WorldWideScience

Sample records for stochastic gravitational-wave background

  1. Stochastic backgrounds of gravitational waves

    International Nuclear Information System (INIS)

    Maggiore, M.

    2001-01-01

    We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)

  2. Gravitational-Wave Stochastic Background from Cosmic Strings

    International Nuclear Information System (INIS)

    Siemens, Xavier; Creighton, Jolien; Mandic, Vuk

    2007-01-01

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space

  3. Stochastic background of gravitational waves from hybrid preheating.

    Science.gov (United States)

    García-Bellido, Juan; Figueroa, Daniel G

    2007-02-09

    The process of reheating the Universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubblelike structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accessible to those detectors. The discovery of such a background would open a new window into the very early Universe.

  4. Stochastic Background of Relic Scalar Gravitational Waves tuned by Extended Gravity

    International Nuclear Information System (INIS)

    De Laurentis, Mariafelicia; Capozziello, Salvatore

    2009-01-01

    A stochastic background of relic gravitational waves is achieved by the so called adiabatically-amplified zero-point fluctuations process derived from early inflation. It provides a distinctive spectrum of relic gravitational waves. In the framework of scalar-tensor gravity, we discuss the scalar modes of gravitational waves and the primordial production of this scalar component which is generated beside tensorial one. Then analyze seven different viable f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. It is demonstrated that seven viable f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.

  5. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.

  6. Detecting the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Colacino, Carlo Nicola

    2017-12-01

    The stochastic gravitational-wave background (SGWB) is by far the most difficult source of gravitational radiation detect. At the same time, it is the most interesting and intriguing one. This book describes the initial detection of the SGWB and describes the underlying mathematics behind one of the most amazing discoveries of the 21st century. On the experimental side it would mean that interferometric gravitational wave detectors work even better than expected. On the observational side, such a detection could give us information about the very early Universe, information that could not be obtained otherwise. Even negative results and improved upper bounds could put constraints on many cosmological and particle physics models.

  7. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

  8. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-05-18

    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω_{0}^{T}<5.58×10^{-8}, Ω_{0}^{V}<6.35×10^{-8}, and Ω_{0}^{S}<1.08×10^{-7} at a reference frequency f_{0}=25  Hz.

  9. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58 ×10-8 , Ω0V<6.35 ×10-8 , and Ω0S<1.08 ×10-7 at a reference frequency f0=25 Hz .

  10. Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data.

    Science.gov (United States)

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Gossler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; Ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J

    2014-12-05

    Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Ω_{GW}(f)=Ω_{α}(f/f_{ref})^{α}, we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of α=0, we constrain the energy density of the stochastic background to be Ω_{GW}(f)waves.

  11. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    Science.gov (United States)

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  12. Optimizing signal recycling for detecting a stochastic gravitational-wave background

    Science.gov (United States)

    Tao, Duo; Christensen, Nelson

    2018-06-01

    Signal recycling is applied in laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to increase their sensitivity to gravitational waves. In this study, signal recycling configurations for detecting a stochastic gravitational wave background are optimized based on aLIGO parameters. Optimal transmission of the signal recycling mirror (SRM) and detuning phase of the signal recycling cavity under a fixed laser power and low-frequency cutoff are calculated. Based on the optimal configurations, the compatibility with a binary neutron star (BNS) search is discussed. Then, different laser powers and low-frequency cutoffs are considered. Two models for the dimensionless energy density of gravitational waves , the flat model and the model, are studied. For a stochastic background search, it is found that an interferometer using signal recycling has a better sensitivity than an interferometer not using it. The optimal stochastic search configurations are typically found when both the SRM transmission and the signal recycling detuning phase are low. In this region, the BNS range mostly lies between 160 and 180 Mpc. When a lower laser power is used the optimal signal recycling detuning phase increases, the optimal SRM transmission increases and the optimal sensitivity improves. A reduced low-frequency cutoff gives a better sensitivity limit. For both models of , a typical optimal sensitivity limit on the order of 10‑10 is achieved at a reference frequency of Hz.

  13. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Bork, R.

    2017-01-01

    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using dat...

