WorldWideScience

Sample records for stochastic inflation lattice

  1. Solving stochastic inflation for arbitrary potentials

    International Nuclear Information System (INIS)

    Martin, Jerome; Musso, Marcello

    2006-01-01

    A perturbative method for solving the Langevin equation of inflationary cosmology in the presence of backreaction is presented. In the Gaussian approximation, the method permits an explicit calculation of the probability distribution of the inflaton field for an arbitrary potential, with or without the volume effects taken into account. The perturbative method is then applied to various concrete models, namely, large field, small field, hybrid, and running mass inflation. New results on the stochastic behavior of the inflaton field in those models are obtained. In particular, it is confirmed that the stochastic effects can be important in new inflation while it is demonstrated they are negligible in (vacuum dominated) hybrid inflation. The case of stochastic running mass inflation is discussed in some details and it is argued that quantum effects blur the distinction between the four classical versions of this model. It is also shown that the self-reproducing regime is likely to be important in this case

  2. Stochastic effects in hybrid inflation

    Science.gov (United States)

    Martin, Jérôme; Vennin, Vincent

    2012-02-01

    Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of the instability point, the potential is very flat and the quantum fluctuations dominate over the classical motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution of the fields and compute the probability distributions of the total number of e-folds and of the inflation exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the quantum diffusion can affect the observable predictions of hybrid inflation.

  3. Warm inflation in the stochastic inflation formalism

    International Nuclear Information System (INIS)

    Silva, Leandro A. da; Ramos, Rudnei O.

    2011-01-01

    Full text: The basic assumption of stochastic inflation is the splitting, through the definition of a appropriate window function, of the quantum inflaton field in a long wavelength part (modes outside of the de Sitter horizon) and in a short wavelength (modes inside the de Sitter horizon) part. The inflationary mechanism then continuously shifts more and more modes of the bath field into the system stretching their physical wavelengths beyond the de Sitter horizon size, what generates an effective system-bath interaction. Therefore, the system field develops a stochastic dynamics driven by the bath field, that plays the role of noise source. The resulting equation of motion (EoM) is a Langevin-like equation. Applying this formalism to Warm Inflation scenario (where, alternatively to the cold inflation, we assume that the inflaton evolves in a thermal bath and through a dissipative process continuously generates radiation, thus avoiding the necessity of a reheating mechanism), we contrast the exact numerical solution of thermal power spectrum and two approximations currently used in the literature, and compare this to the quantum power spectrum at horizon crossing. Finally, we consider a more realistic model based on microscopic derivations to estimate the effects of non-Markovianity on the inflaton dynamics and on the thermal power spectrum. (author)

  4. MEASURING INFLATION THROUGH STOCHASTIC APPROACH TO INDEX NUMBERS FOR PAKISTAN

    Directory of Open Access Journals (Sweden)

    Zahid Asghar

    2010-09-01

    Full Text Available This study attempts to estimate the rate of inflation in Pakistan through stochastic approach to index numbers which provides not only point estimate but also confidence interval for the rate of inflation. There are two types of approaches to index number theory namely: the functional economic approaches and the stochastic approach. The attraction of stochastic approach is that it estimates the rate of inflation in which uncertainty and statistical ideas play a major roll of screening index numbers. We have used extended stochastic approach to index numbers for measuring inflation by allowing for the systematic changes in the relative prices. We use CPI data covering the period July 2001--March 2008 for Pakistan.

  5. Stochastic inflation and nonlinear gravity

    International Nuclear Information System (INIS)

    Salopek, D.S.; Bond, J.R.

    1991-01-01

    We show how nonlinear effects of the metric and scalar fields may be included in stochastic inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy formation. Fluctuations with wavelengths larger than the horizon length are governed by a network of Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctuations that are assumed to become classical at horizon crossing and that then contribute to the background. Using Hamilton-Jacobi methods, we solve the Arnowitt-Deser-Misner constraint equations which allows us to separate the growing modes from the decaying ones in the drift phase following each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the Langevin system during inflation is T=ln(Ha), where H and a are the local values of the Hubble parameter and the scale factor, since T is the natural time for evolving the short-wavelength scalar field fluctuations in an inhomogeneous background

  6. Stochastic inflation lattice simulations: Ultra-large scale structure of the universe

    International Nuclear Information System (INIS)

    Salopek, D.S.

    1990-11-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients α -1 triangledown small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ''toy model'' with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Guassian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits. 21 refs., 3 figs

  7. Recursive stochastic effects in valley hybrid inflation

    Science.gov (United States)

    Levasseur, Laurence Perreault; Vennin, Vincent; Brandenberger, Robert

    2013-10-01

    Hybrid inflation is a two-field model where inflation ends because of a tachyonic instability, the duration of which is determined by stochastic effects and has important observational implications. Making use of the recursive approach to the stochastic formalism presented in [L. P. Levasseur, preceding article, Phys. Rev. D 88, 083537 (2013)], these effects are consistently computed. Through an analysis of backreaction, this method is shown to converge in the valley but points toward an (expected) instability in the waterfall. It is further shown that the quasistationarity of the auxiliary field distribution breaks down in the case of a short-lived waterfall. We find that the typical dispersion of the waterfall field at the critical point is then diminished, thus increasing the duration of the waterfall phase and jeopardizing the possibility of a short transition. Finally, we find that stochastic effects worsen the blue tilt of the curvature perturbations by an O(1) factor when compared with the usual slow-roll contribution.

  8. Stochastic dynamics of new inflation

    International Nuclear Information System (INIS)

    Nakao, Ken-ichi; Nambu, Yasusada; Sasaki, Misao.

    1988-07-01

    We investigate thoroughly the dynamics of an inflation-driving scalar field in terms of an extended version of the stochastic approach proposed by Starobinsky and discuss the spacetime structure of the inflationary universe. To avoid any complications which might arise due to quantum gravity, we concentrate our discussions on the new inflationary universe scenario in which all the energy scales involved are well below the planck mass. The investigation is done both analytically and numerically. In particular, we present a full numerical analysis of the stochastic scalar field dynamics on the phase space. Then implications of the results are discussed. (author)

  9. Portfolio Management with Stochastic Interest Rates and Inflation Ambiguity

    DEFF Research Database (Denmark)

    Munk, Claus; Rubtsov, Alexey Vladimirovich

    We solve a stock-bond-cash portfolio choice problem for a risk- and ambiguity-averse investor in a setting where the inflation rate and interest rates are stochastic. The expected inflation rate is unobservable, but the investor may learn about it from realized inflation and observed stock and bond......-Jacobi-Bellman equation in closed form and derive and illustrate a number of interesting properties of the solution. For example, ambiguity aversion affects the optimal portfolio through the correlation of price level with the stock index, a bond, and the expected inflation rate. Furthermore, unlike other settings...

  10. Stochastic inflation in phase space: is slow roll a stochastic attractor?

    Energy Technology Data Exchange (ETDEWEB)

    Grain, Julien [Institut d' Astrophysique Spatiale, UMR8617, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bt. 121, Orsay, F-91405 (France); Vennin, Vincent, E-mail: julien.grain@ias.u-psud.fr, E-mail: vincent.vennin@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO13FX (United Kingdom)

    2017-05-01

    An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ''slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue. The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.

  11. Stochastic approaches to inflation model building

    International Nuclear Information System (INIS)

    Ramirez, Erandy; Liddle, Andrew R.

    2005-01-01

    While inflation gives an appealing explanation of observed cosmological data, there are a wide range of different inflation models, providing differing predictions for the initial perturbations. Typically models are motivated either by fundamental physics considerations or by simplicity. An alternative is to generate large numbers of models via a random generation process, such as the flow equations approach. The flow equations approach is known to predict a definite structure to the observational predictions. In this paper, we first demonstrate a more efficient implementation of the flow equations exploiting an analytic solution found by Liddle (2003). We then consider alternative stochastic methods of generating large numbers of inflation models, with the aim of testing whether the structures generated by the flow equations are robust. We find that while typically there remains some concentration of points in the observable plane under the different methods, there is significant variation in the predictions amongst the methods considered

  12. Stochastic inflation as a time-dependent random walk

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1989-01-01

    This paper exploits the ''stochastic inflation'' paradigm introduced by Starobinskii to study the evolution of long-wavelength modes for a free scalar field Phi in an inflationary Universe. By relaxing the assumption of a ''slow roll,'' it becomes obvious that the well-known late-time infrared divergence of the vacuum for a massless field in de Sitter space may be viewed as a consequence of the fluctuation-dissipation theorem. This stochastic model is also extended to allow for nonvacuum states and power-law inflation, situations where the fluctuation-dissipation theorem no longer holds. One recovers the correct late-time form for the expectation value 2 > in these cases as well, corroborating thereby the intuitive picture that, quite generally, the long-wavelength modes of the field evolve in a thermal ''bath'' provided by the shorter-wavelength modes

  13. Portfolio Management with Stochastic Interest Rates and Inflation Ambiguity

    DEFF Research Database (Denmark)

    Munk, Claus; Rubtsov, Alexey Vladimirovich

    We solve a stock-bond-cash portfolio choice problem for a risk- and ambiguity-averse investor in a setting where the inflation rate and interest rates are stochastic. The expected inflation rate is unobservable, but the investor may learn about it from realized inflation and observed stock and bond...... prices. The investor is aware that his model for the observed inflation is potentially misspecified, and he seeks an investment strategy that maximizes his expected utility from real terminal wealth and is also robust to inflation model misspecification. We solve the corresponding robust Hamilton......-Jacobi-Bellman equation in closed form and derive and illustrate a number of interesting properties of the solution. For example, ambiguity aversion affects the optimal portfolio through the correlation of price level with the stock index, a bond, and the expected inflation rate. Furthermore, unlike other settings...

  14. Stochastic quantum inflation for a canonical scalar field with linear self-interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Panotopoulos, Grigoris [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa (Portugal)

    2017-10-15

    We apply Starobinsky's formalism of stochastic inflation to the case of a massless minimally coupled scalar field with linear self-interaction potential. We solve the corresponding Fokker-Planck equation exactly, and we obtain analytical expressions for the stochastic expectation values. (orig.)

  15. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    Science.gov (United States)

    Gratton, Steven

    2011-09-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain “Youngness Paradox”-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  16. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    International Nuclear Information System (INIS)

    Gratton, Steven

    2011-01-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain ''Youngness Paradox''-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  17. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  18. Analysis and reconstruction of stochastic coupled map lattice models

    International Nuclear Information System (INIS)

    Coca, Daniel; Billings, Stephen A.

    2003-01-01

    The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived

  19. On the stochastic approach to inflation and the initial conditions in the universe

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1986-05-01

    By applying stochastic methods to a theory in which a potential V(Φ) causes a period of quasi-expansion of the universe, Starobinsky has derived an expression for the probability distribution P(V) appropriate to chaotic inflation in the classical approximation. We obtain the corresponding expression for a broken-symmetry theory of gravity. For the Coleman-Weinberg potential, it appears most probable that the initial value of Φ is Φ i O , in which case inflation occurs naturally, because V(Φ i )>O

  20. Stochastic methods for the fermion determinant in lattice quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Finkenrath, Jacob Friedrich

    2015-02-17

    In this thesis, algorithms in lattice quantum chromodynamics are presented by developing and using stochastic methods for fermion determinant ratios. For that an integral representation is proved which can be used also for non hermitian matrices. The stochastic estimation or the Monte Carlo integration of this integral representation introduces stochastic fluctuations which are controlled by using Domain Decomposition of the Dirac operator and introducing interpolation techniques. Determinant ratios of the lattice fermion operator, here the Wilson Dirac operator, are needed for corrections of the Boltzmann weight. These corrections have interesting applications e.g. in the mass by using mass reweighting. It will be shown that mass reweighting can be used e.g. to improve extrapolation in the light quark mass towards the chiral or physical point or to introduce an isospin breaking by splitting up the mass of the light quark. Furthermore the extraction of the light quark masses will be shown by using dynamical 2 flavor CLS ensembles. Stochastic estimation of determinant ratios can be used in Monte Carlo algorithms, e.g. in the Partial Stochastic Multi Step algorithm which can sample two mass-degenerate quarks. The idea is to propose a new configuration weighted by the pure gauge weight and including afterwards the fermion weight by using Metropolis accept-reject steps. It is shown by using an adequate interpolation with relative gauge fixing and a hierarchical filter structure that it is possible to simulate moderate lattices up to (2.1 fm){sup 4}. Furthermore the iteration of the pure gauge update can be increased which can decouple long autocorrelation times from the weighting with the fermions. Moreover a novel Hybrid Monte Carlo algorithm based on Domain Decomposition and combined with mass reweighting is presented. By using Domain Decomposition it is possible to split up the mass term in the Schur complement and the block operators. By introducing a higher mass

  1. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  2. Stochastic quantization of field theories on the lattice and supersymmetrical models

    International Nuclear Information System (INIS)

    Aldazabal, Gerardo.

    1984-01-01

    Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es

  3. Equilibrium Investment Strategy for DC Pension Plan with Inflation and Stochastic Income under Heston’s SV Model

    Directory of Open Access Journals (Sweden)

    Jingyun Sun

    2016-01-01

    Full Text Available We consider a portfolio selection problem for a defined contribution (DC pension plan under the mean-variance criteria. We take into account the inflation risk and assume that the salary income process of the pension plan member is stochastic. Furthermore, the financial market consists of a risk-free asset, an inflation-linked bond, and a risky asset with Heston’s stochastic volatility (SV. Under the framework of game theory, we derive two extended Hamilton-Jacobi-Bellman (HJB equations systems and give the corresponding verification theorems in both the periods of accumulation and distribution of the DC pension plan. The explicit expressions of the equilibrium investment strategies, corresponding equilibrium value functions, and the efficient frontiers are also obtained. Finally, some numerical simulations and sensitivity analysis are presented to verify our theoretical results.

  4. Mathematical issues in eternal inflation

    Science.gov (United States)

    Singh Kohli, Ikjyot; Haslam, Michael C.

    2015-04-01

    In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.

  5. A Dynamic Momentum Compaction Factor Lattice for Improvements to Stochastic Cooling in Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, David Nicholas [Massachusetts U., Amherst

    1996-01-01

    A dynamic momentum compaction factor, also referred to as a dynamic $\\Delta \\gamma \\tau$, lattice for the FNAL Antiproton Source Debuncher Storage Ring is studied, both theoretically and experimentally, for the purpose of improving stochastic precooling, and hence, improving the global antiproton production and stacking performance. A dynamic $\\Delta \\gamma \\tau$ lattice is proposed due to the competing requirements inherent within the Debuncher storage ring upon $\\gamma \\tau$· Specifically, the Debuncher storage ring performs two disparate functions, $(i)$ accepting and debunching a large number of $\\overline{p}$s/pulse at the outset of the production cycle, which would perform ideally with a large value of $\\gamma\\tau$, and $(ii)$ subsequently employing stochastic cooling throughout the remainder of the $\\overline{p}$ production cycle for improved transfer and stacking efficiency into the Accumulator, for which a small value $\\gamma \\tau$ is ideal in order to reduce the diffusive heating caused by the mixing factor. In the initial design of the Debuncher optical lattice, an intermediate value of $\\gamma \\tau$ was chosen as a compromise between the two functional requirements. The goal of the thesis is to improve stochastic precooling by changing $\\gamma \\tau$ between two desired values during each p production cycle. In particular, the dynamic $\\Delta \\gamma \\tau$ lattice accomplishes a reduction in $\\gamma \\tau$, and hence the mixing factor, through an uniform increase to the dispersion throughout the arc sections of the storage ring. Experimental measurements of cooling rates and system performance parameters, with the implementation of the dynamic $\\Delta \\gamma \\tau$ lattice, are in agreement with theoretical predictions based upon a detailed integration of the stochastic cooling Fokker Planck equations. Based upon the consistency between theory and experiment, predictions of cooling rates are presented for future operational

  6. arXiv Stochastic locality and master-field simulations of very large lattices

    CERN Document Server

    Lüscher, Martin

    2018-01-01

    In lattice QCD and other field theories with a mass gap, the field variables in distant regions of a physically large lattice are only weakly correlated. Accurate stochastic estimates of the expectation values of local observables may therefore be obtained from a single representative field. Such master-field simulations potentially allow very large lattices to be simulated, but require various conceptual and technical issues to be addressed. In this talk, an introduction to the subject is provided and some encouraging results of master-field simulations of the SU(3) gauge theory are reported.

  7. Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting

    International Nuclear Information System (INIS)

    Cansizoglu, O.; Harrysson, O.; Cormier, D.; West, H.; Mahale, T.

    2008-01-01

    This paper addresses foams which are known as non-stochastic foams, lattice structures, or repeating open cell structure foams. The paper reports on preliminary research involving the design and fabrication of non-stochastic Ti-6Al-4V alloy structures using the electron beam melting (EBM) process. Non-stochastic structures of different cell sizes and densities were investigated. The structures were tested in compression and bending, and the results were compared to results from finite element analysis simulations. It was shown that the build angle and the build orientation affect the properties of the lattice structures. The average compressive strength of the lattice structures with a 10% relative density was 10 MPa, the flexural modulus was 200 MPa and the strength to density ration was 17. All the specimens were fabricated on the EBM A2 machine using a melt speed of 180 mm/s and a beam current of 2 mA. Future applications and FEA modeling were discussed in the paper

  8. Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise

    Directory of Open Access Journals (Sweden)

    Hongyan Li

    2015-10-01

    Full Text Available In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

  9. Inflation and quantum cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1991-01-01

    In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)

  10. Lattice gas automaton scheme with stochastic particle movement for a rotated fluid flow

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    2002-01-01

    Lattice gas automaton (LGA) models developed so far are just for Cartesian geometries, and no direct approach to rotated fluid flows is found. In this paper, LGA method is applied to model a two-dimensional rotated flow. Several problems specific to the rotated flow are to be solved: hexagonal lattice geometry to effectively identify the neighbors, boundary condition for irregular walls, multi-speed scheme to represent angular-oriented fluid velocity υ θ ≅γω, shape of macroscopic domain for statistics, formula to obtain macroscopic quantities such as density and mean fluid velocities, application method of Fermi-Dirac function to the initial particle arrangement. For this purpose, FHP-I type hexagonal lattice model is revised and a new LGA model with stochastic particle movement is proposed. The results of the trial calculation are shown. It is also investigated whether or not the underlying microscopic Boolean equations newly introduced leads to Navier-Stokes equation. (author)

  11. Green function simulation of Hamiltonian lattice models with stochastic reconfiguration

    International Nuclear Information System (INIS)

    Beccaria, M.

    2000-01-01

    We apply a recently proposed Green function Monte Carlo procedure to the study of Hamiltonian lattice gauge theories. This class of algorithms computes quantum vacuum expectation values by averaging over a set of suitable weighted random walkers. By means of a procedure called stochastic reconfiguration the long standing problem of keeping fixed the walker population without a priori knowledge of the ground state is completely solved. In the U(1) 2 model, which we choose as our theoretical laboratory, we evaluate the mean plaquette and the vacuum energy per plaquette. We find good agreement with previous works using model-dependent guiding functions for the random walkers. (orig.)

  12. The stochastic spectator

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Byrnes, Christian T.; Torrado, Jesús, E-mail: robert.hardwick@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: c.byrnes@sussex.ac.uk, E-mail: jesus.torrado@sussex.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-10-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  13. The stochastic spectator

    International Nuclear Information System (INIS)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David; Byrnes, Christian T.; Torrado, Jesús

    2017-01-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  14. Multiple fields in stochastic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Assadullahi, Hooshyar [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Noorbala, Mahdiyar [Department of Physics, University of Tehran,P.O. Box 14395-547, Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vennin, Vincent; Wands, David [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2016-06-24

    Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.

  15. Irreversible stochastic processes on lattices

    International Nuclear Information System (INIS)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

  16. STOCHASTIC MODELING OF INFLATION IN NIGERIA

    African Journals Online (AJOL)

    2006-04-04

    Apr 4, 2006 ... In this paper, we adopt a time series approach in modeling inflation in ... KEYWORDS: Buys-Ballot table; Quadratic trend; Seasonal multiplicative model, ..... Basic Statistics for Business and Economics, 2nd ed, Irwin, USA.

  17. A state-dependent model for inflation forecasting

    OpenAIRE

    Andrea Stella; James H. Stock

    2012-01-01

    We develop a parsimonious bivariate model of inflation and unemployment that allows for persistent variation in trend inflation and the NAIRU. The model, which consists of five unobserved components (including the trends) with stochastic volatility, implies a time-varying VAR for changes in the rates of inflation and unemployment. The implied backwards-looking Phillips curve has a time-varying slope that is steeper in the 1970s than in the 1990s. Pseudo out-of-sample forecasting experiments i...

  18. Portfolio Management with Stochastic Interest Rates and Inflation Ambiguity

    DEFF Research Database (Denmark)

    Munk, Claus; Rubtsov, Alexey Vladimirovich

    2014-01-01

    prices. The investor is ambiguous about the inflation model and prefers a portfolio strategy which is robust to model misspecification. Ambiguity about the inflation dynamics is shown to affect the optimal portfolio fundamentally different than ambiguity about the price dynamics of traded assets...

  19. Four-loop result in SU(3) lattice gauge theory by a stochastic method: lattice correction to the condensate

    International Nuclear Information System (INIS)

    Di Renzo, F.; Onofri, E.; Marchesini, G.; Marenzoni, P.

    1994-01-01

    We describe a stochastic technique which allows one to compute numerically the coefficients of the weak-coupling perturbative expansion of any observable in Lattice Gauge Theory. The idea is to insert the exponential representation of the link variables U μ (x) →exp {A μ (x)/√(β)} into the Langevin algorithm and the observables and to perform the expansion in β -1/2 . The Langevin algorithm is converted into an infinite hierarchy of maps which can be exactly truncated at any order. We give the result for the simple plaquette of SU(3) up to fourth loop order (β -4 ) which extends by one loop the previously known series. ((orig.))

  20. On the stochastic approach to inflation and the initial conditions in the universe

    Science.gov (United States)

    Pollock, M. D.

    1988-03-01

    By the application of stochastic methods to a theory in which a potential V(ø) causes a period of quasi-exponential expansion of the universe, an expression for the probability distribution P(V) appropriate for chaotic inflation has recently been derived. The method was developed by Starobinsky and by Linde. Beyond some critical point øc, long-wavelength quantum fluctuations δø ~H/2π cannot be ignored. The effect of these fluctuation in general relativity for values of ø such that V(ø)>V(ø) has been considered by Linde, who concluded that most of the present universe arises as a result of expansion of domains with a domains with a maximum possible value of ø, such that V(ømax ~ mp4. We obtain the corresponding expression for P in a broken-symmetry theory of gravity, in which the newtonian gravitational constant is replaced by G = (8πɛø2)-1, and also for a theory which includes higher-derivative terms R2 = γR2 + βR2 1n(R/μ2), so that the trace anomaly is Tanom ~βR2 , in which an effective inflation field øe can be defined as øe2 = 24γR. Conclusions analogous to those of Linde can be drawn in both these theories. Present address: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400.005, India.

  1. Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors

    Science.gov (United States)

    San, Bingbing; Yang, Qingshan; Yin, Liwei

    2017-03-01

    Inflatable antennas are promising candidates to realize future satellite communications and space observations since they are lightweight, low-cost and small-packaged-volume. However, due to their high flexibility, inflatable reflectors are difficult to manufacture accurately, which may result in undesirable shape errors, and thus affect their performance negatively. In this paper, the stochastic characteristics of shape errors induced during manufacturing process are investigated using Latin hypercube sampling coupled with manufacture simulations. Four main random error sources are involved, including errors in membrane thickness, errors in elastic modulus of membrane, boundary deviations and pressure variations. Using regression and correlation analysis, a global sensitivity study is conducted to rank the importance of these error sources. This global sensitivity analysis is novel in that it can take into account the random variation and the interaction between error sources. Analyses are parametrically carried out with various focal-length-to-diameter ratios (F/D) and aperture sizes (D) of reflectors to investigate their effects on significance ranking of error sources. The research reveals that RMS (Root Mean Square) of shape error is a random quantity with an exponent probability distribution and features great dispersion; with the increase of F/D and D, both mean value and standard deviation of shape errors are increased; in the proposed range, the significance ranking of error sources is independent of F/D and D; boundary deviation imposes the greatest effect with a much higher weight than the others; pressure variation ranks the second; error in thickness and elastic modulus of membrane ranks the last with very close sensitivities to pressure variation. Finally, suggestions are given for the control of the shape accuracy of reflectors and allowable values of error sources are proposed from the perspective of reliability.

  2. Stochastic reaction-diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  3. Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD

    International Nuclear Information System (INIS)

    Morningstar, C.; Lenkner, D.; Wong, C.H.; Bulava, J.; Foley, J.; Juge, K.J.; Peardon, M.

    2011-08-01

    A new method of stochastically estimating the low-lying effects of quark propagation is proposed which allows accurate determinations of temporal correlations of single-hadron and multi-hadron operators in lattice QCD. The method is well suited for calculations in large volumes. Contributions involving quark propagation connecting hadron sink operators at the same final time can be handled in a straightforward manner, even for a large number of final time slices. The method exploits Laplacian Heaviside (LapH) smearing. Z N noise is introduced in a novel way, and variance reduction is achieved using judiciously-chosen noise dilution projectors. The method is tested using isoscalar mesons in the scalar, pseudoscalar, and vector channels, and using the two-pion system of total isospin I=0,1,2 on large anisotropic 24 3 x 128 lattices with spatial spacing a s ∝0.12 fm and temporal spacing a t ∝0.034 fm for pion masses m π ∼ 390 and 240 MeV. (orig.)

  4. Stochastic inflation: Quantum phase-space approach

    International Nuclear Information System (INIS)

    Habib, S.

    1992-01-01

    In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to left-angle Φ 2 right-angle). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence

  5. Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Morningstar, C.; Lenkner, D.; Wong, C.H. [Pittsburgh Univ., PA (United States). Dept. of Physics; Bulava, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Foley, J. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics and Astronomy; Juge, K.J. [University of the Pacific, Stockton, CA (United States). Dept. of Physics; Peardon, M. [Trinity College, Dublin (Ireland). School of Mathematics

    2011-08-15

    A new method of stochastically estimating the low-lying effects of quark propagation is proposed which allows accurate determinations of temporal correlations of single-hadron and multi-hadron operators in lattice QCD. The method is well suited for calculations in large volumes. Contributions involving quark propagation connecting hadron sink operators at the same final time can be handled in a straightforward manner, even for a large number of final time slices. The method exploits Laplacian Heaviside (LapH) smearing. Z{sub N} noise is introduced in a novel way, and variance reduction is achieved using judiciously-chosen noise dilution projectors. The method is tested using isoscalar mesons in the scalar, pseudoscalar, and vector channels, and using the two-pion system of total isospin I=0,1,2 on large anisotropic 24{sup 3} x 128 lattices with spatial spacing a{sub s} {proportional_to}0.12 fm and temporal spacing a{sub t} {proportional_to}0.034 fm for pion masses m{sub {pi}} {approx} 390 and 240 MeV. (orig.)

  6. Inflation After Preheating

    CERN Document Server

    Felder, G; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2000-01-01

    Preheating after inflation may lead to nonthermal phase transitions with symmetry restoration. These phase transitions may occur even if the total energy density of fluctuations produced during reheating is relatively small as compared with the vacuum energy in the state with restored symmetry. As a result, in some inflationary models one encounters a secondary, nonthermal stage of inflation due to symmetry restoration after preheating. We review the theory of nonthermal phase transitions and make a prediction about the expansion factor during the secondary inflationary stage. We then present the results of lattice simulations which verify these predictions, and discuss possible implications of our results for the theory of formation of topological defects during nonthermal phase transitions.

  7. Detection of gravitational waves from inflation

    International Nuclear Information System (INIS)

    Kamionkowski, M.; Jaffe, A.H.

    2001-01-01

    Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both of these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in detector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale. (author)

  8. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  9. Eternal inflation and a thermodynamic treatment of Einstein's equations

    Energy Technology Data Exchange (ETDEWEB)

    Ghersi, José Tomás Gálvez [Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú (Peru); Geshnizjani, Ghazal; Shandera, Sarah [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Piazza, Federico, E-mail: jotogalgher@gmail.com, E-mail: ggeshnizjani@perimeterinstitute.ca, E-mail: fpiazza@apc.univ-paris7.fr, E-mail: sshandera@perimeterinstitute.ca [PCCP and APC, CNRS (UMR7164), Université Denis Diderot Paris 7, Batiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris (France)

    2011-06-01

    In pursuing the intriguing resemblance of the Einstein equations to thermodynamic equations, most sharply seen in systems possessing horizons, we suggest that eternal inflation of the stochastic type may be a fruitful phenomenon to explore. We develop a thermodynamic first law for quasi-de Sitter space, valid on the horizon of a single observer's Hubble patch and explore consistancy with previous proposals for horizons of various types in dynamic and static situations. We use this framework to demonstrate that for the local observer fluctuations of the type necessary for stochastic eternal inflation fall within the regime where the thermodynamic approach is believed to apply. This scenario is interesting because of suggestive parallels with black hole evaporation.

  10. Computational stochastic model of ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zmievskaya, Galina I., E-mail: zmi@gmail.ru; Bondareva, Anna L., E-mail: bal310775@yandex.ru [M.V. Keldysh Institute of Applied Mathematics RAS, 4,Miusskaya sq., 125047 Moscow (Russian Federation); Levchenko, Tatiana V., E-mail: tatlevchenko@mail.ru [VNII Geosystem Russian Federal Center, Varshavskoye roadway, 8, Moscow (Russian Federation); Maino, Giuseppe, E-mail: giuseppe.maino@enea.it [Scuola di Lettere e BeniCulturali, University di Bologna, sede di Ravenna, via Mariani 5, 48100 Ravenna (Italy)

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  11. Theory and numerics of gravitational waves from preheating after inflation

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Kofman, Lev; Bergman, Amanda; Felder, Gary; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity-wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity-wave interferometric experiments

  12. Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model

    Science.gov (United States)

    Chen, Sheng; Täuber, Uwe C.

    2016-04-01

    We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.

  13. Stochastic Nominal Wage Contacts in a Cash-in-Advance Model

    OpenAIRE

    Collard, Fabrice; Ertz, Guy

    1996-01-01

    We build a simple cash-in-advance model for the German economy, in which we introduce stochastic nominal wage contracts. This allows to weaken the negative effect of the inflation tax such that monetary shocks exert a positive effect on output dynamics. The nominal wage contract model is able to mimic the correlation of inflation and real balances with output. It also lowers the standard deviation of inflation relative to that of output. Further, the variance decomposition analysis indicates ...

  14. Analyzing inflation in Nigeria: a fractionally integrated ARFIMA ...

    African Journals Online (AJOL)

    The study looked into the stochastic properties of CPI-inflation rate for Nigeria from 1995Q1 to 2016Q4. The study employed an autoregressive fractionally integrated moving average and a general autoregressive conditional heteroskedasticity (ARFIMA-GARCH) methodology as well as ADF/KPSS to investigate the ...

