these coordinate systems the path integral formulation will be stated, however in most of them an explicit solution in terms of the spectral expansion can be given only on a formal level. What can be stated in all cases, are the propagator and the corresponding Green function, respectively, depending on the invariant distance which is a coordinate independent quantity. This property gives rise to numerous identities connecting the corresponding path integral representations and propagators in various coordinate systems with each other. (orig.)
Path-integral method for the source apportionment of photochemical pollutants
Dunker, A. M.
2015-06-01
A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the
Regularization of the path integral measure for anomalies
International Nuclear Information System (INIS)
Umezawa, M.
1989-01-01
In this paper we show that the variation of the integral measure is fully equivalent to the authentic field theoretical treatment for a two-point function. To do this we first examine various ways of solving the factor A(x) in Fujikawa's expression for the functional integral measure. We define the anomaly as A(x)-A f (x), where A f (x) is the Fujikawa factor for the free field. We then propose a regulator which leads to a finite result for any anomaly. We then show that the A(x) can be defined in terms of the proper-time through a splitting procedure. The original Fujikawa prescription for A(x) is shown to be closely related to the proper-time description of the anomaly, initiated by Schwinger. Its equivalence to the authentic field theoretical treatment will be proven as a consequence of these investigations. The ξ-functional regularization for A(x) is also examined. Then we will examine the way to deduce the anomaly from the effective potential by adopting the Φ 4 model as an example. The renormalization group equation for the effective potential is solved exactly to obtain the precise form of the β-function in terms of which we reexpress the result obtained in a previous section for A(x). We discuss the physical significance of the renormalization group equation for the case of broken symmetry
Path integral methods via the use of the central limit theorem and application
International Nuclear Information System (INIS)
Thrapsaniotis, E G
2008-01-01
We consider a path integral in the phase space possibly with an influence functional in it and we use a method based on the use of the central limit theorem on the phase of the path integral representation to extract an equivalent expression which can be used in numerical calculations. Moreover we give conditions under which we can extract closed analytical results. As a specific application we consider a general system of two coupled and forced harmonic oscillators with coupling of the form x 1 x α 2 and we derive the relevant sign solved propagator
The path integral model of D-pairing for HTSC, heavy fermion superconductors, and superfluids
International Nuclear Information System (INIS)
Brusov, P.N.; Brusova, N.P.
1996-01-01
A model of d-pairing for superconducting and superfluid Fermi-systems has been formulated within the path integration technique. By path integration over open-quote fastclose quotes and open-quotes slowclose quotes Fermi-fields, the action functional (which determines all properties of model system) has been obtained. This functional could be used for the determination of different superconducting (superfluid) states, for calculation of the transition temperatures for these states, and for the calculation of the collective mode spectrum for HTSC, as well as for heavy fermion superconductors
Constant external fields in gauge theory and the spin 0, 1/2, 1 path integrals
International Nuclear Information System (INIS)
Reuter, M.; Schmidt, M.G.
1996-10-01
We investigate the usefulness of the ''string-inspired technique'' for gauge theory calculations in a constant external field background. Our approach is based on Strassler's worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super-) Green's functions incorporating external fields as well as internal propagators. The worldline path integral representation of the gluon loop is reexamined in detail. We calculate the two-loop effective actions induced for a constant external field by a scalar and spinor loop, and the corresponding one-loop effective action in the gluon loop case. (orig.)
A new path-integral representation of the T-matrix in potential scattering
International Nuclear Information System (INIS)
Carron, J.; Rosenfelder, R.
2011-01-01
We employ the method used by Barbashov and collaborators in Quantum Field Theory to derive a path-integral representation of the T-matrix in nonrelativistic potential scattering which is free of functional integration over fictitious variables as was necessary before. The resulting expression serves as a starting point for a variational approximation applied to high-energy scattering from a Gaussian potential. Good agreement with exact partial-wave calculations is found even at large scattering angles. A novel path-integral representation of the scattering length is obtained in the low-energy limit. -- Highlights: → We derive a new path-integral representation for the T-matrix in quantum scattering from a potential. → The method is based on a technique used by Barbashov and collaborators in Quantum Field Theory. → Unlike previous approaches no unphysical degrees of freedom in the path integral are needed. → The new representation is used for a variational approximation of the T-matrix at high energies. → A new expression for the scattering length at low energy is derived.
The path integral formulation of fractional Brownian motion for the general Hurst exponent
International Nuclear Information System (INIS)
Calvo, I; Sanchez, R
2008-01-01
In 1995, Sebastian (1995 J. Phys. A: Math. Gen. 28 4305) gave a path integral computation of the propagator of subdiffusive fractional Brownian motion (fBm), i.e. fBm with a Hurst or self-similarity exponent H element of (0, 1/2). The extension of Sebastian's calculation to superdiffusion, H element of (1/2, 1], becomes however quite involved due to the appearance of additional boundary conditions on fractional derivatives of the path. In this communication, we address the construction of the path integral representation in a different fashion, which allows us to treat both subdiffusion and superdiffusion on an equal footing. The derivation of the propagator of fBm for the general Hurst exponent is then performed in a neat and unified way. (fast track communication)
International Nuclear Information System (INIS)
Garnier, Robert; Chevalier, Marcel
2000-01-01
Studying large and complex industrial sites, requires more and more accuracy in modeling. In particular, when considering Spares, Maintenance and Repair / Replacement processes, determining optimal Integrated Logistic Support policies requires a high level modeling formalism, in order to make the model as close as possible to the real considered processes. Generally, numerical methods are used to process this kind of study. In this paper, we propose an alternate way to process optimal Integrated Logistic Support policy determination when dealing with large, complex and distributed multi-policies industrial sites. This method is based on the use of behavioral Monte Carlo simulation, supported by Generalized Stochastic Petri Nets. (author)
Jing, Xiaoli; Cheng, Haobo; Wen, Yongfu
2018-04-01
A new local integration algorithm called quality map path integration (QMPI) is reported for shape reconstruction in the fringe reflection technique. A quality map is proposed to evaluate the quality of gradient data locally, and functions as a guideline for the integrated path. The presented method can be employed in wavefront estimation from its slopes over the general shaped surface with slope noise equivalent to that in practical measurements. Moreover, QMPI is much better at handling the slope data with local noise, which may be caused by the irregular shapes of the surface under test. The performance of QMPI is discussed by simulations and experiment. It is shown that QMPI not only improves the accuracy of local integration, but can also be easily implemented with no iteration compared to Southwell zonal reconstruction (SZR). From an engineering point-of-view, the proposed method may also provide an efficient and stable approach for different shapes with high-precise demand.
Non-Gaussian path integration in self-interacting scalar field theories
International Nuclear Information System (INIS)
Kaya, Ali
2004-01-01
In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit
Assari, Amin; Mohammadi, Zargham
2017-09-01
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.
Path Integral Treatment of Proton Transport Processes in BaZrO3
DEFF Research Database (Denmark)
Zhang, Qianfan; Wahnstrom, Goran; Björketun, Mårten
2008-01-01
Nuclear quantum effects on proton transfer and reorientation in BaZrO3 is investigated theoretically using the ab initio path-integral molecular-dynamics simulation technique. The result demonstrates that adding quantum fluctuations has a large effect on, in particular, the transfer barrier...
Real-space path integration is impaired in Alzheimer’s disease and mild cognitive impairment
Czech Academy of Sciences Publication Activity Database
Mokrišová, I.; Laczó, J.; Andel, R.; Gažová, I.; Vyhnálek, M.; Nedělská, Z.; Levčík, David; Cerman, J.; Vlček, Kamil; Hort, J.
2016-01-01
Roč. 307, Jul 1 (2016), s. 150-158 ISSN 0166-4328 Institutional support: RVO:67985823 Keywords : Alzheimer disease * mild cognitive impairment * spatial navigation * hippocampus * path integration Subject RIV: FH - Neurology Impact factor: 3.002, year: 2016
Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method
Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo
2012-01-01
This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)
Transport coefficients for deeply inelastic scattering from the Feynman path integral method
International Nuclear Information System (INIS)
Brink, D.M.; Neto, J.; Weidenmueller, H.A.
1979-01-01
Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)
Explaining Technology Integration in K-12 Classrooms: A Multilevel Path Analysis Model
Liu, Feng; Ritzhaupt, Albert D.; Dawson, Kara; Barron, Ann E.
2017-01-01
The purpose of this research was to design and test a model of classroom technology integration in the context of K-12 schools. The proposed multilevel path analysis model includes teacher, contextual, and school related variables on a teacher's use of technology and confidence and comfort using technology as mediators of classroom technology…
Some comments on rigorous quantum field path integrals in the analytical regularization scheme
Energy Technology Data Exchange (ETDEWEB)
Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br
2008-07-01
Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)
Some comments on rigorous quantum field path integrals in the analytical regularization scheme
International Nuclear Information System (INIS)
Botelho, Luiz C.L.
2008-01-01
Through the systematic use of the Minlos theorem on the support of cylindrical measures on R ∞ , we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)
Application of path integral method to heavy ion reactions, 1. General formalism
Energy Technology Data Exchange (ETDEWEB)
Fujita, J; Negishi, T [Tokyo Univ. of Education (Japan). Dept. of Physics
1976-03-01
The semiclassical approach for heavy ion reactions has become more and more important in analyzing rapidly accumulating data. The purpose of this paper is to lay a quantum-mechanical foundation of the conventional semiclassical treatments in heavy ion physics by using Feynman's path integral method on the basis of the second paper of Pechukas, and discuss simple consequences of the formalism.
Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians
International Nuclear Information System (INIS)
Klauder, J.R.; Daubechies, I.
We construct arbitrary matrix elements of the quantum evolution operator for a wide class of self-adjoint canonical Hamiltonians, including those which are polynomial in the Heisenberg operators, as the limit of well-defined path integrals involving Wiener measure on phase space, as a diffusion constant diverges. A related construction achieves a similar result for an arbitrary spin Hamiltonian. (orig.)
On the coordinate (in)dependence of the formal path integral
DEFF Research Database (Denmark)
Johnson-Freyd, Theo
. In this short note, aimed primarily at mathematicians, we first briefly recall the notions of Lagrangian classical and quantum field theory and the standard coordinate-full definition of the “formal” or “Feynman-diagrammatic” path integral construction. We then outline a proof of the following claim: the formal...
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Canonical path integral measures for Holst and Plebanski gravity: I. Reduced phase space derivation
International Nuclear Information System (INIS)
Engle, Jonathan; Han Muxin; Thiemann, Thomas
2010-01-01
An important aspect in defining a path integral quantum theory is the determination of the correct measure. For interacting theories and theories with constraints, this is non-trivial, and is normally not the heuristic 'Lebesgue measure' usually used. There have been many determinations of a measure for gravity in the literature, but none for the Palatini or Holst formulations of gravity. Furthermore, the relations between different resulting measures for different formulations of gravity are usually not discussed. In this paper we use the reduced phase technique in order to derive the path-integral measure for the Palatini and Holst formulation of gravity, which is different from the Lebesgue measure up to local measure factors which depend on the spacetime volume element and spatial volume element. From this path integral for the Holst formulation of general relativity we can also give a new derivation of the Plebanski path integral and discover a discrepancy with the result due to Buffenoir, Henneaux, Noui and Roche whose origin we resolve. This paper is the first in a series that aims at better understanding the relation between canonical loop quantum gravity and the spin-foam approach.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Quantum mechanical path integrals in curved spaces and the type-A trace anomaly
Energy Technology Data Exchange (ETDEWEB)
Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)
2017-04-10
Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.
Path integral measure and the fermion-boson equivalence in the Schwinger model
International Nuclear Information System (INIS)
Maiella, G.
1980-02-01
I perform a change of field variables in the Schwinger model using the non-invariance of path integral measure under γ 5 transformations. The known equivalence of the model with a bosonic field theory and the Kogut-Susskind dipole mechanism is then derived. (author)
Effects of Quantum Nuclear Delocalisation on NMR Parameters from Path Integral Molecular Dynamics
Czech Academy of Sciences Publication Activity Database
Dračínský, Martin; Hodgkinson, P.
2014-01-01
Roč. 20, č. 8 (2014), s. 2201-2207 ISSN 0947-6539 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-299242 People Institutional support: RVO:61388963 Keywords : density functional calculations * isotope effects * NMR spectroscopy * nuclear delocalisation * path integral molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014
Path integral for spinning particle in the plane wave field: Global and local projections
International Nuclear Information System (INIS)
Boudiaf, N.; Boudjedaa, T.; Chetouani, L.
2001-01-01
The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation. (orig.)