  14. A radiometer for stochastic gravitational waves

    International Nuclear Information System (INIS)

    Ballmer, Stefan W

    2006-01-01

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs

  15. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background

    NARCIS (Netherlands)

    Taylor, S.R.; Mingarelli, C.M.F.; Gair, J.R.; Sesana, A.; Theureau, G.; Babak, S.; Bassa, C.G.; Brem, P.; Burgay, M.; Caballero, R.N.; Champion, D.J.; Cognard, I.; Desvignes, G.; Guillemot, L.; Hessels, J.W.T.; Janssen, G.H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Lentati, L.; Liu, K.; Osłowski, S.; Perrodin, D.; Possenti, A.; Purver, M.B.; Rosado, P.A.; Sanidas, S.A.; Smits, R.; Stappers, B.; Tiburzi, C.; van Haasteren, R.; Vecchio, A.; Verbiest, J.P.W.

    2015-01-01

    The paucity of observed supermassive black hole binaries (SMBHBs) may imply that the gravitational wave background (GWB) from this population is anisotropic, rendering existing analyses suboptimal. We present the first constraints on the angular distribution of a nanohertz stochastic GWB from

  16. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    Science.gov (United States)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  17. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Van Bakel, N.; Van Beuzekom, Martin; Van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black

  18. Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    International Nuclear Information System (INIS)

    Cornish, Neil J.

    2002-01-01

    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve

  19. Three-point statistics of cosmological stochastic gravitational waves

    International Nuclear Information System (INIS)

    Adshead, Peter; Lim, Eugene A.

    2010-01-01

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  20. The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background

    OpenAIRE

    Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, Jim; Cornish, Neil; Demorest, Paul; Deng, Xihao; Dolch, Tim; Ellis, Justin; Ferdman, Rob; Fonseca, Emmanuel; Garver-Daniels, Nate

    2015-01-01

    We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95\\% upper limit on the strain amplitude (at a frequency of yr$^{-1}$) in the power law model of $A...

  1. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-03-02

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25  Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25  Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  2. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-03-01

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  3. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  4. arXiv Probing non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA

    CERN Document Server

    Bartolo, Nicola; Figueroa, Daniel G.; Garcia-Bellido, Juan; Peloso, Marco; Pieroni, Mauro; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    The stochastic gravitational wave background (SGWB) contains a wealth of information on astrophysical and cosmological processes. A major challenge of upcoming years will be to extract the information contained in this background and to disentangle the contributions of different sources. In this paper we provide the formalism to extract, from the correlation of three signals in the Laser Interferometer Space Antenna (LISA), information about the tensor three-point function, which characterizes the non-Gaussian properties of the SGWB. Compared to the two-point function, the SGWB three-point function has a richer dependence on the gravitational wave momenta and chiralities, and a larger number of signal channels. It can be used therefore as a powerful discriminator between different models. We provide LISA's response functions to a general SGWB three-point function. As examples, we study in full detail the cases of an equilateral and squeezed SGWB bispectra, and provide the explicit form of the response functio...

  5. Upper Limits on a Stochastic Gravitational-Wave Background Using LIGO and Virgo Interferometers at 600-1000 Hz

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of omega(sub GW)(f) = omega(sub 3) (f/900Hz)3, of omega(sub 3) < 0.33, assuming a value of the Hubble parameter of h(sub 100) = 0.72. These new limits are a factor of seven better than the previous best in this frequency band.

  6. Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data

    NARCIS (Netherlands)

    Aasi, J.; Agathos, M.; Beker, M.G.; Blom, M.R.; Bulten, H.J.; Del Pozzo, W.; Jonker, R.; Meidam, J.; van den Brand, J.F.J.; LIGO-Virgo Sci, Collaboration

    2014-01-01

    Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of

  7. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G. F.

    2018-05-01

    Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1 M⊙≲MPBH≲100 M⊙, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

  8. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background.

    Science.gov (United States)

    Wang, Sai; Wang, Yi-Fan; Huang, Qing-Guo; Li, Tjonnie G F

    2018-05-11

    Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1M_{⊙}≲M_{PBH}≲100M_{⊙}, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

  9. Limits of Astrophysics with Gravitational-Wave Backgrounds

    Directory of Open Access Journals (Sweden)

    Thomas Callister

    2016-08-01

    Full Text Available The recent Advanced LIGO detection of gravitational waves from the binary black hole GW150914 suggests there exists a large population of merging binary black holes in the Universe. Although most are too distant to be individually resolved by advanced detectors, the superposition of gravitational waves from many unresolvable binaries is expected to create an astrophysical stochastic background. Recent results from the LIGO and Virgo Collaborations show that this astrophysical background is within reach of Advanced LIGO. In principle, the binary black hole background encodes interesting astrophysical properties, such as the mass distribution and redshift distribution of distant binaries. However, we show that this information will be difficult to extract with the current configuration of advanced detectors (and using current data analysis tools. Additionally, the binary black hole background also constitutes a foreground that limits the ability of advanced detectors to observe other interesting stochastic background signals, for example, from cosmic strings or phase transitions in the early Universe. We quantify this effect.