  15. Stochastic background of gravitational waves from hybrid preheating.

    Science.gov (United States)

    García-Bellido, Juan; Figueroa, Daniel G

    2007-02-09

    The process of reheating the Universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubblelike structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accessible to those detectors. The discovery of such a background would open a new window into the very early Universe.

  16. The productivity-inflation nexus: the case of the Australian mining sector

    International Nuclear Information System (INIS)

    Mahadevan, R.; Asafu Adjaye, J.

    2005-01-01

    This paper examines the causal links between productivity growth and two price series given by domestic inflation and the price of mineral products in Australia's mining sector for the period 1968/1969 to 1997/1998. The study also uses a stochastic translog cost frontier to generate improved estimates of total factor productivity (TFP) growth. The results indicate negative unidirectional causality running from both price series to mining productivity growth. Regression analysis further shows that domestic inflation has a small but adverse effect on mining productivity growth, thus providing some empirical support for Australia's 'inflation first' monetary policy, at least with respect to the mining sector. Inflation in mineral price, on the other hand, has a greater negative effect on mining productivity growth via mineral export growth. (author)

  17. Inflation targeting and core inflation

    OpenAIRE

    Julie Smith

    2005-01-01

    This paper examines the interaction of core inflation and inflation targeting as a monetary policy regime. Interest in core inflation has grown because of inflation targeting. Core inflation is defined in numerous ways giving rise to many potential measures; this paper defines core inflation as the best forecaster of inflation. A cross-country study finds before the start of inflation targeting, but not after, core inflation differs between non-inflation targeters and inflation targeters. Thr...

  18. Comparison of stochastic models in Monte Carlo simulation of coated particle fuels

    International Nuclear Information System (INIS)

    Yu Hui; Nam Zin Cho

    2013-01-01

    There is growing interest worldwide in very high temperature gas cooled reactors as candidates for next generation reactor systems. For design and analysis of such reactors with double heterogeneity introduced by the coated particle fuels that are randomly distributed in graphite pebbles, stochastic transport models are becoming essential. Several models were reported in the literature, such as coarse lattice models, fine lattice stochastic (FLS) models, random sequential addition (RSA) models, metropolis models. The principles and performance of these stochastic models are described and compared in this paper. Compared with the usual fixed lattice methods, sub-FLS modeling allows more realistic stochastic distribution of fuel particles and thus results in more accurate criticality calculation. Compared with the basic RSA method, sub-FLS modeling requires simpler and more efficient overlapping checking procedure. (authors)

  19. Can massive primordial black holes be produced in mild waterfall hybrid inflation?

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro; Tada, Yuichiro

    2016-01-01

    We studied the possibility whether the massive primordial black holes (PBHs) surviving today can be produced in hybrid inflation. Though it is of great interest since such PBHs can be the candidate for dark matter or seeds of the supermassive black holes in galaxies, there have not been quantitatively complete works yet because of the non-perturbative behavior around the critical point of hybrid inflation. Therefore, combining the stochastic and δ N formalism, we numerically calculated the curvature perturbations in a non-perturbative way and found, without any specific assumption of the types of hybrid inflation, PBHs are rather overproduced when the waterfall phase of hybrid inflation continues so long that the PBH scale is well enlarged and the corresponding PBH mass becomes sizable enough.

  20. Inflation and quantum cosmology

    International Nuclear Information System (INIS)

    Linde, A.

    1990-01-01

    We investigate an interplay between elementary particle physics, quantum cosmology and inflation. These results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. In particular, we discuss relations between the stochastic approach to inflationary cosmology and the approaches based on the investigation of the Hartle-Hawking and tunneling wave functions of the universe. We argue that neither of these wave functions can be used for a complete description of the inflationary universe, but in certain cases they can be used for a description of some particular stages of inflation. It is shown that if the present vacuum energy density ρ υ exceeds some extremely small critical value ρ c (ρ c ∼ 10 -107 ) g cm -3 for chaotic inflation in the theory 1/2m 2 φ 2 ), then the lifetime of mankind in the inflationary universe should be finite, even though the universe as a whole will exist without end. A possible way to justify the anthropic principle in the context of the baby universe theory and to apply it to the evaluation of masses of elementary particles, of their coupling constants and of the vacuum energy density is also discussed. (author)

  1. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  2. A stochastic method for computing hadronic matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-based Science and Technology Research Center; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Collaboration: European Twisted Mass Collaboration

    2013-02-15

    We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.

  3. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves

    CERN Document Server

    Bartolo, Nicola; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  4. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  5. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  6. Analysis and development of stochastic multigrid methods in lattice field theory

    International Nuclear Information System (INIS)

    Grabenstein, M.

    1994-01-01

    We study the relation between the dynamical critical behavior and the kinematics of stochastic multigrid algorithms. The scale dependence of acceptance rates for nonlocal Metropolis updates is analyzed with the help of an approximation formula. A quantitative study of the kinematics of multigrid algorithms in several interacting models is performed. We find that for a critical model with Hamiltonian H(Φ) absence of critical slowing down can only be expected if the expansion of (H(Φ+ψ)) in terms of the shift ψ contains no relevant term (mass term). The predictions of this rule was verified in a multigrid Monte Carlo simulation of the Sine Gordon model in two dimensions. Our analysis can serve as a guideline for the development of new algorithms: We propose a new multigrid method for nonabelian lattice gauge theory, the time slice blocking. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method, in accordance with the theoretical prediction. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems. (orig.)

  7. Inflation and Inflation Uncertainty in Turkey

    OpenAIRE

    dogru, bulent

    2014-01-01

    Abstract: In this study, the relationship between inflation and inflation uncertainty is analyzed using Granger causality tests with annual inflation series covering the time period 1923 to 2012 for Turkish Economy. Inflation uncertainty is measured by Exponential Generalized Autoregressive Conditional Heteroskedastic model. Econometric findings suggest that although in long run the Friedman's hypothesis that high inflation increases inflation ...

  8. Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market

    Directory of Open Access Journals (Sweden)

    Huiling Wu

    2016-01-01

    Full Text Available This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.

  9. Inflation with a graceful exit in a random landscape

    International Nuclear Information System (INIS)

    Pedro, F.G.; Westphal, A.

    2016-11-01

    We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N<<10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.

  10. Inflation with a graceful exit in a random landscape

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, F.G. [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Westphal, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2016-11-15

    We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N<<10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.

  11. Inflation with a graceful exit in a random landscape

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, F.G. [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Westphal, A. [Deutsches Elektronen-Synchrotron DESY, Theory Group,D-22603 Hamburg (Germany)

    2017-03-30

    We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N≪10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.

  12. The Higgs boson can delay reheating after inflation

    Science.gov (United States)

    Freese, Katherine; Sfakianakis, Evangelos I.; Stengel, Patrick; Visinelli, Luca

    2018-05-01

    The Standard Model Higgs boson, which has previously been shown to develop an effective vacuum expectation value during inflation, can give rise to large particle masses during inflation and reheating, leading to temporary blocking of the reheating process and a lower reheat temperature after inflation. We study the effects on the multiple stages of reheating: resonant particle production (preheating) as well as perturbative decays from coherent oscillations of the inflaton field. Specifically, we study both the cases of the inflaton coupling to Standard Model fermions through Yukawa interactions as well as to Abelian gauge fields through a Chern-Simons term. We find that, in the case of perturbative inflaton decay to SM fermions, reheating can be delayed due to Higgs blocking and the reheat temperature can decrease by up to an order of magnitude. In the case of gauge-reheating, Higgs-generated masses of the gauge fields can suppress preheating even for large inflaton-gauge couplings. In extreme cases, preheating can be shut down completely and must be substituted by perturbative decay as the dominant reheating channel. Finally, we discuss the distribution of reheat temperatures in different Hubble patches, arising from the stochastic nature of the Higgs VEV during inflation and its implications for the generation of both adiabatic and isocurvature fluctuations.

  13. Stochastic samples versus vacuum expectation values in cosmology

    International Nuclear Information System (INIS)

    Tsamis, N.C.; Tzetzias, Aggelos; Woodard, R.P.

    2010-01-01

    Particle theorists typically use expectation values to study the quantum back-reaction on inflation, whereas many cosmologists stress the stochastic nature of the process. While expectation values certainly give misleading results for some things, such as the stress tensor, we argue that operators exist for which there is no essential problem. We quantify this by examining the stochastic properties of a noninteracting, massless, minimally coupled scalar on a locally de Sitter background. The square of the stochastic realization of this field seems to provide an example of great relevance for which expectation values are not misleading. We also examine the frequently expressed concern that significant back-reaction from expectation values necessarily implies large stochastic fluctuations between nearby spatial points. Rather than viewing the stochastic formalism in opposition to expectation values, we argue that it provides a marvelously simple way of capturing the leading infrared logarithm corrections to the latter, as advocated by Starobinsky

  14. Diffusion in lattice Lorentz gases with mixtures of point scatterers

    International Nuclear Information System (INIS)

    Acedo, L.; Santos, A.

    1994-01-01

    Monte Carlo simulations are carried out to evaluate the diffusion coefficient in some lattice Lorentz gases with mixtures of point scatterers in the limit of a low concentration of scatterers. Two models on a square lattice are considered: (a) right and left stochastic rotators plus pure reflectors and (b) right and left stochastic mirrors plus pure reflectors. The simulation data are compared with the repeated ring approximation (RRA). The agreement is excellent for models in the absence of pure reflectors, suggesting that the RRA gives the correct diffusion coefficient for those cases. As the fraction x B of reflectors increases, the diffusion coefficient decreases and seems to vanish at x B c congruent 0.8 (percolation threshold) with a critical exponent μ congruent 2 (stochastic model) or μ congruent 3 (deterministic rotator model)

  15. Stochastic interest rates in the analysis of energy investments: Implications on economic performance and sustainability

    International Nuclear Information System (INIS)

    Tolis, Athanasios; Tatsiopoulos, Ilias; Doukelis, Aggelos

    2010-01-01

    A systematic impact assessment of stochastic interest and inflation rates on the analysis of energy investments is presented. A real-options algorithm has been created for this task. Constant interest rates incorporating high risk premium have been extensively used for economic calculations, within the framework of traditional direct cash flow methods, thus favouring immediate, irreversible investments in the expense of, sometimes, insubstantially low anticipated yields. In this article, not only incomes and expenses but also interest and inflation rates are considered stochastically evolving according to specific probabilistic models. The numerical experiments indicated that the stochastic interest rate forecasts fluctuate in such low levels that may signal delayed investment entry in favour of higher expected yields. The implementation of stochastically evolving interest rates in energy investment analysis may have a controversial effect on sustainability. Displacements of inefficient plants may be significantly delayed, thus prolonging high CO 2 emission rates. Under the current CO 2 allowance prices or their medium-term forecasts, this situation may not be improved and flexible policy interventions may be necessitated. (author)

  16. Baryon asymmetry and gravitational waves from pseudoscalar inflation

    Science.gov (United States)

    Jiménez, Daniel; Kamada, Kohei; Schmitz, Kai; Xu, Xun-Jie

    2017-12-01

    In models of inflation driven by an axion-like pseudoscalar field, the inflaton, a, may couple to the standard model hypercharge via a Chern-Simons-type interaction, Script L ⊃ a/(4Λ) Ftilde F. This coupling results in explosive gauge field production during inflation, especially at its last stage, which has interesting phenomenological consequences: For one thing, the primordial hypermagnetic field is maximally helical. It is thus capable of sourcing the generation of nonzero baryon number, via the standard model chiral anomaly, around the time of electroweak symmetry breaking. For another thing, the gauge field production during inflation feeds back into the primordial tensor power spectrum, leaving an imprint in the stochastic background of gravitational waves (GWs). In this paper, we focus on the correlation between these two phenomena. Working in the approximation of instant reheating, we (1) update the investigation of baryogenesis via hypermagnetic fields from pseudoscalar inflation and (2) examine the corresponding implications for the GW spectrum. We find that successful baryogenesis requires a suppression scale Λ of around Λ ~ 3 × 1017 GeV, which corresponds to a relatively weakly coupled axion. The gauge field production at the end of inflation is then typically accompanied by a peak in the GW spectrum at frequencies in the MHz range or above. The detection of such a peak is out of reach of present-day technology; but in the future, it may serve as a smoking-gun signal for baryogenesis from pseudoscalar inflation. Conversely, models that do yield an observable GW signal suffer from the overproduction of baryon number, unless the reheating temperature is lower than the electroweak scale.

  17. Decay of the standard model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrenti, Francisco

    2015-01-01

    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...

  18. Tensor modes in pure natural inflation

    Science.gov (United States)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  19. Mean-Variance Portfolio Selection Problem with Stochastic Salary for a Defined Contribution Pension Scheme: A Stochastic Linear-Quadratic-Exponential Framework

    Directory of Open Access Journals (Sweden)

    Charles Nkeki

    2013-11-01

    Full Text Available This paper examines a mean-variance portfolio selection problem with stochastic salary and inflation protection strategy in the accumulation phase of a defined contribution (DC pension plan. The utility function is assumed to be quadratic. It was assumed that the flow of contributions made by the PPM are invested into a market that is characterized by a cash account, an inflation-linked bond and a stock. In this paper, inflationlinked bond is traded and used to hedge inflation risks associated with the investment. The aim of this paper is to maximize the expected final wealth and minimize its variance. Efficient frontier for the three classes of assets (under quadratic utility function that will enable pension plan members (PPMs to decide their own wealth and risk in their investment profile at retirement was obtained.

  20. Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty

    OpenAIRE

    LIU Jinquan; ZHENG Tingguo; SUI Jianli

    2008-01-01

    This paper uses the ARFIMA-FIGARCH model to investigate the China¡¯s monthly inflation rate from January 1983 to October 2005. It is found that both first moment and second moment of inflation have remarkable long memory, indicating the existence of long memory properties in both inflation level and inflation uncertainty. By the Granger-causality test on inflation rate and inflation uncertainty, it is shown that the inflation level affects the inflation uncertainty and so supports Friedman hy...

  1. Inflation persistence in African countries: Does inflation targeting matter?

    OpenAIRE

    Phiri, Andrew

    2016-01-01

    This study investigates inflation persistence in annual CPI inflation collected between 1994 and 2014 for 46 African countries. We group these countries into panels according to whether they are inflation targeters or not and conduct estimations for pre and post inflation targeting periods. Interestingly enough, we find that inflation persistence was much higher for inflation targeters in periods before adopting their inflation targeting regimes and inflation persistence dropped by 40 percent...

  2. Magnetogenesis from axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter; Scully, Timothy R.; Sfakianakis, Evangelos I. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Giblin, John T., E-mail: adshead@illinois.edu, E-mail: giblinj@kenyon.edu, E-mail: tscully2@illinois.edu, E-mail: esfaki@illinois.edu [Department of Physics, Kenyon College, 201 North College Rd, Gambier, Ohio 43022 (United States)

    2016-10-01

    In this work we compute the production of magnetic fields in models of axion inflation coupled to the hypercharge sector of the Standard Model through a Chern-Simons interaction term. We make the simplest choice of a quadratic inflationary potential and use lattice simulations to calculate the magnetic field strength, helicity and correlation length at the end of inflation. For small values of the axion-gauge field coupling strength the results agree with no-backreaction calculations and estimates found in the literature. For larger couplings the helicity of the magnetic field differs from the no-backreaction estimate and depends strongly on the comoving wavenumber. We estimate the post-inflationary evolution of the magnetic field based on known results for the evolution of helical and non-helical magnetic fields. The magnetic fields produced by axion inflation with large couplings to U(1) {sub Y} can reach B {sub eff} ∼> 10{sup −16} G, exhibiting a field strength B {sub phys} ≈ 10{sup −13} G and a correlation length λ{sub phys} ≈10 pc. This result is insensitive to the exact value of the coupling, as long as the coupling is large enough to allow for instantaneous preheating. Depending on the assumptions for the physical processes that determine blazar properties, these fields can be found consistent with blazar observations based on the value of B {sub eff}. Finally, the intensity of the magnetic field for large coupling can be enough to satisfy the requirements for a recently proposed baryogenesis mechanism, which utilizes the chiral anomaly of the Standard Model.

  3. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  4. Gravity waves from tachyonic preheating after hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dufaux, Jean-Francois [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Felder, Gary [Department of Physics, Clark Science Center, Smith College, Northampton, MA 01063 (United States); Kofman, Lev [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Navros, Olga, E-mail: jeff.dufaux@uam.es, E-mail: gfelder@email.smith.edu, E-mail: kofman@cita.utoronto.ca, E-mail: navros@email.unc.edu [Department of Mathematics, University of North Carolina Chapel Hill, CB3250 Philips Hall, Chapel Hill, NC 27599 (United States)

    2009-03-15

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  5. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  6. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  7. Do inflation-linked bonds contain information about future inflation?

    Directory of Open Access Journals (Sweden)

    José Valentim Machado Vicente

    2013-06-01

    Full Text Available There is a widespread belief that inflation-linked bonds are a direct source of information about inflation expectations. In this paper we address this issue by analyzing the relationship between break-even inflation (the difference between nominal and real yields and future inflation. The dataset is extracted from Brazilian Treasury bonds covering the period from April 2005 to April 2011. We find that break-even inflation is an unbiased forecast only of the 3-month and 6-month ahead inflation. For medium horizons (12 and 18 months, break-even inflation has weak explanatory power of future inflation. Over long horizons (24 and 30 months, we report a significant, but counterintuitive, negative relationship between the break-even and realized inflation rates.

  8. Inflation and Inflation Uncertainty Revisited: Evidence from Egypt

    Directory of Open Access Journals (Sweden)

    Mesbah Fathy Sharaf

    2015-07-01

    Full Text Available The welfare costs of inflation and inflation uncertainty are well documented in the literature and empirical evidence on the link between the two is sparse in the case of Egypt. This paper investigates the causal relationship between inflation and inflation uncertainty in Egypt using monthly time series data during the period January 1974–April 2015. To endogenously control for any potential structural breaks in the inflation time series, Zivot and Andrews (2002 and Clemente–Montanes–Reyes (1998 unit root tests are used. The inflation–inflation uncertainty relation is modeled by the standard two-step approach as well as simultaneously using various versions of the GARCH-M model to control for any potential feedback effects. The analyses explicitly control for the effect of the Economic Reform and Structural Adjustment Program (ERSAP undertaken by the Egyptian government in the early 1990s, which affected inflation rate and its associated volatility. Results show a high degree of inflation–volatility persistence in the response to inflationary shocks. Granger-causality test along with symmetric and asymmetric GARCH-M models indicate a statistically significant bi-directional positive relationship between inflation and inflation uncertainty, supporting both the Friedman–Ball and the Cukierman–Meltzer hypotheses. The findings are robust to the various estimation methods and model specifications. The findings of this paper support the view of adopting inflation-targeting policy in Egypt, after fulfilling its preconditions, to reduce the welfare cost of inflation and its related uncertainties. Monetary authorities in Egypt should enhance the credibility of monetary policy and attempt to reduce inflation uncertainty, which will help lower inflation rates.

  9. Inflation from field theory and string theory perspectives. Matter inflation and slow-walking inflation

    International Nuclear Information System (INIS)

    Halter, Sebastian

    2012-01-01

    This thesis is concerned with aspects of inflation both from a field theory and a string theory perspective. It aims at exploring new approaches to address the problem of moduli destabilization and the η-problem and to realize inflation in the matter sector. The first part is devoted to studying models of inflation in the framework of four-dimensional N=1 supergravity. We begin with investigating a new proposal to solve the problem of moduli destabilization, which seems to force us to choose between low-energy supersymmetry and high-scale inflation. This new approach is based on a particular way to couple the modulus to the F-term driving inflation. Using chaotic inflation with a shift symmetry as an example, we show that we can successfully combine low-energy supersymmetry and high-scale inflation. We construct a class of inflation models in N=1 supergravity where the inflaton resides in gauge non-singlet matter fields. These are extensions of a special class of hybrid inflation models, so-called tribrid inflation, where the η-problem can be solved by a Heisenberg symmetry. Compared to previously studied models, we have generalized our models with some inspiration from string theory. We investigate moduli stabilization during inflation and identify situations in which the inflaton slope is dominated by radiative corrections. We outline under which conditions this class of matter inflation models could be embedded into heterotic orbifold compactifications. In doing so, we suggest a new mechanism to stabilize some Kaehler moduli by F-terms for matter fields. In the second part, we consider models of warped D-brane inflation on a family of ten-dimensional supergravity backgrounds. We consider inflation along the radial direction near the tip of the warped throat and show that generically an inflection point arises for the inflaton potential, which is related to an inflection point of the dilaton profile. A universal scaling behaviour with the parameters of the

  10. Inflation from field theory and string theory perspectives. Matter inflation and slow-walking inflation

    Energy Technology Data Exchange (ETDEWEB)

    Halter, Sebastian

    2012-07-09

    This thesis is concerned with aspects of inflation both from a field theory and a string theory perspective. It aims at exploring new approaches to address the problem of moduli destabilization and the η-problem and to realize inflation in the matter sector. The first part is devoted to studying models of inflation in the framework of four-dimensional N=1 supergravity. We begin with investigating a new proposal to solve the problem of moduli destabilization, which seems to force us to choose between low-energy supersymmetry and high-scale inflation. This new approach is based on a particular way to couple the modulus to the F-term driving inflation. Using chaotic inflation with a shift symmetry as an example, we show that we can successfully combine low-energy supersymmetry and high-scale inflation. We construct a class of inflation models in N=1 supergravity where the inflaton resides in gauge non-singlet matter fields. These are extensions of a special class of hybrid inflation models, so-called tribrid inflation, where the η-problem can be solved by a Heisenberg symmetry. Compared to previously studied models, we have generalized our models with some inspiration from string theory. We investigate moduli stabilization during inflation and identify situations in which the inflaton slope is dominated by radiative corrections. We outline under which conditions this class of matter inflation models could be embedded into heterotic orbifold compactifications. In doing so, we suggest a new mechanism to stabilize some Kaehler moduli by F-terms for matter fields. In the second part, we consider models of warped D-brane inflation on a family of ten-dimensional supergravity backgrounds. We consider inflation along the radial direction near the tip of the warped throat and show that generically an inflection point arises for the inflaton potential, which is related to an inflection point of the dilaton profile. A universal scaling behaviour with the parameters of the

  11. Inflation, its Volatility and the Inflation-Growth Tradeoff in India

    OpenAIRE

    Raghbendra Jha; Varsha S. Kulkarni

    2013-01-01

    This paper amends the New Keynesian Phillips curve model to include inflation volatility. It provides results on the determinants of inflation volatility and expected inflation volatility for OLS and ARDL(1,1) models and for change in inflation volatility and change in expected inflation volatility using ECM models. Output gap affects change in expected inflation volatility alone (in the ECM model) and not in the other models. Major determinants of inflation volatility and expected inflation ...

  12. Stochastic heterogeneous interaction promotes cooperation in spatial prisoner's dilemma game.

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    Full Text Available Previous studies mostly investigate player's cooperative behavior as affected by game time-scale or individual diversity. In this paper, by involving both time-scale and diversity simultaneously, we explore the effect of stochastic heterogeneous interaction. In our model, the occurrence of game interaction between each pair of linked player obeys a random probability, which is further described by certain distributions. Simulations on a 4-neighbor square lattice show that the cooperation level is remarkably promoted when stochastic heterogeneous interaction is considered. The results are then explained by investigating the mean payoffs, the mean boundary payoffs and the transition probabilities between cooperators and defectors. We also show some typical snapshots and evolution time series of the system. Finally, the 8-neighbor square lattice and BA scale-free network results indicate that the stochastic heterogeneous interaction can be robust against different network topologies. Our work may sharpen the understanding of the joint effect of game time-scale and individual diversity on spatial games.

  13. Influence of solitons on the transition to spatiotemporal chaos in coupled map lattices

    DEFF Research Database (Denmark)

    Mikkelsen, R.; van Hecke, M.; Bohr, Tomas

    2003-01-01

    We study the transition from laminar to chaotic behavior in deterministic chaotic coupled map lattices and in an extension of the stochastic Domany-Kinzel cellular automaton [E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 (1984)]. For the deterministic coupled map lattices, we find evidence th...

  14. Towards a formal link between inflation perceptions and inflation ...

    African Journals Online (AJOL)

    This paper reports the finding of a survey of inflation perceptions and inflation expectations in South Africa undertaken in 2014. This survey posed questions on perceptions of past inflation (historic inflation) and expectations of future inflation to the same respondents and determined linkages between historic views and ...

  15. Lattice QCD for cosmology

    International Nuclear Information System (INIS)

    Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest

    2016-06-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  16. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.

    Science.gov (United States)

    Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai

    2011-01-01

    Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.

  17. Short-term memories with a stochastic perturbation

    International Nuclear Information System (INIS)

    Pontes, Jose C.A. de; Batista, Antonio M.; Viana, Ricardo L.; Lopes, Sergio R.

    2005-01-01

    We investigate short-term memories in linear and weakly nonlinear coupled map lattices with a periodic external input. We use locally coupled maps to present numerical results about short-term memory formation adding a stochastic perturbation in the maps and in the external input

  18. Inflation Volatility and the Inflation-Growth Tradeoff in India

    OpenAIRE

    Raghbendra Jha; Varsha S. Kulkarni

    2012-01-01

    This paper amends the New Keynesian Phillips curve model to include inflation volatility and tests the determinants of such volatility for India. It provides results on the determinants of inflation volatility and expected inflation volatility for OLS and ARDL (1,1) models and for change in inflation volatility and change in expected inflation volatility using ECM models. Output gap affects change in expected inflation volatility along (in the ECM model) and not in the other models. Major det...

  19. Eternal hilltop inflation

    International Nuclear Information System (INIS)

    Barenboim, Gabriela; Park, Wan-Il; Kinney, William H.

    2016-01-01

    We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate H EI during eternal inflation is almost exactly the same as the expansion rate H * during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the ''eternal'' inflation phase, during which quantum flucutations dominate over classical field evolution. We show that despite this, inflation in hilltop models is nonetheless eternal in the sense that the volume of the spacetime at any finite time is exponentially dominated by regions which continue to inflate. This is true regardless of the energy scale of inflation, and eternal inflation is supported for inflation at arbitrarily low energy scale.

  20. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1988-02-01

    By means of the stochastic description of inflation, we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on the global scale, both analytically and numerically. A particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form, V(φ) ∼ V 0 - cφ 2n at φ ∼ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find, for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (author)

  1. The condition for classical slow rolling in new inflation

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi

    1988-01-01

    By means of the stochastic description of inflation we investigate the dynamics of a fixed comoving domain in a continuously inflating universe on a global scale, both analytically and numerically. Particular attention is paid to the condition for a domain to enter the classical slow rolling phase. New inflationary universe models with the potential form V(φ) ≅ V 0 -cφ 2n at φ ≅ 0 are considered. The critical value of the scalar field beyond which the field slowly rolls down the potential hill is estimated. We find that for all models under consideration, the condition for classical slow rolling is a sufficient condition for the expected amplitude of density perturbations to be smaller than unity. In other words, the density perturbation amplitude at the later Friedmann stage is always smaller than unity if the universe experienced the classical slow roll-over phase. (orig.)

  2. Inflation, inflation uncertainty and output growth in the USA

    Science.gov (United States)

    Bhar, Ramprasad; Mallik, Girijasankar

    2010-12-01

    Employing a multivariate EGARCH-M model, this study investigates the effects of inflation uncertainty and growth uncertainty on inflation and output growth in the United States. Our results show that inflation uncertainty has a positive and significant effect on the level of inflation and a negative and significant effect on the output growth. However, output uncertainty has no significant effect on output growth or inflation. The oil price also has a positive and significant effect on inflation. These findings are robust and have been corroborated by use of an impulse response function. These results have important implications for inflation-targeting monetary policy, and the aim of stabilization policy in general.

  3. INFLATE: INFlate Landing Apparatus Technology

    Science.gov (United States)

    Koryanov, V. V. K.; Da-Poian, V. D. P.

    2018-02-01

    Our project, named INFLATE (INFlatable Landing Apparatus Technology), aims at reducing space landing risks and constraints and so optimizing space missions (reducing cost, mass, and risk and in the same time improving performance).

  4. Inflation Aversion and the Optimal Inflation Tax

    OpenAIRE

    Gaowang Wang; Heng-fu Zou

    2011-01-01

    The optimal inflation tax is reexamined in the framework of dynamic second best economy populated by individuals with inflation aversion. A simple formula for the optimal inflation rate is derived. Different from the literature, it is shown that if the marginal excess burden of other distorting taxes approaches zero, Friedman's rule for optimum quantity of money is not optimal, and the optimal inflation tax is negative; if the marginal excess burden of other taxes is nonzero, the optimal infl...

  5. Flavon inflation

    International Nuclear Information System (INIS)

    Antusch, S.; King, F.S.; Malinsky, M.; Velasco-Sevilla, L.; Zavala, I.

    2008-04-01

    We propose an entirely new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry responsible for the generation of the effective quark and lepton Yukawa couplings. We show that the Higgs fields responsible for the breaking of family symmetry, called flavons, are natural candidates for the inflation field in new inflation, or the waterfall fields in hybrid inflation. This opens up a rich vein of possible inflation models, all linked to the physics of flavour, with interesting cosmological and phenomenological implications. Out of these many possibilities we discuss two examples which realise flavon inflation: a model of new inflation based on the discrete non-Abelian family symmetry group A 4 or Δ 27 , and a model of hybrid inflation embedded in an existing flavour model with a continuous SU(3) family symmetry. With the inflation scale and family symmetry breaking scale below the Grand Unification Theory (GUT) scale, these classes of models are free of the monopole (and similar) problems which are often associated with the GUT phase transition. (author)

  6. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  7. Mutual information as a two-point correlation function in stochastic lattice models

    International Nuclear Information System (INIS)

    Müller, Ulrich; Hinrichsen, Haye

    2013-01-01

    In statistical physics entropy is usually introduced as a global quantity which expresses the amount of information that would be needed to specify the microscopic configuration of a system. However, for lattice models with infinitely many possible configurations per lattice site it is also meaningful to introduce entropy as a local observable that describes the information content of a single lattice site. Likewise, the mutual information between two sites can be interpreted as a two-point correlation function which quantifies how much information a lattice site has about the state of another one and vice versa. Studying a particular growth model we demonstrate that the mutual information exhibits scaling properties that are consistent with the established phenomenological scaling picture. (paper)

  8. Bulk diffusion in a kinetically constrained lattice gas

    Science.gov (United States)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  9. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  10. Inflation perceptions and inflation expectation in South Africa: trends ...

    African Journals Online (AJOL)

    This paper reports the results of a multinomial analysis of inflation perceptions and inflation expectations in South Africa. Inflation perceptions surveys among South African individuals have been undertaken since 2006. The introduction of these surveys followed on domestic inflation expectation surveys conducted in 2000, ...