A stochastic approach for quantifying immigrant integration: the Spanish test case
Agliari, Elena; Barra, Adriano; Contucci, Pierluigi; Sandell, Richard; Vernia, Cecilia
2014-10-01
We apply stochastic process theory to the analysis of immigrant integration. Using a unique and detailed data set from Spain, we study the relationship between local immigrant density and two social and two economic immigration quantifiers for the period 1999-2010. As opposed to the classic time-series approach, by letting immigrant density play the role of ‘time’ and the quantifier the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers by means of continuous time random walks. Two classes of results are then obtained. First, we show that social integration quantifiers evolve following diffusion law, while the evolution of economic quantifiers exhibits ballistic dynamics. Second, we make predictions of best- and worst-case scenarios taking into account large local fluctuations. Our stochastic process approach to integration lends itself to interesting forecasting scenarios which, in the hands of policy makers, have the potential to improve political responses to integration problems. For instance, estimating the standard first-passage time and maximum-span walk reveals local differences in integration performance for different immigration scenarios. Thus, by recognizing the importance of local fluctuations around national means, this research constitutes an important tool to assess the impact of immigration phenomena on municipal budgets and to set up solid multi-ethnic plans at the municipal level as immigration pressures build.
A stochastic approach for quantifying immigrant integration: the Spanish test case
International Nuclear Information System (INIS)
Agliari, Elena; Barra, Adriano; Contucci, Pierluigi; Sandell, Richard; Vernia, Cecilia
2014-01-01
We apply stochastic process theory to the analysis of immigrant integration. Using a unique and detailed data set from Spain, we study the relationship between local immigrant density and two social and two economic immigration quantifiers for the period 1999–2010. As opposed to the classic time-series approach, by letting immigrant density play the role of ‘time’ and the quantifier the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers by means of continuous time random walks. Two classes of results are then obtained. First, we show that social integration quantifiers evolve following diffusion law, while the evolution of economic quantifiers exhibits ballistic dynamics. Second, we make predictions of best- and worst-case scenarios taking into account large local fluctuations. Our stochastic process approach to integration lends itself to interesting forecasting scenarios which, in the hands of policy makers, have the potential to improve political responses to integration problems. For instance, estimating the standard first-passage time and maximum-span walk reveals local differences in integration performance for different immigration scenarios. Thus, by recognizing the importance of local fluctuations around national means, this research constitutes an important tool to assess the impact of immigration phenomena on municipal budgets and to set up solid multi-ethnic plans at the municipal level as immigration pressures build. (paper)
Energy Technology Data Exchange (ETDEWEB)
Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)
2009-10-09
We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.
PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13
International Nuclear Information System (INIS)
Bultman, D. H.; Weinacht, D.
2000-01-01
This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule)
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2009-11-01
Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
Ray optics for diffraction: a useful paradox in a path integral context
International Nuclear Information System (INIS)
Schulman, L.S.
1984-01-01
Geometrical diffraction theory uses ray tracing techniques to calculate diffraction and other properties of the electromagnetic field generally considered characteristically wave like. The author studies this dualism of the classical electromagnetic field so as to distinguish those aspects of quantum dualism that arise simply as properties of oscillatory integrals and those that may have deeper origins. By a series of transformations the solutions of certain optics problems are reduced to the evaluation of a Feynman path integral and the known semiclassical approximations for the path integral provide a justification for the geometrical diffraction theory. Particular attention is paid to the problem of edge diffraction and for a half plane barrier a closed form solution is obtained. A classical variational principle for barrier penetration is also presented. (Auth.)
Calculation of quantum-mechanical system energy spectra using path integrals
International Nuclear Information System (INIS)
Evseev, A.M.; Dmitriev, V.P.
1977-01-01
A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O
The 1+1 SU(2) Yang-Mills path integral
International Nuclear Information System (INIS)
Swanson, Mark S
2004-01-01
The path integral for SU(2) invariant two-dimensional Yang-Mills theory is recast in terms of the chromoelectric field strength by integrating the gauge fields from the theory. Implementing Gauss's law as a constraint in this process induces a topological term in the action that is no longer invariant under large gauge transformations. For the case that the partition function is considered over a circular spatial degree of freedom, it is shown that the effective action of the path integral is quantum mechanically WKB exact and localizes onto a set of chromoelectric zero modes satisfying antiperiodic boundary conditions. Summing over the zero modes yields a partition function that can be reexpressed using the Poisson resummation technique, allowing an easy determination of the energy spectrum, which is found to be identical to that given by other approaches
The use of a path independent integral in non-linear fracture mechanics
International Nuclear Information System (INIS)
Hellen, T.K.
1977-01-01
The use of the Rice J-intergral to assess conditions at a crack tip in an elastic or non-linear elastic body is well known. The integral equals the energy release rate and is path independent for any contour surrounding the crack tip provided no other singularities are encompassed. The path independence propertiy breaks down, however, in more general situations such as in three dimensional stress systems, plasticity unloading, thermal or creep states. Hence the required crack tip characteristics represented by the value of the integral round a contour whose radius about the tip tends to zero, is not reproduced along contours away from the tip. Consequently, an alternative integral, designated J*, has been proposed which equals J for elastic cases and in the other cases cited above remains path independent. A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. (Auth. )
Stochastic quantization of Einstein gravity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
We determine a one-parameter family of covariant Langevin equations for the metric tensor of general relativity corresponding to DeWitt's one-parameter family of supermetrics. The stochastic source term in these equations can be expressed in terms of a Gaussian white noise upon the introduction of a stochastic tetrad field. The only physically acceptable resolution of a mathematical ambiguity in the ansatz for the source term is the adoption of Ito's calculus. By taking the formal equilibrium limit of the stochastic metric a one-parameter family of covariant path-integral measures for general relativity is obtained. There is a unique parameter value, distinguished by any one of the following three properties: (i) the metric is harmonic with respect to the supermetric, (ii) the path-integral measure is that of DeWitt, (iii) the supermetric governs the linearized Einstein dynamics. Moreover the Feynman propagator corresponding to this parameter is causal. Finally we show that a consistent stochastic perturbation theory gives rise to a new type of diagram containing ''stochastic vertices.''
Walters, Daniel; Stringer, Simon; Rolls, Edmund
2013-01-01
The head direction cell system is capable of accurately updating its current representation of head direction in the absence of visual input. This is known as the path integration of head direction. An important question is how the head direction cell system learns to perform accurate path integration of head direction. In this paper we propose a model of velocity path integration of head direction in which the natural time delay of axonal transmission between a linked continuous attractor network and competitive network acts as a timing mechanism to facilitate the correct speed of path integration. The model effectively learns a "look-up" table for the correct speed of path integration. In simulation, we show that the model is able to successfully learn two different speeds of path integration across two different axonal conduction delays, and without the need to alter any other model parameters. An implication of this model is that, by learning look-up tables for each speed of path integration, the model should exhibit a degree of robustness to damage. In simulations, we show that the speed of path integration is not significantly affected by degrading the network through removing a proportion of the cells that signal rotational velocity.
Functional integration of vertical flight path and speed control using energy principles
Lambregts, A. A.
1984-01-01
A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.
Zhou, Hufeng; Jin, Jingjing; Zhang, Haojun; Yi, Bo; Wozniak, Michal; Wong, Limsoon
2012-01-01
Pathway data are important for understanding the relationship between genes, proteins and many other molecules in living organisms. Pathway gene relationships are crucial information for guidance, prediction, reference and assessment in biochemistry, computational biology, and medicine. Many well-established databases--e.g., KEGG, WikiPathways, and BioCyc--are dedicated to collecting pathway data for public access. However, the effectiveness of these databases is hindered by issues such as incompatible data formats, inconsistent molecular representations, inconsistent molecular relationship representations, inconsistent referrals to pathway names, and incomprehensive data from different databases. In this paper, we overcome these issues through extraction, normalization and integration of pathway data from several major public databases (KEGG, WikiPathways, BioCyc, etc). We build a database that not only hosts our integrated pathway gene relationship data for public access but also maintains the necessary updates in the long run. This public repository is named IntPath (Integrated Pathway gene relationship database for model organisms and important pathogens). Four organisms--S. cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus--are included in this version (V2.0) of IntPath. IntPath uses the "full unification" approach to ensure no deletion and no introduced noise in this process. Therefore, IntPath contains much richer pathway-gene and pathway-gene pair relationships and much larger number of non-redundant genes and gene pairs than any of the single-source databases. The gene relationships of each gene (measured by average node degree) per pathway are significantly richer. The gene relationships in each pathway (measured by average number of gene pairs per pathway) are also considerably richer in the integrated pathways. Moderate manual curation are involved to get rid of errors and noises from source data (e.g., the gene ID errors in WikiPathways and
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Shidkov, E.P.
1987-01-01
The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated
Stochastic and infinite dimensional analysis
Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José
2016-01-01
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
The role of spatial memory and frames of reference in the precision of angular path integration.
Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David
2012-09-01
Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
Integral-based event triggering controller design for stochastic LTI systems via convex optimisation
Mousavi, S. H.; Marquez, H. J.
2016-07-01
The presence of measurement noise in the event-based systems can lower system efficiency both in terms of data exchange rate and performance. In this paper, an integral-based event triggering control system is proposed for LTI systems with stochastic measurement noise. We show that the new mechanism is robust against noise and effectively reduces the flow of communication between plant and controller, and also improves output performance. Using a Lyapunov approach, stability in the mean square sense is proved. A simulated example illustrates the properties of our approach.
Muldowney, Patrick
2012-01-01
A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. I...
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
International Nuclear Information System (INIS)
Sesé, Luis M.
2016-01-01
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
Energy Technology Data Exchange (ETDEWEB)
Sesé, Luis M., E-mail: msese@ccia.uned.es [Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid (Spain)
2016-03-07
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.
Data assimilation using a GPU accelerated path integral Monte Carlo approach
Quinn, John C.; Abarbanel, Henry D. I.
2011-09-01
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.
Monte Carlo evaluation of path integral for the nuclear shell model
International Nuclear Information System (INIS)
Lang, G.H.
1993-01-01
The authors present a path-integral formulation of the nuclear shell model using auxillary fields; the path-integral is evaluated by Monte Carlo methods. The method scales favorably with valence-nucleon number and shell-model basis: full-basis calculations are demonstrated up to the rare-earth region, which cannot be treated by other methods. Observables are calculated for the ground state and in a thermal ensemble. Dynamical correlations are obtained, from which strength functions are extracted through the Maximum Entropy method. Examples in the s-d shell, where exact diagonalization can be carried out, compared well with exact results. The open-quotes sign problemclose quotes generic to quantum Monte Carlo calculations is found to be absent in the attractive pairing-plus-multipole interactions. The formulation is general for interacting fermion systems and is well suited for parallel computation. The authors have implemented it on the Intel Touchstone Delta System, achieving better than 99% parallelization
The mapping approach in the path integral formalism applied to curve-crossing systems
International Nuclear Information System (INIS)
Novikov, Alexey; Kleinekathoefer, Ulrich; Schreiber, Michael
2004-01-01
The path integral formalism in a combined phase-space and coherent-state representation is applied to the problem of curve-crossing dynamics. The system of interest is described by two coupled one-dimensional harmonic potential energy surfaces interacting with a heat bath consisting of harmonic oscillators. The mapping approach is used to rewrite the Lagrangian function of the electronic part of the system. Using the Feynman-Vernon influence-functional method the bath is eliminated whereas the non-Gaussian part of the path integral is treated using the generating functional for the electronic trajectories. The dynamics of a Gaussian wave packet is analyzed along a one-dimensional reaction coordinate within a perturbative treatment for a small coordinate shift between the potential energy surfaces
Introduction to quantum mechanics Schrödinger equation and path integral
Müller-Kirsten, H J W
2012-01-01
This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrodinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions. In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introdu...
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
PathJam: a new service for integrating biological pathway information
Directory of Open Access Journals (Sweden)
Glez-Peña Daniel
2010-03-01
Full Text Available Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.
Moran, B.; Kulkarni, S.S.; Reeves, H.W.
2007-01-01
A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.
Renormalization in the stochastic quantization of field theories
International Nuclear Information System (INIS)
Brunelli, J.C.
1991-01-01
In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)
The use of a path independent integral in non-linear fracture mechanics
International Nuclear Information System (INIS)
Hellen, T.K.
1977-01-01
A computer program for calculating the J and J* integrals has been developed as an extension to the BERSAFE finite element system. A full analysis of the cracked structure including plasticity, creep and thermal strains is conducted and the results are stored on a permanent data set. The integral values may then be calculated using the post-processor program for any number of contours and load or time steps, without recourse to further expensive computations. Numerical examples are presented comparing the J and J* integrals for a number of cracked plates under thermal, plastic and creep environments. To demonstrate the accuracy for a simple thermo-elastic case, a centre cracked plate subject to a symmetric quadratic gradient is included. Here, the J integral is shown to be path dependent whereas good independence is seen for the J* integral. The case of an elastic-plastic plate is invetigated to demonstrate path independence for both integrals in non-linear elasticity, and the effects of unloading are discussed. An alternative method for obtaining the change of potential energy over a small crack extension is briefly mentioned and compared to the J and J* results in this case. An axisymmetric bar with an internal penny-shaped crack subjected to tension is discussed under elastic-plastic materials behavior
Directory of Open Access Journals (Sweden)
Loredana Teresa Pedata
2012-12-01
Full Text Available The path and the pilot study presented here come from a synergy between a pharmaceutical, universities and institutions in the area. The intervention evaluation wants to establish itself as a means of "re-thinking" youth intervention benefited: the assumption that the integration of knowledge can constitute an enrichment of the whole person, we believe that such enrichment is more likely to occur in group in comparison with others and the development of social skills and human resources.
Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3
Sorkin, V.; Polturak, E.; Adler, Joan
2006-01-01
Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid He-3 in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm^3. From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.
2012-06-06
...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).
Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance
Baaquie, Belal E.; Coriano, Claudio; Srikant, Marakani
2002-01-01
Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear sy...
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
Directory of Open Access Journals (Sweden)
Lena Simone Fohrmann
2017-09-01
Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths
Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred
2017-09-01
Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.
Directory of Open Access Journals (Sweden)
Beljić Željko
2017-01-01
Full Text Available In this paper a special case of digital stochastic measurement of the third power of definite integral of sinusoidal signal’s absolute value, using 2-bit AD converters is presented. This case of digital stochastic method had emerged from the need to measure power and energy of the wind. Power and energy are proportional to the third power of wind speed. Anemometer output signal is sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. Two approaches are proposed for the third power calculation of the wind speed signal. One approach is to use absolute value of sinusoidal signal (before AD conversion for which there is no need of multiplier hardware change. The second approach requires small multiplier hardware change, but input signal remains unchanged. For the second approach proposed minimal hardware change was made to calculate absolute value of the result after AD conversion. Simulations have confirmed theoretical analysis. Expected precision of wind energy measurement of proposed device is better than 0,00051% of full scale. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019
Worldline path integrals for a Dirac particle in a weak gravitational plane wave
International Nuclear Information System (INIS)
Haouat, S.; Chetouani, L.
2008-01-01
The problem of a relativistic spinning particle interacting with a weak gravitational plane wave in (3+1) dimensions is formulated in the frame work of covariant supersymmetric path integrals. The relative Green function is expressed through a functional integral over bosonic trajectories that describe the external motion and fermionic variables that describe the spin degrees of freedom. The (3+1) dimensional problem is reduced to the (1+1) dimensional one by using an identity. Next, the relative propagator is exactly calculated and the wave functions are extracted. (orig.)
International Nuclear Information System (INIS)
Zhang Zhongcan; Hu Chenguo; Fang Zhenyun
1998-01-01
The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals
A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem
DEFF Research Database (Denmark)
Rahmati, Seyed Habib A.; Ahmadi, Abbas; Govindan, Kannan
2018-01-01
the level of the system optimization. By means of this equipment, managers can benefit from a condition-based maintenance (CBM) for monitoring and managing their system. The chief aim of the paper is to develop a stochastic maintenance problem based on CBM activities engaged with a complex applied......Integrated consideration of production planning and maintenance processes is a real world assumption. Specifically, by improving the monitoring equipment such as various sensors or product-embedded information devices in recent years, joint assessment of these processes is inevitable for enhancing...... production problem called flexible job shop scheduling problem (FJSP). This integrated problem considers two maintenance scenarios in terms of corrective maintenance (CM) and preventive maintenance (PM). The activation of scenario is done by monitoring the degradation condition of the system and comparing...
International Nuclear Information System (INIS)
Liu, L.; Fuller, G.A.; Huang, G.H.
1999-01-01
Contamination of soil and water and the resulting threat to public health and the environment are the frequent results of oil spills, leaks and other releases of gasoline, diesel fuel, heating oil and other petroleum products. Integrating an analytical groundwater solute transport model within its general framework, this paper proposes an integrated stochastic risk assessment method and ways to apply it to petroleum-contaminated sites. Both the analytical solute transport model and the general risk assessment framework are solved by the Monte Carlo simulation technique for approaching the theoretical output distribution. Results of this study show that the total cancer risk has approximately log-normal distribution, irrespective of the fact that a variety of distributions were used to define the related parameters. It is claimed that the method can improve the effectiveness of the risk assessment for subsurface, and provide useful result for site remediation decisions. 23 refs., 3 tabs., 4 figs
A stochastic framework for the grid integration of wind power using flexible load approach
International Nuclear Information System (INIS)
Heydarian-Forushani, E.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Shafie-khah, M.; Catalão, J.P.S.
2014-01-01
Highlights: • This paper focuses on the potential of Demand Response Programs (DRPs) to contribute to flexibility. • A stochastic network constrained unit commitment associated with DR is presented. • DR participation levels and electricity tariffs are evaluated on providing a flexible load profile. • Novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs. • DR types and customer participation levels are the main factors to modify the system load profile. - Abstract: Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral
Hose, R D
2006-01-01
Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...
A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates
International Nuclear Information System (INIS)
Shiga, Motoyuki; Fujisaki, Hiroshi
2012-01-01
We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the ''centroid IRC,'' corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH 3 molecule and N 2 H 5 - ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH 3 , the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N 2 H 5 - , the centroid IRC is largely deviated from the ''classical'' IRC, and the free energy barrier is reduced by the quantum effects even more drastically.
Stochastic quantization of general relativity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)
International Nuclear Information System (INIS)
Dasgupta, I.
1998-01-01
We discuss new bounce-like (but non-time-reversal-invariant) solutions to Euclidean equations of motion, which we dub boomerons. In the Euclidean path integral approach to quantum theories, boomerons make an imaginary contribution to the vacuum energy. The fake vacuum instability can be removed by cancelling boomeron contributions against contributions from time reversed boomerons (anti-boomerons). The cancellation rests on a sign choice whose significance is not completely understood in the path integral method. (orig.)
Dynamic response characteristics of dual flow-path integrally bladed rotors
Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.
2015-02-01
New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.
Quantum density fluctuations in liquid neon from linearized path-integral calculations
International Nuclear Information System (INIS)
Poulsen, Jens Aage; Scheers, Johan; Nyman, Gunnar; Rossky, Peter J.
2007-01-01
The Feynman-Kleinert linearized path-integral [J. A. Poulsen et al., J. Chem. Phys. 119, 12179 (2003)] representation of quantum correlation functions is applied to compute the spectrum of density fluctuations for liquid neon at T=27.6 K, p=1.4 bar, and Q vector 1.55 Aa -1 . The calculated spectrum as well as the kinetic energy of the liquid are in excellent agreement with the experiment of Cunsolo et al. [Phys. Rev. B 67, 024507 (2003)
Nonperturbative time-convolutionless quantum master equation from the path integral approach
International Nuclear Information System (INIS)
Nan Guangjun; Shi Qiang; Shuai Zhigang
2009-01-01
The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.
Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao
2018-04-01
A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.
Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach
Reznichenko, A. V.; Terekhov, I. S.
2018-04-01
We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.
Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin
2006-05-01
In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.
International Nuclear Information System (INIS)
Liu, Jian; Zhang, Zhijun
2016-01-01
Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems
Path integral quantization of the Aharonov-Bohm-Coulomb system in momentum space
International Nuclear Information System (INIS)
Lin, De-Hone
2001-01-01
The Coulomb system with a charge moving in the fields of Ahanorov and Bohm is quantized via path integral in momentum space. Due to the dynamics of the system in momentum space being in curve space, our result not only gives the Green function of this interesting system in momentum space but provides the second example to answer an open problem of quantum dynamics in curved spaces posed by DeWitt in 1957: We find that the physical Hamiltonian in curved spaces does not contain the Riemannian scalar curvature R
Optical propagators in vector and spinor theories by path integral formalism
International Nuclear Information System (INIS)
Linares, J.
1993-01-01
The construction of an extended parabolic (wide-angle) vector and spinor wave theory is presented. For that, optical propagators in monochromatic vector light optics and monoenergetic spinor electron optics are evaluated by the path integral formalism. The auxiliary parameter method introduced by Fock and the Feynman-Dyson perturbative series are used. The proposed theory supplies, by a generalized Fermat's principle, the Mukunda-Simon-Sudarshan transformation for the passage from scalar to vector light (or spinor electron) optics in an asymptotic approximation. (author). 19 refs
Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods
Directory of Open Access Journals (Sweden)
Tetsuya Misawa
2010-01-01
Full Text Available “Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through “composition methods (or operator splitting methods” proposed by Misawa (2001. In the proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian vector fields. The global error orders of the numerical schemes derived from the stochastic composition methods are provided. To examine the superiority of the new schemes, some illustrative numerical simulations on the basis of the proposed schemes are carried out for a stochastic harmonic oscillator system.
International Nuclear Information System (INIS)
Hu, Yan; Wen, Jing-ya; Li, Xiao-li; Wang, Da-zhou; Li, Yu
2013-01-01
Highlights: • Using interval mathematics to describe spatial and temporal variability and parameter uncertainty. • Using fuzzy theory to quantify variability of environmental guideline values. • Using probabilistic approach to integrate interval concentrations and fuzzy environmental guideline. • Establishment of dynamic multimedia environmental integrated risk assessment framework. -- Abstract: A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach was developed for contaminated sites management. The contaminant concentrations were simulated by a validated interval dynamic multimedia fugacity model, and different guideline values for the same contaminant were represented as a fuzzy environmental guideline. Then, the probability of violating environmental guideline (Pv) can be determined by comparison between the modeled concentrations and the fuzzy environmental guideline, and the constructed relationship between the Pvs and environmental risk levels was used to assess the environmental risk level. The developed approach was applied to assess the integrated environmental risk at a case study site in China, simulated from 1985 to 2020. Four scenarios were analyzed, including “residential land” and “industrial land” environmental guidelines under “strict” and “loose” strictness. It was found that PAH concentrations will increase steadily over time, with soil found to be the dominant sink. Source emission in soil was the leading input and atmospheric sedimentation was the dominant transfer process. The integrated environmental risks primarily resulted from petroleum spills and coke ovens, while the soil environmental risks came from coal combustion. The developed approach offers an effective tool for quantifying variability and uncertainty in the dynamic multimedia integrated environmental risk assessment and the contaminated site management
Energy Technology Data Exchange (ETDEWEB)
Hu, Yan; Wen, Jing-ya; Li, Xiao-li; Wang, Da-zhou; Li, Yu, E-mail: liyuxx8@hotmail.com
2013-10-15
Highlights: • Using interval mathematics to describe spatial and temporal variability and parameter uncertainty. • Using fuzzy theory to quantify variability of environmental guideline values. • Using probabilistic approach to integrate interval concentrations and fuzzy environmental guideline. • Establishment of dynamic multimedia environmental integrated risk assessment framework. -- Abstract: A dynamic multimedia fuzzy-stochastic integrated environmental risk assessment approach was developed for contaminated sites management. The contaminant concentrations were simulated by a validated interval dynamic multimedia fugacity model, and different guideline values for the same contaminant were represented as a fuzzy environmental guideline. Then, the probability of violating environmental guideline (Pv) can be determined by comparison between the modeled concentrations and the fuzzy environmental guideline, and the constructed relationship between the Pvs and environmental risk levels was used to assess the environmental risk level. The developed approach was applied to assess the integrated environmental risk at a case study site in China, simulated from 1985 to 2020. Four scenarios were analyzed, including “residential land” and “industrial land” environmental guidelines under “strict” and “loose” strictness. It was found that PAH concentrations will increase steadily over time, with soil found to be the dominant sink. Source emission in soil was the leading input and atmospheric sedimentation was the dominant transfer process. The integrated environmental risks primarily resulted from petroleum spills and coke ovens, while the soil environmental risks came from coal combustion. The developed approach offers an effective tool for quantifying variability and uncertainty in the dynamic multimedia integrated environmental risk assessment and the contaminated site management.
Modular invariance and stochastic quantization
International Nuclear Information System (INIS)
Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.
1989-01-01
In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed
Heading-vector navigation based on head-direction cells and path integration.
Kubie, John L; Fenton, André A
2009-05-01
Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal
Covariant and consistent anomalies in two dimensions in path-integral formulation
International Nuclear Information System (INIS)
Joglekar, S.D.; Saini, G.
1993-01-01
We give a definition of a one-parameter family of regularized chiral currents in a chiral non-Abelian gauge theory in two dimensions in path-integral formulation. We show that covariant and consistent currents are obtained from this family by selecting two specific values of the free parameter, and thus our regularization interpolates between these two. Our procedure uses chiral bases constructed from eigenfunctions of the same operator for ψ L and anti ψ L . Definition of integration measure and regularization is done in terms of the same Hermitian operator D α =∂+iαA. Covariant and consistent currents (and indeed the entire family) are classically conserved. Difference with previous works are explained, in particular, that an anomaly in the general basis does differ from the Jacobian contribution. (orig.)
Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds
International Nuclear Information System (INIS)
Feng Yexin; Chen Ji; Wang Enge; Li Xin-Zheng
2016-01-01
The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. (topical review)
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
Sinitskiy, Anton V; Voth, Gregory A
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
Path integrals and pseudoclassical description for spinning particles in arbitrary dimensions
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Sao Paulo Univ. (Brazil). Inst. de Fisica
1997-03-17
The propagator of a spinning particle in an external Abelian field and in arbitrary dimensions is presented by means of a path integral. The problem has distinct solutions in even and odd dimensions. In even dimensions the representation is just a generalization of the one in four dimensions (which is already known). In this case the gauge invariant part of the effective action in the path integral has the form of the standard (Berezin-Marinov) pseudoclassical action. In odd dimensions the solution is presented for the first time and, in particular, it turns out that the gauge invariant part of the effective action differs from the standard one. We propose this new action as a candidate to describe spinning particles in odd dimensions. Studying the Hamiltonization of the pseudoclassical theory with the new action we show that the operator quantization leads to an adequate minimal quantum theory of spinning particles in odd dimensions. Finally the consideration is generalized for the case of a particle with an anomalous magnetic moment. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)
2008-03-15
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them {theta}-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing {theta}-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract {theta}-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as {theta}-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The {theta}-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case. (orig.)
Two-scale large deviations for chemical reaction kinetics through second quantization path integral
International Nuclear Information System (INIS)
Li, Tiejun; Lin, Feng
2016-01-01
Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second quantization path integral technique. We get three important types of large deviation results when the underlying two timescales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by the path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis–Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes. (paper)
Path integral representation of Lorentzian spinfoam model, asymptotics and simplicial geometries
International Nuclear Information System (INIS)
Han, Muxin; Krajewski, Thomas
2014-01-01
A new path integral representation of Lorentzian Engle–Pereira–Rovelli–Livine spinfoam model is derived by employing the theory of unitary representation of SL(2,C). The path integral representation is taken as a starting point of semiclassical analysis. The relation between the spinfoam model and classical simplicial geometry is studied via the large-spin asymptotic expansion of the spinfoam amplitude with all spins uniformly large. More precisely, in the large-spin regime, there is an equivalence between the spinfoam critical configuration (with certain nondegeneracy assumption) and a classical Lorentzian simplicial geometry. Such an equivalence relation allows us to classify the spinfoam critical configurations by their geometrical interpretations, via two types of solution-generating maps. The equivalence between spinfoam critical configuration and simplical geometry also allows us to define the notion of globally oriented and time-oriented spinfoam critical configuration. It is shown that only at the globally oriented and time-oriented spinfoam critical configuration, the leading-order contribution of spinfoam large-spin asymptotics gives precisely an exponential of Lorentzian Regge action of General Relativity. At all other (unphysical) critical configurations, spinfoam large-spin asymptotics modifies the Regge action at the leading-order approximation. (paper)
Relations between the EU and Republic of Kosovo - The path of Kosovo integration towards the EU
Directory of Open Access Journals (Sweden)
Arif Riza
2016-07-01
Full Text Available Almost all the European Union member states have surpassed various challenges toward their integration into the European family. Although all these challenges are special cases on their own, Kosovo’s journey differs from the above mentioned cases, because Kosovo has not been recognized as an independent state by some members of the European family. The other key element that differs Kosovo’s journey from other cases is the presence of international institutions such as: EULEX, ICO, UNMIK, KFOR etc. in Kosovo’s territory. These organizations were not present in other member states of the European Union and other countries which aim for European integration. This manuscript aims to analyze the Kosovo challenges in its path towards the European family, which is only possible if Kosovo can create sustainable politics and cause fundamental changes in all fields, whether in public or private institutions, in order to build the rule of law. In general, this article will discuss the presence of international institutions in Kosovo such as: EULEX, ICO, UNMIK, KFOR and other international organizations, their effects on the rule of law, economic development and the sustainability of institutions. Moreover, this paper will particularly analyze the influence of the above mentioned factors to ease Kosovo’s path, as an observed country, compared to other countries in the region.
A path integral for heavy-quarks in a hot plasma
Beraudo, A.; Faccioli, P.; Garberoglio, G.; 10.1016/j.nuclphysa.2010.06.007
2010-01-01
We propose a model for the propagation of a heavy-quark in a hot plasma, to be viewed as a first step towards a full description of the dynamics of heavy quark systems in a quark-gluon plasma, including bound state formation. The heavy quark is treated as a non relativistic particle interacting with a fluctuating field, whose correlator is determined by a hard thermal loop approximation. This approximation, which concerns only the medium in which the heavy quark propagates, is the only one that is made, and it can be improved. The dynamics of the heavy quark is given exactly by a quantum mechanical path integral that is calculated in this paper in the Euclidean space-time using numerical Monte Carlo techniques. The spectral function of the heavy quark in the medium is then reconstructed using a Maximum Entropy Method. The path integral is also evaluated exactly in the case where the mass of the heavy quark is infinite; one then recovers known results concerning the complex optical potential that controls the ...
Mei-Zhi, Yuan; Jing-Ru, Sun; Tao, Chen; Xiao-Yu, Zhang; Liang-Cai, He; Jia-Song, Wang
2016-05-12
To evaluate the effect of the clinical nursing path integrated with the holistic nursing on advanced schistosomiasis patients with ascites. A total of 226 advanced schistosomiasis patients with ascites were randomly divided into a control group and an experimental group (113 cases each group). The subjects in the experimental group were nursed by the clinical nursing path integrated with the holistic nursing, while those in the control group were nursed only by the holistic nursing. Then the clinical relevant indexes of the two groups were observed, and the quality of life of the patients before and after hospital discharge was assessed. The improvement rate, satisfaction degree, and awareness rate of health knowledge of the patients in the experiment group were 93.8%, 100% and 97.4%, respectively, which were significantly higher than those of the control group (all P holistic nursing can effectively improve the improvement rate and decrease the mortality of the advanced schistosomiasis patients with ascites; meanwhile, it can shorten the hospitalization time and save the hospitalization cost. Therefore, this nursing model is suitable for popularization and application in the treatment and nursing work of the advanced schistosomiasis assistance.
Path integral approach for electron transport in disturbed magnetic field lines
Energy Technology Data Exchange (ETDEWEB)
Kanno, Ryutaro; Nakajima, Noriyoshi; Takamaru, Hisanori
2002-05-01
A path integral method is developed to investigate statistical property of an electron transport described as a Langevin equation in a statically disturbed magnetic field line structure; especially a transition probability of electrons strongly tied to field lines is considered. The path integral method has advantages that 1) it does not include intrinsically a growing numerical error of an orbit, which is caused by evolution of the Langevin equation under a finite calculation accuracy in a chaotic field line structure, and 2) it gives a method of understanding the qualitative content of the Langevin equation and assists to expect statistical property of the transport. Monte Carlo calculations of the electron distributions under both effects of chaotic field lines and collisions are demonstrated to comprehend above advantages through some examples. The mathematical techniques are useful to study statistical properties of various phenomena described as Langevin equations in general. By using parallel generators of random numbers, the Monte Carlo scheme to calculate a transition probability can be suitable for a parallel computation. (author)
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals
International Nuclear Information System (INIS)
Sinitskiy, Anton V.; Voth, Gregory A.
2015-01-01
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments
Maximally-localized position, Euclidean path-integral, and thermodynamics in GUP quantum mechanics
Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.
2018-04-01
In dealing with quantum mechanics at very high energies, it is essential to adapt to a quasiposition representation using the maximally-localized states because of the generalized uncertainty principle. In this paper, we look at maximally-localized states as eigenstates of the operator ξ = X + iβP that we refer to as the maximally-localized position. We calculate the overlap between maximally-localized states and show that the identity operator can be expressed in terms of the maximally-localized states. Furthermore, we show that the maximally-localized position is diagonal in momentum-space and that the maximally-localized position and its adjoint satisfy commutation and anti-commutation relations reminiscent of the harmonic oscillator commutation and anti-commutation relations. As application, we use the maximally-localized position in developing the Euclidean path-integral and introduce the compact form of the propagator for maximal localization. The free particle momentum-space propagator and the propagator for maximal localization are analytically evaluated up to quadratic-order in β. Finally, we obtain a path-integral expression for the partition function of a thermodynamic system using the maximally-localized states. The partition function of a gas of noninteracting particles is evaluated. At temperatures exceeding the Planck energy, we obtain the gas' maximum internal energy N / 2 β and recover the zero heat capacity of an ideal gas.
Energy Technology Data Exchange (ETDEWEB)
Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
International Nuclear Information System (INIS)
Jaskolski, Z.
1991-05-01
The geometrical approach to the functional integral over Faddeev-Popov ghost fields is developed and applied to construct the BRST extension of the off-shell closed string amplitudes in the constant curvature gauge. In this gauge the overlap path integral for off-shell amplitudes is evaluated. It leads to the nonlocal sewing procedure generating all off-shell amplitudes from the cubic interaction vertex. The general scheme of the reconstruction of a covariant closed string field theory from the off-shell amplitudes is discussed within the path integral framework. (author). 30 refs
Path integral for coherent states of the dynamical U2 group and U2/1 supergroup
International Nuclear Information System (INIS)
Kochetov, E.A.
1992-01-01
A part-integral formulation in the representation of coherent states for the unitary U 2 group and U 2/1 supergroup is introduced. U 2 and U 2/1 path integrals are shown to be defined on the coset spaces U 2 /U 1 xU 1 and U 2/1 /U 1/1 xU 1 , respectively. These coset appears as curved classical phase spaces. Partition functions are expressed as path integrals over these spaces. In the case when U 2 and U 2/1 are the dynamical groups, the corresponding path integrals are evaluated with the help of linear fractional transformations that appear as the group (supergroup) action in the coset space (superspace). Possible applications for quantum models are discussed. 9 refs
Energy Technology Data Exchange (ETDEWEB)
Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica
1978-08-21
The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.
International Nuclear Information System (INIS)
Dekker, H.
1978-01-01
The lagrangian for the action occurring in the path integral solution of the nonlinear Fokker-Planck equation with constant diffusion function is derived by means of a straightforward Fourier series analysis. In this manner the path between the prepoint and the postpoint in the short time propagator is not restricted a priori to the usually considered straight line. Earlier results by Graham, Stratonovich, Horsthemke and Back, and the author's are recovered and thus put on much safer ground. (Auth.)
Directory of Open Access Journals (Sweden)
Aristeidis Antonakis
2017-04-01
Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.
Stochastic quantization and topological theories
International Nuclear Information System (INIS)
Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.
1992-01-01
In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones
Path-integral simulation of ice Ih: The effect of pressure
Herrero, Carlos P.; Ramírez, Rafael
2011-12-01
The effect of pressure on structural and thermodynamic properties of ice Ih has been studied by means of path-integral molecular dynamics simulations at temperatures between 50 and 300 K. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Positive (compression) and negative (tension) pressures have been considered, which allowed us to approach the limits for the mechanical stability of this solid water phase. We have studied the pressure dependence of the crystal volume, bulk modulus, interatomic distances, atomic delocalization, and kinetic energy. The spinodal point at both negative and positive pressures is derived from the vanishing of the bulk modulus. For P300 K. At positive pressure the spinodal is associated with ice amorphization, and at low temperatures it is found to be between 1.1 and 1.3 GPa. Quantum nuclear effects cause a reduction of the metastability region of ice Ih.
Energy Technology Data Exchange (ETDEWEB)
Kinugawa, Kenichi [Nara Women`s Univ., Nara (Japan). Dept. of Chemistry
1998-10-01
It has been unsuccessful to solve a set of time-dependent Schroedinger equations numerically for many-body quantum systems which involve, e.g., a number of hydrogen molecules, protons, and excess electrons at a low temperature, where quantum effect evidently appears. This undesirable situation is fatal for the investigation of real low-temperature chemical systems because they are essentially composed of many quantum degrees of freedom. However, if we use a new technique called `path integral centroid molecular dynamics (CMD) simulation` proposed by Cao and Voth in 1994, the real-time semi-classical dynamics of many degrees of freedom can be computed by utilizing the techniques already developed in the traditional classical molecular dynamics (MD) simulations. Therefore, the CMD simulation is expected to be very powerful tool for the quantum dynamics studies or real substances. (J.P.N.)
Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics
International Nuclear Information System (INIS)
Everett, Allen
2004-01-01
We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves. In a model similar to Politzer's, assuming pure states and using path integrals, we show that the problems of paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time evolution so that improbable events become certain. Deutsch has argued, using the density matrix, that paradoxes do not occur in the 'many worlds interpretation'. We find that in this approach account must be taken of the resolution time of the device that detects objects emerging from a wormhole or other time machine. When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole interact with it so strongly that they are broken into microscopic fragments
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele
2011-02-01
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation.
Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele
2011-02-28
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems.
Liu, Xinzijian; Liu, Jian
2018-03-14
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
Path-integral quantization of solitons using the zero-mode Feynman rule
International Nuclear Information System (INIS)
Sung Sheng Chang
1978-01-01
We propose a direct expansion treatment to quantize solitons without collective coordinates. Feynman's path integral for a free particle subject to an external force is directly used as the generating functional for the zero-frequency mode. The generating functional has no infrared singularity and defines a zero-mode Feynman rule which also gives a correct perturbative expansion for the harmonic-oscillator Green's function by treating the quadratic potential as a perturbation. We use the zero-mode Feynman rule to calculate the energy shift due to the second-order quantum corrections for solitons. Our result agrees with previous predictions using the collective-coordinate method or the method of Goldstone and Jackiw
International Nuclear Information System (INIS)
Huo, Pengfei; Miller, Thomas F. III; Coker, David F.
2013-01-01
A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime
International Nuclear Information System (INIS)
Bertschinger, E.
1987-01-01
Path integrals may be used to describe the statistical properties of a random field such as the primordial density perturbation field. In this framework the probability distribution is given for a Gaussian random field subjected to constraints such as the presence of a protovoid or supercluster at a specific location in the initial conditions. An algorithm has been constructed for generating samples of a constrained Gaussian random field on a lattice using Monte Carlo techniques. The method makes possible a systematic study of the density field around peaks or other constrained regions in the biased galaxy formation scenario, and it is effective for generating initial conditions for N-body simulations with rare objects in the computational volume. 21 references
Fragmentation function in non-equilibrium QCD using closed-time path integral formalism
International Nuclear Information System (INIS)
Nayak, Gouranga C.
2009-01-01
In this paper we implement the Schwinger-Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins-Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function f(vector (p)) fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark-gluon plasma at RHIC and LHC. (orig.)
2012-07-05
...Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 31, 2012, under section 337 of the Tariff Act of 1930, as amended, on behalf of Industrial Technology Research Institute of Taiwan and ITRI International of San Jose, California. The complaint alleges violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain integrated circuit packages provided with multiple heat-conducting paths and products containing same by reason of infringement of certain claims of U.S. Patent No. 5,710,459 (``the `459 patent''). The complaint further alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The complainants request that the Commission institute an investigation and, after the investigation, issue an exclusion order and cease and desist order.
Kinetic energy of solid and liquid para-hydrogen: a path integral Monte Carlo simulation
International Nuclear Information System (INIS)
Zoppi, M.; Neumann, M.
1992-01-01
The translational (center of mass) kinetic energy of solid and liquid para-hydrogen have been recently measured by means of Deep Inelastic Neutron Scattering. We have evaluated the same quantity, in similar thermodynamic conditions, by means of Path Integral Monte Carlo computer simulation, modelling the system as composed of a set of spherical molecules interacting through a pairwise additive Lennard-Jones potential. In spite of the crude approximations on the interaction potential, the agreement is excellent. The pressure was also computed by means of the same simulations. This quantity, compared with the equation of state for solid para-hydrogen given by Driessen and Silvera, gives an agreement of a lesser quality and a negative value for the liquid state. We attribute this discrepancy to the limitations of the Lennard-Jones potential. (orig.)
Optimal multigrid algorithms for the massive Gaussian model and path integrals
International Nuclear Information System (INIS)
Brandt, A.; Galun, M.
1996-01-01
Multigrid algorithms are presented which, in addition to eliminating the critical slowing down, can also eliminate the open-quotes volume factorclose quotes. The elimination of the volume factor removes the need to produce many independent fine-grid configurations for averaging out their statistical deviations, by averaging over the many samples produced on coarse grids during the multigrid cycle. Thermodynamic limits of observables can be calculated to relative accuracy var-epsilon r in just O(var-epsilon r -2 ) computer operations, where var-epsilon r is the error relative to the standard deviation of the observable. In this paper, we describe in detail the calculation of the susceptibility in the one-dimensional massive Gaussian model, which is also a simple example of path integrals. Numerical experiments show that the susceptibility can be calculated to relative accuracy var-epsilon r in about 8 var-epsilon r -2 random number generations, independent of the mass size
Improving the variational path integral approach to the quantum double-well potential
International Nuclear Information System (INIS)
Bao Jingdong; Wang Hongyu
2002-01-01
An improved variational path integral approach is developed and applied to the quantum double-well potential, in which part of the quartic term of the potential is included in the trial action. The expression of the effective classical potential (ECP) under a non-Gaussian expectation is obtained. Here the frequency and fourth-order derivative of the potential are treated as two variational parameters, determined by the minimization of the ECP at each point. We calculate the ECP, the free energy and the level splitting of a symmetrical double-well potential. It is shown that the present results are better than those of the Feynman-Kleinert Gaussian variational method. (author)
Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations
Energy Technology Data Exchange (ETDEWEB)
Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian
2006-10-01
An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.
DEFF Research Database (Denmark)
Feng, Ju; Ying, Zu-Guang; Zhu, Wei-Qiu
2012-01-01
A minimax stochastic optimal semi-active control strategy for stochastically excited quasi-integrable Hamiltonian systems with parametric uncertainty by using magneto-rheological (MR) dampers is proposed. Firstly, the control problem is formulated as an n-degree-of-freedom (DOF) controlled, uncer...
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl
2014-01-01
Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.
Path-integral in collective variables and its application to nuclear and hadron physics
International Nuclear Information System (INIS)
Pervushin, V.N.; Rajnkhardt, Kh.; Ehbert, D.
1979-01-01
The application of functional integrals to describe collective degrees of freedom in different fields of physics is reviewed for the period since 1965. The application of path integrals to the schematic model of nuclear multiparticle systems with pairing and particle-hole forces permits to lay strict foundations under the so called theory of nuclear field, which hitherto was proved euristically. The Abel gauge theory of interacting massless quarks and vector gluons is described. In this model radiative corrections cause spontaneous dynamic breaking of the chiral γ 5 -invariance. The application of functional integration to two-dimensional quantum chromodynamics is also analyzed. It is shown that the local quark-gluon theory can be transformed in an infinite-component nonpolynomial field theory in terms of colourless bound states - mesons. A modified perturbation theory appears in the form of 1/Nsub(c)-expansion (Nsub(c) - number of quarks), that is formally is very akin to the 1/Ω-expansion (Ωdegeneracy of single-particle states) in the theory of nuclear field
Poltavsky, Igor; DiStasio, Robert A.; Tkatchenko, Alexandre
2018-03-01
Nuclear quantum effects (NQE), which include both zero-point motion and tunneling, exhibit quite an impressive range of influence over the equilibrium and dynamical properties of molecules and materials. In this work, we extend our recently proposed perturbed path-integral (PPI) approach for modeling NQE in molecular systems [I. Poltavsky and A. Tkatchenko, Chem. Sci. 7, 1368 (2016)], which successfully combines the advantages of thermodynamic perturbation theory with path-integral molecular dynamics (PIMD), in a number of important directions. First, we demonstrate the accuracy, performance, and general applicability of the PPI approach to both molecules and extended (condensed-phase) materials. Second, we derive a series of estimators within the PPI approach to enable calculations of structural properties such as radial distribution functions (RDFs) that exhibit rapid convergence with respect to the number of beads in the PIMD simulation. Finally, we introduce an effective nuclear temperature formalism within the framework of the PPI approach and demonstrate that such effective temperatures can be an extremely useful tool in quantitatively estimating the "quantumness" associated with different degrees of freedom in the system as well as providing a reliable quantitative assessment of the convergence of PIMD simulations. Since the PPI approach only requires the use of standard second-order imaginary-time PIMD simulations, these developments enable one to include a treatment of NQE in equilibrium thermodynamic properties (such as energies, heat capacities, and RDFs) with the accuracy of higher-order methods but at a fraction of the computational cost, thereby enabling first-principles modeling that simultaneously accounts for the quantum mechanical nature of both electrons and nuclei in large-scale molecules and materials.
Bats Use Path Integration Rather Than Acoustic Flow to Assess Flight Distance along Flyways.
Aharon, Gal; Sadot, Meshi; Yovel, Yossi
2017-12-04
Navigation can be achieved using different strategies from simple beaconing to complex map-based movement [1-4]. Bats display remarkable navigation capabilities, ranging from nightly commutes of several kilometers and up to seasonal migrations over thousands of kilometers [5]. Many bats have been suggested to fly along fixed routes termed "flyways," when flying from their roost to their foraging sites [6]. Flyways commonly stretch along linear landscape elements such as tree lines, hedges, or rivers [7]. When flying along a flyway, bats must estimate the distance they have traveled in order to determine when to turn. This can be especially challenging when moving along a repetitive landscape. Some bats, like Kuhl's pipistrelles, which we studied here, have limited vision [8] and were suggested to rely on bio-sonar for navigation. These bats could therefore estimate distance using three main sensory-navigation strategies, all of which we have examined: acoustic flow, acoustic landmarks, or path integration. We trained bats to fly along a linear flyway and land on a platform. We then tested their behavior when the platform was removed under different manipulations, including changing the acoustic flow, moving the start point, and adding wind. We found that bats do not require acoustic flow, which was hypothesized to be important for their navigation [9-15], and that they can perform the task without landmarks. Our results suggest that Kuhl's pipistrelles use internal self-motion cues-also known as path integration-rather than external information to estimate flight distance for at least dozens of meters when navigating along linear flyways. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Hasselmann, K.; Hasselmann, S.; Giering, R.; Ocana, V.; Storch, H. von
1997-01-01
A structurally highly simplified, globally integrated coupled climate-economic costs model SIAM (Structural Integrated Assessment Model) is used to compute optimal paths of global CO 2 emissions that minimize the net sum of climate damage and mitigation costs. It studies the sensitivity of the computed optimal emission paths. The climate module is represented by a linearized impulse-response model calibrated against a coupled ocean-atmosphere general circulation climate model and a three-dimensional global carbon-cycle model. The cost terms are presented by expressions designed with respect to input assumptions. These include the discount rates for mitigation and damage costs, the inertia of the socio-economic system, and the dependence of climate damages on the changes in temperature and the rate of change of temperature. Different assumptions regarding these parameters are believed to cause the marked divergences of existing cost-benefit analyses. The long memory of the climate system implies that very long time horizons of several hundred years need to be considered to optimize CO 2 emissions on time scales relevant for a policy of sustainable development. Cost-benefit analyses over shorter time scales of a century or two can lead to dangerous underestimates of the long term climate impact of increasing greenhouse-gas emissions. To avert a major long term global warming, CO 2 emissions need to be reduced ultimately to very low levels. This may be done slowly but should not be interpreted as providing a time cushion for inaction: the transition becomes more costly the longer the necessary mitigation policies are delayed. However, the long time horizon provides adequate flexibility for later adjustments. Short term energy conservation alone is insufficient and can be viewed only as a useful measure in support of the necessary long term transition to carbon-free energy technologies. 46 refs., 9 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others
1997-08-01
The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.
Stochastic integrated vendor–buyer model with unstable lead time and setup cost
Directory of Open Access Journals (Sweden)
Chandra K. Jaggi
2011-01-01
Full Text Available This paper presents a new vendor-buyer system where there are different objectives for both sides. The proposed method of this paper is different from the other previously published works since it considers different objectives for both sides. In this paper, the vendor’s emphasis is on the crashing of the setup cost, which not only helps him compete in the market but also provides better services to his customers; and the buyer’s aim is to reduce the lead time, which not only facilitates the buyer to fulfill the customers’ demand on time but also enables him to earn a good reputation in the market or vice versa. In the light of the above stated facts, an integrated vendor-buyer stochastic inventory model is also developed. The propsed model considers two cases for demand during lead time: Case (i Complete demand information, Case (ii Partial demand information. The proposed model jointly optimizes the buyer’s ordered quantity and lead time along with vendor’s setup cost and the number of shipments. The results are demonstrated with the help of numerical examples.
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Maejima, M.; Sato, K.
2006-01-01
The class of distributions on R generated by convolutions of Γ-distributions and the class generated by convolutions of mixtures of exponential distributions are generalized to higher dimensions and denoted by T(Rd) and B(Rd) . From the Lévy process {Xt(μ)} on Rd with distribution μ at t=1, Υ...... divisible distributions and of self-decomposable distributions on Rd , respectively. The relations with the mapping Φ from μ to the distribution at each time of the stationary process of Ornstein-Uhlenbeck type with background driving Lévy process {Xt(μ)} are studied. Developments of these results......(μ) is defined as the distribution of the stochastic integral ∫01log(1/t)dXt(μ) . This mapping is a generalization of the mapping Υ introduced by Barndorff-Nielsen and Thorbjørnsen in one dimension. It is proved that ϒ(ID(Rd))=B(Rd) and ϒ(L(Rd))=T(Rd) , where ID(Rd) and L(Rd) are the classes of infinitely...
International Nuclear Information System (INIS)
Song, Linze; Shi, Qiang
2015-01-01
We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated
PathText: a text mining integrator for biological pathway visualizations
Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi
2010-01-01
Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930
Mandza, Matey; Gagnon, Dominique; Carrier, Sébastien; Belzile, Louise; Demers, Louis
2010-01-01
Purpose Services’ integration comprises organizational, normative, economic, informational and clinical dimensions. Since 2004, the province of Quebec has devoted significant efforts to unify the governance of the main health and social care organizations of its various territories. Notwithstanding the uniformity of the national plan’s prescription, the territorial integration modalities greatly vary across the province. Theory This research is based upon a conceptual model of integration that comprises six components: inter-organizational partnership, case management, standardized assessment, a single entry point, a standardized service planning tool and a shared clinical file. Methods We conducted an embedded case study in six contrasted sites in terms of their level of integration. All documents prescribing the implementation of integration were retrieved and analyzed. Results and conclusions The analyzed documents demonstrate a growing local appropriation of the current integrative reform. Interestingly however, no link seems to exist between the quality of local prescriptions and the level of integration achieved in each site. This finding leads us to hypothesize that the variable quality of the operational accompaniment offered to implement these prescriptions is a variable in play.
Walters, D M; Stringer, S M
2010-07-01
A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.
Stochastic tools in turbulence
Lumey, John L
2012-01-01
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the
Koh, Yang Wei
2018-03-01
In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.
Ogawa, Shigeyoshi
2017-01-01
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...
International Nuclear Information System (INIS)
Mieck, B.
2007-01-01
A super-symmetric coherent state path integral on the Keldysh time contour is considered for bosonic and fermionic atoms which interact among each other with a common short-ranged two-body potential. We investigate the symmetries of Bose-Einstein condensation for the equivalent bosonic and fermionic constituents with the same interaction potential so that a super-symmetry results between the bosonic and fermionic components of super-fields. Apart from the super-unitary invariance U(L vertical stroke S) of the density terms, we specialize on the examination of super-symmetries for pair condensate terms. Effective equations are derived for anomalous terms which are related to the molecular- and BCS- condensate pairs. A Hubbard-Stratonovich transformation from 'Nambu'-doubled super-fields leads to a generating function with super-matrices for the self-energy whose manifold is given by the orthosympletic super-group Osp(S,S vertical stroke 2L). A nonlinear sigma model follows from the spontaneous breaking of the ortho-symplectic super-group Osp(S,S vertical stroke 2L) to the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S). The invariant subgroup U(L vertical stroke S) for the vacuum or background fields is represented by the density terms in the self-energy whereas the super-matrices on the coset space Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) describe the anomalous molecular and BCS-pair condensate terms. A change of integration measure is performed for the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S), including a separation of density and anomalous parts of the self-energy with a gradient expansion for the Goldstone modes. The independent anomalous fields in the actions can be transformed by the inverse square root G Osp backslash U -1/2 of the metric tensor of Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) so that
Energy Technology Data Exchange (ETDEWEB)
Mieck, B. [Department of Physics in Duisburg, University Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)
2007-09-15
A super-symmetric coherent state path integral on the Keldysh time contour is considered for bosonic and fermionic atoms which interact among each other with a common short-ranged two-body potential. We investigate the symmetries of Bose-Einstein condensation for the equivalent bosonic and fermionic constituents with the same interaction potential so that a super-symmetry results between the bosonic and fermionic components of super-fields. Apart from the super-unitary invariance U(L vertical stroke S) of the density terms, we specialize on the examination of super-symmetries for pair condensate terms. Effective equations are derived for anomalous terms which are related to the molecular- and BCS- condensate pairs. A Hubbard-Stratonovich transformation from 'Nambu'-doubled super-fields leads to a generating function with super-matrices for the self-energy whose manifold is given by the orthosympletic super-group Osp(S,S vertical stroke 2L). A nonlinear sigma model follows from the spontaneous breaking of the ortho-symplectic super-group Osp(S,S vertical stroke 2L) to the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S). The invariant subgroup U(L vertical stroke S) for the vacuum or background fields is represented by the density terms in the self-energy whereas the super-matrices on the coset space Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) describe the anomalous molecular and BCS-pair condensate terms. A change of integration measure is performed for the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S), including a separation of density and anomalous parts of the self-energy with a gradient expansion for the Goldstone modes. The independent anomalous fields in the actions can be transformed by the inverse square root G{sub Osp} {sub backslash} {sub U}{sup -1/2} of the metric tensor of Osp(S,S vertical stroke 2L) backslash U
Field, J. H.
2011-01-01
It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…
Miller, Melvin E., Ed.; Cook-Greuter, Susanne R., Ed.
This book contains 11 papers on creativity, spirituality, and transcendence as paths to integrity and wisdom in the mature self. The book begins with the paper "Introduction--Creativity in Adulthood: Personal Maturity and Openness to Extraordinary Sources of Inspiration" (Susanne R. Cook-Greuter, Melvin E. Miller). The next four papers,…
International Nuclear Information System (INIS)
Botelho, Luiz C.L.
1998-02-01
We study four dimensional Effective Bosonic Field Theories for massive fermion field in the infrared region and massive fermion in ultraviolet region by using an appropriate Fermion Path Integral Chiral variable change and the Polyakov's Fermi-Bose transmutation in the 3D-Abelian Thrirring model. (author)
International Nuclear Information System (INIS)
Sutrisno; Widowati; Solikhin
2016-01-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well. (paper)
Integrating forest ecosystem services into the farming landscape: A stochastic economic assessment.
Monge, Juan J; Parker, Warren J; Richardson, James W
2016-06-01
The objective of this study was to assess how payments for ecosystem services could assist plantation forestry's integration into pastoral dairy farming in order to improve environmental outcomes and increase business resilience to both price uncertainty and production limits imposed by environmental policies. Stochastic Dominance (SD) criteria and portfolio analysis, accounting for farmers' risk aversion levels, were used to rank different land-use alternatives and landscapes with different levels of plantation forestry integration. The study was focused on a modal 200-ha dairy farm in the Lake Rotorua Catchment of the Central North Island region of New Zealand, where national environmental policies are being implemented to improve water quality and reduce greenhouse gas emissions. Nitrogen and carbon payments would help farmers improve early cash flows for forestry, provide financial leverage to undertake afforestation projects and contribute to improved environmental outcomes for the catchment. The SD criteria demonstrated that although dairy farming generates the highest returns, plantation forestry with nitrogen and carbon payments would be a preferred alternative for landowners with relatively low risk aversion levels who consider return volatility and environmental limits within their land-use change criteria. Using the confidence premium concept, environmental payments to encourage plantation forestry into the landscape were shown to be lower when the majority of landowners are risk averse. The certainty equivalence approach helped to identify the optimal dairy-forestry portfolio arrangements for landowners of different levels of risk aversion, intensities of dairy farming (status quo and intensified) and nitrogen prices. At low nitrogen prices, risk neutral farmers would choose to afforest less than half of the farm and operate at the maximum nitrogen allowance, because dairy farming at both intensities provides the highest return among the different land
Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.
2015-06-01
A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom
Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.
2017-01-01
We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.
Molar excess volumes of liquid hydrogen and neon mixtures from path integral simulation
International Nuclear Information System (INIS)
Challa, S.R.; Johnson, J.K.
1999-01-01
Volumetric properties of liquid mixtures of neon and hydrogen have been calculated using path integral hybrid Monte Carlo simulations. Realistic potentials have been used for the three interactions involved. Molar volumes and excess volumes of these mixtures have been evaluated for various compositions at 29 and 31.14 K, and 30 atm. Significant quantum effects are observed in molar volumes. Quantum simulations agree well with experimental molar volumes. Calculated excess volumes agree qualitatively with experimental values. However, contrary to the existing understanding that large positive deviations from ideal mixtures are caused due to quantum effects in Ne - H 2 mixtures, both classical as well as quantum simulations predict the large positive deviations from ideal mixtures. Further investigations using two other Ne - H 2 potentials of Lennard - Jones (LJ) type show that excess volumes are very sensitive to the cross-interaction potential. We conclude that the cross-interaction potential employed in our simulations is accurate for volumetric properties. This potential is more repulsive compared to the two LJ potentials tested, which have been obtained by two different combining rules. This repulsion and a comparatively lower potential well depth can explain the positive deviations from ideal mixing. copyright 1999 American Institute of Physics
International Nuclear Information System (INIS)
Heilmann, D.B.
2007-02-01
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Hadronization of quark-diquark model for nucleon structure and nuclear force by path integral
International Nuclear Information System (INIS)
Nagata, Keitaro
2003-01-01
One of the central issues of the hadron physics is how to interpret the properties and the origin of nuclear force. Nuclear force is in principle the manifestation of dynamics of quarks and gluons but no trial has been successful yet in describing the nuclear force by using QCD, the fundamental theory of the strong interactions. Phenomenon related to the chiral symmetry and the spontaneous breaking of the chiral symmetry is one of the important phenomena for the understanding of hadron physics. Nambu-Jona-Lasinio (NJL) model is one of the quark system models to explain the phenomena concerning the chiral symmetry. Although the method to deduce the Lagrangian describing mesons by applying the path integral to NJL model has been well known as the bosonization, it has been difficult to extend it to baryons because baryons are three-body system. In this paper, a method is reported to deduce Lagrangian which describes baryon-meson from quark-diquark Lagrangian by assuming that baryons are the bound states of quark and diquark. (S. Funahashi)
Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations
Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.
2018-05-01
The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.
Polymer escape from a metastable Kramers potential: path integral hyperdynamics study.
Shin, Jaeoh; Ikonen, Timo; Khandkar, Mahendra D; Ala-Nissila, Tapio; Sung, Wokyung
2010-11-14
We study the dynamics of flexible, semiflexible, and self-avoiding polymer chains moving under a Kramers metastable potential. Due to thermal noise, the polymers, initially placed in the metastable well, can cross the potential barrier, but these events are extremely rare if the barrier is much larger than thermal energy. To speed up the slow rate processes in computer simulations, we extend the recently proposed path integral hyperdynamics method to the cases of polymers. We consider the cases where the polymers' radii of gyration are comparable to the distance between the well bottom and the barrier top. We find that, for a flexible polymers, the crossing rate (R) monotonically decreases with chain contour length (L), but with the magnitude much larger than the Kramers rate in the globular limit. For a semiflexible polymer, the crossing rate decreases with L but becomes nearly constant for large L. For a fixed L, the crossing rate becomes maximum at an intermediate bending stiffness. For the self-avoiding chain, the rate is a nonmonotonic function of L, first decreasing with L, and then, above a certain length, increasing with L. These findings can be instrumental for efficient separation of biopolymers.
Path-integral approach to the dynamics of a random chain with rigid constraints
International Nuclear Information System (INIS)
Ferrari, Franco; Paturej, Jaroslaw; Vilgis, Thomas A.
2008-01-01
In this work the dynamics of a chain consisting of a set of beads attached to the ends of segments of fixed lengths is investigated. The chain fluctuates at constant temperature in a viscous medium. For simplicity, all interactions among the beads have been switched off and the number of spatial dimensions has been limited to two. In the limit in which the chain becomes a continuous system, its behavior may be described by a path integral, in which the rigid constraints coming from the infinitesimally small segments are imposed by means of a functional δ function. In this way a model of the dynamics of the chain is obtained, which closely resembles a two-dimensional nonlinear σ model. The partition function of this generalized nonlinear σ model is computed explicitly for a ring-shaped chain in the semiclassical approximation. The behavior of the chain at both long and short scales of time and distances is investigated. The connection between the generalized nonlinear σ model presented here and the Rouse model is discussed
Iterative quantum-classical path integral with dynamically consistent state hopping
Energy Technology Data Exchange (ETDEWEB)
Walters, Peter L.; Makri, Nancy [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)
2016-01-28
We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.
International Nuclear Information System (INIS)
Mak, C. H.
2009-01-01
A practical method to tackle the sign problem in real-time path integral simulations is proposed based on the multilevel blocking idea. The formulation is made possible by using a cumulant expansion of the action, which in addition to addressing the sign problem, provides an unbiased estimator for the action from a statistically noisy sample of real-time paths. The cumulant formulation also allows the analytical gradients of the action to be computed with little extra computational effort, and it can easily be implemented in a massively parallel environment.
Jang, Seogjoo; Voth, Gregory A
2017-05-07
Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.
Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta
2017-01-01
The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.
Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.
2017-09-01
The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.