  11. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.; Landman, Kerry A.; Fellner, Klemens

    2012-01-01

    both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach

  12. Inflation,Inflation Variability, and Output Performance. Venezuela 1951-2002

    OpenAIRE

    Olivo, Victor

    2014-01-01

    This paper explores the relationship between the level of inflation, inflation variability, and output performance in the Venezuelan economy for the period 1951-2002. The paper examines the mechanism through which higher inflation translates into lower non-oil real GDP growth. We find empirical evidence that supports Friedman's (1977) contention that higher inflation produces more inflation volatility /uncertainty that leads to relative price variability that in turn, is harmful for the prope...

  13. Enhanced preheating after multi-field inflation: on the importance of being special

    International Nuclear Information System (INIS)

    Battefeld, Thorsten; Eggemeier, Alexander; Giblin, John T. Jr.

    2012-01-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense

  14. Flavon inflation

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, S. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Muenchen (Germany); King, S.F.; Malinsky, M. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Velasco-Sevilla, L. [ICTP, Strada Costiera 11, Trieste 34014 (Italy)], E-mail: lvelasco@ictp.it; Zavala, I. [CPT and IPPP, Durham University, South Road, DH1 3LE, Durham (United Kingdom)

    2008-08-14

    We propose an entirely new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry responsible for the generation of the effective quark and lepton Yukawa couplings. We show that the Higgs fields responsible for the breaking of family symmetry, called flavons, are natural candidates for the inflaton field in new inflation, or the waterfall fields in hybrid inflation. This opens up a rich vein of possibilities for inflation, all linked to the physics of flavour, with interesting cosmological and phenomenological implications. Out of these, we discuss two examples which realise flavon inflation: a model of new inflation based on the discrete non-Abelian family symmetry group A{sub 4} or {delta}{sub 27}, and a model of hybrid inflation embedded in an existing flavour model with a continuous SU(3) family symmetry. With the inflation scale and family symmetry breaking scale below the Grand Unification Theory (GUT) scale, these classes of models are free of the monopole (and similar) problems which are often associated with the GUT phase transition.

  15. Flavon inflation

    International Nuclear Information System (INIS)

    Antusch, S.; King, S.F.; Malinsky, M.; Velasco-Sevilla, L.; Zavala, I.

    2008-01-01

    We propose an entirely new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry responsible for the generation of the effective quark and lepton Yukawa couplings. We show that the Higgs fields responsible for the breaking of family symmetry, called flavons, are natural candidates for the inflaton field in new inflation, or the waterfall fields in hybrid inflation. This opens up a rich vein of possibilities for inflation, all linked to the physics of flavour, with interesting cosmological and phenomenological implications. Out of these, we discuss two examples which realise flavon inflation: a model of new inflation based on the discrete non-Abelian family symmetry group A 4 or Δ 27 , and a model of hybrid inflation embedded in an existing flavour model with a continuous SU(3) family symmetry. With the inflation scale and family symmetry breaking scale below the Grand Unification Theory (GUT) scale, these classes of models are free of the monopole (and similar) problems which are often associated with the GUT phase transition

  16. Soft inflation

    Science.gov (United States)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  17. Generalized Higgs inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tsutomu [Kyoto Univ. (Japan). Hakubi Center; Kyoto Univ. (Japan). Dept. of Physics; Takahashi, Tomo [Saga Univ. (Japan). Dept. of Physics; Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics; Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)

    2012-03-15

    We study Higgs inflation in the context of generalized G-inflation, i.e., the most general single-field inflation model with second-order field equations. The four variants of Higgs inflation proposed so far in the literature can be accommodated at one time in our framework. We also propose yet another class of Higgs inflation, the running Einstein inflation model, that can naturally arise from the generalized G-inflation framework. As a result, five Higgs inflation models in all should be discussed on an equal footing. Concise formulas for primordial fluctuations in these generalized Higgs inflation models are provided, which will be helpful to determine which model is favored from the future experiments and observations such as the Large Hadron Collider and the Planck satellite.

  18. Critical slowing down in driven-dissipative Bose-Hubbard lattices

    Science.gov (United States)

    Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano

    2018-01-01

    We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.

  19. Probabilistic representation of fermionic lattice systems

    International Nuclear Information System (INIS)

    Beccaria, Matteo; Presilla, Carlo; De Angelis, Gian Fabrizio; Jona-Lasinio, Giovanni

    2000-01-01

    We describe an exact Feynman-Kac type formula to represent the dynamics of fermionic lattice systems. In this approach the real time or Euclidean time dynamics is expressed in terms of the stochastic evolution of a collection of Poisson processes. From this formula we derive a family of algorithms for Monte Carlo simulations, parametrized by the jump rates of the Poisson processes

  20. Inflation Forecast Contracts

    OpenAIRE

    Gersbach, Hans; Hahn, Volker

    2012-01-01

    We introduce a new type of incentive contract for central bankers: inflation forecast contracts, which make central bankers’ remunerations contingent on the precision of their inflation forecasts. We show that such contracts enable central bankers to influence inflation expectations more effectively, thus facilitating more successful stabilization of current inflation. Inflation forecast contracts improve the accuracy of inflation forecasts, but have adverse consequences for output. On balanc...

  1. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    García-Bellido, Juan [Instituto de Física Teórica UAM-CSIC, Universidad Autonóma de Madrid, Cantoblanco, Madrid, 28049 (Spain); Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu [School of Physics and Astronomy, and Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, 55455 (United States)

    2016-12-01

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it from an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.

  2. ''Old'' locked inflation

    International Nuclear Information System (INIS)

    Liu, Yang; Piao, Yun-Song; Si, Zong-Guo

    2009-01-01

    In this paper, we revisit the idea of locked inflation, which does not require a potential satisfying the normal slow-roll condition, but suffers from the problems associated with ''saddle inflation''. We propose a scenario based on locked inflation, however, with an alternative evolution mechanism of the ''waterfall field'' φ. Instead of rolling down along the potential, the φ field will tunnel to end the inflation stage like in old inflation, by which the saddle inflation could be avoided. Further, we study a cascade of old locked inflation, which can be motivated by the string landscape. Our model is based on the consideration of making locked inflation feasible so as to give a working model without slow roll; It also can be seen as an effort to embed the old inflation in string landscape

  3. First-order inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been reviewed. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models. (orig.)

  4. First-order inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Chicago Univ., IL

    1990-09-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result in inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models. 58 refs., 3 figs

  5. Aspects of stochastic resonance in Josephson junction, bimodal

    Indian Academy of Sciences (India)

    We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the mechanism ...

  6. Aspects of stochastic resonance in Josephson junction, bimodal ...

    Indian Academy of Sciences (India)

    Abstract. We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the ...

  7. Macroeconomic variables and food price inflation, nonfood price inflation and overall inflation: A case of an emerging market

    Directory of Open Access Journals (Sweden)

    Raphael T Mpofu

    2017-03-01

    Full Text Available The paper analyses the association between certain macroeconomic variables and food price inflation, non-food price inflation and overall inflation in Zimbabwe, and also seeks to determine the level of association between these variables, given food security implications and overall well-being of its citizens. The study reveals that during the 2010 to 2016 period, Zimbabwe experienced stable food prices—annual food price inflation for food and non-alcoholic beverages averaged a relatively low growth rate of 0.12% monthly, while non-food inflation monthly growth rate was 0.09% and overall inflation growth rate was 0.11%. Although inflation from 2010 had been declining, of late, the increase in annual inflation has been underpinned by a rise in non-food inflation. Zimbabwe’s annual inflation remains lower than inflation rates in other countries in the region. Despite the increases lately in overall inflation, it remained below zero in January 2016, mostly driven by the depreciation of the South African rand and declining international oil prices. It should also be noted that domestic demand continued to decline in 2015, leading to the observed decline in both food and non-food prices. While food inflation has remained relatively low, it should be noted that non-food expenditures is significant component of the household budget and the rising prices result often lead to declining purchasing power and force households to make difficult choices in terms of their purchases. The findings of the study are food inflation has a low association with the independent variables under study; Zimbabwe broad money supply, rand-dollar exchange rates and the South Africa food inflation. There is, however, a very strong association between non-food inflation and these independent variables, as well as between overall inflation and the independent variables. Given the mostly rural population and the high level of unemployment in Zimbabwe, it can be surmised that

  8. Technical Note: Does Core Inflation Help Forecast Total Inflation? Evidence from Colombia

    OpenAIRE

    John Thornton

    1998-01-01

    In Colombia core and total inflation are both (1) series, and core inflation is cointegrated with total inflation. Granger causality tests using error correction methodology indicate that divergence of total inflation from core inflation is quickly revers

  9. Euro area Inflation as a Predictor of National Inflation Rates

    OpenAIRE

    Antonella Cavallo; Antonio Ribba

    2013-01-01

    The stability of inflation differentials is an important condition for the smooth working of a currency area, such as the European Economic and Monetary Union. In the presence of stability, changes in national inflation rates, while holding Euro-area inflation fixed contemporaneously, should be only transitory. If this is the case, the rate of inflation of the whole area can also be interpreted as a predictor, at least in the long run, of the different national inflation rates. However, in th...

  10. Enhanced preheating after multi-field inflation: on the importance of being special

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Eggemeier, Alexander [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany); Giblin, John T. Jr., E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: a.eggemeier@stud.uni-goettingen.de, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022 (United States)

    2012-11-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense.

  11. The mechanism of double-exponential growth in hyper-inflation

    Science.gov (United States)

    Mizuno, T.; Takayasu, M.; Takayasu, H.

    2002-05-01

    Analyzing historical data of price indices, we find an extraordinary growth phenomenon in several examples of hyper-inflation in which, price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers’ actions in open markets, we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.

  12. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  13. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2013-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflation with radiation, while at the same Âătime, not de-stabilising the flatness of the inflation potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this talk we will discuss warm inflation with Pseudo-Nambu-Goldstone Bosons (PNGB). In this case inflation and other light fields are PNGB. So, the radiative corrections to the potential are suppressed and the thermal Âăcorrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfill the contrary requirements of an inflation potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflation field with other light fields. This warm inflation model with PNGB gives the observed CMB-anisotropy amplitude and spectral index having the symmetry breaking scale at the GUT scale. (author)

  14. Multiple inflation

    International Nuclear Information System (INIS)

    Murphy, P.J.

    1987-01-01

    The Theory of Inflation, namely, that at some point the entropy content of the universe was greatly increased, has much promise. It may solve the puzzles of homogeneity and the creation of structure. However, no particle physics model has yet been found that can successfully drive inflation. The difficulty in satisfying the constraint that the isotropy of the microwave background places on the effective potential of prospective models is immense. In this work we have codified the requirements of such models in a most general form. We have carefully calculated the amounts of inflation the various problems of the Standard Model need for their solution. We have derived a completely model independent upper bond on the inflationary Hubble parameter. We have developed a general notation with which to probe the possibilities of Multiple Inflation. We have shown that only in very unlikely circumstances will any evidence of an earlier inflation, survive the de Sitter period of its successor. In particular, it is demonstrated that it is most unlikely that two bouts of inflation will yield high amplitudes of density perturbations on small scales and low amplitudes on large. We conclude that, while multiple inflation will be of great theoretical interest, it is unlikely to have any observational impact

  15. Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice

    Science.gov (United States)

    Kantar, Ersin; Ertaş, Mehmet

    2018-04-01

    We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.

  16. Statistical mechanics view of quantum chromodynamics: Lattice gauge theory

    International Nuclear Information System (INIS)

    Kogut, J.B.

    1984-01-01

    Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made

  17. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  18. Remote inflation as hybrid-like sneutrino/MSSM inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    A new scenario of hybrid-like inflation is considered for sneutrino and MSSM fields. Contrary to the usual hybrid inflation model, the direct coupling between a trigger field and the sneutrino/MSSM inflaton field is not necessary for the scenario. The dissipation and the radiation from the sneutrino/MSSM inflaton can be written explicitly by using the Yukawa couplings. Remote inflation does not require the shift symmetry or cancellation in solving the η problem.

  19. Pseudosmooth tribrid inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur

    2012-01-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ''tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries

  20. Pseudosmooth tribrid inflation

    Science.gov (United States)

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur

    2012-08-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ``tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.

  1. Inflation Protected Investment Strategies

    Directory of Open Access Journals (Sweden)

    Mirco Mahlstedt

    2016-03-01

    Full Text Available In this paper, a dynamic inflation-protected investment strategy is presented, which is based on traditional asset classes and Markov-switching models. Different stock market, as well as inflation regimes are identified, and within those regimes, the inflation hedging potential of stocks, bonds, real estate, commodities and gold are investigated. Within each regime, we determine optimal investment portfolios driven by the investment idea of protection from losses due to changing inflation if inflation is rising or high, but decoupling the performance from inflation if inflation is low. The results clearly indicate that these asset classes behave differently in different stock market and inflation regimes. Whereas in the long-run, we agree with the general opinion in the literature that stocks and bonds are a suitable hedge against inflation, we observe for short time horizons that the hedging potential of each asset class, especially of real estate and commodities, depend strongly on the state of the current market environment. Thus, our approach provides a possible explanation for different statements in the literature regarding the inflation hedging properties of these asset classes. A dynamic inflation-protected investment strategy is developed, which combines inflation protection and upside potential. This strategy outperforms standard buy-and-hold strategies, as well as the well-known 1 N -portfolio.

  2. Global gauge fixing in lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))

    1991-10-15

    We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.

  3. Nonlinear and stochastic dynamics of coherent structures

    DEFF Research Database (Denmark)

    Rasmussen, Kim

    1997-01-01

    This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree of nonli......This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...

  4. Pseudosmooth tribrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch, E-mail: mansoor-ur.rehman@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2012-08-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ''tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.

  5. Is Inflation in India an Attractor of Inflation in Nepal?

    OpenAIRE

    Edimon Ginting

    2007-01-01

    The paper attempts to answer some important questions around the inflationary process in Nepal, particularly the transmission of inflation from India. Because the Nepali currency is pegged to the Indian rupee and the two countries share an open border, price developments in Nepal would be expected to mirror to those in India. The results show that inflation in India and inflation in Nepal tend to converge in the long run. Our estimates indicate that the passthrough of inflation from India to ...

  6. Fluxbrane Inflation

    CERN Document Server

    Hebecker, Arthur; Lust, Dieter; Steinfurt, Stephan; Weigand, Timo

    2012-01-01

    As a first step towards inflation in genuinely F-theoretic setups, we propose a scenario where the inflaton is the relative position of two 7-branes on holomorphic 4-cycles. Non-supersymmetric gauge flux induces an attractive inter-brane potential. The latter is sufficiently flat in the supergravity regime of large volume moduli. Thus, in contrast to brane-antibrane inflation, fluxbrane inflation does not require warping. We calculate the inflaton potential both in the supergravity approximation and via an open-string one-loop computation on toroidal backgrounds. This leads us to propose a generalisation to genuine Calabi-Yau manifolds. We also comment on competing F-term effects. The end of inflation is marked by the condensation of tachyonic recombination fields between the 7-branes, triggering the formation of a bound state described as a stable extension along the 7-brane divisor. Hence our model fits in the framework of hybrid D-term inflation. We work out the main phenomenological properties of our D-te...

  7. Estimating core inflation : the role of oil price shocks and imported inflation

    OpenAIRE

    Bjørnland, Hilde Christiane

    1997-01-01

    This paper calculates core inflation, by imposing long run restrictions on a structural vector autoregression (VAR) model containing the growth rate of output, inflation and oil prices. Core inflation is identified as that component in inflation that has no long run effect on output. No restrictions are placed on the response of output and inflation to the oil price shocks. The analysis is applied to Norway and the United Kingdom, both oil producing OECD countries. A model that ...

  8. The theory of hybrid stochastic algorithms

    International Nuclear Information System (INIS)

    Duane, S.; Kogut, J.B.

    1986-01-01

    The theory of hybrid stochastic algorithms is developed. A generalized Fokker-Planck equation is derived and is used to prove that the correct equilibrium distribution is generated by the algorithm. Systematic errors following from the discrete time-step used in the numerical implementation of the scheme are computed. Hybrid algorithms which simulate lattice gauge theory with dynamical fermions are presented. They are optimized in computer simulations and their systematic errors and efficiencies are studied. (orig.)

  9. Eternal extended inflation and graceful exit from old inflation without Jordan-Brans-Dicke

    International Nuclear Information System (INIS)

    Linde, A.

    1990-01-01

    Recently a possible solution to the graceful exit problem of the old inflation was proposed in the context of the Jordan-Brans-Dicke theory (extended inflation). In this paper we will argue that inflation in this theory occurs in a most natural way if it starts near the Planck density, as in the standard version of chaotic inflation. With most natural initial conditions, the inflationary universe in the JBD theory enters the stage of permanent reproduction of new inflationary domains (eternal extended inflation). In order to realize the extended inflation scenario at least two classical scalar fields driving inflation are necessary, as distinct from the simplest versions of new and chaotic inflation. It is shown that in the theory of two scalar fields one can solve the graceful exit problem even without modifying the Einstein gravity theory, due to the possibility that the decay rate of the false vacuum in old inflation depends on the value of the second scalar field and hence on time. (orig.)

  10. Phase transitions in cooperative coinfections: Simulation results for networks and lattices

    Science.gov (United States)

    Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran

    2016-04-01

    We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d -dimensional lattices with d ≥4 , and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.

  11. Elementary amplitudes from full QCD and the stochastic vacuum model

    International Nuclear Information System (INIS)

    Martini, A.F.; Menon, M.J.

    2002-01-01

    In a previous work, making use of the gluon gauge-invariant two-point correlation function determined from lattice QCD in the quenched approximation and the stochastic vacuum model, we determined the elementary (parton-parton) scattering amplitude in the momentum transfer space. In this communication we compute the elementary amplitude from new lattice QCD calculations that include the effects of dynamical fermions (full QCD). The main conclusion is that the inclusion of dynamical fermions leads to a normalized elementary amplitude that decreases more quickly with the momentum transfer than that in the quenched approximation. (author)

  12. Double inflation

    International Nuclear Information System (INIS)

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The Ω-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig

  13. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  14. Stochastic series expansion simulation of the t -V model

    Science.gov (United States)

    Wang, Lei; Liu, Ye-Hua; Troyer, Matthias

    2016-04-01

    We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.

  15. Quantum diffusion during inflation and primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Pattison, Chris; Assadullahi, Hooshyar; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Vennin, Vincent, E-mail: hooshyar.assadullahi@port.ac.uk, E-mail: christopher.pattison@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: david.wands@port.ac.uk [Laboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7, 75013 Paris (France)

    2017-10-01

    We calculate the full probability density function (PDF) of inflationary curvature perturbations, even in the presence of large quantum backreaction. Making use of the stochastic-δ N formalism, two complementary methods are developed, one based on solving an ordinary differential equation for the characteristic function of the PDF, and the other based on solving a heat equation for the PDF directly. In the classical limit where quantum diffusion is small, we develop an expansion scheme that not only recovers the standard Gaussian PDF at leading order, but also allows us to calculate the first non-Gaussian corrections to the usual result. In the opposite limit where quantum diffusion is large, we find that the PDF is given by an elliptic theta function, which is fully characterised by the ratio between the squared width and height (in Planck mass units) of the region where stochastic effects dominate. We then apply these results to the calculation of the mass fraction of primordial black holes from inflation, and show that no more than ∼ 1 e -fold can be spent in regions of the potential dominated by quantum diffusion. We explain how this requirement constrains inflationary potentials with two examples.

  16. Inflation targeting and inflation performance : a comparative analysis

    NARCIS (Netherlands)

    Samarina, Anna; De Haan, Jakob; Terpstra, M.

    2014-01-01

    This article examines how the impact of inflation targeting on inflation performance depends on the choice of country samples, adoption dates, time periods and methodological approaches. We apply two different estimation methods - difference-in-differences and propensity score matching - for our

  17. On the gravitational wave production from the decay of the Standard Model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrentí, Francisco

    2016-01-01

    During or towards the end of inflation, the Standard Model (SM) Higgs forms a condensate with a large amplitude. Following inflation, the condensate oscillates, decaying non-perturbatively into the rest of the SM species. The resulting out-of-equilibrium dynamics converts a fraction of the energy available into gravitational waves (GW). We study this process using classical lattice simulations in an expanding box, following the energetically dominant electroweak gauge bosons $W^\\pm$ and $Z$. We characterize the GW spectrum as a function of the running couplings, Higgs initial amplitude, and post-inflationary expansion rate. As long as the SM is decoupled from the inflationary sector, the generation of this background is universally expected, independently of the nature of inflation. Our study demonstrates the efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy of the Higgs condensate represents however, only a tiny fraction of the inflationary energy. Consequently, th...

  18. Eternal extended inflation and graceful exit from old inflation without Jordan-Brans-Dicke

    Science.gov (United States)

    Linde, Andrei

    1990-10-01

    Recently a possible solution to the graceful exit problem of the old inflation was proposed in the context of the Jordan-Brans-Dicke theory (extended inflation). In this paper we will argue that inflation in this theory occurs in a most natural way if it starts near the Planck density, as in the standard version of chaotic inflation. With most natural initial conditions, the inflationary universe in the JBD theory enters the stage of permanent reproduction of new inflationary domains (eternal extended inflation). In order to realize the extended inflation scenario at least two classical scalar fields driving inflation are necessary, as distinct from the simplest versions of new and chaotic inflation. It is shown that in the theory of two scalar fields one can solve the graceful exit problem even without modifying the Einstein gravity theory, due to the possibility that the decay rate of the false rate vacuum in old inflation depends on the value of the second scalar field and hence on time. Address after 1 September 1990: Physics Department, Stanford University, Varian Building, Stanford, CA 94305, USA.

  19. Stochastic congestion management in power markets using efficient scenario approaches

    International Nuclear Information System (INIS)

    Esmaili, Masoud; Amjady, Nima; Shayanfar, Heidar Ali

    2010-01-01

    Congestion management in electricity markets is traditionally performed using deterministic values of system parameters assuming a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties comprising outage of generating units and transmission branches. The Forced Outage Rate of equipment is employed in the stochastic programming. Using the Monte Carlo simulation, possible scenarios of power system operating states are generated and a probability is assigned to each scenario. The performance of the ordinary as well as Lattice rank-1 and rank-2 Monte Carlo simulations is evaluated in the proposed congestion management framework. As a tradeoff between computation time and accuracy, scenario reduction based on the standard deviation of accepted scenarios is adopted. The stochastic congestion management solution is obtained by aggregating individual solutions of accepted scenarios. Congestion management using the proposed stochastic framework provides a more realistic solution compared with traditional deterministic solutions. Results of testing the proposed stochastic congestion management on the 24-bus reliability test system indicate the efficiency of the proposed framework.

  20. Quintessential inflation: A unified scenario of inflation and dark energy

    Directory of Open Access Journals (Sweden)

    Hossain Wali

    2018-01-01

    Full Text Available Quintessential inflation unifies inflation and late time acceleration by a single scalar field. Such a scenario, with canonical and non-canonical scalar fields, has been discussed. The scalar field behaves as an inflaton field during inflation and as a quintessence field during late time. Also the predictions of the models has been compared with the recent Planck data.

  1. Kaehler-driven tribrid inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David

    2012-01-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kaehler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in 'pseudosmooth' tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kaehler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and p seudosmooth ) regimes

  2. Towards inflation targeting in Egypt: the relationship between exchange rate and inflation

    Directory of Open Access Journals (Sweden)

    Aliaa Khodeir

    2012-08-01

    Full Text Available Since the Egyptian economy has recently moved towards inflation targeting, it became very important to know whether exchange rate movements have serious inflationary implications or not. To investigate this subject, the study aims to analyse the relevance of inflation with the exchange rate by using the Granger-causality test. Two indicators of inflation will be used, the consumer price index (CPI and wholesale price index (WPI. In general, the results show a strong relationship between the two variables in a way that may give support to the application of ‘flexible inflation targeting regime instead of strict inflation targeting regime’.

  3. EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical

    CERN Document Server

    Burgess, C P; Tasinato, G; Williams, M

    2015-01-01

    We identify the effective theory describing inflationary super-Hubble scales and show it to be a special case of effective field theories appropriate to open systems. Open systems allow information to be exchanged between the degrees of freedom of interest and those that are integrated out, such as for particles moving through a fluid. Strictly speaking they cannot in general be described by an effective lagrangian; rather the appropriate `low-energy' limit is instead a Lindblad equation describing the evolution of the density matrix of the slow degrees of freedom. We derive the equation relevant to super-Hubble modes of quantum fields in near-de Sitter spacetimes and derive two implications. We show the evolution of the diagonal density-matrix elements quickly approaches the Fokker-Planck equation of Starobinsky's stochastic inflationary picture. This provides an alternative first-principles derivation of this picture's stochastic noise and drift, as well as its leading corrections. (An application computes ...

  4. Galileon inflation

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Rham, Claudia de [Univ. de Geneve (Switzerland). Dept. de Physique Theorique; Seery, David [Sussex Univ., Brigthon (United Kingdom). Dept. of Physics and Astronomy; Tolley, Andrew J. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics

    2010-09-15

    Galileon inflation is a radiatively stable higher derivative model of inflation. The model is determined by a finite number of relevant operators which are protected by a covariant generalization of the Galileon shift symmetry. We show that the nongaussianity of the primordial density perturbation generated during an epoch of Galileon inflation is a particularly powerful observational probe of these models and that, when the speed of sound is small, f{sub NL} can be larger than the usual result f{sub NL} {proportional_to} C{sup -2}{sub s}. (orig.)

  5. Inflation expectations and inflation uncertainty in the Eurozone : Evidence from survey data

    NARCIS (Netherlands)

    Arnold, I.J.M.; Lemmen, J.J.G.

    2006-01-01

    This paper uses the European Commission's Consumer Survey to assess whether inflation expectations have converged and whether inflation uncertainty has diminished following the introduction of the Euro in Europe. Consumers' responses to the survey suggest that inflation expectations depend more on

  6. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  7. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  8. The nature of turbulence in a triangular lattice gas automaton

    Science.gov (United States)

    Duong-Van, Minh; Feit, M. D.; Keller, P.; Pound, M.

    1986-12-01

    Power spectra calculated from the coarse-graining of a simple lattice gas automaton, and those of time averaging other stochastic times series that we have investigated, have exponents in the range -1.6 to -2, consistent with observation of fully developed turbulence. This power spectrum is a natural consequence of coarse-graining; the exponent -2 represents the continuum limit.

  9. Inflation expectations and inflation uncertainty in the eurozone : Evidence from survey data

    NARCIS (Netherlands)

    Arnold, I.J.M.; Lemmen, J.J.G.

    2008-01-01

    This paper uses the European Commission’s Consumer Survey to assess whether inflation expectations have converged and whether inflation uncertainty has diminished following the introduction of the euro in Europe. Consumers’ responses to the survey suggest that inflation expectations depend more on

  10. News on Inflation and the Epidemiology of Inflation Expectations

    DEFF Research Database (Denmark)

    Pfajfar, Damjan; Santoro, Emiliano

    2013-01-01

    This paper examines the nexus between news coverage on inflation and households’ inflation expectations. In doing so, we test the epidemiological foundations of the sticky information model (Carroll ). We use both aggregate and household-level data from the Survey Research Center at the University...... of Michigan. We highlight a fundamental disconnection among news on inflation, consumers’ frequency of expectation updating, and the accuracy of their expectations. Our evidence provides at best weak support to the epidemiological framework, as most of the consumers who update their expectations do not revise...

  11. Retrofitting models of inflation

    International Nuclear Information System (INIS)

    Kain, Ben

    2009-01-01

    I use the method of retrofitting, developed by Dine, Feng and Silverstein, to generate the scale of inflation dynamically, allowing it to be naturally small. This is a general procedure that may be performed on existing models of supersymmetric inflation. I illustrate this idea on two such models, one an example of F-term inflation and the other an example of D-term inflation.

  12. Scale-invariant extended inflation

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential

  13. News on Inflation and the Epidemiology of Inflation Expectations

    NARCIS (Netherlands)

    Pfajfar, D.; Santoro, E.

    2012-01-01

    Abstract: This paper examines the nexus between news coverage on inflation and households' inflation expectations. In doing so, we test the epidemiological foundations of the sticky information model (Carroll, 2003, 2006). We use both aggregate and household-level data from the Survey Research

  14. Attractors, universality, and inflation

    Science.gov (United States)

    Downes, Sean; Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.

  15. News on inflation and the epidemiology of inflation expectations

    NARCIS (Netherlands)

    Pfajfar, D.; Santoro, E.

    2013-01-01

    This paper examines the nexus between news coverage on inflation and households’ inflation expectations. In doing so, we test the epidemiological foundations of the sticky information model (Carroll 2003, 2006). We use both aggregate and household-level data from the Survey Research Center at the

  16. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  17. Quasi-open inflation

    CERN Document Server

    García-Bellido, J; Montes, X; Garcia-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1998-01-01

    We show that a large class of two-field models of single-bubble open inflation do not lead to infinite open universes, as it was previously thought, but to an ensemble of very large but finite inflating `islands'. The reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously along both field directions and equal-time hypersurfaces in the open universe are not synchronized with equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating regions of comoving size of order $\\gamma^{-1}$, where $\\gamma$ depends on the parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the hyperboloid is infinite, inflating islands with all possible values...

  18. YM2: Continuum expectations, lattice convergence, and lassos

    International Nuclear Information System (INIS)

    Driver, B.K.

    1989-01-01

    The two dimensional Yang-Mills theory (YM 2 ) is analyzed in both the continuum and the lattice. In the complete axial gauge the continuum theory may be defined in terms of a Lie algebra valued white noise, and parallel translation may be defined by stochastic differential equations. This machinery is used to compute the expectations of gauge invariant functions of the parallel translation operators along a collection of curves C. The expectation values are expressed as finite dimensional integrals with densities that are products of the heat kernel on the structure group. The time parameters of the heat kernels are determined by the areas enclosed by the collection C, and the arguments are determined by the crossing topologies of the curves in C. The expectations for the Wilson lattice models have a similar structure, and from this it follows that in the limit of small lattice spacing the lattice expectations converge to the continuum expectations. It is also shown that the lasso variables advocated by L. Gross exist and are sufficient to generate all the measurable functions on the YM 2 -measure space. (orig.)

  19. A lattice model for influenza spreading.

    Directory of Open Access Journals (Sweden)

    Antonella Liccardo

    Full Text Available We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1 during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.

  20. A comparison of inflation expectations and inflation credibility in South Africa: results from survey data

    Directory of Open Access Journals (Sweden)

    Jannie Rossouw

    2011-08-01

    Full Text Available This paper reports a comparison of South African household inflation expectations and inflation credibility surveys undertaken in 2006 and 2008. It tests for possible feed-through between inflation credibility and inflation expectations. It supplements earlier research that focused only on the 2006 survey results. The comparison shows that inflation expectations differed between different income groups in both 2006 and 2008. Inflation credibility differed between male and female respondents, but this difference did not feed through to inflation expectations. More periodic survey data will be required for developing final conclusions on the possibility of feed-through effects. To this end the structure of credibility surveys should be reconsidered, as a large percentage of respondents indicated that they ‘don’t know’ whether the historic rate of inflation is an accurate indication of price increases.