Energy Technology Data Exchange (ETDEWEB)
Schoof, Tim
2017-03-08
The reliable quantum mechanical description of thermodynamic properties of fermionic many-body systems at high densities and strong degeneracy is of increasing interest due to recent experimental progress in generating systems that exhibit a non-trivial interplay of quantum, temperature, and coupling effects. While quantum Monte Carlo methods are among the most accurate approaches for the description of the ground state, finite-temperature path integral Monte Carlo (PIMC) simulations cannot correctly describe weakly to moderately coupled and strongly degenerate Fermi systems due to the so-called fermion sign problem. By switching from the coordinate representation to a basis of anti-symmetric Slater-determinants, the Configuration Path Integral Monte Carlo (CPIMC) approach greatly reduces the sign problem and allows for the exact computation of thermodynamic properties in this regime. During this work, the CPIMC algorithm was greatly improved in terms of efficiency and accessible observables. The first successful implementation of the diagrammatic worm algorithm for a general Hamiltonian in Fock space with arbitrary pair interactions gives direct access to the Matsubara Green function. This allows for the reconstruction of dynamic properties from simulations in thermodynamic equilibrium and significantly reduces the statistical variance of derived estimators, such as the one-particle density. The strongly improved MC sampling, the much more efficient calculation of update probabilities, and the successful parallelization to thousands of CPU cores, which have been achieved as part of the new implementation, are essential for the subsequent application of the method to much larger systems than in previous works. This thesis demonstrates the capabilities of the CPIMC approach for a model system of Coulomb interacting fermions in a two-dimensional harmonic trap. The correctness of the CPIMC implementation is verified by rigorous comparisons with an exact
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
Energy Technology Data Exchange (ETDEWEB)
Militzer, Burkhard [Univ. of California, Berkeley, CA (United States)
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introduces an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.
Different strategies for spatial updating in yaw and pitch path integration
Directory of Open Access Journals (Sweden)
Caspar Mathias Goeke
2013-02-01
Full Text Available Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw or the vertical (pitch axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260 consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes and 46.5% as Nonturners (using an allocentric reference frame on both axes. 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher. Investigating the influence of gender on navigation strategies revealed that females predominantly used the Nonturner strategy while males used both the Turner and the Nonturner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Nonturners, Switchers for spatial updating and provides a sound estimate of how those strategies are distributed within the general population.
Response statistics of rotating shaft with non-linear elastic restoring forces by path integration
Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael
2017-07-01
Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.
Energy Technology Data Exchange (ETDEWEB)
Rosenfelder, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-12-01
This lectures aim at giving graduate students an introduction to a working knowledge of path integral methods in a wide variety of fields in physics. Consequently, the the lecture notes are organized in three main parts dealing with non-relativistic quantum mechanics, many-body physics and field theory. In the first part the basic concepts of path integrals are developed in the usual heuristic, non-mathematical way followed by the standard examples of quadratic Lagrangians for which the path integrals can be solved exactly. Applications include semi-classical expansions, scattering problems and the representation of Green functions as path integrals. In the last chapter of this part it is shown how (euclidean) path integrals can be treated numerically by Monte-Carlo methods with a program for the anharmonic oscillator as an explicit example. The second part deals with the application of path integrals in statistical mechanics and many-body problems. Various chapters treat the partition functions, the polaron problem as a non-relativistic field theory and path integrals over ordinary and Grassmannian coherent states. Perturbation theory and the diagrammatic rules are derived in an unified way for both bosons and fermions and illustrated by simple examples. Finally, in the third part path integrals in relativistic quantum field theory are discussed. Standard topics like the generating functional for Green functions, perturbative expansions, effective actions and quantization of gauge theories are treated. Some special applications (the wordline formalism and spin in relativistic path integrals, the derivation of anomalies by path integral methods) are contained in additional chapters. The last section tries to give a simple introduction into lattice (gauge) field theory including a numerical example which can be run on a PC. The set of problems which accompanied the lectures is also included in the present notes. (author) 15 figs., refs.
Makri, Nancy
2014-10-07
The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the "fully incoherent limit" zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.
International Nuclear Information System (INIS)
Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F
2007-01-01
diagnostics, in preparation for project completion in 2009. Additional capabilities to support fusion ignition shots in a National Ignition Campaign (NIC) beginning in 2010 will include a cryogenic target system, target diagnostics, and integrated experimental shot data analysis with tools for data visualization and archiving. This talk discusses the current status of the control system implementation and discusses the plan to complete the control system on the path to ignition
International Nuclear Information System (INIS)
Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.
2008-01-01
, target positioners and diagnostics. Additional capabilities to support fusion ignition shots in a National Ignition Campaign (NIC) beginning in 2010 will include a cryogenic target system, target diagnostics, and integrated experimental shot data analysis with tools for data visualization and archiving. This talk discusses the current status of the control system implementation and discusses the plan to complete the control system on the path to ignition
Path optimization method for the sign problem
Directory of Open Access Journals (Sweden)
Ohnishi Akira
2018-01-01
Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Lerner, Vladimir S.
2012-01-01
The impulses, cutting entropy functional (EF) measure on trajectories Markov diffusion process, integrate information path functional (IPF) composing discrete information Bits extracted from observing random process. Each cut brings memory of the cutting entropy, which provides both reduction of the process entropy and discrete unit of the cutting entropy a Bit. Consequently, information is memorized entropy cutting in random observations which process interactions. The origin of information ...
Directory of Open Access Journals (Sweden)
Wagner Gerd
2016-01-01
Full Text Available Integrated path concentrations of ambient levels of carbon dioxide and methane have been measured during nighttime periods at NIST, Boulder (CO, USA, using a ground-based, eyesafe laser system. In this contribution, we describe the transmitter and receiver system, demonstrate measurements of CO2 and CH4 in comparison with an in situ point sensor measurement using a commercial cavity ring-down instrument, and demonstrate a speckle noise reduction method.
International Nuclear Information System (INIS)
Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen
2017-01-01
Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.
Energy Technology Data Exchange (ETDEWEB)
Agarwal, Animesh, E-mail: animesh@zedat.fu-berlin.de; Delle Site, Luigi, E-mail: dellesite@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Berlin (Germany)
2015-09-07
Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter; Sali, Andrej
2017-12-05
Modeling of macromolecular structures involves structural sampling guided by a scoring function, resulting in an ensemble of good-scoring models. By necessity, the sampling is often stochastic, and must be exhaustive at a precision sufficient for accurate modeling and assessment of model uncertainty. Therefore, the very first step in analyzing the ensemble is an estimation of the highest precision at which the sampling is exhaustive. Here, we present an objective and automated method for this task. As a proxy for sampling exhaustiveness, we evaluate whether two independently and stochastically generated sets of models are sufficiently similar. The protocol includes testing 1) convergence of the model score, 2) whether model scores for the two samples were drawn from the same parent distribution, 3) whether each structural cluster includes models from each sample proportionally to its size, and 4) whether there is sufficient structural similarity between the two model samples in each cluster. The evaluation also provides the sampling precision, defined as the smallest clustering threshold that satisfies the third, most stringent test. We validate the protocol with the aid of enumerated good-scoring models for five illustrative cases of binary protein complexes. Passing the proposed four tests is necessary, but not sufficient for thorough sampling. The protocol is general in nature and can be applied to the stochastic sampling of any set of models, not just structural models. In addition, the tests can be used to stop stochastic sampling as soon as exhaustiveness at desired precision is reached, thereby improving sampling efficiency; they may also help in selecting a model representation that is sufficiently detailed to be informative, yet also sufficiently coarse for sampling to be exhaustive. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
Kimura, Keishiro; Kamamichi, Norihiro
2017-04-01
An ionic polymer-metal composite (IPMC) actuator is one of polymer-based soft actuators. It is produced by chemically plating gold or platinum on both surface of a perfluorosulfonic acid membrane which is known as an ion-exchange membrane. It is able to be activated by a simple driving circuit and generate a large deformation under a low applied voltage (0.5-3 V). However, individual difference and characteristics changes from environmental conditions should be considered for realizing a stable or precise control. To solve these problems, we applied a stochastic ON/OFF controller to an integrated IPMC actuator with parallel connections. The controller consists of a central controller and distributed controllers. The central controller broadcasts a control signal such as an error signal to distributed controllers uniformly. The distributed controllers switch the ON/OFF states based on the broadcasted signal stochastically. The central controller dose not measure the states of each IPMC actuator, and the control signals is calculated by using the output signal of the integrated actuator and reference signal. The validity of the applied method was investigated through numerical simulations and experiments.
Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas
Zhang, Shuai; Militzer, Burkhard; Benedict, Lorin X.; Soubiran, François; Sterne, Philip A.; Driver, Kevin P.
2018-03-01
Carbon-hydrogen plasmas and hydrocarbon materials are of broad interest to laser shock experimentalists, high energy density physicists, and astrophysicists. Accurate equations of state (EOSs) of hydrocarbons are valuable for various studies from inertial confinement fusion to planetary science. By combining path integral Monte Carlo (PIMC) results at high temperatures and density functional theory molecular dynamics results at lower temperatures, we compute the EOSs for hydrocarbons from simulations performed at 1473 separate (ρ, T)-points distributed over a range of compositions. These methods accurately treat electronic excitation effects with neither adjustable parameter nor experimental input. PIMC is also an accurate simulation method that is capable of treating many-body interaction and nuclear quantum effects at finite temperatures. These methods therefore provide a benchmark-quality EOS that surpasses that of semi-empirical and Thomas-Fermi-based methods in the warm dense matter regime. By comparing our first-principles EOS to the LEOS 5112 model for CH, we validate the specific heat assumptions in this model but suggest that the Grüneisen parameter is too large at low temperatures. Based on our first-principles EOSs, we predict the principal Hugoniot curve of polystyrene to be 2%-5% softer at maximum shock compression than that predicted by orbital-free density functional theory and SESAME 7593. By investigating the atomic structure and chemical bonding of hydrocarbons, we show a drastic decrease in the lifetime of chemical bonds in the pressure interval from 0.4 to 4 megabar. We find the assumption of linear mixing to be valid for describing the EOS and the shock Hugoniot curve of hydrocarbons in the regime of partially ionized atomic liquids. We make predictions of the shock compression of glow-discharge polymers and investigate the effects of oxygen content and C:H ratio on its Hugoniot curve. Our full suite of first-principles simulation results may
Stochastic simulation of power systems with integrated renewable and utility-scale storage resources
Degeilh, Yannick
The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i
Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis
Malin, Jane T.; Fleming, Land
2006-01-01
We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.
International Nuclear Information System (INIS)
Mimura, Kazushi; Kawamura, Masaki; Okada, Masato
2004-01-01
An exact solution of the transient dynamics of an associative memory model storing an infinite number of limit cycles with l finite steps is shown by means of the path-integral analysis. Assuming the Maxwell construction ansatz, we have succeeded in deriving the stationary state equations of the order parameters from the macroscopic recursive equations with respect to the finite-step sequence processing model which has retarded self-interactions. We have also derived the stationary state equations by means of the signal-to-noise analysis (SCSNA). The signal-to-noise analysis must assume that crosstalk noise of an input to spins obeys a Gaussian distribution. On the other hand, the path-integral method does not require such a Gaussian approximation of crosstalk noise. We have found that both the signal-to-noise analysis and the path-integral analysis give completely the same result with respect to the stationary state in the case where the dynamics is deterministic, when we assume the Maxwell construction ansatz. We have shown the dependence of the storage capacity (α c ) on the number of patterns per one limit cycle (l). At l = 1, the storage capacity is α c = 0.138 as in the Hopfield model. The storage capacity monotonically increases with the number of steps, and converges to α c = 0.269 at l ≅ 10. The original properties of the finite-step sequence processing model appear as long as the number of steps of the limit cycle has order l = O(1)
DEFF Research Database (Denmark)
E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt
This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt
This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...
DEFF Research Database (Denmark)
Lodi, C.; Bacher, Peder; Cipriano, J.
2012-01-01
reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...
This study evaluated the impact of gas concentration and wind sensor locations on the accuracy of the backward Lagrangian stochastic inverse-dispersion technique (bLS) for measuring gas emission rates from a typical lagoon environment. Path-integrated concentrations (PICs) and 3-dimensional (3D) wi...
International Nuclear Information System (INIS)
Koinov, Z.G.; Yanchev, I.Y.
1981-09-01
The density of states in heavily doped strongly compansated semiconductors in a strong magnetic field is calculated by using the path-integral method. The case is considered when correlation exists in the impurity positions owing to the Coulomb interactions between the charged donors and acceptors during the high-temperature preparation of the samples. The semiclassical formula is rederived and corrections to it due to the long-range character of the potential and its short-range fluctuations are obtained. The density of states in the tail is studied and analytical results are given in the classical and quantum cases. (author)
International Nuclear Information System (INIS)
Biring, Shyamal Kumar; Chaudhury, Pinaki
2012-01-01
Highlights: ► Estimation of critical points in Noble-gas clusters. ► Evaluation of first order saddle point or transition states. ► Construction of reaction path for structural change in clusters. ► Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard–Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar) 19 Ne/Xe,(Ar) 24 Ne/Xe and (Ar) 29 Ne/Xe.