  1. Nucleon axial coupling from Lattice QCD

    Science.gov (United States)

    Cheng Chang, Chia; Nicholson, Amy; Rinaldi, Enrico; Berkowitz, Evan; Garron, Nicolas; Brantley, David; Monge-Camacho, Henry; Monahan, Chris; Bouchard, Chris; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Orginos, Kostas; Vranas, Pavlos; Walker-Loud, André

    2018-03-01

    We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, gA, using Möbius Domain-Wall fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of mπ {400, 350, 310, 220, 130} MeV, three lattice spacings of a {0.15, 0.12, 0.09} fm, and we do a dedicated volume study with mπL {3.22, 4.29, 5.36}. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of gA = 1.285(17), with a relative uncertainty of 1.33%.

  2. Kinetic Monte Carlo simulations of travelling pulses and spiral waves in the lattice Lotka-Volterra model.

    Science.gov (United States)

    Makeev, Alexei G; Kurkina, Elena S; Kevrekidis, Ioannis G

    2012-06-01

    Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.

  3. Does a Threshold Inflation Rate Exist? Quantile Inferences for Inflation and Its Variability

    OpenAIRE

    WenShwo Fang; Stephen M. Miller; Chih-Chuan Yeh

    2009-01-01

    Using quantile regressions and cross-sectional data from 152 countries, we examine the relationship between inflation and its variability. We consider two measures of inflation – the mean and median – and three different measures of inflation variability – the standard deviation, relative variation, and median deviation. All results from the mean and standard deviation, the mean and relative variation, or the median and the median deviation support both the hypothesis that higher inflation cr...

  4. (No) Eternal inflation and precision Higgs physics

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Dubovsky, Sergei; Senatore, Leonardo; Villadoro, Giovanni

    2008-01-01

    Even if nothing but a light Higgs is observed at the LHC, suggesting that the Standard Model is unmodified up to scales far above the weak scale, Higgs physics can yield surprises of fundamental significance for cosmology. As has long been known, the Standard Model vacuum may be metastable for low enough Higgs mass, but a specific value of the decay rate holds special significance: for a very narrow window of parameters, our Universe has not yet decayed but the current inflationary period can not be future eternal. Determining whether we are in this window requires exquisite but achievable experimental precision, with a measurement of the Higgs mass to 0.1 GeV at the LHC, the top mass to 60 MeV at a linear collider, as well as an improved determination of α s by an order of magnitude on the lattice. If the parameters are observed to lie in this special range, particle physics will establish that the future of our Universe is a global big crunch, without harboring pockets of eternal inflation, strongly suggesting that eternal inflation is censored by the fundamental theory. This conclusion could be drawn even more sharply if metastability with the appropriate decay rate is found in the MSSM, where the physics governing the instability can be directly probed at the TeV scale

  5. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    International Nuclear Information System (INIS)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-01-01

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries

  6. Hybrid approaches for multiple-species stochastic reaction–diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Spill, Fabian, E-mail: fspill@bu.edu [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Alarcon, Tomas [Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Maini, Philip K. [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Byrne, Helen [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Computational Biology Group, Department of Computer Science, University of Oxford, Oxford OX1 3QD (United Kingdom)

    2015-10-15

    Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.

  7. Nonminimally coupled hybrid inflation

    International Nuclear Information System (INIS)

    Koh, Seoktae; Minamitsuji, Masato

    2011-01-01

    We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains φ 4 term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.

  8. CRA Grade Inflation

    OpenAIRE

    Kenneth H. Thomas

    2000-01-01

    Community Reinvestment Act of 1977 (CRA) ratings and performance evaluations are the only bank and thrift exam findings disclosed by financial institution regulators. Inflation of CRA ratings has been alleged by community activists for two decades, but there has been no quantification or empirical investigation of grade inflation. Using a unique grade inflation methodology on actual ratings and evaluation data for 1,407 small banks and thrifts under the revised CRA regulations, this paper con...

  9. Assessing inflation persistence: micro evidence on an inflation targeting economy

    Czech Academy of Sciences Publication Activity Database

    Babecký, Jan; Coricelli, F.; Horváth, R.

    -, č. 353 (2008), s. 1-37 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : inflation dynamics * persistence * inflation targeting Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp353.pdf

  10. Preheating in new inflation

    International Nuclear Information System (INIS)

    Desroche, Mariel; Felder, Gary N.; Kratochvil, Jan M.; Linde, Andrei

    2005-01-01

    During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We investigate preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low

  11. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    International Nuclear Information System (INIS)

    Lagae, J.F.

    1996-01-01

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon σ-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD

  12. Inflation persistence and flexible prices

    OpenAIRE

    Robert Dittmar; William T. Gavin; Finn E. Kydland

    2004-01-01

    If the central bank follows an interest rate rule, then inflation is likely to be persistence, even when prices are fully flexible. Any shock, whether persistent or not, may lead to inflation persistence. In equilibrium, the dynamics of inflation are determined by the evolution of the spread between the real interest rate and the central bank’s target. Inflation persistence in U.S. data can be characterized by a vector autocorrelation function relating inflation and deviations of output from ...

  13. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  14. Modulus D-term inflation

    Science.gov (United States)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  15. Racetrack inflation and cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [CEA-Saclay, Gif sur Yvette (France). CEA/DSM/SPhT, Unite de Recherche Associee au CNRS, Service de Physique Theorique; Bruck, C. van de [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics; Davis, A.C.; Davis, S.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-05-15

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  16. Racetrack inflation and cosmic strings

    International Nuclear Information System (INIS)

    Brax, P.; Postma, M.

    2008-05-01

    We consider the coupling of racetrack inflation to matter fields as realised in the D3/D7 brane system. In particular, we investigate the possibility of cosmic string formation in this system. We find that string formation before or at the onset of racetrack inflation is possible, but they are then inflated away. Furthermore, string formation at the end of inflation is prevented by the presence of the moduli sector. As a consequence, no strings survive racetrack inflation. (orig.)

  17. Kähler-driven tribrid inflation

    Science.gov (United States)

    Antusch, Stefan; Nolde, David

    2012-11-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.

  18. Inflation with Fayet-Iliopoulos terms

    International Nuclear Information System (INIS)

    Wieck, Clemens; Winkler, Martin Wolfgang

    2014-08-01

    Two of the most attractive realizations of inflation in supergravity are based upon the presence of a constant Fayet-Iliopoulos (FI) term. In D-term hybrid inflation it is the FI term itself which sets the energy scale of inflation. Alternatively, the breaking of a U(1) symmetry induced by the FI term can dynamically generate the quadratic potential of chaotic inflation. The purpose of this note is to study the possible UV embedding of these schemes in terms of the 'field-dependent FI term' related to a string modulus field which is stabilized by a non-perturbative superpotential. We find that in settings where the FI term drives inflation, gauge invariance prevents a decoupling of the modulus from the inflationary dynamics. The resulting inflation models generically contain additional dynamical degrees of freedom compared to D-term hybrid inflation. However, the dynamical realization of chaotic inflation can be obtained in complete analogy to the case of a constant FI term. We present a simple string-inspired toy model of this type.

  19. Anisotropic inflation from charged scalar fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem

    2011-01-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities

  20. Non-stochastic switching and emergence of magnetic vortices in artificial quasicrystal spin ice

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, V.S., E-mail: vinayak.bhat@uky.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Farmer, B.; Smith, N.; Teipel, E.; Woods, J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Sklenar, J.; Ketterson, J.B. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112 (United States); Hastings, J.T. [Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506-0055 (United States); De Long, L.E. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2014-08-15

    Highlights: • We studied magnetic reversal in a fivefold rotational symmetric artificial quasicrystal spin ice. • Our experiments and simulations suggest the presence of non-stochastic switching in the quasicrystal. • Simulations reveal a strong connection between FM reversal and formation of vortex loops in the quasicrystal. • Our study shows that the magnetic reversal in the artificial quasicrystal is a collective phenomenon. - Abstract: Previous studies of artificial spin ice have been largely restricted to periodic dot lattices. Ferromagnetic switching of segments in an applied magnetic field is stochastic in periodic spin ice systems, which makes emergent phenomena, such as the formation of vortex loops, hard to control or predict. We fabricated finite, aperiodic Penrose P2 tilings as antidot lattices with fivefold rotational symmetry in permalloy thin films. Measurements of the field dependence of the static magnetization reveal reproducible knee anomalies whose number and form are temperature dependent, which suggests they mark cooperative rearrangements of the tiling magnetic texture. Our micromagnetic simulations of the P2 tiling are in good agreement with experimental magnetization data and exhibit non-stochastic magnetic switching of segments in applied field, and vortex loops that are stable over an extended field interval during magnetic reversal.

  1. No-scale inflation

    Science.gov (United States)

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-05-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  2. No-Scale Inflation

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-01-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on $R + R^2$ gravity, with a tilted spectrum of scalar perturbations: $n_s \\sim 0.96$, and small values of the tensor-to-scalar perturbation ratio $r < 0.1$, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  3. Hybrid approaches for multiple-species stochastic reaction-diffusion models

    Science.gov (United States)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  4. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen

    2015-01-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  5. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  6. Extended inflation with induced gravity

    International Nuclear Information System (INIS)

    Accetta, F.S.; Trester, J.J.; Department of Physics, Yale University, New Haven, Connecticut 06520)

    1989-01-01

    We consider a recently proposed extended model of inflation which improves upon the original old inflation scenario by achieving a graceful exit from the false-vacuum phase. In this paper extended inflation is generalized to include a potential V(phi) for the Brans-Dicke-type field phi. We find that whereas a graceful exit can still be had, the inclusion of a potential places constraints on the percolation time scale for exiting the inflationary phase. Additional constraints on V(phi) and the false-vacuum energy density rho /sub F/ from density and gravitational-wave perturbations are discussed. For initially small values of phi the false vacuum undergoes power-law inflation, while for initially large values of phi the expansion is exponential. Within true-vacuum regions slow-rolling inflation can occur. As a result, this model generically leads to multiple episodes of inflation. We discuss the significance these multiple episodes of inflation may have on the formation of large-scale structure and the production of voids

  7. Inflation Rate Modelling in Indonesia

    Directory of Open Access Journals (Sweden)

    Rezzy Eko Caraka

    2016-10-01

    Full Text Available The purposes of this research were to analyse: (i Modelling the inflation rate in Indonesia with parametric regression. (ii Modelling the inflation rate in Indonesia using non-parametric regression spline multivariable (iii Determining the best model the inflation rate in Indonesia (iv Explaining the relationship inflation model parametric and non-parametric regression spline multivariable. Based on the analysis using the two methods mentioned the coefficient of determination (R2 in parametric regression of 65.1% while non-parametric amounted to 99.39%. To begin with, the factor of money supply or money stock, crude oil prices and the rupiah exchange rate against the dollar is significant on the rate of inflation. The stability of inflation is essential to support sustainable economic development and improve people's welfare. In conclusion, unstable inflation will complicate business planning business activities, both in production and investment activities as well as in the pricing of goods and services produced.DOI: 10.15408/etk.v15i2.3260

  8. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1986-05-01

    We study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. We consider two different inflationary scenarios (new and chaotic inflation) and find that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. 8 refs., 2 figs

  9. Quantum fluctuations and inflation

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bublik, G.J.

    1987-01-01

    The authors study the effect of quantum fluctuations on the roll-down rate of the inflation field in a semiclassical approximation; this is done by treating the inflation field as a classical random field. The quantum fluctuations are simulated by a noise term in the equation of motion. Two different inflationary scenarios (new and chaotic inflation) are considered and it is found that the roll-down rate of the median value of the inflation field is increased by the quantum fluctuations. Non-linear effects may become important in the later stages of the inflationary regime. (author)

  10. Core inflation indicators for Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Alkhareif Ryadh M.

    2015-01-01

    Full Text Available This paper constructs and analyzes core inflation indicators for Saudi Arabia for the period of March 2012 to May 2014 using two alternative approaches: the exclusion method (ex food and housing/rent and the statistical method. The findings of the analysis suggest that the ex food and housing/ rent inflation is more volatile than the overall CPI inflation over the sample period. In contrast, the statistical core inflation is relatively more stable and less volatile. Moreover, the ex food and housing/rent inflation is only weakly correlated with headline inflation, whereas the statistical core inflation exhibits a stronger correlation. This combination of lower volatility and higher correlation with headline inflation makes the statistical method a much better choice for policymakers. From a monetary policy standpoint, using a bundle of core inflation measures, including both properly constructed exclusion and statistical methods, is more desirable, especially when variation across measures is widespread, as is the case in Saudi Arabia.

  11. What Drives China's Food-Price Inflation and How does It Affect the Aggregate Inflation?

    OpenAIRE

    Wenlang Zhang; Daniel Law

    2010-01-01

    It is typically argued that China's food-price inflation has been mainly driven by supply-side shocks including natural disasters. Our research, however, shows that demand pressures have played a more important role from a medium-term perspective. This suggests surging food prices may call for policy reactions even if non-food-price inflation is tame. Meanwhile, we find food-price inflation has not generated significant second-round effects on non-food-price inflation. In particular, while fo...

  12. Self-Sorting of White Blood Cells in a Lattice

    Science.gov (United States)

    Carlson, Robert H.; Gabel, Christopher V.; Chan, Shirley S.; Austin, Robert H.; Brody, James P.; James, D. W. Winkelman M.

    1997-09-01

    When a drop of human blood containing red and white blood cells is forced to move via hydrodynamic forces in a lattice of channels designed to mimic the capillary channels, the white cells self-fractionate into the different types of white cells. The pattern of white cells that forms is due to a combination of stretch-activated adhesion of cells with the walls, stochastic sticking probabilities, and heteroavoidance between granulocytes and lymphocytes.

  13. THE ACTUAL IMPLICATIONS OF INFLATION

    Directory of Open Access Journals (Sweden)

    Murăriţa Ilie

    2011-12-01

    Full Text Available The authors have started from the idea that inflationary phenomenon is a companion, the cause and the effect of the globalization of poverty in the broader context of world economy globalization. Therefore, starting from a common definition of inflation, the first objective was to identify causal relationships that singularize contemporary inflationary process. After that, attention was focused on the implications of inflation in the current stage, bearing in mind that monetary financial theory and practice are operating with perfectly anticipated inflation or imperfectly anticipated inflation. Inflation has great implications on the long-term contracts and wage contracts.

  14. Alchemical inflation: inflaton turns into Higgs

    Science.gov (United States)

    Nakayama, Kazunori; Takahashi, Fuminobu

    2012-11-01

    We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field.

  15. Alchemical inflation: inflaton turns into Higgs

    International Nuclear Information System (INIS)

    Nakayama, Kazunori; Takahashi, Fuminobu

    2012-01-01

    We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field

  16. Heterogeneous inflation expectations and learning

    OpenAIRE

    Madeira, Carlos; Zafar, Basit

    2012-01-01

    Using the panel component of the Michigan Survey of Consumers, we estimate a learning model of inflation expectations, allowing for heterogeneous use of both private information and lifetime inflation experience. “Life-experience inflation” has a significant impact on individual expectations, but only for one-year-ahead inflation. Public information is substantially more relevant for longer-horizon expectations. Even controlling for life-experience inflation and public information, idiosyncra...

  17. Dual Inflation

    CERN Document Server

    García-Bellido, J

    1998-01-01

    We propose a new model of inflation based on the soft-breaking of N=2 supersymmetric SU(2) Yang-Mills theory. The advantage of such a model is the fact that we can write an exact expression for the effective scalar potential, including non-perturbative effects, which preserves the analyticity and duality properties of the Seiberg-Witten solution. We find that the scalar condensate that plays the role of the inflaton can drive a long period of cosmological expansion, produce the right amount of temperature anisotropies in the microwave background, and end inflation when the monopole acquires a vacuum expectation value. Duality properties relate the weak coupling Higgs region where inflation takes place with the strong coupling monopole region, where reheating occurs, creating particles corresponding to the light degrees of freedom in the true vacuum.

  18. Cosmic strings and inflation

    International Nuclear Information System (INIS)

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  19. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  20. Inflation targeting and the anchoring of inflation expectations in the CEE countries

    Directory of Open Access Journals (Sweden)

    Nedeljković Milan

    2017-01-01

    Full Text Available This paper studies the time evolution in the degree and level of anchoring of inflation expectations in four Central and Eastern European inflation targeting countries. The results suggest that the degree of anchoring of inflation expectations increased gradually in all countries over the last decade, while the level of implied inflation targets moved towards the official target. The extent of anchoring increased more strongly in the first years following the IT adoption and more gradually over the later period. We also find that smooth changes of the official target had a positive impact on anchoring. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 47028: Advancing Serbia’s Competitiveness in the Process of EU Accession

  1. The Flavour of Inflation

    International Nuclear Information System (INIS)

    Zavala, I.

    2008-01-01

    A new class of particle physics models of inflation based on the phase transition associated with the spontaneous breaking of family symmetry is proposed. The Higgs fields responsible for the breaking of family symmetry, the flavons, are natural inflaton candidates or waterfall fields in hybrid inflation. This opens up a rich vein of possible inflation models, all linked to the physics of flavour, with several interesting cosmological implications.

  2. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Chicago Univ., IL; Liddle, A.R.

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs

  3. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Liddle, A.R.

    1990-01-01

    We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings

  4. Accidental inflation from Kaehler uplifting

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Westphal, Alexander; Wieck, Clemens; Jing, Shenglin; Toronto Univ., ON

    2013-09-01

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Kaehler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ''left-rolling'' ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ''inflation by deflation'' (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α -5 . The latter results differ significantly from many string inflation models.

  5. Unitarizing Higgs Inflation

    CERN Document Server

    Giudice, Gian F

    2011-01-01

    We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs self-coupling, but also on the unknown couplings of the sigma field.

  6. Unitarizing Higgs inflation

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Lee, Hyun Min

    2011-01-01

    We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs self-coupling, but also on the unknown couplings of the sigma field.

  7. Extended inflation with nonminimally coupled inflation field

    International Nuclear Information System (INIS)

    Panchapakesan, N.; Sethi, S.K.

    1992-01-01

    In this paper, an extended inflation model, in which the inflation field is nonminimally coupled to the gravity, is discussed. It is shown that the nucleation rate of bubbles, during a phase transition in the inflaton field, can increase as the transition proceeds for a wide range of parameters of the inflaton potential. The bounce action for three possible cases - the strong gravity regime, the thick-walled Coleman-DeLuccia bubbles and the thin-walled bubbles - is evaluated. The resulting bubble distribution for all the cases is shown to be in conformity with cosmological constraints for ω < 500

  8. Tribrid Inflation in Supergravity

    Science.gov (United States)

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kähler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third "driving" field which contributes the large vacuum energy during inflation by its F-term. In contrast to the "standard" hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (Winf = 0) during inflation. Quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.

  9. A two-states Markov-switching model of inflation in France and the USA: credible target VS inflation spiral

    OpenAIRE

    B. HEITZ

    2005-01-01

    This paper seeks to apply the general framework of Markov-switching models to inflation in France and in the USA. We propose a model where inflation can, alternatively, follow two regimes: the first one, where inflation is stationary, is interpreted as a situation where there exists a credible inflation target, even if it is not explicit; the second one where inflation is integrated. Moreover, observing that the two oil shocks were followed by accelerating inflation periods, we allow dependen...

  10. The effects of oil price shocks on output and inflation in China

    International Nuclear Information System (INIS)

    Zhao, Lin; Zhang, Xun; Wang, Shouyang; Xu, Shanying

    2016-01-01

    Crude oil price shocks derive from many sources, each of which may bring about different effects on macro-economy variables and require completely different designs in macro-economic policy; thus, distinguishing the sources of oil price fluctuations is crucial when evaluating these effects. This paper establishes an open-economy dynamic stochastic general equilibrium (DSGE) model with two economies: China and the rest of the world. To assess the effects of oil price shocks, the CES production function is extended by adding oil as an input. Based on the model, the effects of four types of oil price fluctuations are evaluated. The four types of oil price shocks are supply shocks driven by political events in OPEC countries, other oil supply shocks, aggregate shocks to the demand for industrial commodities, and demand shocks that are specific to the crude oil market. Simulation results indicate the following: Oil supply shocks driven by political events mainly produce short-term effects on China's output and inflation, while the other three shocks produce relatively long-term effects; in addition, demand shocks that are specific to the crude oil market contribute the most to the fluctuations in China's output and inflation.

  11. Environmental versus demographic variability in stochastic predator–prey models

    International Nuclear Information System (INIS)

    Dobramysl, U; Täuber, U C

    2013-01-01

    In contrast to the neutral population cycles of the deterministic mean-field Lotka–Volterra rate equations, including spatial structure and stochastic noise in models for predator–prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Our previous study showed that population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization. (paper)

  12. Air-Inflated Fabric Structures

    National Research Council Canada - National Science Library

    Cavallaro, Paul V; Sadegh, Ali M

    2006-01-01

    .... Examples include air ships, weather balloons, inflatable antennas and radomes, temporary shelters, pneumatic muscles and actuators, inflatable boats, temporary bridging, and energy absorbers such as automotive air bags...

  13. THE INFLATION IMPACT OF SELECTED EUROPEAN UNION MEMBERS ON POLISH INFLATION

    Directory of Open Access Journals (Sweden)

    Jarosław Czaja

    2012-06-01

    Full Text Available The article aims at determining the inflation influence between Poland and selected EU member states. Although for some time the general inflation level in those countries was definitely controllable, the problem seems to be returning. That is why in this article, using the model of Vector AutoRegression (VAR and Granger causality test, we are attempting to determine inflation influences on Poland. The study confirmed the impact of the selected countries on Polish inflation, expressed the general HICP index. However, in the case of Germany, the method has not proved the existence of such interactions. For this reason, it is made an attempt to clarify the reasons for non-compliance findings with data showing Germany as a Polish main trading partner for more than two decades. The authors try to show that lack of influence can be seen in the excessive generality of the main HICP index and predict that the chosen method confirm the effect of foreign trade indices in the HICP.

  14. Changes in Inflation Dynamics under Inflation Targeting? Evidence from Central European Countries

    Czech Academy of Sciences Publication Activity Database

    Baxa, Jaromír; Plašil, M.; Vašíček, B.

    2013-01-01

    Roč. 11, č. 1 (2013), s. 2-5 ISSN 1803-7089 Institutional support: RVO:67985556 Keywords : Inflation Dynamics * Inflation Targeting? Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2013/E/baxa-0395372.pdf

  15. Supersymmetric Majoron inflation

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F.; Ludl, Patrick Otto [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2017-03-31

    We propose supersymmetric Majoron inflation in which the Majoron field Φ responsible for generating right-handed neutrino masses may also be suitable for giving low scale “hilltop” inflation, with a discrete lepton number ℤ{sub N} spontaneously broken at the end of inflation, while avoiding the domain wall problem. In the framework of non-minimal supergravity, we show that a successful spectral index can result with small running together with small tensor modes. We show that a range of heaviest right-handed neutrino masses can be generated, m{sub N}∼10{sup 1}−10{sup 16} GeV, consistent with the constraints from reheating and domain walls.

  16. Pre-inflation physics and scalar perturbations

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2005-01-01

    The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data

  17. Stochastic motion of a particle in a model fluctuating medium

    International Nuclear Information System (INIS)

    Moreau, M.; Gaveau, B.; Perera, A.; Frankowicz, M.

    1993-01-01

    We present several models of time fluctuating media with finite memory, consisting in one and two-dimensional lattices, the Modes of which fluctuate between two internal states according to a Poisson process. A particle moves on the lattice, the diffusion by the Modes depending on their internal state. Such models can be used for the microscopic theory of reaction constants in a dense phase, or for the study of diffusion or reactivity in a complex medium. In a number of cases, the transmission probability of the medium is computed exactly; it is shown that stochastic resonances can occur, an optimal transmission being obtained for a convenient choice of parameters. In more general situations, approximate solutions are given in the case of short and moderate memory of the obstacles. The diffusion in an infinite two-dimensional lattice is studied, and the memory is shown to affect the distribution of the particles rather than the diffusion law. (author). 25 refs, 5 figs

  18. IAS15 inflation adjustments and EVA: empirical evidence from a highly variable inflation regime

    Directory of Open Access Journals (Sweden)

    Pierre Erasmus

    2011-08-01

    Full Text Available Inflation can have a pronounced effect on the financial performance of a firm. This study makes inflation adjustments to a firm’s cost of sales, depreciation, level of gearing and assets in line with International Accounting Standard 15 (IAS15 in order to calculate an inflation-adjusted version of the economic value added (EVA measure. The study was conducted using data from South African industrial firms during a period characterised by highly variable inflation levels (1991-2005. The results indicate that during this period there were significant differences between the nominal and real values of the firms’ EVAs

  19. ''Old'' locked inflation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Piao, Yun-Song [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Si, Zong-Guo, E-mail: liuyangbyf@mail.sdu.edu.cn, E-mail: yspiao@gucas.ac.cn, E-mail: zgsi@sdu.edu.cn [Department of Physics, Shandong University, Jinan 250100 (China)

    2009-05-15

    In this paper, we revisit the idea of locked inflation, which does not require a potential satisfying the normal slow-roll condition, but suffers from the problems associated with ''saddle inflation''. We propose a scenario based on locked inflation, however, with an alternative evolution mechanism of the ''waterfall field'' {phi}. Instead of rolling down along the potential, the {phi} field will tunnel to end the inflation stage like in old inflation, by which the saddle inflation could be avoided. Further, we study a cascade of old locked inflation, which can be motivated by the string landscape. Our model is based on the consideration of making locked inflation feasible so as to give a working model without slow roll; It also can be seen as an effort to embed the old inflation in string landscape.

  20. Estimating Venezuelas Latent Inflation

    OpenAIRE

    Juan Carlos Bencomo; Hugo J. Montesinos; Hugo M. Montesinos; Jose Roberto Rondo

    2011-01-01

    Percent variation of the consumer price index (CPI) is the inflation indicator most widely used. This indicator, however, has some drawbacks. In addition to measurement errors of the CPI, there is a problem of incongruence between the definition of inflation as a sustained and generalized increase of prices and the traditional measure associated with the CPI. We use data from 1991 to 2005 to estimate a complementary indicator for Venezuela, the highest inflation country in Latin America. Late...

  1. Effective stochastic generator with site-dependent interactions

    Science.gov (United States)

    Khamehchi, Masoumeh; Jafarpour, Farhad H.

    2017-11-01

    It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.

  2. 12 CFR 19.240 - Inflation adjustments.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b) The...

  3. Mutated hilltop inflation revisited

    Science.gov (United States)

    Pal, Barun Kumar

    2018-05-01

    In this work we re-investigate pros and cons of mutated hilltop inflation. Applying Hamilton-Jacobi formalism we solve inflationary dynamics and find that inflation goes on along the {W}_{-1} branch of the Lambert function. Depending on the model parameter mutated hilltop model renders two types of inflationary solutions: one corresponds to small inflaton excursion during observable inflation and the other describes large field inflation. The inflationary observables from curvature perturbation are in tune with the current data for a wide range of the model parameter. The small field branch predicts negligible amount of tensor to scalar ratio r˜ O(10^{-4}), while the large field sector is capable of generating high amplitude for tensor perturbations, r˜ O(10^{-1}). Also, the spectral index is almost independent of the model parameter along with a very small negative amount of scalar running. Finally we find that the mutated hilltop inflation closely resembles the α -attractor class of inflationary models in the limit of α φ ≫ 1.

  4. Is non-minimal inflation eternal?

    International Nuclear Information System (INIS)

    Feng, Chao-Jun; Li, Xin-Zhou

    2010-01-01

    The possibility that the non-minimal coupling inflation could be eternal is investigated. We calculate the quantum fluctuation of the inflaton in a Hubble time and find that it has the same value as that in the minimal case in the slow-roll limit. Armed with this result, we have studied some concrete non-minimal inflationary models including the chaotic inflation and the natural inflation, in which the inflaton is non-minimally coupled to the gravity. We find that the non-minimal coupling inflation could be eternal in some parameter spaces.

  5. Inflation in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; /Stanford U., Phys. Dept. /LBL, Berkeley; Hubeny, Veronika E.; /LBL, Berkeley /Durham U., Dept. of Math.; Maloney, Alexander; /Stanford U., Phys. Dept.; Myers, Rob; /Perimeter Inst. Theor. Phys. /Waterloo U.; Rangamani, Mukund; /LBL, Berkeley /Durham U., Dept. of Math.; Shenker, Stephen; /Stanford U., Phys. Dept.

    2005-10-07

    We study the realization of inflation within the AdS/CFT correspondence. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.We study the realization of inflation within the AdS/CFT correspondence. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.

  6. Testing Cosmic Inflation

    Science.gov (United States)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  7. Interest Rates and Inflation

    OpenAIRE

    Coopersmith, Michael; Gambardella, Pascal J.

    2016-01-01

    This article is an extension of the work of one of us (Coopersmith, 2011) in deriving the relationship between certain interest rates and the inflation rate of a two component economic system. We use the well-known Fisher relation between the difference of the nominal interest rate and its inflation adjusted value to eliminate the inflation rate and obtain a delay differential equation. We provide computer simulated solutions for this equation over regimes of interest. This paper could be of ...

  8. Microwave background anisotropies in quasiopen inflation

    Science.gov (United States)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  9. Tribrid Inflation in Supergravity

    International Nuclear Information System (INIS)

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    2010-01-01

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the 'standard' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W inf = 0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflaton potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.

  10. Accidental inflation from Kaehler uplifting

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, Ido; Westphal, Alexander; Wieck, Clemens [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Jing, Shenglin [Toronto Univ., ON (Canada). Canadian Inst. for Theoretical Astrophysics; Toronto Univ., ON (Canada). Dept. of Astronomy and Astrophysics

    2013-09-15

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Kaehler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ''left-rolling'' ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ''inflation by deflation'' (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running {alpha}<{proportional_to}0.012 and enhanced tensor-to-scalar ratio r{proportional_to}10{sup -5}. The latter results differ significantly from many string inflation models.

  11. Initial conditions for chaotic inflation

    International Nuclear Information System (INIS)

    Brandenberger, R.; Kung, J.; Feldman, H.

    1991-01-01

    In contrast to many other inflationary Universe models, chaotic inflation does not depend on fine tuning initial conditions. Within the context of linear perturbation theory, it is shown that chaotic inflation is stable towards both metric and matter perturbations. Neglecting gravitational perturbations, it is shown that chaotic inflation is an attractor in initial condition space. (orig.)

  12. Do axions need inflation?

    International Nuclear Information System (INIS)

    Davis, R.L.; Shellard, E.P.S.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    Without inflation the energy density of relic axions in a Robertson-Walker universe arises not from coherent oscillations of a zero-momentum mode but from radiative decay of axion strings. An estimate of the upper bound on the PQ scale coming from these axions is in conflict with the lower bound from SN1987a. We present analytical and numerical evidence supporting this estimate. If true, then the axion needs inflation. With inflation the axion is safe, but the motivation for axion search experiments is weakened. (orig.)

  13. Stability of compactification during inflation

    International Nuclear Information System (INIS)

    Amendola, L.; Litterio, M.; Occhionero, F.; Kolb, E.W.

    1990-03-01

    The possibility that inflation may trigger an instability in compactification of extra spatial dimensions is considered. In old, new, or extended inflation, the false vacuum energy results in a semiclassical instability in which the scalar field representing the radius of the extra dimensions may tunnel through a potential barrier leading to an expansion of the internal space. In chaotic inflation, if the initial value of the scalar field responsible for inflation is large enough, the internal space becomes classically unstable to ever increasing expansion. Restrictions on inflationary models necessary to keep the extra dimensions small are discussed. 15 refs., 5 figs

  14. Communication: Distinguishing between short-time non-Fickian diffusion and long-time Fickian diffusion for a random walk on a crowded lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ellery, Adam J.; Simpson, Matthew J. [School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane (Australia); Baker, Ruth E. [Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford (United Kingdom)

    2016-05-07

    The motion of cells and molecules through biological environments is often hindered by the presence of other cells and molecules. A common approach to modeling this kind of hindered transport is to examine the mean squared displacement (MSD) of a motile tracer particle in a lattice-based stochastic random walk in which some lattice sites are occupied by obstacles. Unfortunately, stochastic models can be computationally expensive to analyze because we must average over a large ensemble of identically prepared realizations to obtain meaningful results. To overcome this limitation we describe an exact method for analyzing a lattice-based model of the motion of an agent moving through a crowded environment. Using our approach we calculate the exact MSD of the motile agent. Our analysis confirms the existence of a transition period where, at first, the MSD does not follow a power law with time. However, after a sufficiently long period of time, the MSD increases in proportion to time. This latter phase corresponds to Fickian diffusion with a reduced diffusivity owing to the presence of the obstacles. Our main result is to provide a mathematically motivated, reproducible, and objective estimate of the amount of time required for the transport to become Fickian. Our new method to calculate this crossover time does not rely on stochastic simulations.

  15. Communication: Distinguishing between short-time non-Fickian diffusion and long-time Fickian diffusion for a random walk on a crowded lattice

    International Nuclear Information System (INIS)

    Ellery, Adam J.; Simpson, Matthew J.; Baker, Ruth E.

    2016-01-01

    The motion of cells and molecules through biological environments is often hindered by the presence of other cells and molecules. A common approach to modeling this kind of hindered transport is to examine the mean squared displacement (MSD) of a motile tracer particle in a lattice-based stochastic random walk in which some lattice sites are occupied by obstacles. Unfortunately, stochastic models can be computationally expensive to analyze because we must average over a large ensemble of identically prepared realizations to obtain meaningful results. To overcome this limitation we describe an exact method for analyzing a lattice-based model of the motion of an agent moving through a crowded environment. Using our approach we calculate the exact MSD of the motile agent. Our analysis confirms the existence of a transition period where, at first, the MSD does not follow a power law with time. However, after a sufficiently long period of time, the MSD increases in proportion to time. This latter phase corresponds to Fickian diffusion with a reduced diffusivity owing to the presence of the obstacles. Our main result is to provide a mathematically motivated, reproducible, and objective estimate of the amount of time required for the transport to become Fickian. Our new method to calculate this crossover time does not rely on stochastic simulations.

  16. Higgs-Palatini inflation and unitarity

    International Nuclear Information System (INIS)

    Bauer, Florian; Demir, Durmus A.

    2011-01-01

    In the Higgs inflation scenario the Higgs field is strongly coupled to the Ricci scalar in order to drive primordial inflation. However, in its original form in pure metric formulation of gravity, the ultraviolet (UV) cutoff of the Higgs interactions and the Hubble rate are of the same magnitude, and this makes the whole inflationary evolution dependent of the unknown UV completion of the Higgs sector. This problem, the unitarity violation, plagues the Higgs inflation scenario. In this Letter we show that, in the Palatini formulation of gravitation, Higgs inflation does not suffer from unitarity violation since the UV cutoff lies parametrically much higher than the Hubble rate so that unknown UV physics does not disrupt the inflationary dynamics. Higgs-Palatini inflation, as we call it, is, therefore, UV-safe, minimal and endowed with predictive power.

  17. Formula inflation

    Directory of Open Access Journals (Sweden)

    Antipov Valerij Ivanovich

    2015-10-01

    Full Text Available The article gives a modern interpretation of the Fisher formula, the calculated velocity of circulation of money supply M2 in the interval 1995-2013 and forecast of its changes until 2030 when hypotheses about the rate of inflation and GDP. Points to the fallacy of its direct use to control inflation and money supply. For a more detailed understanding of the inflationary process proposes a new frequency formula and the explanation of the situation with the regulation of prices in the economy.

  18. Assessing inflation persistence: micro evidence on an inflation targeting economy

    Czech Academy of Sciences Publication Activity Database

    Babecký, Jan; Coricelli, F.; Horváth, R.

    2009-01-01

    Roč. 59, č. 2 (2009), s. 102-127 ISSN 0015-1920 Grant - others:Česká národní banka(CZ) E5/05 Institutional research plan: CEZ:AV0Z70850503 Keywords : inflation dynamics * persistence * inflation targeting Subject RIV: AH - Economics Impact factor: 0.264, year: 2009 http://journal.fsv.cuni.cz/storage/1153_babeck%C3%BD_horv%C3%A1th_coricelli.pdf

  19. Estimating the Threshold Level of Inflation for Thailand

    OpenAIRE

    Jiranyakul, Komain

    2017-01-01

    Abstract. This paper analyzes the relationship between inflation and economic growth in Thailand using annual dataset during 1990 and 2015. The threshold model is estimated for different levels of threshold inflation rate. The results suggest that the threshold level of inflation above which inflation significantly slow growth is estimated at 3 percent. The negative relationship between inflation and growth is apparent above this threshold level of inflation. In other words, the inflation rat...

  20. Staggered multi-field inflation

    International Nuclear Information System (INIS)

    Battefeld, Diana; Battefeld, Thorsten; Davis, Anne-Christine

    2008-01-01

    We investigate multi-field inflationary scenarios with fields that drop out of the model in a staggered fashion. This feature is natural in certain multi-field inflationary setups within string theory; for instance, it can manifest itself when fields are related to tachyons that condense, or inter-brane distances that become meaningless when branes annihilate. Considering a separable potential, and promoting the number of fields to a smooth time dependent function, we derive the formalism to deal with these models at the background and perturbed level, providing general expressions for the scalar spectral index and the running. We recover known results of e.g. a dynamically relaxing cosmological constant in the appropriate limits. We further show that isocurvature perturbations are suppressed during inflation, and so perturbations are adiabatic and nearly Gaussian. The resulting setup might be interpreted as a novel type of warm inflation, readily implemented within string theory and without many of the shortcomings associated with warm inflation. To exemplify the applicability of the formalism we consider three concrete models: assisted inflation with exponential potentials as a simple toy model (a graceful exit becomes possible), inflation from multiple tachyons (a constant decay rate of the number of fields and negligible slow roll contributions turns out to be in good agreement with observations) and inflation from multiple M5-branes within M-theory (a narrow stacking of branes yields a consistent scenario)

  1. The relationship between inflation and inflation uncertainty. Empirical evidence for the newest EU countries.

    Science.gov (United States)

    Viorica, Daniela; Jemna, Danut; Pintilescu, Carmen; Asandului, Mircea

    2014-01-01

    The objective of this paper is to verify the hypotheses presented in the literature on the causal relationship between inflation and its uncertainty, for the newest EU countries. To ensure the robustness of the results, in the study four models for inflation uncertainty are estimated in parallel: ARCH (1), GARCH (1,1), EGARCH (1,1,1) and PARCH (1,1,1). The Granger method is used to test the causality between two variables. The working hypothesis is that groups of countries with a similar political and economic background in 1990 and are likely to be characterized by the same causal relationship between inflation and inflation uncertainty. Empirical results partially confirm this hypothesis. C22, E31, E37.

  2. What is the Globalisation of Inflation?

    OpenAIRE

    Altansukh, Gantungalag; Becker, Ralf; Bratsiotis, George J.; Osborn, Denise R.

    2017-01-01

    This paper studies the globalisation of CPI inflation by analysing core, energy and food components, testing for structural breaks in the relationships between domestic inflation and a corresponding country-specific foreign inflation series at the monthly frequency for OECD countries.The iterative methodology employed separates coefficient and variance breaks, while also taking account of outliers. We find that the overall pattern of globalisation in aggregate inflation is largely driven by c...

  3. Supersymmetry and Inflation

    CERN Document Server

    Ferrara, Sergio

    2017-01-01

    Theories with elementary scalar degrees of freedom seem nowadays required for simple descriptions of the Standard Model and of the Early Universe. It is then natural to embed theories of inflation in supergravity, also in view of their possible ultraviolet completion in String Theory. After some general remarks on inflation in supergravity, we describe examples of minimal inflaton dynamics which are compatible with recent observations, including higher-curvature ones inspired by the Starobinsky model. We also discuss different scenarios for supersymmetry breaking during and after inflation, which include a revived role for non-linear realizations. In this spirit, we conclude with a discussion of the link, in four dimensions, between "brane supersymmetry breaking" and the super--Higgs effect in supergravity.

  4. Nonlinear metric perturbation enhancement of primordial gravitational waves.

    Science.gov (United States)

    Bastero-Gil, M; Macias-Pérez, J; Santos, D

    2010-08-20

    We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Einstein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensor fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational wave observatories.

  5. Stochastic dark energy from inflationary quantum fluctuations

    Science.gov (United States)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  6. Primordial anisotropies in gauged hybrid inflation

    Science.gov (United States)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  7. Nonthermal gravitino production in tribrid inflation

    Science.gov (United States)

    Antusch, Stefan; Dutta, Koushik

    2015-10-01

    We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.

  8. Primordial anisotropies in gauged hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan

    2014-01-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations

  9. Graceful exit from Higgs G-inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tsutomu [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Kunimitsu, Taro [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (Japan). Research Center for the Early Universe (RESCEU); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics; Yokoyama, Jun' ichi [Tokyo Univ. (Japan). Research Center for the Early Universe (RESCEU); Tokyo Univ., Chiba (Japan). Kavli Inst. for the Physics and Mathematics of the Universe (Kavli IPMU)

    2013-09-15

    Higgs G-inflation is a Higgs inflation model with a generalized Galileon term added to the standard model Higgs field, which realizes inflation compatible with observations. Recently, it was claimed that the generalized Galileon term induces instabilities during the oscillation phase, and that the simplest Higgs G-inflation model inevitably suffers from this problem. In this paper, we extend the original Higgs G-inflation Lagrangian to a more general form, namely introducing a higher-order kinetic term and generalizing the form of the Galileon term, so that the Higgs field can oscillate after inflation without encountering instabilities. Moreover, it accommodates a large region of the n{sub s}-r plane, most of which is consistent with current observations, leading us to expect the detection of B-mode polarization in the cosmic microwave background in the near future.

  10. A smooth exit from eternal inflation?

    Science.gov (United States)

    Hawking, S. W.; Hertog, Thomas

    2018-04-01

    The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

  11. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  12. Inflation Insurance

    OpenAIRE

    Zvi Bodie

    1989-01-01

    A contract to insure $1 against inflation is equivalent to a European call option on the consumer price index. When there is no deductible this call option is equivalent to a forward contract on the CPI. Its price is the difference between the prices of a zero coupon real bond and a zero coupon nominal bond, both free of default risk. Provided that the risk-free real rate of interest is positive, the price of such an inflation insurance policy first rises and then falls with time to maturity....

  13. A critical review of inflation

    CERN Document Server

    Turok, N G

    2002-01-01

    The theory of cosmic inflation offers an attractive resolution of some of the great paradoxes in cosmology: why the universe is so large, flat and uniform on large scales, and how density variations arose. Inflation has rightly dominated cosmological thinking for the past two decades, helping stimulate the development of high-precision observational programmes. The survival of simple inflationary models in the face of an impressive observational onslaught has been interpreted as convincing evidence of the correctness of the basic idea. In this paper, I review inflation, but highlight its weaknesses, explaining my reasons for believing that a more complete theory may supersede inflation without necessarily incorporating it.

  14. A critical review of inflation

    International Nuclear Information System (INIS)

    Turok, Neil

    2002-01-01

    The theory of cosmic inflation offers an attractive resolution of some of the great paradoxes in cosmology: why the universe is so large, flat and uniform on large scales, and how density variations arose. Inflation has rightly dominated cosmological thinking for the past two decades, helping stimulate the development of high-precision observational programmes. The survival of simple inflationary models in the face of an impressive observational onslaught has been interpreted as convincing evidence of the correctness of the basic idea. In this paper, I review inflation, but highlight its weaknesses, explaining my reasons for believing that a more complete theory may supersede inflation without necessarily incorporating it

  15. Deflation of eigenvalues for iterative methods in lattice QCD

    International Nuclear Information System (INIS)

    Darnell, Dean; Morgan, Ronald B.; Wilcox, Walter

    2004-01-01

    Work on generalizing the deflated, restarted GMRES algorithm, useful in lattice studies using stochastic noise methods, is reported. We first show how the multi-mass extension of deflated GMRES can be implemented. We then give a deflated GMRES method that can be used on multiple right-hand sides of Aχ = b in an efficient manner. We also discuss and give numerical results on the possibilty of combining deflated GMRES for the first right hand side with a deflated BiCGStab algorithm for the subsequent right hand sides

  16. Inflation and the Higgs Scalar

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-05

    This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.

  17. How useful are leading indicators of inflation?

    OpenAIRE

    C. Alan Garner

    1995-01-01

    Many economists expect inflation to rise in 1995. These expectations are based on various approaches to forecasting inflation. One approach is based on the standard economic theory that inflation rises when slack is eliminated from the economy and production exceeds capacity constraints. According to this view, measures of economic slack such as unemployment and capacity utilization provide useful information about the inflation outlook. But the relationship between slack and inflation is com...

  18. Ten years of inflation targeting in Serbia

    Directory of Open Access Journals (Sweden)

    Bungin Sanja

    2017-01-01

    Full Text Available Monetary strategy of inflation targeting in Serbia was unofficially introduced in September 2006. The National Bank of Serbia has faced the numerous challenges that are typical for transition countries which apply the same strategy. At the start of inflation targeting, inflation was reduced to a single-digit number, which characterises most other countries. However, the volatility of inflation during the implementation of the strategy has been extremely high, mainly caused by the changes of processed and unprocessed food prices. Moreover, for a country with a high degree of euroisation, such as Serbia, the exchange rate plays an important role in the movement of inflation. Controlling the trends of the exchange rate in order to maintain the stability of inflation is contrary to the assumptions of inflation targeting. However, it can be concluded that despite all the obstacles faced by the NBS, inflation targeting is the optimal choice of a monetary strategy.

  19. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  20. The scale of inflation in the landscape

    International Nuclear Information System (INIS)

    Pedro, F.G.; Westphal, A.

    2013-03-01

    We determine the frequency of regions of small-field inflation in the Wigner landscape as an approximation to random supergravities/type IIB flux compactifications. We show that small-field inflation occurs exponentially more often than large-field inflation The power of primordial gravitational waves from inflation is generically tied to the scale of inflation. For small-field models this is below observational reach. However, we find small-field inflation to be dominated by the highest inflationary energy scales compatible with a sub-Planckian field range. Hence, we expect a typical tensor-to-scalar ratio r∝O(10 -3 ) currently undetectable in upcoming CMB measurements.

  1. The scale of inflation in the landscape

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, F.G.; Westphal, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2013-03-15

    We determine the frequency of regions of small-field inflation in the Wigner landscape as an approximation to random supergravities/type IIB flux compactifications. We show that small-field inflation occurs exponentially more often than large-field inflation The power of primordial gravitational waves from inflation is generically tied to the scale of inflation. For small-field models this is below observational reach. However, we find small-field inflation to be dominated by the highest inflationary energy scales compatible with a sub-Planckian field range. Hence, we expect a typical tensor-to-scalar ratio r{proportional_to}O(10{sup -3}) currently undetectable in upcoming CMB measurements.

  2. A novel stent inflation protocol improves long-term outcomes compared with rapid inflation/deflation deployment method.

    Science.gov (United States)

    Vallurupalli, Srikanth; Kasula, Srikanth; Kumar Agarwal, Shiv; Pothineni, Naga Venkata K; Abualsuod, Amjad; Hakeem, Abdul; Ahmed, Zubair; Uretsky, Barry F

    2017-08-01

    High-pressure inflation for coronary stent deployment is universally performed. However, the duration of inflation is variable and does not take into account differences in lesion compliance. We developed a standardized "pressure optimization protocol" (POP) using inflation pressure stability rather than an arbitrary inflation time or angiographic balloon appearance for stent deployment. Whether this approach improves long-term outcomes is unknown. 792 patients who underwent PCI using either rapid inflation/deflation (n = 376) or POP (n = 416) between January 2009 and March 2014 were included. Exclusion criteria included PCI for acute myocardial infarction, in-stent restenosis, chronic total occlusion, left main, and saphenous vein graft lesions. Primary endpoint was target vessel failure [TVF = combined end point of target vessel revascularization (TVR), myocardial infarction, and cardiac death]. Outcomes were analyzed in the entire cohort and in a propensity analysis. Stent implantation using POP with a median follow-up of 1317 days was associated with lower TVF compared with rapid inflation/deflation (10.1 vs. 17.8%, P inflation/deflation (10 vs. 18%, P < 0.0001). Stent deployment using POP led to reduced TVF compared to rapid I/D. These results recommend this method to improve long-term outcomes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Inflation experiences of retirees

    NARCIS (Netherlands)

    Kalwij, Adriaan; Alessie, Robertus; Gardner, Jonathan; Ali, Ashik Anwar

    The inflation experience of people depends on their expenditure patterns and price developments. This paper identifies groups of retirees that have experienced relatively high price inflation over the last few decades and could thus be considered most vulnerable when income decreases, as has been

  4. Affleck-Dine baryogenesis just after inflation

    International Nuclear Information System (INIS)

    Yamada, Masaki

    2015-11-01

    We propose a new scenario of Affleck-Dine baryogenesis where a at direction in the MSSM generates B-L asymmetry just after the end of inflation. The resulting amount of baryon asymmetry is independent of low-energy supersymmetric models but is dependent on inflation models. We consider the hybrid and chaotic inflation models and find that reheating temperature is required to be higher than that in the conventional scenario of Affleck-Dine baryogenesis. In particular, non-thermal gravitino-overproduction problem is naturally avoided in the hybrid inflation model. Our results imply that Affleck-Dine baryogenesis can be realized in a broader range of supersymmetry and inflation models than expected in the literature.

  5. Goldstone inflation

    International Nuclear Information System (INIS)

    Croon, Djuna; Sanz, Verónica; Setford, Jack

    2015-01-01

    Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.

  6. Goldstone inflation

    Energy Technology Data Exchange (ETDEWEB)

    Croon, Djuna; Sanz, Verónica; Setford, Jack [Department of Physics and Astronomy, University of Sussex,Brighton BN1 9QH (United Kingdom)

    2015-10-05

    Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.

  7. Goldstone inflation

    Science.gov (United States)

    Croon, Djuna; Sanz, Verónica; Setford, Jack

    2015-10-01

    Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.

  8. Dark energy from gravitoelectromagnetic inflation?

    International Nuclear Information System (INIS)

    Membiela, A.; Bellini, M.

    2008-01-01

    Gravitoelectromagnetic Inflation (GI) was introduced to describe in a unified manner electromagnetic, gravitatory and inflation fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields B i = A i /a produced during inflation could be the source of dark energy in the Universe.

  9. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  10. Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation

    International Nuclear Information System (INIS)

    Naruko, Atsushi; Yamaguchi, Masahide; Komatsu, Eiichiro

    2015-01-01

    The presence of a light vector field coupled to a scalar field during inflation makes a distinct prediction: the observed correlation functions of the cosmic microwave background (CMB) become statistically anisotropic. We study the implications of the current bound on statistical anisotropy derived from the Planck 2013 CMB temperature data for such a model. The previous calculations based on the attractor solution indicate that the magnitude of anisotropy in the power spectrum is proportional to N 2 , where N is the number of e-folds of inflation counted from the end of inflation. In this paper, we show that the attractor solution is not necessarily compatible with the current bound, and derive new predictions using another branch of anisotropic inflation. In addition, we improve upon the calculation of the mode function of perturbations by including the leading-order slow-roll corrections. We find that the anisotropy is roughly proportional to [2(ε H +4η H )/3−4(c−1)] −2 , where ε H and η H are the usual slow-roll parameters and c is the parameter in the model, regardless of the form of potential of an inflaton field. The bound from Planck implies that breaking of rotational invariance during inflation (characterized by the background homogeneous shear divided by the Hubble rate) is limited to be less than O(10 −9 ). This bound is many orders of magnitude smaller than the amplitude of breaking of time translation invariance, which is observed to be O(10 −2 )

  11. Linear inflation from quartic potential

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan; Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Tartu (Estonia)

    2016-01-07

    We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton’s non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.

  12. Optimal inflation for the U.S.

    OpenAIRE

    Roberto M. Billi

    2007-01-01

    What is the correctly measured inflation rate that monetary policy should aim for in the long-run? This paper characterizes the optimal inflation rate for the U.S. economy in a New Keynesian sticky-price model with an occasionally binding zero lower bound on the nominal interest rate. Real-rate and mark-up shocks jointly determine the optimal inflation rate to be positive but not large. Even allowing for the possibility of extreme model misspecification, the optimal inflation rate is robustly...

  13. Eternal inflation

    CERN Document Server

    Winitzki, Sergei

    2009-01-01

    This volume is the only monograph covering the exciting and dazzling recent developments in quantum cosmology, including the theory of the "multiverse" and eternal inflation pioneered by A Vilenkin, A Linde, S W Hawking, and others. Written by a leading expert in the field known for his depth and clarity of presentation, the volume presents an overview of 20 years of development of the theory of eternal inflation as well as a comprehensive, research-level introduction into the current methods and problems. This volume is invaluable for researchers as a definitive reference in the rapidly devel

  14. Cointegration Approach to Analysing Inflation in Croatia

    Directory of Open Access Journals (Sweden)

    Lena Malešević-Perović

    2009-06-01

    Full Text Available The aim of this paper is to analyse the determinants of inflation in Croatia in the period 1994:6-2006:6. We use a cointegration approach and find that increases in wages positively influence inflation in the long-run. Furthermore, in the period from June 1994 onward, the depreciation of the currency also contributed to inflation. Money does not explain Croatian inflation. This irrelevance of the money supply is consistent with its endogeneity to exchange rate targeting, whereby the money supply is determined by developments in the foreign exchange market. The value of inflation in the previous period is also found to be significant, thus indicating some inflation inertia.

  15. Gauge fields and inflation

    Science.gov (United States)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  16. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Science.gov (United States)

    2010-10-01

    ... Inspections § 169.849 Posting placards containing instructions for launching and inflating inflatable... accessible to the ship's company and guests approved placards containing instructions for launching and... determined by the Officer in Charge, Marine Inspection. ...

  17. Sneutrino Hybrid Inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan

    2006-01-01

    We review the scenario of sneutrino hybrid inflation, where one of the singlet sneutrinos, the superpartners of the right-handed neutrinos, plays the role of the inflaton. In a minimal model of sneutrino hybrid inflation, the spectral index is given by ns ≅ 1 + 2γ. With γ = 0.025 ± 0.01 constrained by WMAP, a running spectral index vertical bar dns/dlnk vertical bar << vertical barγvertical bar and a tensor-to-scalar ratio r << γ2 are predicted. Small neutrino masses arise from the seesaw mechanism, with heavy masses for the singlet (s)neutrinos generated by the vacuum expectation value of the waterfall field after inflation. The baryon asymmetry of the universe can be explained by non-thermal leptogenesis via sneutrino inflaton decay, with low reheat temperature TRH ≅ 106 GeV

  18. 12 CFR 1780.80 - Inflation adjustments.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Inflation adjustments. 1780.80 Section 1780.80... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Civil Money Penalty Inflation Adjustments § 1780.80 Inflation adjustments. The maximum amount of each civil money penalty within OFHEO's...

  19. Curvaton and the inhomogeneous end of inflation

    International Nuclear Information System (INIS)

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein

    2012-01-01

    We study the primordial density perturbations and non-Gaussianities generated from the combined effects of an inhomogeneous end of inflation and curvaton decay in hybrid inflation. This dual role is played by a single isocurvature field which is massless during inflation but acquire a mass at the end of inflation via the waterfall phase transition. We calculate the resulting primordial non-Gaussianity characterized by the non-linearity parameter, f NL , recovering the usual end-of-inflation result when the field decays promptly and the usual curvaton result if the field decays sufficiently late

  20. Scalar-tensor linear inflation

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.

  1. Predictability of Competing Measures of Core Inflation: An Application for Peru Predictability of Competing Measures of Core Inflation: An Application for Peru

    OpenAIRE

    Luis F. Zegarra; Eduardo Morón

    1999-01-01

    A central element of an inflation targeting approach to monetary policy is a proper measure of inflation. The international evidence suggests the use of core inflation measures. In this paper we claim that core inflation should be measured as the underlying trend of inflation that comes from nominal shocks that have no real effect in the long term. However, most of the time core inflation is computed zero weighting observations at the tail of the inflation distribution. Quah and Vahey (1996) ...

  2. The properties of inflation expectations: Evidence for India

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Sharma

    2018-01-01

    Full Text Available Empirical inferences about particular forms of agents’ inflation expectations are crucial for the conduct of monetary policy. This paper is an attempt to explore the properties of the Reserve Bank of India’s survey data of households’ inflation expectations. The paper shows that survey respondents do not form expectations rationally, regardless of the reference measures of inflation used. Further, results indicate that inflation expectations are formed purely in backward-looking manner, suggesting that the Reserve Bank of India (RBI has a low degree of credibility within the survey respondents. The study then formulates a model to identify individual elements of the backward-looking expectations in the data. The results suggest that the respondents’ short term expectations for WPI inflation are purely naïve type of expectations, only influenced by respondents earlier period expectations. In the case of CPIIW inflation, the results however suggest that the short-term expectations are not purely naïve type, but also contain adaptive as well as a static forms of expectations. This means that respondents consider their previous forecast errors about CPIIW inflation and draw recent price developments in the CPIIW while forming their overall short-term inflation expectations. This finding provides some formal evidence that the CPI based inflation measure is better suited, than WPI inflation, as a nominal anchor in the RBI’s recent transition to inflation targeting regime. JEL classification: D84, E31, E52, E37, Keywords: Inflation, Inflation expectations, Survey data, Price index, Monetary policy, Forecasting

  3. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  4. Ergodicity of the Stochastic Nosé-Hoover Heat Bath

    Science.gov (United States)

    Wei Chung Lo,; Baowen Li,

    2010-07-01

    We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn. 77 (2008) 103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single- and many-body systems.

  5. Fluctuation behaviors of financial time series by a stochastic Ising system on a Sierpinski carpet lattice

    Science.gov (United States)

    Fang, Wen; Wang, Jun

    2013-09-01

    We develop a financial market model using an Ising spin system on a Sierpinski carpet lattice that breaks the equal status of each spin. To study the fluctuation behavior of the financial model, we present numerical research based on Monte Carlo simulation in conjunction with the statistical analysis and multifractal analysis of the financial time series. We extract the multifractal spectra by selecting various lattice size values of the Sierpinski carpet, and the inverse temperature of the Ising dynamic system. We also investigate the statistical fluctuation behavior, the time-varying volatility clustering, and the multifractality of returns for the indices SSE, SZSE, DJIA, IXIC, S&P500, HSI, N225, and for the simulation data derived from the Ising model on the Sierpinski carpet lattice. A numerical study of the model’s dynamical properties reveals that this financial model reproduces important features of the empirical data.

  6. Accidental inflation from Kähler uplifting

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, Ido; Westphal, Alexander; Wieck, Clemens [Deutsches Elektronen-Synchrotron DESY, Theory Group, Notkestrasse 85, D-22603 Hamburg (Germany); Jing, Shenglin, E-mail: ido.bendayan@desy.de, E-mail: shenglin.jing@utoronto.ca, E-mail: alexander.westphal@desy.de, E-mail: clemens.wieck@desy.de [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St.George Street, Toronto, ON, M5S 3H8 (Canada)

    2014-03-01

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ''left-rolling'' ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ''inflation by deflation'' (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α ∼ 0.012 and enhanced tensor-to-scalar ratio r ∼ 10{sup −5}. The latter results differ significantly from many string inflation models.

  7. When Parents' Praise Inflates, Children's Self-Esteem Deflates.

    Science.gov (United States)

    Brummelman, Eddie; Nelemans, Stefanie A; Thomaes, Sander; Orobio de Castro, Bram

    2017-11-01

    Western parents often give children overly positive, inflated praise. One perspective holds that inflated praise sets unattainable standards for children, eventually lowering children's self-esteem (self-deflation hypothesis). Another perspective holds that children internalize inflated praise to form narcissistic self-views (self-inflation hypothesis). These perspectives were tested in an observational-longitudinal study (120 parent-child dyads from the Netherlands) in late childhood (ages 7-11), when narcissism and self-esteem first emerge. Supporting the self-deflation hypothesis, parents' inflated praise predicted lower self-esteem in children. Partly supporting the self-inflation hypothesis, parents' inflated praise predicted higher narcissism-but only in children with high self-esteem. Noninflated praise predicted neither self-esteem nor narcissism. Thus, inflated praise may foster the self-views it seeks to prevent. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  8. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  9. Development of random geometry capability in RMC code for stochastic media analysis

    International Nuclear Information System (INIS)

    Liu, Shichang; She, Ding; Liang, Jin-gang; Wang, Kan

    2015-01-01

    Highlights: • Monte Carlo method plays an important role in modeling of particle transport in random media. • Three stochastic geometry modeling methods have been developed in RMC. • The stochastic effects of the randomly dispersed fuel particles are analyzed. • Investigation of accuracy and efficiency of three methods has been carried out. • All the methods are effective, and explicit modeling is regarded as the best choice. - Abstract: Simulation of particle transport in random media poses a challenge for traditional deterministic transport methods, due to the significant effects of spatial and energy self-shielding. Monte Carlo method plays an important role in accurate simulation of random media, owing to its flexible geometry modeling and the use of continuous-energy nuclear cross sections. Three stochastic geometry modeling methods including Random Lattice Method, Chord Length Sampling and explicit modeling approach with mesh acceleration technique, have been developed in RMC to simulate the particle transport in the dispersed fuels. The verifications of the accuracy and the investigations of the calculation efficiency have been carried out. The stochastic effects of the randomly dispersed fuel particles are also analyzed. The results show that all three stochastic geometry modeling methods can account for the effects of the random dispersion of fuel particles, and the explicit modeling method can be regarded as the best choice

  10. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Theory Division, CERN, Route de Meyrin 385, 1217 Meyrin (Switzerland); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-23

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  11. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih, E-mail: john.ellis@cern.ch, E-mail: tomas.gonzalo.11@ucl.ac.uk, E-mail: j.harz@ucl.ac.uk, E-mail: wei-chih.huang@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  12. Flipped GUT Inflation

    CERN Document Server

    Ellis, John; Harz, Julia; Huang, Wei-Chih

    2015-01-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)$\\times$U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, $A_s$, and the tilt in the scalar perturbation spectrum, $n_s$, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, $r$. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  13. On inflation in the heterotic superstring model

    International Nuclear Information System (INIS)

    Maeda, K.; Pollock, M.D.