Eichhorn, Ralf; Aurell, Erik
2014-04-01
theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them
The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method
Directory of Open Access Journals (Sweden)
Liang Shen
2017-01-01
Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.
International Nuclear Information System (INIS)
Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.
1975-01-01
A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)
Spatial effect on stochastic dynamics of bistable evolutionary games
International Nuclear Information System (INIS)
So, Kohaku H Z; Ohtsuki, Hisashi; Kato, Takeo
2014-01-01
We consider the lifetimes of metastable states in bistable evolutionary games (coordination games), and examine how they are affected by spatial structure. A semiclassical approximation based on a path integral method is applied to stochastic evolutionary game dynamics with and without spatial structure, and the lifetimes of the metastable states are evaluated. It is shown that the population dependence of the lifetimes is qualitatively different in these two models. Our result indicates that spatial structure can accelerate the transitions between metastable states. (paper)
The description of two-photon Rabi oscillations in the path integral approach
Biryukov, A. A.; Degtyareva, Ya. V.; Shleenkov, M. A.
2018-04-01
The probability of quantum transitions of a molecule between its states under the action of an electromagnetic field is represented as an integral over trajectories from a real alternating functional. A method is proposed for computing the integral using recurrence relations. The method is attached to describe the two-photon Rabi oscillations.
Displaced Path Integral Formulation for the Momentum Distribution of Quantum Particles
Lin, Lin; Morrone, Joseph A.; Car, Roberto; Parrinello, Michele
2010-09-01
The proton momentum distribution, accessible by deep inelastic neutron scattering, is a very sensitive probe of the potential of mean force experienced by the protons in hydrogen-bonded systems. In this work we introduce a novel estimator for the end-to-end distribution of the Feynman paths, i.e., the Fourier transform of the momentum distribution. In this formulation, free particle and environmental contributions factorize. Moreover, the environmental contribution has a natural analogy to a free energy surface in statistical mechanics, facilitating the interpretation of experiments. The new formulation is not only conceptually but also computationally advantageous. We illustrate the method with applications to an empirical water model, ab initio ice, and one dimensional model systems.
SEM technique for experimentally locating latch-up paths in integrated circuits
International Nuclear Information System (INIS)
Dressendorfer, P.V.; Armendariz, M.G.
1980-01-01
A technique is presented for using the scanning electron microscope (SEM) in the electron-beam-induced current (EBIC) mode to delineate latch-up paths in CMOS ICs. In the EBIC mode, the current produced by the collection and separation of the electron-beam-generated electron-hole pairs in the space charge regions of the device is measured and used to form an image. Since the collection of these carriers is dependent on space charge region width (and thus junction potential), anything that alters the depletion layer width will affect the collection efficiency. In a latch condition the junctions involved in the latch will be biased differently from those which are not, and thus the EBIC signal from those regions should be measurably different
International Nuclear Information System (INIS)
Mieck, B.
2007-01-01
We consider bosonic atoms with a repulsive contact interaction in a trap potential for a Bose-Einstein condensation (BEC) and additionally include a random potential. The ensemble averages for two models of static (I) and dynamic (II) disorder are performed and investigated in parallel. The bosonic many body systems of the two disorder models are represented by coherent state path integrals on the Keldysh time contour which allow exact ensemble averages for zero and finite temperatures. These ensemble averages of coherent state path integrals therefore present alternatives to replica field theories or super-symmetric averaging techniques. Hubbard-Stratonovich transformations (HST) lead to two corresponding self-energies for the hermitian repulsive interaction and for the non-hermitian disorder-interaction. The self-energy of the repulsive interaction is absorbed by a shift into the disorder-self-energy which comprises as an element of a larger symplectic Lie algebra sp(4M) the self-energy of the repulsive interaction as a subalgebra (which is equivalent to the direct product of M x sp(2); 'M' is the number of discrete time intervals of the disorder-self-energy in the generating function). After removal of the remaining Gaussian integral for the self-energy of the repulsive interaction, the first order variations of the coherent state path integrals result in the exact mean field or saddle point equations, solely depending on the disorder-self-energy matrix. These equations can be solved by continued fractions and are reminiscent to the 'Nambu-Gorkov' Green function formalism in superconductivity because anomalous terms or pair condensates of the bosonic atoms are also included into the selfenergies. The derived mean field equations of the models with static (I) and dynamic (II) disorder are particularly applicable for BEC in d=3 spatial dimensions because of the singularity of the density of states at vanishing wavevector. However, one usually starts out from
Stochastic volatility and stochastic leverage
DEFF Research Database (Denmark)
Veraart, Almut; Veraart, Luitgard A. M.
This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...
An UML Statechart Diagram-Based MM-Path Generation Approach for Object-Oriented Integration Testing
Ruilian Zhao; Ling Lin
2008-01-01
MM-Path, an acronym for Method/Message Path, describes the dynamic interactions between methods in object-oriented systems. This paper discusses the classifications of MM-Path, based on the characteristics of object-oriented software. We categorize it according to the generation reasons, the effect scope and the composition of MM-Path. A formalized representation of MM-Path is also proposed, which has considered the influence of state on response method sequences of messages. .Moreover, an au...
Standard Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules
American Society for Testing and Materials. Philadelphia
2000-01-01
1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test). 1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test). 1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test). 1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.5 There is no similar or equivalent ISO standard. This standard does not purport to address all of the safety concerns, if a...
Analyzing the non-smooth dynamics induced by a split-path nonlinear integral controller
Hunnekens, B.G.B.; van Loon, S.J.L.M.; van de Wouw, N.; Heemels, W.P.M.H.; Nijmeijer, H.; Ecker, Horst; Steindl, Alois; Jakubek, Stefan
2014-01-01
In this paper, we introduce a novel non-smooth integral controller, which aims at achieving a better transient response in terms of overshoot of a feedback controlled dynamical system. The resulting closed-loop system can be represented as a non-smooth system with different continuous dynamics being
2007-03-01
Karolinska Institutet in Stockholm entitled "Skin Cancer as Seen by Electrical Impedance" [1]. The thesis describes Åberg�s experiments to detect skin cancer...ska Institutet , 2004. 2. Ayli¤e, H. Edward, et al. �Electric Impedance Spectroscopy Using Microchannels with Integrated Metal Electrodes
Stochastic integration of the Bethe-Salpeter equation for two bound fermions
International Nuclear Information System (INIS)
Salomon, M.
1988-09-01
A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)
DEFF Research Database (Denmark)
Bach, Christian; Christensen, Bent Jesper
process is downward biased. Implied volatility performs better than any of the alternative realized measures when forecasting future integrated volatility. The results are largely similar across the stock market (S&P 500), bond market (30-year U.S. T-bond), and foreign currency exchange market ($/£ )....
High-resolution stochastic integrated thermal–electrical domestic demand model
International Nuclear Information System (INIS)
McKenna, Eoghan; Thomson, Murray
2016-01-01
Highlights: • A major new version of CREST’s demand model is presented. • Simulates electrical and thermal domestic demands at high-resolution. • Integrated structure captures appropriate time-coincidence of variables. • Suitable for low-voltage network and urban energy analyses. • Open-source development in Excel VBA freely available for download. - Abstract: This paper describes the extension of CREST’s existing electrical domestic demand model into an integrated thermal–electrical demand model. The principle novelty of the model is its integrated structure such that the timing of thermal and electrical output variables are appropriately correlated. The model has been developed primarily for low-voltage network analysis and the model’s ability to account for demand diversity is of critical importance for this application. The model, however, can also serve as a basis for modelling domestic energy demands within the broader field of urban energy systems analysis. The new model includes the previously published components associated with electrical demand and generation (appliances, lighting, and photovoltaics) and integrates these with an updated occupancy model, a solar thermal collector model, and new thermal models including a low-order building thermal model, domestic hot water consumption, thermostat and timer controls and gas boilers. The paper reviews the state-of-the-art in high-resolution domestic demand modelling, describes the model, and compares its output with three independent validation datasets. The integrated model remains an open-source development in Excel VBA and is freely available to download for users to configure and extend, or to incorporate into other models.
Yoo-Kong, Sikarin; Liewrian, Watchara
2015-12-01
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.
International Nuclear Information System (INIS)
Grosche, C.
2007-08-01
In this contribution a path integral approach for the quantum motion on three-dimensional spaces according to Koenigs, for short''Koenigs-Spaces'', is discussed. Their construction is simple: One takes a Hamiltonian from three-dimensional flat space and divides it by a three-dimensional superintegrable potential. Such superintegrable potentials will be the isotropic singular oscillator, the Holt-potential, the Coulomb potential, or two centrifugal potentials, respectively. In all cases a non-trivial space of non-constant curvature is generated. In order to obtain a proper quantum theory a curvature term has to be incorporated into the quantum Hamiltonian. For possible bound-state solutions we find equations up to twelfth order in the energy E. (orig.)
Colquitt, J A; LePine, J A; Noe, R A
2000-10-01
This article meta-analytically summarizes the literature on training motivation, its antecedents, and its relationships with training outcomes such as declarative knowledge, skill acquisition, and transfer. Significant predictors of training motivation and outcomes included individual characteristics (e.g., locus of control, conscientiousness, anxiety, age, cognitive ability, self-efficacy, valence, job involvement) and situational characteristics (e.g., climate). Moreover, training motivation explained incremental variance in training outcomes beyond the effects of cognitive ability. Meta-analytic path analyses further showed that the effects of personality, climate, and age on training outcomes were only partially mediated by self-efficacy, valence, and job involvement. These findings are discussed in terms of their practical significance and their implications for an integrative theory of training motivation.
International Nuclear Information System (INIS)
Souza Alves, Marcelo de.
1990-03-01
Some general aspects on field theories in curved space-time and a introduction to conformal symmetry are presented.The behavior of the physical systems under Weyl transformations is discussed. The quantization of such systems are performed through the functional integration method. The regularization in curved space-time is also discussed. An application of this analysis in String theories is made. 42 refs
Acceleration of Blender Cycles Path-Tracing Engine Using Intel Many Integrated Core Architecture
Jaroš , Milan; Říha , Lubomír; Strakoš , Petr; Karásek , Tomáš; Vašatová , Alena; Jarošová , Marta; Kozubek , Tomáš
2015-01-01
Part 2: Algorithms; International audience; This paper describes the acceleration of the most computationally intensive kernels of the Blender rendering engine, Blender Cycles, using Intel Many Integrated Core architecture (MIC). The proposed parallelization, which uses OpenMP technology, also improves the performance of the rendering engine when running on multi-core CPUs and multi-socket servers. Although the GPU acceleration is already implemented in Cycles, its functionality is limited. O...
Continuous track paths reveal additive evidence integration in multistep decision making.
Buc Calderon, Cristian; Dewulf, Myrtille; Gevers, Wim; Verguts, Tom
2017-10-03
Multistep decision making pervades daily life, but its underlying mechanisms remain obscure. We distinguish four prominent models of multistep decision making, namely serial stage, hierarchical evidence integration, hierarchical leaky competing accumulation (HLCA), and probabilistic evidence integration (PEI). To empirically disentangle these models, we design a two-step reward-based decision paradigm and implement it in a reaching task experiment. In a first step, participants choose between two potential upcoming choices, each associated with two rewards. In a second step, participants choose between the two rewards selected in the first step. Strikingly, as predicted by the HLCA and PEI models, the first-step decision dynamics were initially biased toward the choice representing the highest sum/mean before being redirected toward the choice representing the maximal reward (i.e., initial dip). Only HLCA and PEI predicted this initial dip, suggesting that first-step decision dynamics depend on additive integration of competing second-step choices. Our data suggest that potential future outcomes are progressively unraveled during multistep decision making.
Solarin, Sakiru Adebola; Gil-Alana, Luis Alberiko; Al-Mulali, Usama
2018-04-13
In this article, we have examined the hypothesis of convergence of renewable energy consumption in 27 OECD countries. However, instead of relying on classical techniques, which are based on the dichotomy between stationarity I(0) and nonstationarity I(1), we consider a more flexible approach based on fractional integration. We employ both parametric and semiparametric techniques. Using parametric methods, evidence of convergence is found in the cases of Mexico, Switzerland and Sweden along with the USA, Portugal, the Czech Republic, South Korea and Spain, and employing semiparametric approaches, we found evidence of convergence in all these eight countries along with Australia, France, Japan, Greece, Italy and Poland. For the remaining 13 countries, even though the orders of integration of the series are smaller than one in all cases except Germany, the confidence intervals are so wide that we cannot reject the hypothesis of unit roots thus not finding support for the hypothesis of convergence.