    1985-11-01

    We consider the possibility of achieving inflation in the field-theory limit of the E 8 xE 8 superstring model. We show that neither type I inflation nor inflation due to a SUSY-breaking gaugino-condensation potential, is possible, essentially because of the absence of free dimensionless parameters. Kaluza-Klein type inflation is ruled out because the internal space is Ricci flat. The occurrence of type II inflation (due to some gauge singlet 'inflaton' field phi) depends upon the form of the superpotential F and of the Kaehler potential G, but this also seems not to be possible, unless the SU(n,1) symmetry can be broken in a particular way. Hence, some new type of compactification scheme may be called for, or a different type of inflation

  14. Trapped Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel; Horn, Bart; /SLAC /Stanford U., Phys. Dept.; Senatore, Leonardo; /Princeton, Inst. Advanced Study /Harvard U., Phys. Dept. /Harvard-Smithsonian Ctr. Astrophys.; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field on a steep potential, and show how it descends from angular moduli in string compactifications. The analysis of density perturbations - taking into account the integrated effect of the produced particles and their quantum fluctuations - requires somewhat new techniques that we develop. We then determine the conditions for this effect to produce sixty e-foldings of inflation with the correct amplitude of density perturbations at the Gaussian level, and show that these requirements can be straightforwardly satisfied. Finally, we estimate the amplitude of the non-Gaussianity in the power spectrum and find a significant equilateral contribution.

  15. Consumer's inflation expectations in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Ormonde Teixeira

    Full Text Available Abstract This paper investigates what are the main components of consumer's inflation expectations. We combine the FGV's Consumer Survey with the indices of inflation (IPCA and government regulated prices, professional forecasts disclosed in the Focus report, and media data which we crawl from one of the biggest and most important Brazilian newspapers, Folha de São Paulo, to determine what factors are responsible for and improve consumer's forecast accuracy. We found gender, age and city of residence as major elements when analyzing micro-data. Aggregate data shows the past inflation as an important trigger in the formation of consumers' expectations and professional forecasts as negligible. Moreover, the media plays a significant role, accounting not only for the expectations' formation but for a better understanding of actual inflation as well.

  16. Effects of QCD equation of state on the stochastic gravitational wave background

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Mohanty, Subhendra [Physical Research Laboratory, Ahmedabad 380009 (India); Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in [Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)

    2017-03-01

    Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25% as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.

  17. Aspects of supersymmetric inflation

    International Nuclear Information System (INIS)

    Lindblom, P.R.

    1987-01-01

    A new supersymmetric inflationary model is presented and shown to possess the following features: a successful slow rollover produced by quantum corrections; an acceptable pattern of supersymmetry breaking leading to the correct value of the electroweak scale; and a stable slow rollover transition to a minimum with vanishing cosmological constant. It is demonstrated that there is a class of GUT models which are compatible with an inflationary universe scenario in which: (a) the GUT and inflationary phase transitions are distinct (as in supersymmetric inflation); and (b) an observable number of GUT monopoles are created thermally due to reheating of the GUT sector after inflation. This provides one of the few ways of reconciling an observation of GUT monopoles with inflation. New techniques are developed for constructing inflationary models with multiple inflation fields, such as generalizing the one-dimensional slow rollover constraints and estimating the contribution to δρ/ρ from fluctuations transverse to the path of the slow rollover. A new method for ending the slow rollover portion of the inflationary transition is developed

  18. Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    International Nuclear Information System (INIS)

    Hirai, Shiro; Takami, Tomoyuki

    2006-01-01

    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(η) = (-η) p = t q . Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson microwave anisotropy probe (WMAP) data and the ΛCDM model, such as suppression of the spectrum at l = 2, 3 and oscillatory behaviour, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q ≥ 300. The proposed models retain similar values of χ 2 to that achieved by the ΛCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l ≤ 20

  19. Stochastic Turing Patterns: Analysis of Compartment-Based Approaches

    KAUST Repository

    Cao, Yang; Erban, Radek

    2014-01-01

    © 2014, Society for Mathematical Biology. Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.

  20. Stochastic Turing Patterns: Analysis of Compartment-Based Approaches

    KAUST Repository

    Cao, Yang

    2014-11-25

    © 2014, Society for Mathematical Biology. Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.

  1. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  2. Primordial black hole production in Critical Higgs Inflation

    Directory of Open Access Journals (Sweden)

    Jose María Ezquiaga

    2018-01-01

    Full Text Available Primordial Black Holes (PBH arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI, where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ(μ and its non-minimal coupling to gravity ξ(μ. We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01–100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  3. Primordial black hole production in Critical Higgs Inflation

    Science.gov (United States)

    Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester

    2018-01-01

    Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  4. The inflation sector of extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1990-11-01

    In extended inflation the inflationary era is brought to a close by the process of percolation of true vacuum bubbles produced in a first-order phase transition. In this paper I discuss several effects that might obtain if the Universe undergoes an inflationary first-order phase transition. 17 refs

  5. Robustness of inflation to inhomogeneous initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clough, Katy; Lim, Eugene A. [Theoretical Particle Physics and Cosmology Group, Physics Department, Kings College London, Strand, London WC2R 2LS (United Kingdom); DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia, E-mail: katy.clough@kcl.ac.uk, E-mail: eugene.a.lim@gmail.com, E-mail: bsd86@physics.utexas.edu, E-mail: fischler@physics.utexas.edu, E-mail: flauger@physics.utexas.edu, E-mail: paban@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX, 78712 (United States)

    2017-09-01

    We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K , such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.

  6. An evaluation of inflation expectations in Turkey

    Directory of Open Access Journals (Sweden)

    Barış Soybilgen

    2017-03-01

    Full Text Available Expectations of inflation play a critical role in the process of price setting in the market. Central banks closely follow developments in inflation expectations to implement a successful monetary policy. The Central Bank of the Republic of Turkey (CBRT conducts a survey of experts and decision makers in the financial and real sectors to reveal market expectations and predictions of current and future inflation. The survey is conducted every month. This paper examines the accuracy of these survey predictions using forecast evaluation techniques. We focus on both point and sign accuracy of the predictions. Although point predictions from CBRT surveys are compared with those of autoregressive models, sign predictions are evaluated on their value to a user. We also test the predictions for bias. Unlike the empirical evidence from other economies, our results show that autoregressive models outperform most of inflation expectations in forecasting inflation. This indicates that inflation expectations have poor point forecast accuracies. However, we show that sign predictions for all inflation expectations have value to a user.

  7. Inflation targeting and economic performance: The case of Mexico

    Directory of Open Access Journals (Sweden)

    Carrasco Carlos A.

    2011-01-01

    Full Text Available In the paper we analyze the impact of Inflation Targeting (IT in Mexico. The objective is to evaluate the impact of the implementation of inflation targeting and full-fledged inflation targeting (FFIT on the level and the variability of the inflation and the output in the Mexican economy. We conclude that inflation rates had been reduced in Mexico before the introduction of IT and FFIT. In our opinion, the structural reforms, including the Banxico reforms, are the main determinants of the decrease in inflation and its variability. The main impact of IT would have been the lock-in of inflation expectations around a low rate of inflation.

  8. ππ P-wave resonant scattering from lattice QCD

    Directory of Open Access Journals (Sweden)

    Paul Srijit

    2018-01-01

    Full Text Available We present a high-statistics analysis of the ρ resonance in ππ scattering, using 2 + 1 flavors of clover fermions at a pion mass of approximately 320 MeV and a lattice size of approximately 3:6 fm. The computation of the two-point functions are carried out using combinations of forward, sequential, and stochastic propagators. For the extraction of the ρ-resonance parameters, we compare different fit methods and demonstrate their consistency. For the ππ scattering phase shift, we consider different Breit-Wigner parametrizations and also investigate possible nonresonant contributions. We find that the minimal Breit-Wigner model is suffcient to describe our data, and obtain amρ = 0:4609(16stat(14sys and gρππ = 5:69(13stat(16sys. In our comparison with other lattice QCD results, we consider the dimensionless ratios amρ/amN and amπ/amN to avoid scale setting ambiguities.

  9. ππ P-wave resonant scattering from lattice QCD

    Science.gov (United States)

    Paul, Srijit; Alexandrou, Constantia; Leskovec, Luka; Meinel, Stefan; Negele, John W.; Petschlies, Marcus; Pochinsky, Andrew; Rendon Suzuki, Jesus Gumaro; Syritsyn, Sergey

    2018-03-01

    We present a high-statistics analysis of the ρ resonance in ππ scattering, using 2 + 1 flavors of clover fermions at a pion mass of approximately 320 MeV and a lattice size of approximately 3:6 fm. The computation of the two-point functions are carried out using combinations of forward, sequential, and stochastic propagators. For the extraction of the ρ-resonance parameters, we compare different fit methods and demonstrate their consistency. For the ππ scattering phase shift, we consider different Breit-Wigner parametrizations and also investigate possible nonresonant contributions. We find that the minimal Breit-Wigner model is suffcient to describe our data, and obtain amρ = 0:4609(16)stat(14)sys and gρππ = 5:69(13)stat(16)sys. In our comparison with other lattice QCD results, we consider the dimensionless ratios amρ/amN and amπ/amN to avoid scale setting ambiguities.

  10. Determinant and impacts of dynamic inflation in Ethiopia

    OpenAIRE

    Biresaw, Temesgen Tezera

    2014-01-01

    This thesis uses quarterly data for the period 1998-2010 to investigate the determinant and impacts of dynamic inflation in Ethiopia. By using Granger causality model approach four testable hypotheses are investigated: (1) does the money supply growth Granger-cause inflation? (2) Does currency devaluation Granger cause inflation? (3) Does inflation affect economic growth? And (4) Does oil price Granger cause of inflation? The empirical results suggest that there existed a bi-directional ...

  11. A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company

    International Nuclear Information System (INIS)

    Ahmadi, Abdollah; Charwand, Mansour; Siano, Pierluigi; Nezhad, Ali Esmaeel; Sarno, Debora; Gitizadeh, Mohsen; Raeisi, Fatima

    2016-01-01

    In order to supply the demands of the end users in a competitive market, a distribution company purchases energy from the wholesale market while other options would be in access in the case of possessing distributed generation units and interruptible loads. In this regard, this study presents a two-stage stochastic programming model for a distribution company energy acquisition market model to manage the involvement of different electric energy resources characterized by uncertainties with the minimum cost. In particular, the distribution company operations planning over a day-ahead horizon is modeled as a stochastic mathematical optimization, with the objective of minimizing costs. By this, distribution company decisions on grid purchase, owned distributed generation units and interruptible load scheduling are determined. Then, these decisions are considered as boundary constraints to a second step, which deals with distribution company's operations in the hour-ahead market with the objective of minimizing the short-term cost. The uncertainties in spot market prices and wind speed are modeled by means of probability distribution functions of their forecast errors and the roulette wheel mechanism and lattice Monte Carlo simulation are used to generate scenarios. Numerical results show the capability of the proposed method. - Highlights: • Proposing a new a stochastic-based two-stage operations framework in retail competitive markets. • Proposing a Mixed Integer Non-Linear stochastic programming. • Employing roulette wheel mechanism and Lattice Monte Carlo Simulation.

  12. Project Evaluation under Inflation Condition

    International Nuclear Information System (INIS)

    Hindy, M.; El Missiry, P.

    2004-01-01

    This paper analyzes the role of inflation in capital budgeting and attempts to introduce solutions to such implication in order to make the appropriate decision for the firm' stockholders under these circumstances. Inflation leads to biasness in evaluating the investment projects, due to its impact on the cash flow, the discount rate, the initial investment cost, and the depreciation. This paper has shown that the capital budgeting process is not neutral with respect to inflation, as the output prices will raise as well as the operating and capital expenditures will also be adjusted due to inflation. In addition, it has shown that it is reasonable to expect that the cost of capital will increase as a result of an increase in the real interest rate, the inflation premium, and the cost of equity. Of critical importance is the basis used in calculating the annual depreciation which may lead to the transfer of wealth from the investment projects to the government and will result in underestimating the net present value of the investment projects, if these depreciation charges is calculated based upon the historical values and not on the replacement cost of the fixed assets

  13. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  14. Chain inflation revisited

    International Nuclear Information System (INIS)

    Chialva, Diego; Danielsson, Ulf H

    2008-01-01

    This paper represents an in-depth treatment of the chain inflation scenario. We fully determine the evolution of the universe in the model, the conditions necessary in order to have a successful inflationary period, and the matching with the observational results regarding the cosmological perturbations. We study in great detail, and in general, the dynamics of the background, as well as the mechanism of generation of the perturbations. We also find an explicit formula for the spectrum of adiabatic perturbations. Our results prove that chain inflation is a viable model for solving the horizon, entropy and flatness problems of standard cosmology and for generating the right amount of adiabatic cosmological perturbations. The results are radically different from those found in previous works on the subject. Finally, we argue that there is a natural way to embed chain inflation into flux compactified string theory. We discuss the details of the implementation and how to fit observations

  15. On the constant-roll inflation

    Science.gov (United States)

    Yi, Zhu; Gong, Yungui

    2018-03-01

    The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approximation may be invalid. We compare the numerical results with the analytical results derived from the Bessel function approximation, and we find that they differ significantly on super-horizon scales if the constant slow-roll parameter ηH is not small. More accurate method is needed for calculating the primordial power spectrum for constant-roll inflation.

  16. D-term uplifted racetrack inflation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [Unite de Recherche associee au CNRS, Gif sur Yvette (France). Service de Physique Theorique, CEA/DSM/SPhT; Davis, A.C. [Cambridge Univ. (United Kingdom). DAMTP, Centre for Mathematical Sciences; Davis, S.C. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies; Jeannerot, R. [Instituut-Lorentz for Theoretical Physics, Leiden (Netherlands); Postma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2007-10-15

    It is shown that racetrack inflation can be implemented in a moduli stabilisation scenario with a supersymmetric uplifting D-term. The resulting model is completely described by an effective supergravity theory, in contrast to the original racetrack models. We study the inflationary dynamics and show that the gaugino condensates vary during inflation. The resulting spectral index is n{sub s} {approx}0.95 as in the original racetrack inflation model. Hence extra fields do not appear to alter the predictions of the model. An equivalent, simplified model with just a single field is presented. (orig.)

  17. Accidental Kähler moduli inflation

    International Nuclear Information System (INIS)

    Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske

    2015-01-01

    We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model

  18. 78 FR 5722 - Civil Monetary Penalty Inflation Adjustment

    Science.gov (United States)

    2013-01-28

    ... Civil Monetary Penalty Inflation Adjustment AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Direct... for inflation. The adjustment of civil penalties to account for inflation is required by the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended. Since we have not made any adjustments to...

  19. 78 FR 5760 - Civil Monetary Penalty Inflation Adjustment

    Science.gov (United States)

    2013-01-28

    ... Civil Monetary Penalty Inflation Adjustment AGENCY: U.S. Army Corps of Engineers, DoD. ACTION: Proposed... account for inflation. The adjustment of civil penalties to account for inflation is required by the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended. Since we have not made any...

  20. Sneutrino hybrid inflation and nonthermal leptogenesis

    International Nuclear Information System (INIS)

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M.

    2010-01-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters

  1. Non-stochastic Ti-6Al-4V foam structures with negative Poisson's ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li, E-mail: lyang5@ncsu.edu [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States); Cormier, Denis, E-mail: drceie@rit.edu [Department of Industrial Systems Engineering, Rochester Institute of Technology, 81 Lomb Memorial Drive, Rochester, NY 14623-5603 (United States); West, Harvey, E-mail: hawest@ncsu.edu [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States); Harrysson, Ola, E-mail: harrysson@ncsu.edu [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States); Knowlson, Kyle, E-mail: kyle.knowlson@gmail.com [Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, 400 Daniels Hall, 111 Lampe Drive, Raleigh, NC 27695 (United States)

    2012-12-15

    This paper details the design, fabrication, and testing of non-stochastic auxetic lattice lattice structures. All Ti-6Al-4V samples were created via the Electron Beam Melting (EBM) additive manufacturing process. It was found that the Poisson's ratio values significantly influence the mechanical properties of the structures. The bending properties of the auxetic samples were significantly higher than those of currently commercialized metal foams. The compressive strength was moderately higher than available metal foams. These results suggest that metallic auxetic structures have considerable promise for use in a variety of applications in which tradeoffs between mass and mechanical properties are crucial.

  2. Aspects of confinement in QCD from lattice simulations

    International Nuclear Information System (INIS)

    Spielmann, Daniel

    2011-01-01

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  3. Aspects of confinement in QCD from lattice simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Daniel

    2011-01-12

    We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)

  4. Primordial perturbations in multi-scalar inflation

    Energy Technology Data Exchange (ETDEWEB)

    Abedi, Habib; Abbassi, Amir M., E-mail: h.abedi@ut.ac.ir, E-mail: amabasi@khayam.ut.ac.ir [Department of Physics, University of Tehran, North Kargar Ave, Tehran (Iran, Islamic Republic of)

    2017-07-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolutions. Then we focus on obtaining derivatives of number of e-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  5. Inflation differentials among Czech households

    Czech Academy of Sciences Publication Activity Database

    Janský, Petr; Hait, Pavel

    2016-01-01

    Roč. 25, č. 1 (2016), s. 71-84 ISSN 1210-0455 R&D Projects: GA TA ČR(CZ) TD020188 Institutional support: RVO:67985998 Keywords : households * inflation * inflation differentials Subject RIV: AH - Economics Impact factor: 0.710, year: 2016

  6. 12 CFR 263.65 - Civil penalty inflation adjustments.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Civil penalty inflation adjustments. 263.65... Money Penalties § 263.65 Civil penalty inflation adjustments. (a) Inflation adjustments. In accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note), the Board has...

  7. Inflation Experiences in Latin America, 2007-2008

    OpenAIRE

    Mark Weisbrot; David Rosnick

    2009-01-01

    This paper looks briefly at the recent inflation experiences of ten Latin American countries: Brazil, Mexico, Venezuela, Colombia, Chile, Peru, Ecuador, Guatemala, the Dominican Republic, and Bolivia. The authors construct a core inflation index (excluding food and energy), and look at three-month changes in both headline and core inflation. The paper focuses on the increase in inflation from April 2007 to July 2008, driven by a surge in food and energy prices worldwide. These prices have sin...

  8. Transdimensional physics and inflation

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Kolb, Edward W.; Lesgourgues, Julien; Riotto, Antonio

    2002-01-01

    Within the framework of a five-dimensional brane world with a stabilized radion, we compute the cosmological perturbations generated during inflation and show that the perturbations are a powerful tool to probe the physics of extra dimensions. While we find that the power spectrum of scalar perturbations is unchanged, we show that the existence of the fifth dimension is imprinted on the spectrum of gravitational waves generated during inflation. In particular, we find that the tensor perturbations receive a correction proportional to (HR) 2 , where H is the Hubble expansion rate during inflation and R is the size of the extra dimension. We also generalize our findings to the case of several extra dimensions as well as to warped geometries

  9. Transdimensional physics and inflation

    CERN Document Server

    Giudice, Gian Francesco; Lesgourgues, Julien; Riotto, Antonio; Giudice, Gian F.; Kolb, Edward W.; Lesgourgues, Julien; Riotto, Antonio

    2002-01-01

    Within the framework of a five-dimensional brane world with a stabilized radion, we compute the cosmological perturbations generated during inflation and show that the perturbations are a powerful tool to probe the physics of extra dimensions. While we find that the power spectrum of scalar perturbations is unchanged, we show that the existence of the fifth dimension is imprinted on the spectrum of gravitational waves generated during inflation. In particular, we find that the tensor perturbations receive a correction proportional to (HR)^2, where H is the Hubble expansion rate during inflation and R is the size of the extra dimension. We also generalize our findings to the case of several extra dimensions as well as to warped geometries.

  10. Inflation of Unreefed and Reefed Extraction Parachutes

    Science.gov (United States)

    Ray, Eric S.; Varela, Jose G.

    2015-01-01

    Data from the Orion and several other test programs have been used to reconstruct inflation parameters for 28 ft Do extraction parachutes as well as the parent aircraft pitch response during extraction. The inflation force generated by extraction parachutes is recorded directly during tow tests but is usually inferred from the payload accelerometer during Low Velocity Airdrop Delivery (LVAD) flight test extractions. Inflation parameters are dependent on the type of parent aircraft, number of canopies, and standard vs. high altitude extraction conditions. For standard altitudes, single canopy inflations are modeled as infinite mass, but the non-symmetric inflations in a cluster are modeled as finite mass. High altitude extractions have necessitated reefing the extraction parachutes, which are best modeled as infinite mass for those conditions. Distributions of aircraft pitch profiles and inflation parameters have been generated for use in Monte Carlo simulations of payload extractions.

  11. Clockwork Inflation

    CERN Document Server

    Kehagias, Alex

    2017-01-01

    We investigate the recently proposed clockwork mechanism delivering light degrees of freedom with suppressed interactions and show, with various examples, that it can be efficiently implemented in inflationary scenarios to generate flat inflaton potentials and small density perturbations without fine-tunings. We also study the clockwork graviton in de Sitter and, interestingly, we find that the corresponding clockwork charge is site-dependent. As a consequence, the amount of tensor modes is generically suppressed with respect to the standard cases where the clockwork set-up is not adopted. This point can be made a virtue in resurrecting models of inflation which were supposed to be ruled out because of the excessive amount of tensor modes from inflation.

  12. Flipped GUT inflation

    OpenAIRE

    Ellis, John; Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih

    2015-01-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model paramet...

  13. Symmetry and inflation

    International Nuclear Information System (INIS)

    Chimento, Luis P.

    2002-01-01

    We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology

  14. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    Science.gov (United States)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  15. Multi-brid inflation and non-gaussianity

    International Nuclear Information System (INIS)

    Sasaki, Misao

    2008-01-01

    We consider a class of multi-component hybrid inflation models whose evolution may be analytically solved under the slow-roll approximation. We call it multi-brid inflation (or n-brid inflation where n stands for the number of inflaton fields). As an explicit example, we consider a two-brid inflation model, in which the inflaton potentials are of exponential type and a waterfall field that terminates inflation has the standard quartic potential with two minima. Using the δN formalism, we derive an expression for the curvature perturbation valid to full nonlinear order. Then we give an explicit expression for the curvature perturbation to second order in the inflaton perturbation. We find that the final from of the curvature perturbation depends crucially on how the inflation ends. Using this expression, we present closed analytical expressions for the spectrum of the curvature perturbation Ps(k), the spectral index n s , the tensor to scalar ratio r, and the non-Gaussian parameter f NL local , in terms of the model parameters. We find that a wide range of the parameter space (n s , r, f NL local ) can be covered by varying the model parameters within a physically reasonable range. In particular, for plausible values of the model parameters, we may have a large non-Gaussianity f NL local ∼10-100. This is in sharp contrast to the case of single-field hybrid inflation in which these parameters are tightly constrained. (author)

  16. Does string theory lead to extended inflation?

    Science.gov (United States)

    Campbell, Bruce A.; Linde, Andrei; Olive, Keith A.

    1991-05-01

    We consider the relationship between string theory and currently proposed models of extended inflation. In doing so, we discuss the conformal actions in string theory and in Jordan-Brans-Dicke gravity. We show explicitly the equivalence of pictures in which either gauge or gravitational couplings are changing with time. We demonstrate that the existence of the dilation in string theory does not naturally lead to extended inflation as currently discussed. We also discuss the resolution of the graceful exit problem of old inflation in Einstein gravity using either power-law inflation, or exponential inflation with a changing bubble formation rate. On leave of absence from School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.

  17. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  18. Regional Inflation and Financial Dollarization

    NARCIS (Netherlands)

    Brown, M.; de Haas, R.; Sokolov, V.

    2013-01-01

    Abstract: We exploit variation in consumer price inflation across 71 Russian regions to examine the relationship between the perceived stability of the local currency and financial dollarization. Our results show that regions with higher inflation experience an increase in the dollarization of

  19. Symmetry breaking patterns for inflation

    Science.gov (United States)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2018-06-01

    We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.

  20. Taxation, Fiscal Deficit and Inflation in Pakistan

    Directory of Open Access Journals (Sweden)

    Ghulam Rasool Madni

    2014-09-01

    Full Text Available Fiscal policy has more controversial debate regarding its effectiveness on different macroeconomic activities of an economy. Taxation and government expenditure are two main instruments of fiscal policy. This paper is aimed to analyze and update the effects of different instruments of fiscal policy on inflation in Pakistan economy. The data time span for this study is 1979-2013. The impact of fiscal policy on inflation is analyzed by utilizing the Bounds testing procedure and ARDL approach of co-integration which is a better estimation technique for small sample size. It is found that investment negatively and significantly affect the inflation rate. The outcomes of the study show that both types of taxes (direct and indirect are causing to increase the inflation level while fiscal deficit is also one of the reasons to increase the inflation in the country. The study proposed that government should decrease the level of expenditure to reduce the level of fiscal deficit and investment have to be promoted to decrease the inflation in the country. Furthermore, it is also suggested to decrease the level of taxation for controlling inflation.

  1. Sneutrino hybrid inflation and nonthermal leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M., E-mail: antusch@mppmu.mpg.de, E-mail: jbaumann@mppmu.mpg.de, E-mail: domcke@mppmu.mpg.de, E-mail: kostka@mppmu.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2010-10-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters.

  2. Higgs portal valleys, stability and inflation

    CERN Document Server

    Ballesteros, Guillermo

    2015-01-01

    The measured values of the Higgs and top quark masses imply that the Standard Model potential is very likely to be unstable at large Higgs values. This is particularly problematic during inflation, which sources large perturbations of the Higgs. The instability could be cured by a threshold effect induced by a scalar with a large vacuum expectation value and directly connected to the Standard Model through a Higgs portal coupling. However, we find that in a minimal model in which the scalar generates inflation, this mechanism does not stabilize the potential because the mass required for inflation is beyond the instability scale. This conclusion does not change if the Higgs has a direct weak coupling to the scalar curvature. On the other hand, if the potential is absolutely stable, successful inflation in agreement with current CMB data can occur along a valley of the potential with a Mexican hat profile. We revisit the stability conditions, independently of inflation, and clarify that the threshold effect ca...

  3. Supersymmetric moduli stabilization and high-scale inflation

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Wieck, Clemens; Winkler, Martin Wolfgang

    2014-04-01

    We study the back-reaction of moduli fields on the inflaton potential in generic models of F-term inflation. We derive the moduli corrections as a power series in the ratio of Hubble scale and modulus mass. The general result is illustrated with two examples, hybrid inflation and chaotic inflation. We find that in both cases the decoupling of moduli dynamics and inflation requires moduli masses close to the scale of grand unification. For smaller moduli masses the CMB observables are strongly affected.

  4. Primordial inflation and the monopole problem

    International Nuclear Information System (INIS)

    Olive, K.A.; Seckel, D.

    1984-01-01

    This chapter discusses the cosmological abundance of magnetic monopoles in locally supersymmetry grand unified theories (GUTs) and primordial inflation. It is shown how the magnetic monopole problem can be solved in variants of broken N=1 supergravity primordial inflation. The monopole problem and its solution in inflationary models is reviewed. It is demonstrated that the monopole problem can be solved by coupling primordial inflation to supersymmetric SU(5) breaking

  5. Minimal Composite Inflation

    DEFF Research Database (Denmark)

    Channuie, Phongpichit; Jark Joergensen, Jakob; Sannino, Francesco

    2011-01-01

    We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity, and that the u......We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity...

  6. Forecasting Interest Rates and Inflation

    DEFF Research Database (Denmark)

    Chun, Albert Lee

    the best overall for short horizon forecasts of short to medium term yields and inflation. Econometric models with shrinkage perform the best over longer horizons and maturities. Aggregating over a larger set of analysts improves inflation surveys while generally degrading interest rates surveys. We...

  7. Bianchi models and new inflation

    International Nuclear Information System (INIS)

    Turner, M.S.; Widrow, L.

    1986-03-01

    The promise of the inflationary Universe scenario is to free the present state of the Universe from extreme dependence on initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker (RW) cosmological models. We show that all but a small subset of the homogeneous models (the Bianchi models) undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness/horizon problems the Universe today would still be very isotropic. Some of the Bianchi models will eventually (in the exponentially distant future) become very anisotropic again. 15 refs

  8. Natural inflation and quantum gravity.

    Science.gov (United States)

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  9. Inflation impact of food prices: Case of Serbia

    Directory of Open Access Journals (Sweden)

    Šoškić Dejan

    2015-01-01

    Full Text Available Food prices traditionally have an impact on inflation around the world. Movements in these prices are coming more from the supply side, then from the demand side. If treated as a supply shock, monetary policy should not react. However, food prices are part of headline inflation that is an official target for most central banks. Serbia conducts Inflation targeting and faces serious challenges with food price volatility. Food price volatility in Serbia hampers inflation forecasting, and may have a negative influence on inflationary expectations and public confidence in (i.e. credibility of the Central bank, all of crucial importance for success of Inflation targeting. There are several important possible improvements that may decrease volatility of food prices but also limit negative impact of food price volatility on Consumer Price Index (CPI as a measure of inflation. These improvements are very important for success of Inflation targeting in Serbia.

  10. Perturbative analysis of multiple-field cosmological inflation

    International Nuclear Information System (INIS)

    Lahiri, Joydev; Bhattacharya, Gautam

    2006-01-01

    We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented

  11. The Determinants of Inflation in Pakistan: An Econometric Analysis

    Directory of Open Access Journals (Sweden)

    Nazima Ellahi

    2017-09-01

    Full Text Available Inflation is not just a rise in general price level, but a much more complex phenomenon. It is well admitted fact that mild inflation is natural and a greasing factor to the wheel of economy and commerce and on the other hand, high inflation causes negative impact on economy. In order to formulate policies regarding its control and keeping it at a moderate level, it is necessary to explore its major determinants. Present study is an attempt to discuss the determinants of inflation in Pakistan utilizing a data set over 1975 to 2015. The empirical analysis is carried out with application of Auto Regressive Distributed Lag methodology. The estimation methods find the short run and long run impact of each variable on inflation and also found the speed of adjustment. Analysis used money supply, national expenditure, imports of goods and services and GDP growth as exogenous variables while taking inflation as an endogenous variable. Major preliminary findings suggested that money supply and national expenditure have significant effect on inflation, where national expenditure has a positive impact on inflation but money supply implies negative impact on inflation. Moreover, GDP growth has negative impact on inflation and imports of goods and services have positive impact on inflation. The findings for short run effect showed that none of the variable proves to be a significant determinant of inflation in short run. In sum, study suggested a few policy recommendations for keeping the inflation at level required for country to grow.

  12. Multifield DBI Inflation and Non-Gaussianities

    CERN Document Server

    Huang, Min-xin; Underwood, Bret

    2008-01-01

    We analyze the trajectories for multifield DBI inflation, which can arise in brane inflation models, and show that the trajectories are the same as in typical slow roll inflation. We calculate the power spectrum and find that the higher derivative terms of the DBI action lead to a suppression of the contribution from the isocurvature perturbations. We also calculate the bispectrum generated by the isocurvature perturbation, and find that it leads to distinctive features.

  13. Inflation and Stock Prices: No Illusion

    OpenAIRE

    Chao Wei

    2007-01-01

    Campbell and Vuolteenaho (2004) use VAR results to advocate inflation illusion as the explanation for the positive association between inflation and the dividend yield. Contrary to their results, we find that a fully rational dynamic general equilibrium model can generate a positive correlation between the dividend yield and inflation of comparable size to its data counterpart. The model results support a proxy hypothesis, according to which, a third factor, which in our model represents tech...

  14. Inflation Dynamics in India: An Analysis

    OpenAIRE

    Nair, Manju S

    2014-01-01

    India has exhibited high variability in inflation during the last eight years owing to both internal and external factors. The Global Financial Meltdown, recurrent increase in global oil prices, wage employment programmes, widening current account deficits etc resulted in fluctuations in inflation. These factors have a direct influence on variables like output, money supply, exchange rate which in turn affect inflation. In this context, the study employs a Cointegrated Vector Auto Regressi...

  15. Towards natural inflation in string theory

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Pedro, Francisco G.; Westphal, Alexander

    2014-07-01

    We provide type IIB string embeddings of two axion variants of natural inflation. We use a combination of RR 2 form axions as the inflaton field and have its potential generated by non perturbative effects in the superpotential. Besides giving rise to inflation, the models developed take into account the stabilization of the compact space, both in the KKLT and large volume scenario regimes, an essential condition for any semi-realistic model of string inflation.

  16. THE PROSPECT OF INFLATION TARGETING IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Zhandos Ybrayev

    2017-02-01

    Full Text Available Over the last two decades, there has been a significant increase in the number of countries that began to pursue an Inflation Targeting monetary policy framework. Since the collapse of the Soviet Union, each of the fifteen newly created independent countries started to develop and run their own autonomous monetary policies. Kazakhstan announced the implementation of an Inflation Targeting policy in August 2015. At the same time, a number of researches show that Inflation Targeting might not work as well for developing countries as it does for developed ones due to certain fundamental differences and preconditions that must be met before the implementation phase. Thus, this paper discusses the case of Kazakhstan as a typical emerging market economy example, examines its ability to respond to various external shocks and identifies the main transmission channels in order to contribute to the knowledge in this particular area. Identification assumptions generate contemporaneous monetary shocks on domestic inflation behavior, which also take into account various features of the small open economy as well as indicate different important transitory and persistent effects. The results show, based on the interpretation of impulse response functions, a positive interest rate shock has an uncertain inflationary impact, which raises questions about the effectiveness of interest rate manipulation in keeping inflation within the given band. In addition, a positive exchange rate shock leads to a stronger upward pressure in inflation rates. Finally, inflation inertia explains a substantial increase in future inflation rates.

  17. Fibre inflation and α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata; Linde, Andrei [Stanford Univ., Stanford, CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics; Leiden Univ. (Netherlands). Lorentz Inst. for Theoretical Physics; Roest, Diederik [Groningen Univ. (Netherlands). Van Swinderen Inst. for Particle Physics and Gravity; Westphal, Alexander [DESY, Hamburg (Germany). Theory Group; Yamada, Yusuke [Stanford Univ., Stanford, CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics

    2017-07-15

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α=2 and α=1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an D3 uplift term with a nilpotent superfield. Specific moduli dependent D3 induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  18. Fibre inflation and α-attractors

    Science.gov (United States)

    Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke

    2018-02-01

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  19. New Old Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia

    2003-10-03

    We propose a new class of inflationary solutions to the standard cosmological problems (horizon, flatness, monopole,...), based on a modification of old inflation. These models do not require a potential which satisfies the normal inflationary slow-roll conditions. Our universe arises from a single tunneling event as the inflaton leaves the false vacuum. Subsequent dynamics (arising from either the oscillations of the inflaton field or thermal effects) keep a second field trapped in a false minimum, resulting in an evanescent period of inflation (with roughly 50 e-foldings) inside the bubble. This easily allows the bubble to grow sufficiently large to contain our present horizon volume. Reheating is accomplished when the inflaton driving the last stage of inflation rolls down to the true vacuum, and adiabatic density perturbations arise from moduli-dependent Yukawa couplings of the inflaton to matter fields. Our scenario has several robust predictions, including virtual absence of gravity waves, a possible absence of tilt in scalar perturbations, and a higher degree of non-Gaussianity than other models. It also naturally incorporates a solution to the cosmological moduli problem.

  20. Low-ℓ power suppression in punctuated inflation

    International Nuclear Information System (INIS)

    Qureshi, Mussadiq H.; Iqbal, Asif; Malik, Manzoor A.; Souradeep, Tarun

    2017-01-01

    Motivated by Planck confirmation of an anomalously low value of the CMB temperature fluctuations up to multipole ℓ < 40, we in this paper try to explain such feature by investigating case of punctuated inflation scenario. This form of inflation potential is inspired by Minimal Super-symmetric Standard Model (MSSM) wherein suppression of curvature perturbation power at large scales is produced by introducing period of fast-roll phase of the inflation sandwiched between two stages of slow-roll phase. We apply Markov Chain Monte Carlo analysis to determine posterior distribution and the best fit values of the model parameters using recent WMAP9 and Planck data. We show that WMAP9 and Planck results are consistent with each other and that with Planck data we obtain tighter constraints for punctuated inflation parameters. We find that punctuated inflation leads to better fit in CMB data compared to simple power law model. The improvement in the fit to the WMAP9 data is Δ χ 2 ∼ 3.6 and for Planck the improvement is Δ χ 2 ∼ 5.4. We find that AIC does not discriminate between punctuated inflation and simple power law model for WMAP9 data. However, for Planck data we find that punctuated inflation is moderately preferred over a simple power law model.

  1. Seven lessons from manyfield inflation in random potentials

    International Nuclear Information System (INIS)

    Dias, Mafalda; Frazer, Jonathan; Marsh, M.C. David

    2017-06-01

    We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the 'transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of 'approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2-100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the 'generic predictions' of single-field inflation can be emergent features of complex inflation models.

  2. Seven lessons from manyfield inflation in random potentials

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Mafalda; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Marsh, M.C. David [Cambridge Univ. (United Kingdom). Dept. of Appllied Mathematics and Theoretical Physics

    2017-06-15

    We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the 'transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of 'approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2-100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the 'generic predictions' of single-field inflation can be emergent features of complex inflation models.

  3. Does Education Corrupt? Theories of Grade Inflation

    Science.gov (United States)

    Oleinik, Anton

    2009-01-01

    Several theories of grade inflation are discussed in this review article. It is argued that grade inflation results from the substitution of criteria specific to the search for truth by criteria of quality control generated outside of academia. Particular mechanisms of the grade inflation that occurs when a university is transformed into a…

  4. Directed Abelian algebras and their application to stochastic models.

    Science.gov (United States)

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  5. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchewka, M., E-mail: marmi@ur.edu.pl; Woźny, M.; Polit, J.; Sheregii, E. M. [Faculty of Mathematics and Natural Sciences, Centre for Microelectronics and Nanotechnology, University of Rzeszów, Pigonia 1, 35-959 Rzeszów (Poland); Kisiel, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Robouch, B. V.; Marcelli, A. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy)

    2014-03-21

    To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

  6. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

    International Nuclear Information System (INIS)

    Marchewka, M.; Woźny, M.; Polit, J.; Sheregii, E. M.; Kisiel, A.; Robouch, B. V.; Marcelli, A.

    2014-01-01

    To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra

  7. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

    Science.gov (United States)

    Marchewka, M.; Woźny, M.; Polit, J.; Kisiel, A.; Robouch, B. V.; Marcelli, A.; Sheregii, E. M.

    2014-03-01

    To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III-V and II-VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

  8. Oil price pass-through into inflation

    International Nuclear Information System (INIS)

    Chen, Shiu-Sheng

    2009-01-01

    This paper uses data from 19 industrialized countries to investigate oil price pass-through into inflation across countries and over time. A time-varying pass-through coefficient is estimated and the determinants of the recent declining effects of oil shocks on inflation are investigated. The appreciation of the domestic currency, a more active monetary policy in response to inflation, and a higher degree of trade openness are found to explain the decline in oil price pass-through. (author)

  9. The chaotic regime of D-term inflation

    Energy Technology Data Exchange (ETDEWEB)

    Buchmüller, W. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Domcke, V. [SISSA/INFN, Via Bonomea 265, 34136 Trieste (Italy); Schmitz, K., E-mail: wilfried.buchmueller@desy.de, E-mail: valerie.domcke@sissa.it, E-mail: kai.schmitz@ipmu.jp [Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa (Japan)

    2014-11-01

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.

  10. The chaotic regime of D-term inflation

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Domcke, V. [SISSA/INFN, Triest (Italy); Schmitz, K. [Kavli IPMU (WPI), Kashiwa (Japan)

    2014-08-15

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.

  11. The chaotic regime of D-term inflation

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Schmitz, K.

    2014-08-01

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.

  12. The chaotic regime of D-term inflation

    International Nuclear Information System (INIS)

    Buchmüller, W.; Domcke, V.; Schmitz, K.

    2014-01-01

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'

  13. The chaotic regime of D-term inflation

    Science.gov (United States)

    Buchmüller, W.; Domcke, V.; Schmitz, K.

    2014-11-01

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of `chaotic inflation'.

  14. Interest and Inflation Risk: Investor Behavior

    Directory of Open Access Journals (Sweden)

    María de la O eGonzález

    2016-03-01

    Full Text Available We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation.

  15. Interest and Inflation Risk: Investor Behavior

    Science.gov (United States)

    González, María de la O; Jareño, Francisco; Skinner, Frank S.

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation. PMID:27047418

  16. Interest and Inflation Risk: Investor Behavior.

    Science.gov (United States)

    González, María de la O; Jareño, Francisco; Skinner, Frank S

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation.

  17. CMB spectral distortion constraints on thermal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Stewart, Ewan D. [Department of Physics, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Sungwook E. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Zoe, Heeseung, E-mail: cho_physics@kaist.ac.kr, E-mail: heezoe@dgist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988 (Korea, Republic of)

    2017-08-01

    Thermal inflation is a second epoch of exponential expansion at typical energy scales V {sup 1/4} ∼ 10{sup 6} {sup ∼} {sup 8} GeV. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k > k {sub b} = a {sub b} H {sub b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For k {sub b} || 10{sup 3} Mpc{sup −1}, thermal inflation results in a large suppression of the μ-distortion amplitude, predicting that it falls well below the standard value of μ ≅ 2× 10{sup −8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining k {sub b} ∼> 10{sup 3} Mpc{sup −1} if μ ≅ 2× 10{sup −8} were found.

  18. Effects of thermal inflation on small scale density perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)

    2015-06-01

    In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.

  19. Higgs Inflation as a Mirage

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After reviewing the nice properties of Higgs inflation and some of its problems, I will discuss a simple unitarization of the scenario that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Inflationary dynamics is not dominated by the Higgs field, but 'Higgs inflation' arises as an approximate 'mirage' picture of the true dynamics. I will speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.

  20. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  1. Single-superfield helical-phase inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  2. Hybrid inflation in the complex plane

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2014-04-01

    Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane - an important fact, which has been neglected in all previous studies. Based on the δN formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: The fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.

  3. A benchmark comparison of the Canadian Supercritical Water-Cooled Reactor (SCWR) 64-element fuel lattice cell parameters using various computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, J.; Salaun, F.; Hummel, D.; Moghrabi, A., E-mail: sharpejr@mcmaster.ca [McMaster University, Hamilton, ON (Canada); Nowak, M. [McMaster University, Hamilton, ON (Canada); Institut National Polytechnique de Grenoble, Phelma, Grenoble (France); Pencer, J. [McMaster University, Hamilton, ON (Canada); Canadian Nuclear Laboratories, Chalk River, ON, (Canada); Novog, D.; Buijs, A. [McMaster University, Hamilton, ON (Canada)

    2015-07-01

    Discrepancies in key lattice physics parameters have been observed between various deterministic (e.g. DRAGON and WIMS-AECL) and stochastic (MCNP, KENO) neutron transport codes in modeling previous versions of the Canadian SCWR lattice cell. Further, inconsistencies in these parameters have also been observed when using different nuclear data libraries. In this work, the predictions of k∞, various reactivity coefficients, and relative ring-averaged pin powers have been re-evaluated using these codes and libraries with the most recent 64-element fuel assembly geometry. A benchmark problem has been defined to quantify the dissimilarities between code results for a number of responses along the fuel channel under prescribed hot full power (HFP), hot zero power (HZP) and cold zero power (CZP) conditions and at several fuel burnups (0, 25 and 50 MW·d·kg{sup -1} [HM]). Results from deterministic (TRITON, DRAGON) and stochastic codes (MCNP6, KENO V.a and KENO-VI) are presented. (author)

  4. A benchmark comparison of the Canadian Supercritical Water-Cooled Reactor (SCWR) 64-element fuel lattice cell parameters using various computer codes

    International Nuclear Information System (INIS)

    Sharpe, J.; Salaun, F.; Hummel, D.; Moghrabi, A.; Nowak, M.; Pencer, J.; Novog, D.; Buijs, A.

    2015-01-01

    Discrepancies in key lattice physics parameters have been observed between various deterministic (e.g. DRAGON and WIMS-AECL) and stochastic (MCNP, KENO) neutron transport codes in modeling previous versions of the Canadian SCWR lattice cell. Further, inconsistencies in these parameters have also been observed when using different nuclear data libraries. In this work, the predictions of k∞, various reactivity coefficients, and relative ring-averaged pin powers have been re-evaluated using these codes and libraries with the most recent 64-element fuel assembly geometry. A benchmark problem has been defined to quantify the dissimilarities between code results for a number of responses along the fuel channel under prescribed hot full power (HFP), hot zero power (HZP) and cold zero power (CZP) conditions and at several fuel burnups (0, 25 and 50 MW·d·kg"-"1 [HM]). Results from deterministic (TRITON, DRAGON) and stochastic codes (MCNP6, KENO V.a and KENO-VI) are presented. (author)

  5. On the burst of branched polymer melts during inflation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Yu, Kaijia

    2008-01-01

    Two molten low-density polyethylene melts, shaped as plates, have been inflated into a circular cylinder during isothermal conditions. Lowering the inflation rates allow the plates to be inflated into a larger volume of the cylinder before bursting. Numerical simulations of the inflations have been...

  6. Delaying the waterfall transition in warm hybrid inflation

    OpenAIRE

    Bastero-Gil, Mar; Berera, Arjun; Metcalf, Thomas P.; Rosa, João G.

    2014-01-01

    We analyze the dynamics and observational predictions of supersymmetric hybrid inflation in the warm regime, where dissipative effects are mediated by the waterfall fields and their subsequent decay into light degrees of freedom. This produces a quasi-thermal radiation bath with a slowly-varying temperature during inflation and further damps the inflaton's motion, thus prolonging inflation. As in the standard supercooled scenario, inflation ends when the waterfall fields become tachyonic and ...

  7. Theories of inflation and conformal transformations

    International Nuclear Information System (INIS)

    Kalara, S.; Kaloper, N.; Olive, K.A.

    1990-01-01

    We show that several different theories of inflation including R 2 , Brans-Dicke, and induced-gravity inflation are all related to generalized or power-law inflation by means of conformal transformations. These theories all involve non-standard gravity, and the use of conformal transformations allows one to obtain standard inflationary predictions such as the expansion time-scale, reheating and density perturbations in each case very simply. We also discuss the possibilities of this method to be applied to string theory. (orig.)

  8. When Parents’ Praise Inflates, Children's Self-Esteem Deflates

    NARCIS (Netherlands)

    Brummelman, Eddie; Nelemans, Stefanie A.; Thomaes, Sander; Orobio De Castro, Bram

    2017-01-01

    Western parents often give children overly positive, inflated praise. One perspective holds that inflated praise sets unattainable standards for children, eventually lowering children's self-esteem (self-deflation hypothesis). Another perspective holds that children internalize inflated praise to

  9. Towards matter inflation in heterotic string theory

    International Nuclear Information System (INIS)

    Antusch, Stefan; Erdmenger, Johanna; Halter, Sebastian; Dutta, Koushik

    2011-02-01

    Recently, a class of inflation models in supergravity with gauge non-singlet matter fields as the inflaton has been proposed. It is based on a 'tribrid' structure in the superpotential and on a 'Heisenberg symmetry' for solving the η-problem. We suggest that a generalization of this model class may be suitable for realising inflation in heterotic orbifold compactifications, where the Heisenberg symmetry is a property of the tree-level Kaehler potential of untwisted matter fields. We discuss moduli stabilization in this setup and propose a mechanism to stabilize the modulus associated to the inflaton, which respects the symmetry in the large radius limit. Inflation ends via a waterfall phase transition, as in hybrid inflation. We give conditions which have to be satisfied for realising inflation along these lines in the matter sector of heterotic orbifolds. (orig.)

  10. A viable D-term hybrid inflation model

    Science.gov (United States)

    Kadota, Kenji; Kobayashi, Tatsuo; Sumita, Keigo

    2017-11-01

    We propose a new model of the D-term hybrid inflation in the framework of supergravity. Although our model introduces, analogously to the conventional D-term inflation, the inflaton and a pair of scalar fields charged under a U(1) gauge symmetry, we study the logarithmic and exponential dependence on the inflaton field, respectively, for the Kähler and superpotential. This results in a characteristic one-loop scalar potential consisting of linear and exponential terms, which realizes the small-field inflation dominated by the Fayet-Iliopoulos term. With the reasonable values for the coupling coefficients and, in particular, with the U(1) gauge coupling constant comparable to that of the Standard Model, our D-term inflation model can solve the notorious problems in the conventional D-term inflation, namely, the CMB constraints on the spectral index and the generation of cosmic strings.

  11. Classical anisotropies in models of open inflation

    International Nuclear Information System (INIS)

    Garriga, J.; Mukhanov, V.F.

    1997-01-01

    In the simplest model of open inflation there are two inflaton fields decoupled from each other. One of them, the tunneling field, produces a first stage of inflation which prepares the ground for the nucleation of a highly symmetric bubble. The other, a free field, drives a second period of slow-roll inflation inside the bubble. However, the second field also evolves during the first stage of inflation, which to some extent breaks the needed symmetry. We show that this generates large supercurvature anisotropies which, together with the results of Tanaka and Sasaki, rule out this class of simple models (unless, of course, Ω 0 is sufficiently close to 1). The problem does not arise in modified models where the second field does not evolve in the first stage of inflation. copyright 1997 The American Physical Society

  12. Towards matter inflation in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Erdmenger, Johanna; Halter, Sebastian [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    Recently, a class of inflation models in supergravity with gauge non-singlet matter fields as the inflaton has been proposed. It is based on a 'tribrid' structure in the superpotential and on a 'Heisenberg symmetry' for solving the {eta}-problem. We suggest that a generalization of this model class may be suitable for realising inflation in heterotic orbifold compactifications, where the Heisenberg symmetry is a property of the tree-level Kaehler potential of untwisted matter fields. We discuss moduli stabilization in this setup and propose a mechanism to stabilize the modulus associated to the inflaton, which respects the symmetry in the large radius limit. Inflation ends via a waterfall phase transition, as in hybrid inflation. We give conditions which have to be satisfied for realising inflation along these lines in the matter sector of heterotic orbifolds. (orig.)

  13. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the inflation...

  14. Helical Phase Inflation and Monodromy in Supergravity Theory

    Directory of Open Access Journals (Sweden)

    Tianjun Li

    2015-01-01

    Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.

  15. Low-ℓ power suppression in punctuated inflation

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Mussadiq H.; Iqbal, Asif; Malik, Manzoor A. [Department of Physics, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006 (India); Souradeep, Tarun, E-mail: mussadiqqureshi111@gmail.com, E-mail: asifiqbal@kashmiruniversity.net, E-mail: mmalik@kashmiruniversity.ac.in, E-mail: tarun@iucaa.in [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)

    2017-04-01

    Motivated by Planck confirmation of an anomalously low value of the CMB temperature fluctuations up to multipole ℓ < 40, we in this paper try to explain such feature by investigating case of punctuated inflation scenario. This form of inflation potential is inspired by Minimal Super-symmetric Standard Model (MSSM) wherein suppression of curvature perturbation power at large scales is produced by introducing period of fast-roll phase of the inflation sandwiched between two stages of slow-roll phase. We apply Markov Chain Monte Carlo analysis to determine posterior distribution and the best fit values of the model parameters using recent WMAP9 and Planck data. We show that WMAP9 and Planck results are consistent with each other and that with Planck data we obtain tighter constraints for punctuated inflation parameters. We find that punctuated inflation leads to better fit in CMB data compared to simple power law model. The improvement in the fit to the WMAP9 data is Δ χ{sup 2} ∼ 3.6 and for Planck the improvement is Δ χ{sup 2} ∼ 5.4. We find that AIC does not discriminate between punctuated inflation and simple power law model for WMAP9 data. However, for Planck data we find that punctuated inflation is moderately preferred over a simple power law model.

  16. On Traveling Waves in Lattices: The Case of Riccati Lattices

    Science.gov (United States)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  17. Sneutrino warm inflation in the minimal supersymmetric model

    International Nuclear Information System (INIS)

    Bastero-Gil, Mar; Berera, Arjun

    2005-01-01

    The model of RH neutrino fields coupled to the MSSM is shown to yield a large parameter regime of warm inflation. In the strong dissipative regime, it is shown that inflation, driven by a single sneutrino field, occurs with all field amplitudes below the Planck scale. Analysis is also made of leptogenesis, neutrino mass generation and gravitino constraints. A new warm inflation scenario is purposed in which one scalar field drives a period of warm inflation and a second field drives a subsequent phase of reheating. Such a model is able to reduce the final temperature after inflation, thus helping to mitigate gravitino constraints

  18. Inflation in a shear-or curvature-dominated universe

    International Nuclear Information System (INIS)

    Steigman, G.; Turner, M.S.

    1983-01-01

    We show that new inflation occurs even if the universe is shear-or (negative) curvature-dominated when the phase transition begins. In such situations the size of a causally coherent region, after inflation, is only slightly smaller (by powers, but not by exponential factors) than the usual result. The creation and evolution of density perturbations is unaffected. This result is marked contrast to 'old' inflation, where shear- or curvature-domination could quench inflation. (orig.)

  19. The properties of inflation expectations: Evidence for India

    OpenAIRE

    Naresh Kumar Sharma; Motilal Bicchal

    2018-01-01

    Empirical inferences about particular forms of agents’ inflation expectations are crucial for the conduct of monetary policy. This paper is an attempt to explore the properties of the Reserve Bank of India’s survey data of households’ inflation expectations. The paper shows that survey respondents do not form expectations rationally, regardless of the reference measures of inflation used. Further, results indicate that inflation expectations are formed purely in backward-looking manner, sugge...

  20. 26 CFR 1.1275-7 - Inflation-indexed debt instruments.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Inflation-indexed debt instruments. 1.1275-7... Inflation-indexed debt instruments. (a) Overview. This section provides rules for the Federal income tax treatment of an inflation-indexed debt instrument. If a debt instrument is an inflation-indexed debt...

  1. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  2. Inflatable Emergency Equipment I: Evaluation of Individual Inflatable Aviation Life Preserver Donning Tests

    Science.gov (United States)

    2014-12-01

    have to do so in the water. Shortly thereafter, the Survival Research Unit at CAMI devel- oped a prototype life preserver, with a primary goal of...calculate the various donning function times, as defined below. These were entered into IBM SPSS ® version 21 for statistical analysis. “TSO Test Time...inflation tubes, manual inflation triggering devices with pull tabs and CO2 cartridges, and designed to be reversible. The experimental life preserver

  3. Inflation gifts and endogenous growth through learning-by-doing

    OpenAIRE

    Andrea Vaona

    2013-01-01

    We investigate the link between inflation, growth and unemployment nesting a model of fair wages into one of endogenous growth of learning by doing and assuming that firms protect wages' purchasing power against inflation in exchange of worker's effort. Unemployment decreases with higher inflation and real growth rates. These effects tends to vanish as inflation and growth increase. Depending on the assumptions on learning-by-doing mechanisms, the effect of inflation on growth can be either n...

  4. Macroeconomic susceptibility, inflation, and aggregate supply

    Science.gov (United States)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  5. Inflation as de Sitter instability

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano; Franzin, Edgardo [Universita di Cagliari, Cittadella Universitaria, Dipartimento di Fisica, Monserrato (Italy); INFN, Sezione di Cagliari, Monserrato (Italy); Mignemi, Salvatore [INFN, Sezione di Cagliari, Monserrato (Italy); Universita di Cagliari, Dipartimento di Matematica e Informatica, Cagliari (Italy)

    2016-09-15

    We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass. (orig.)

  6. Dark energy in hybrid inflation

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk; Kim, Seongcheol

    2007-01-01

    The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories

  7. Higgs inflation as a mirage

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, J.L.F.; Casas, J.A. [IFT-UAM/CSIC, Universidad Autónoma de Madrid,C/Nicolás Cabrera 13, 28049 Madrid (Spain); Elias-Miró, J. [Departament de Física/IFAE, Universitat Autònoma de Barcelona,Edifici Cn, 08193 Bellaterra, Barcelona (Spain); Espinosa, J.R. [ICREA/IFAE, Universitat Autònoma de Barcelona,Edifici Cn, 08193 Bellaterra, Barcelona (Spain)

    2015-09-04

    We discuss a simple unitarization of Higgs inflation that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Despite not being dominated by the Higgs field, inflationary dynamics simulates the ‘Higgs inflation’ one would get by blind extrapolation of the low-energy effective Lagrangian, at least qualitatively. Hence, Higgs inflation arises as an approximate ‘mirage’ picture of the true dynamics. We further speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.

  8. Higgs inflation as a mirage

    International Nuclear Information System (INIS)

    Barbón, J.L.F.; Casas, J.A.; Elias-Miró, J.; Espinosa, J.R.

    2015-01-01

    We discuss a simple unitarization of Higgs inflation that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Despite not being dominated by the Higgs field, inflationary dynamics simulates the ‘Higgs inflation’ one would get by blind extrapolation of the low-energy effective Lagrangian, at least qualitatively. Hence, Higgs inflation arises as an approximate ‘mirage’ picture of the true dynamics. We further speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.

  9. Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD

    CERN Document Server

    Morningstar, C; Fahy, B; Foley, J; Jhang, Y C; Juge, K J; Lenkner, D; Wong, C C H

    2013-01-01

    Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron operators with significant coupling to the lowest-lying states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 24^3 x 128 and 32^3 x 256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimat...

  10. Wilson loops to 20th order numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.

  11. Lattice QCD computations: Recent progress with modern Krylov subspace methods

    Energy Technology Data Exchange (ETDEWEB)

    Frommer, A. [Bergische Universitaet GH Wuppertal (Germany)

    1996-12-31

    Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.

  12. Inflation and Growth: Positive or Negative Relationship?

    Science.gov (United States)

    Berument, Hakan; Inamlik, Ali; Olgun, Hasan

    This study has been motivated by two developments. Firstly, by the vast literature on the relationship between inflation and growth which is abundantly endowed with diverse theoretical explanations and contradictory evidence and by the unique experience of the Turkish economy with inflation and growth. A preliminary examination of the Turkish data pointed to a negative relation between inflation and growth. Moreover, there is a unanimous agreement among the students of the Turkish economy that many factors have contributed to inflation in this country. In view of these facts this paper employs a VAR model which will enable us to identify the sources of the shocks and control for external factors. In addition VAR models have a high predictive power and enable the researcher to observe the impulse response functions. The study employs Generalised Impulse Response analysis. In the empirical experiments oil prices, money supply, government spending and taxes have been taken as the most likely determinants of inflation. The study shows that there is a negative relationship between inflation and output growth in Turkey and that the underlying explanatory factor is the real exchange rate. This result is robust.

  13. Plateau inflation in R-parity violating MSSM

    Directory of Open Access Journals (Sweden)

    Girish Kumar Chakravarty

    2016-12-01

    Full Text Available Inflation with plateau potentials give the best fit to the CMB observables as they predict tensor to scalar ratio stringently bounded by the observations from Planck and BICEP2/Keck. In supergravity models it is possible to obtain plateau potentials for scalar fields in the Einstein frame which can serve as the inflation potential by considering higher dimensional Planck suppressed operators and by the choice of non-canonical Kähler potentials. We construct a plateau inflation model in MSSM where the inflation occurs along a sneutrino-Higgs flat direction. A hidden sector Polonyi field is used for the breaking of supersymmetry after the end of the inflation. The proper choice of superpotential leads to strong stabilization of the Polonyi field, mZ2≫m3/22, which is required to solve the cosmological moduli problem. Also, the SUSY breaking results in a TeV scale gravitino mass and scalar masses and gives rise to bilinear and trilinear couplings of scalars which can be tested at the LHC. The sneutrino inflation field can be observed at the LHC as a TeV scale diphoton resonance like the one reported by CMS and ATLAS.

  14. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  15. The impact of inflation uncertainty on interest rates

    OpenAIRE

    Cheong, Chongcheul; Kim, Gi-Hong; Podivinsky, Jan M.

    2010-01-01

    In this paper, the impact of inflation uncertainty on interest rates is investigated for the case of the U.S. three-month Treasury bill rate. We emphasize how consistentOLS estimation can be applied to an empirical equation which includes a proxy variable of inflation uncertainty measured by an ARCH-type model. A significant negative relationship between the two variables is provided. This evidence is contrasted with the view of the inflation risk premium in which inflation uncertainty positi...

  16. Assisted inflation from geometric tachyon

    International Nuclear Information System (INIS)

    Panigrahi, Kamal L.; Singh, Harvendra

    2007-01-01

    We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes

  17. Inflation in the standard cosmological model

    Science.gov (United States)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  18. Chaotic inflation in models with flat directions

    International Nuclear Information System (INIS)

    Graziani, F.; Olive, K.

    1989-01-01

    We consider the chaotic inflationary scenario in models with flat directions. We find that unless the scalars along the flat directions have vacuum expectation values p or 10 14 M p 15 M p depending on the expectation values of the chaotic inflator, Ψ, one or two or more periods of inflation occur but with a resulting energy density perturbation δρ/ρ ≅ 10 -16 , far too small to be of any consequence for galaxy formation. Even with p only limited initial values of ≅ (3-200) M p result in inflation with reasonable density perturbations. Thus chaotic inflation in models with flat directions require rather special initial conditions. (orig.)

  19. Historical Inflation Program. A Computer Program Generating Historical Inflation Indices for Army Aircraft. Revision.

    Science.gov (United States)

    1984-01-01

    Helicopter, Helicopter Cost Growth, Historical Cost, Historical Inflation R~ates, Indexes, Inflation ( Economic ), Methodology, Model, , Prices, Procurement...Producer Price Index and hourly: wace data were suzplied by the Kansas City Regional office of the Bureau of Labor Statistics, U.S. Department of Labor. The...most closely related commodities. To minimize the effect from related commodities which have relatively little economic impact, each price per pound

  20. The inflating curvaton

    International Nuclear Information System (INIS)

    Dimopoulos, Konstantinos; Lyth, David H.; Kohri, Kazunori; Matsuda, Tomohiro

    2012-01-01

    The primordial curvature perturbation ζ may be generated by some curvaton field σ, which is negligible during inflation and has more or less negligible interactions until it decays. In the current scenario, the curvaton starts to oscillate while its energy density ρσ is negligible. We explore the opposite scenario, in which ρσ drives a few e-folds of inflation before the oscillation begins. In this scenario for generating ζ it is exceptionally easy to solve the η problem; one just has to make the curvaton a string axion, with anomaly-mediated susy breaking which may soon be tested at the LHC. The observed spectral index n can be obtained with a potential V∝φ p for the first inflation; p = 1 or 2 is allowed by the current uncertainty in n but the improvement in accuracy promised by Planck may rule out p = 1. The predictions include (i) running n' ≅ 0.0026 (0.0013) for p = 1 (2) that will probably be observed, (ii) non-gaussianity parameter f NL ; ∼ −1 that may be observed, (iii) tensor fraction r is probably too small to ever observed

  1. A Signature of Inflation from Dynamical Supersymmetry Breaking

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1998-01-01

    In models of cosmological inflation motivated by dynamical supersymmetry breaking, the potential driving inflation may be characterized by inverse powers of a scalar field. These models produce observables similar to those typical of the hybrid inflation scenario: negligible production of tensor (gravitational wave) modes, and a blue scalar spectral index. In this short note, we show that, unlike standard hybrid inflation models, dynamical supersymmetric inflation (DSI) predicts a measurable deviation from a power-law spectrum of fluctuations, with a variation in the scalar spectral index $|dn / d(\\ln k)|$ may be as large as 0.05. DSI can be observationally distinguished from other hybrid models with cosmic microwave background measurements of the planned sensitivity of the ESA's Planck Surveyor.

  2. Inflation from extra dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.

    1984-01-01

    Recently there has been growing interest (1) in the possibility that the universe could have more than four dimensions. Aside from any light this may shed on problems in particle physics, if true it would undoubtedly have important implications for early cosmology. A rather speculative but very appealing possibility suggested by D. Sahdev and by E. Alvarez and B. Gavela is that the gravitational collapse of extra spatial dimensions could drive an inflation of ordinary space. This kind of inflationary cosmology would be quite different from the inflationary cosmologies now so intensively studied which are supposed to result from changes in vacuum energy during phase transitions in the early universe. In our work we examine the physics of these Kaluza-Klein inflationary cosmologies and come to three main conclusions. (1) It is desirable to have many extra dimensions, many being of order forty or fifty. (2) For models which give a realistically large inflation almost all of this inflation occurs in a period when quantum gravity is certainly important. This means that Einstein's equations cannot be used to calculate the details of this inflationary period. (3) Under plausible assumptions one may argue from the second law of thermodynamics that given appropriate initial conditions a large inflation will occur even when details of the inflationary phase cannot be calculated classically

  3. A general framework of automorphic inflation

    International Nuclear Information System (INIS)

    Schimmrigk, Rolf

    2016-01-01

    Automorphic inflation is an application of the framework of automorphic scalar field theory, based on the theory of automorphic forms and representations. In this paper the general framework of automorphic and modular inflation is described in some detail, with emphasis on the resulting stratification of the space of scalar field theories in terms of the group theoretic data associated to the shift symmetry, as well as the automorphic data that specifies the potential. The class of theories based on Eisenstein series provides a natural generalization of the model of j-inflation considered previously.

  4. A general framework of automorphic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Schimmrigk, Rolf [Department of Physics, Indiana University at South Bend,1700 Mishawaka Ave. South Bend, IN 46634 (United States)

    2016-05-24

    Automorphic inflation is an application of the framework of automorphic scalar field theory, based on the theory of automorphic forms and representations. In this paper the general framework of automorphic and modular inflation is described in some detail, with emphasis on the resulting stratification of the space of scalar field theories in terms of the group theoretic data associated to the shift symmetry, as well as the automorphic data that specifies the potential. The class of theories based on Eisenstein series provides a natural generalization of the model of j-inflation considered previously.

  5. Inflation in a closed universe

    Science.gov (United States)

    Ratra, Bharat

    2017-11-01

    To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

  6. 76 FR 74625 - Civil Monetary Penalties Inflation Adjustment

    Science.gov (United States)

    2011-12-01

    ...-2011] RIN 1125-AA69 Civil Monetary Penalties Inflation Adjustment AGENCIES: U.S. Customs and Border... adjust for inflation certain civil monetary penalties assessed under the Immigration and Nationality Act... assessed under the INA. The Federal Civil Penalties Inflation Adjustment Act of 1990 (Adjustment Act...

  7. M-theory inflation from multi M5-brane dynamics

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2005-01-01

    We derive inflation from M-theory on S 1 /Z 2 via the non-perturbative dynamics of N M5-branes. The open membrane instanton interactions between the M5-branes give rise to exponential potentials which are too steep for inflation individually but lead to inflation when combined together. The resulting type of inflation, known as assisted inflation, facilitates considerably the requirement of having all moduli, except the inflaton, stabilized at the beginning of inflation. During inflation the distances between the M5-branes, which correspond to the inflatons, grow until they reach the size of the S 1 /Z 2 orbifold. At this stage the M5-branes will reheat the universe by dissolving into the boundaries through small instanton transitions. Further flux and non-perturbative contributions become important at this late stage, bringing inflation to an end and stabilizing the moduli. We find that with moderate values for N, one obtains both a sufficient amount of e-foldings and the right size for the spectral index

  8. Evading the Lyth bound in hybrid natural inflation

    International Nuclear Information System (INIS)

    Hebecker, A.; Kraus, S.C.; Westphal, Alexander

    2013-05-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ε can be sizable during an early period (relevant for the CMB spectrum). Subsequently, ε quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.

  9. Evading the Lyth bound in hybrid natural inflation

    Science.gov (United States)

    Hebecker, A.; Kraus, S. C.; Westphal, A.

    2013-12-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.

  10. How likely are constituent quanta to initiate inflation?

    Directory of Open Access Journals (Sweden)

    Lasha Berezhiani

    2015-10-01

    Full Text Available We propose an intuitive framework for studying the problem of initial conditions in slow-roll inflation. In particular, we consider a universe at high, but sub-Planckian energy density and analyze the circumstances under which it is plausible for it to become dominated by inflated patches at late times, without appealing to the idea of self-reproduction. Our approach is based on defining a prior probability distribution for the constituent quanta of the pre-inflationary universe. To test the idea that inflation can begin under very generic circumstances, we make specific – yet quite general and well grounded – assumptions on the prior distribution. As a result, we are led to the conclusion that the probability for a given region to ignite inflation at sub-Planckian densities is extremely small. Furthermore, if one chooses to use the enormous volume factor that inflation yields as an appropriate measure, we find that the regions of the universe which started inflating at densities below the self-reproductive threshold nevertheless occupy a negligible physical volume in the present universe as compared to those domains that have never inflated.

  11. Intermediate inflation from a non-canonical scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, K.; Karami, K. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com [Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  12. Evading the Lyth bound in hybrid natural inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, A.; Kraus, S.C. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group

    2013-05-15

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter {epsilon} can be sizable during an early period (relevant for the CMB spectrum). Subsequently, {epsilon} quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.

  13. PERSPECTIVES OF INFLATION TARGETING, IN THE CURRENT ECONOMIC CONTEXT

    Directory of Open Access Journals (Sweden)

    COROIU SORINA IOANA

    2015-04-01

    Full Text Available In the context of economic crisis, monetary policy makers are facing a number of challenges, including the selection and implementation of the best monetary policy. In this paper, we want to see if inflation targeting is or is not a solution to exit the economic crisis. If the answer is positive, then what would be the optimal level of inflation? Many central banks target an inflation rate of 2%. In this paper we intend to show that, in certain circumstances, a very low level of inflation can significantly reduce the stabilizing effects of monetary policy. A slightly higher value of inflation targeting would reduce the constraints on monetary policy, caused by the appearance of liquidity trap. The risk for the interest rates of monetary policy to achieve zero level is related to the central banks’ choise of the appropriate inflation target. We believe that an increase in the inflation target of 2% to 4% would ease monetary policy constraints arising from the liquidity trap problem. If inflation targeting is not a solution to exit the crisis, then are there other strategies that would be a better alternative? Following this analysis, no obvious alternatives were identified, so far, there is no clear reason for that to abandon inflation targeting.

  14. Inflation protection from home-ownership : Long-run evidence

    NARCIS (Netherlands)

    Brounen, Dirk; Eichholtz, P.; Staetmans, S.; Theebe, Marcel

    2014-01-01

    This article examines the inflation hedging capacity of the private home. We employ unique long-term data for inflation, house price dynamics and rents for Amsterdam dating back to 1814, allowing us to study total housing returns in different inflation regimes and for varying investment horizons.

  15. 46 CFR 185.518 - Inflatable survival craft placards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inflatable survival craft placards. 185.518 Section 185... 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other...

  16. Tourism Led-Inflation: A case of Malaysia

    Directory of Open Access Journals (Sweden)

    Shaari M. S.

    2018-01-01

    Full Text Available The importance of the tourism industry has prevailed among developed and even developing countries. It has been perceived to be an important contribution to economic growth. However, in the proliferation of studies on inflation, information on the extent to which tourism industry able to influence inflation, is still sparse. Therefore, this study embarks on investigating tourism as a potential factor towards inflation. Data on consumer price index and the number of tourist arrival from 1986 until 2014 are used in the analysis. This study adopts a quantitative approach employing the Autoregressive Distributed Lag (ARDL approach. Several controlled variables such as money supply, economic growth, government expenditure, and interest rate are also included. The results suggest that the tourism industry plays an important role in determining inflation in both short-and long-runs. Therefore, governments should take proactive measures in ascertaining that any expansion of the tourism industry can avert inflation.

  17. Supernatural A-Term Inflation

    Science.gov (United States)

    Lin, Chia-Min; Cheung, Kingman

    Following Ref. 10, we explore the parameter space of the case when the supersymmetry (SUSY) breaking scale is lower, for example, in gauge mediated SUSY breaking model. During inflation, the form of the potential is V0 plus MSSM (or A-term) inflation. We show that the model works for a wide range of the potential V0 with the soft SUSY breaking mass m O(1) TeV. The implication to MSSM (or A-term) inflation is that the flat directions which is lifted by the non-renormalizable terms described by the superpotential W=λ p φ p-1/Mp-3 P with p = 4 and p = 5 are also suitable to be an inflaton field for λp = O(1) provided there is an additional false vacuum term V0 with appropriate magnitude. The flat directions correspond to p = 6 also works for 0 < ˜ V0/M_ P4 < ˜ 10-40.

  18. Inflation in random Gaussian landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.

  19. Individual differences in imagination inflation.

    Science.gov (United States)

    Heaps, C; Nash, M

    1999-06-01

    Garry, Manning, Loftus, and Sherman (1996) found that when adult subjects imagined childhood events, these events were subsequentlyjudged as more likely to have occurred than were not-imagined events. The authors termed this effect imagination inflation. We replicated the effect, using a novel set of Life Events Inventory events. Further, we tested whether the effect is related to four subject characteristics possibly associated with false memory creation. The extent to which subjects inflated judged likelihood following imagined events was associated with indices of hypnotic suggestibility and dissociativity, but not with vividness of imagery or interrogative suggestibility. Results suggest that imagination plays a role in subsequent likelihood judgments regarding childhood events, and that some individuals are more likely than others to experience imagination inflation.

  20. Targeting nominal income growth or inflation?

    DEFF Research Database (Denmark)

    Jensen, Henrik

    2002-01-01

    Within a simple New Keynesian model emphasizing forward-looking behavior of private agents, I evaluate optimal nominal income growth targeting versus optimal inflation targeting. When the economy is mainly subject to shocks that do not involve monetary policy trade-offs for society, inflation...

  1. 78 FR 56868 - Adjustment of Indemnification for Inflation

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF ENERGY Adjustment of Indemnification for Inflation AGENCY: Office of General Counsel...-Anderson Act. Subsection 170t. of the AEA requires an inflation adjustment of the indemnification amount at... inflation-adjusted amount based on the aggregate percentage change in the CPI during the 5-year period from...

  2. 46 CFR 122.518 - Inflatable survival craft placards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable survival craft placards. 122.518 Section 122... Preparations for Emergencies § 122.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other cards containing instructions for launching...

  3. Inflation and dark energy from three-forms

    International Nuclear Information System (INIS)

    Koivisto, Tomi S.; Nunes, Nelson J.

    2009-01-01

    Three-forms can give rise to viable cosmological scenarios of inflation and dark energy with potentially observable signatures distinct from standard single scalar field models. In this study, the background dynamics and linear perturbations of self-interacting three-form cosmology are investigated. The phase space of cosmological solutions possesses (super)-inflating attractors and saddle points, which can describe three-form driven inflation or dark energy. The quantum generation and the classical evolution of perturbations is considered. The scalar and tensor spectra from a three-form inflation and the impact from the presence of a three-form on matter perturbations are computed. Stability properties and equivalence of the model with alternative formulations are discussed.

  4. On a stochastic process associated to non-abelian gauge fields

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1989-01-01

    A stochastic process is constructed from a ground state measure that generalizes to non-abelian fields the ground state of abelian (free) gauge fields without fermions. Using a latticized version one shows how the process leads to a well-defined quantum theory in the Schroedinger representation. An analysis of the qualitative behaviour of the theory seems to imply a quasi-free behaviour at short distances and a maximally disordered field strength configuration for the low-momentum component of the ground state. Scaling relations for the mass gap are inferred from the theory of small random perturbations of dynamical systems. (orig.)

  5. Stochastic differential equations for quantum dynamics of spin-boson networks

    International Nuclear Information System (INIS)

    Mandt, Stephan; Sadri, Darius; Houck, Andrew A; Türeci, Hakan E

    2015-01-01

    A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation. (paper)

  6. Issues on generating primordial anisotropies at the end of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh; Firouzjahi, Hassan, E-mail: emami@mail.ipm.ir, E-mail: firouz@mail.ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  7. Issues on generating primordial anisotropies at the end of inflation

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background

  8. On the bursting of linear polymer melts in inflation processes

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders

    2005-01-01

    Molten LLDPE and HDPE plates (thickness 2 mm) have been inflated into a circular cylinder (inner radius 31 mm) under isothermal conditions. Low deformation rates allow the plates to be inflated considerably into the cylinder, and at high inflation rates an early burst is observed. Axis-symmetric ......Molten LLDPE and HDPE plates (thickness 2 mm) have been inflated into a circular cylinder (inner radius 31 mm) under isothermal conditions. Low deformation rates allow the plates to be inflated considerably into the cylinder, and at high inflation rates an early burst is observed. Axis...

  9. Evaluation of Wavelet-based Core Inflation Measures: Evidence from Peru

    OpenAIRE

    Erick Lahura; Marco Vega

    2011-01-01

    Under inflation targeting and other related monetary policy regimes, the identication of non-transitory inflation and forecasts about future inflation constitute key ingredients for monetary policy decisions. In practice, central banks perform these tasks using so-called "core inflation measures". In this paper we construct alternative core inflation measures using wavelet functions and multiresolution analysis (MRA), and then evaluate their relevance for monetary policy. The construction of ...

  10. SU(N,1) inflation

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.; Srednicki, M.

    1985-01-01

    We present a simple model for primordial inflation in the context of SU(N, 1) no-scale n=1 supergravity. Because the model at zero temperature very closely resembles global supersymmetry, minima with negative cosmological constants do not exist, and it is easy to have a long inflationary epoch while keeping density perturbations of the right magnitude and satisfying other cosmological constraints. We pay specific attention to satisfying the thermal constraint for inflation, i.e. the existence of a high temperature minimum at the origin. (orig.)

  11. Stochastic dynamics for two biological species and ecological niches

    Science.gov (United States)

    Ruziska, Flávia M.; Arashiro, Everaldo; Tomé, Tânia

    2018-01-01

    We consider an ecological system in which two species interact with two niches. To this end we introduce a stochastic model with four states. Our analysis is founded in three approaches: Monte Carlo simulations of the model on a square lattice, mean-field approximation, and birth and death master equation. From this last approach we obtain a description in terms of Langevin equations which show in an explicit way the role of noise in population biology. We focus mainly on the description of time oscillations of the species population and the alternating dominance between them. The model treated here may provide insights on these properties.

  12. Warm Inflation with Nonminimal Derivative Coupling

    International Nuclear Information System (INIS)

    Rashidi, N.; Nozari, Kourosh; Shoukrani, M.

    2014-01-01

    We study the effects of the nonminimal derivative coupling on the dissipative dynamics of the warm inflation where the scalar field is nonminimally coupled to gravity via its kinetic term. We present a detailed calculation of the cosmological perturbations in this setup. We use the recent observational data from the joint data set of WMAP9 + BAO + H 0 and also the Planck satellite data to constrain our model parameters for natural and chaotic inflation potentials. We study also the levels of non-Gaussianity in this warm inflation model and we confront the result with recent observational data from the Planck satellite

  13. Heterogeneous inflation expectations, learning, and market outcomes

    OpenAIRE

    Madeira, Carlos; Zafar, Basit

    2012-01-01

    Using the panel component of the Michigan Survey of Consumers, we show that individuals, in particular women and ethnic minorities, are highly heterogeneous in their expectations of inflation. We estimate a model of inflation expectations based on learning from experience that also allows for heterogeneity in both private information and updating. Our model vastly outperforms existing models of inflation expectations in explaining the heterogeneity in the data. We find that women, ethnic mino...

  14. Heterogeneus Inflation Expectations Learning and Market Outcomes

    OpenAIRE

    Carlos Madeira; Basit Zafar

    2012-01-01

    Using the panel component of the Michigan Survey of Consumers we estimate a learning model of inflation expectations, allowing for heterogeneous use of both private information and lifetime inflation experience. We find that women, ethnic minorities, and less educated agents have a higher degree of heterogeneity in their private information, and are slower to update their expectations. During the 2000s, consumers believe inflation to be more persistent in the short term, but temporary fluctua...

  15. New type of hill-top inflation

    Energy Technology Data Exchange (ETDEWEB)

    Barvinsky, A.O.; Nesterov, D.V. [Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, Moscow 119991 (Russian Federation); Kamenshchik, A.Yu., E-mail: barvin@td.lpi.ru, E-mail: Alexander.Kamenshchik@bo.infn.it, E-mail: nesterov@td.lpi.ru [Dipartimento di Fisica and INFN, via Irnerio 46, 40126 Bologna (Italy)

    2016-01-01

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on the background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ε and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.

  16. New type of hill-top inflation

    Energy Technology Data Exchange (ETDEWEB)

    Barvinsky, A.O. [Theory Department, Lebedev Physics Institute,Leninsky Prospect 53, Moscow 119991 (Russian Federation); Department of Physics, Tomsk State University,Lenin Ave. 36, Tomsk 634050 (Russian Federation); Department of Physics and Astronomy, Pacific Institue for Theoretical Physics,University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Kamenshchik, A.Yu. [Dipartimento di Fisica and INFN,via Irnerio 46, 40126 Bologna (Italy); L.D. Landau Institute for Theoretical Physcis,Kosygin str. 2, 119334 Moscow (Russian Federation); Nesterov, D.V. [Theory Department, Lebedev Physics Institute,Leninsky Prospect 53, Moscow 119991 (Russian Federation)

    2016-01-20

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on the background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ϵ and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.

  17. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  18. Creating perturbations from a decaying field during inflation

    DEFF Research Database (Denmark)

    Mazumdar, A.; Wang, L.

    2013-01-01

    Typically, the fluctuations generated from a decaying field during inflation do not contribute to the large scale structures. In this paper, we provide an example where it is possible for a field which slowly rolls and then decays during inflation to create all the matter perturbations with a sli......Typically, the fluctuations generated from a decaying field during inflation do not contribute to the large scale structures. In this paper, we provide an example where it is possible for a field which slowly rolls and then decays during inflation to create all the matter perturbations...

  19. Statistical mechanics of directed models of polymers in the square lattice

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van

    2003-01-01

    informative about the underlying properties that determine phase diagrams for wider classes of models, including physical models of polymers. Of particular interest are adsorption and collapse transitions in models of polymers and copolymers. The properties of thermodynamic quantities in those models are described by tricritical scaling. This is reviewed for directed path models, and the generating function approaches can be used to apply tricritical scaling to models of adsorbing, inflating and collapsing directed lattice paths. Critical exponents for a variety of models can be obtained in this manner, and with it a better understanding, and a classification, of the models. (topical review)

  20. Quarterly inflation rate target and forecasts in Romania

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu

    2016-12-01

    Full Text Available In this study, we proposed some inflation rate predictions based on econometric models that performed better than the targets of the National Bank of Romania. Few econometric models (multiple regressions model and a vector-autoregression were used to predict the quarterly inflation rate in Romania during 2000:Q1-2016:Q4. The GDP growth has a negative impact on inflation rate in Romania, an increase in logarithm of GDP with one percentage point determining a decrease in inflation logarithm with less than 0.1 units according to both proposed models. However, an increase in inflation rate in the previous period determined an increase in this variable in the current period. The inverse of unemployment rate is positively correlated with the index of prices. The causal relationship between inflation rate and unemployment rate is reciprocal. In the first period the index of prices evolution is explained only by changes in this variable. The inflation rate volatility is due mainly to the evolution of this indicator, the influence decreasing insignificantly in time, not descending under 88%. More than 99% of the variation in unemployment rate is explained by the own volatility for all lags. The annual forecasts based on these models performed better than the targets on the horizon 2015-2016.

  1. 77 FR 65100 - Adjustment of Civil Monetary Penalties for Inflation

    Science.gov (United States)

    2012-10-25

    ... Penalties for Inflation AGENCY: Commodity Futures Trading Commission ACTION: Final rule. SUMMARY: The... civil monetary penalties, to adjust for inflation. This rule sets forth the maximum, inflation-adjusted... Federal Civil Penalties Inflation Adjustment Act of 1990, as amended by the Debt Collection Improvement...

  2. 10 CFR 765.12 - Inflation index adjustment procedures.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Inflation index adjustment procedures. 765.12 Section 765... THORIUM PROCESSING SITES Reimbursement Criteria § 765.12 Inflation index adjustment procedures. (a) The... § 765.2(i) of this rule) shall be adjusted for inflation as provided by this section. (b) To make...

  3. Why 1.02? The root Hermite factor of LLL and stochastic sandpile models

    OpenAIRE

    Ding, Jintai; Kim, Seungki; Takagi, Tsuyoshi; Wang, Yuntao

    2018-01-01

    In lattice-based cryptography, a disturbing and puzzling fact is that there exists such a conspicuous gap between the actual performance of LLL and what could be said of it theoretically. By now, no plausible mathematical explanation is yet proposed. In this paper, we provide compelling evidence that LLL behaves essentially identically to a certain stochastic variant of the sandpile model that we introduce. This allows us to explain many observations on the LLL algorithm that have so far been...

  4. Cosmological inflation

    CERN Document Server

    Enqvist, K

    2012-01-01

    The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.

  5. Inflation perceptions and inflation expectation in South Africa: trends ...

    African Journals Online (AJOL)

    Inflation expectations are related to expected future changes .... had to choose from a menu of options with a further response in one instance, while .... 1The marginal effect or partial derivatives depend on the value of x, and the marginal.

  6. Zero inflated negative binomial-Sushila distribution and its application

    Science.gov (United States)

    Yamrubboon, Darika; Thongteeraparp, Ampai; Bodhisuwan, Winai; Jampachaisri, Katechan

    2017-11-01

    A new zero inflated distribution is proposed in this work, namely the zero inflated negative binomial-Sushila distribution. The new distribution which is a mixture of the Bernoulli and negative binomial-Sushila distributions is an alternative distribution for the excessive zero counts and over-dispersion. Some characteristics of the proposed distribution are derived including probability mass function, mean and variance. The parameter estimation of the zero inflated negative binomial-Sushila distribution is also implemented by maximum likelihood method. In application, the proposed distribution can provide a better fit than traditional distributions: zero inflated Poisson and zero inflated negative binomial distributions.

  7. Inflation risk and international asset returns

    NARCIS (Netherlands)

    G.A. Moerman (Gerard); M.A. van Dijk (Mathijs)

    2010-01-01

    textabstractWe show that inflation risk is priced in international asset returns. We analyze inflation risk in a framework that encompasses the International Capital Asset Pricing Model (ICAPM) of Adler and Dumas (1983). In contrast to the extant empirical literature on the ICAPM, we relax the

  8. No-scale D-term inflation with stabilized moduli

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Domcke, Valerie; Wieck, Clemens

    2013-09-15

    We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh- Linde model as an example for the latter. We find that F-term hybrid inflation is not viable since inflationary trajectories are destabilized by tachyonic modes. On the other hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the absence of a large superpotential term during the inflationary phase. Our model turns out to be equivalent to superconformal D-term inflation and it therefore successfully accounts for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated via an O'Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the gravitino mass. A rough estimate yields m{sub 3/2}>or similar 10{sup 5} GeV, contrary to naive expectation.

  9. No-scale D-term inflation with stabilized moduli

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Domcke, Valerie; Wieck, Clemens

    2013-09-01

    We study the consistency of hybrid inflation and moduli stabilization, using the Kallosh- Linde model as an example for the latter. We find that F-term hybrid inflation is not viable since inflationary trajectories are destabilized by tachyonic modes. On the other hand, D-term hybrid inflation is naturally compatible with moduli stabilization due to the absence of a large superpotential term during the inflationary phase. Our model turns out to be equivalent to superconformal D-term inflation and it therefore successfully accounts for the CMB data in the large-field regime. Supersymmetry breaking can be incorporated via an O'Raifeartaigh model. For GUT-scale inflation one obtains a stringent bound on the gravitino mass. A rough estimate yields m 3/2 >or similar 10 5 GeV, contrary to naive expectation.

  10. Inflation and the theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Riotto, A.

    2003-01-01

    These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)

  11. Private Sector Credit and Inflation Volatility

    Directory of Open Access Journals (Sweden)

    Lorna Katusiime

    2018-04-01

    Full Text Available This paper investigates the effect of inflation volatility on private sector credit growth. The results indicate that private sector credit growth is positively linked to the one period lagged inflation volatility. Given that past monetary policy actions continue to affect the targeted variables due to the substantial lags in the transmission mechanism, the positive response of private sector credit growth to past inflation volatility suggests a credible monetary policy regime in Uganda, which has led to a reduction in the level of macroeconomic uncertainty and the restoration of favorable economic conditions and prospects, thus increasing the demand for credit. Further, the study finds that the lagged private sector credit growth, nominal exchange rate, and inflation have a statistically significant effect on private sector credit growth while financial innovation, interest rates, and GDP growth appear not to be important determinants of private sector credit growth. The robustness of our findings is confirmed by sensitivity checks.

  12. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  13. A note on calm excited states of inflation

    International Nuclear Information System (INIS)

    Ashoorioon, Amjad; Shiu, Gary

    2011-01-01

    We identify a two-parameter family of excited states within slow-roll inflation for which either the corrections to the two-point function or the characteristic signatures of excited states in the three-point function — i.e. the enhancement for the flattened momenta configurations– are absent. These excited states may nonetheless violate the adiabaticity condition maximally. We dub these initial states of inflation calm excited states. We show that these two sets do not intersect, i.e., those that leave the power-spectrum invariant can be distinguished from their bispectra, and vice versa. The same set of calm excited states that leave the two-point function invariant for slow-roll inflation, do the same task for DBI inflation. However, at the level of three-point function, the calm excited states whose flattened configuration signature is absent for slow-roll inflation, will lead to an enhancement for DBI inflation generally, although the signature is smaller than what suggested by earlier analysis. This example also illustrates that imposing the Wronskian condition is important for obtaining a correct estimate of the non-Gaussian signatures

  14. Stochastic and non-stochastic effects - a conceptual analysis

    International Nuclear Information System (INIS)

    Karhausen, L.R.

    1980-01-01

    The attempt to divide radiation effects into stochastic and non-stochastic effects is discussed. It is argued that radiation or toxicological effects are contingently related to radiation or chemical exposure. Biological effects in general can be described by general laws but these laws never represent a necessary connection. Actually stochastic effects express contingent, or empirical, connections while non-stochastic effects represent semantic and non-factual connections. These two expressions stem from two different levels of discourse. The consequence of this analysis for radiation biology and radiation protection is discussed. (author)

  15. Inflation targeting and interest rate policy

    NARCIS (Netherlands)

    Verhagen, W.H.

    2001-01-01

    The thesis contains a collection of papers on issues in inflation targeting and its implications for the way interest rates are set. In this respect, the first part deals with two largely positive issues: the effect of inflation forecast targeting on the term structure of interest rates and the

  16. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  17. Inflation, economic policy, and the inner city

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, L.A.

    1981-07-01

    This article describes the greater impact of inflation among the poor and minorities in American inner cities than among other population groups. Surveys show, however, that minorities are even more concerned over unemployment and racial discrimination than over inflation. There are indications that, especially today, crime and potential group disorder are affected by or influence inflation, unemployment, and discrimination in the inner city. With these interrelated factors in mind, present federal economic policy is reviewed, critiqued, and interpreted as basically consistent with Keynesian economic theory. Modifications of and alternatives to present policy are offered that fit both inner-city needs and the concerns of the rest of American society. These policies include targeted private sector neighborhood development and self-help, private sector productivity increases through workplace democracy, private-public sector codetermination of investment, private-public sector job guarantees, and public anti-inflation policy carefully targeted at the basic necessities of energy, food, housing, and health care - which have a disproportionate effect on inflation in the inner city, as well as the overall economy. Coalitions are suggested that could politically implement such policies.

  18. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  19. Curvaton as dark matter with secondary inflation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk; Kitajima, Naoya [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Terada, Takahiro, E-mail: jinn-ouk.gong@apctp.org, E-mail: naoya.kitajima@apctp.org, E-mail: terada@kias.re.kr [Korea Institute for Advanced Study, Seoul 02455 (Korea, Republic of)

    2017-03-01

    We consider a novel cosmological scenario in which a curvaton is long-lived and plays the role of cold dark matter (CDM) in the presence of a short, secondary inflation. Non-trivial evolution of the large scale cosmological perturbation in the curvaton scenario can affect the duration of the short term inflation, resulting in the inhomogeneous end of inflation. Non-linear parameters of the curvature perturbation are predicted to be f {sub NL} ≈ 5/4 and g {sub NL} ≈ 0. The curvaton abundance can be well diluted by the short-term inflation and accordingly, it does not have to decay into the Standard Model particles. Then the curvaton can account for the present CDM with the isocurvature perturbation being sufficiently suppressed because both the adiabatic and CDM isocurvature perturbations have the same origin. As an explicit example, we consider the thermal inflation scenario and a string axion as a candidate for this curvaton-dark matter. We further discuss possibilities to identify the curvaton-dark matter with the QCD axion.

  20. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.