  10. Stochastic gravitational wave background from the single-degenerate channel of type Ia supernovae

    International Nuclear Information System (INIS)

    Falta, David; Fisher, Robert

    2011-01-01

    We demonstrate that the integrated gravitational wave signal of type Ia supernovae (SNe Ia) in the single-degenerate channel out to cosmological distances gives rise to a continuous background to spaceborne gravitational wave detectors, including the Big Bang Observer and Deci-Hertz Interferometer Gravitational wave Observatory planned missions. This gravitational wave background from SNe Ia acts as a noise background in the frequency range 0.1-10 Hz, which heretofore was thought to be relatively free from astrophysical sources apart from neutron-star and white-dwarf binaries, and therefore a key window in which to study primordial gravitational waves generated by inflation. While inflationary energy scales of > or approx. 10 16 GeV yield inflationary gravitational wave backgrounds in excess of our range of predicted backgrounds, for lower energy scales of ∼10 15 GeV, the inflationary gravitational wave background becomes comparable to the noise background from SNe Ia.

  11. Direct detection of the inflationary gravitational-wave background

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Kamionkowski, Marc; Cooray, Asantha

    2006-01-01

    Inflation generically predicts a stochastic background of gravitational waves over a broad range of frequencies, from those accessible with cosmic microwave background (CMB) measurements, to those accessible directly with gravitational-wave detectors, like NASA's Big-Bang Observer (BBO) or Japan's Deci-Hertz Interferometer Gravitational-wave Observer (DECIGO), both currently under study. Here we investigate the detectability of the inflationary gravitational-wave background at BBO/DECIGO frequencies. To do so, we survey a range of slow-roll inflationary models consistent with constraints from the CMB and large-scale structure (LSS). We go beyond the usual assumption of power-law power spectra, which may break down given the 16 orders of magnitude in frequency between the CMB and direct detection, and solve instead the inflationary dynamics for four classes of inflaton potentials. Direct detection is possible in a variety of inflationary models, although probably not in any in which the gravitational-wave signal does not appear in the CMB polarization. However, direct detection by BBO/DECIGO can help discriminate between inflationary models that have the same slow-roll parameters at CMB/LSS scales

  12. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    Science.gov (United States)

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  13. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  14. Search for a stochastic background of 100-MHz gravitational waves with laser interferometers.

    Science.gov (United States)

    Akutsu, Tomotada; Kawamura, Seiji; Nishizawa, Atsushi; Arai, Koji; Yamamoto, Kazuhiro; Tatsumi, Daisuke; Nagano, Shigeo; Nishida, Erina; Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi; Fukushima, Mitsuhiro; Yamazaki, Toshitaka; Fujimoto, Masa-Katsu

    2008-09-05

    This Letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of approximately 10;{-16} Hz;{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h{100};{2}Omega_{gw}<6 x 10;{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.

  15. On the contribution of a stochastic background of gravitational radiation to the timing noise of pulsars

    Science.gov (United States)

    Mashhoon, B.

    1982-01-01

    The influence of a stochastic and isotropic background of gravitational radiation on timing measurements of pulsars is investigated, and it is shown that pulsar timing noise may be used to establish a significant upper limit of about 10 to the -10th on the total energy density of very long-wavelength stochastic gravitational waves. This places restriction on the strength of very long wavelength gravitational waves in the Friedmann model, and such a background is expected to have no significant effect on the approximately 3 K electromagnetic background radiation or on the dynamics of a cluster of galaxies.

  16. Optimal combination of signals from colocated gravitational wave interferometers for use in searches for a stochastic background

    International Nuclear Information System (INIS)

    Lazzarini, Albert; Reilly, Kaice; Whitcomb, Stan; Bose, Sukanta; Fritschel, Peter; McHugh, Martin; Whelan, John T.; Regimbau, Tania; Romano, Joseph D.; Whiting, Bernard F.

    2004-01-01

    This article derives an optimal (i.e., unbiased, minimum variance) estimator for the pseudodetector strain for a pair of colocated gravitational wave interferometers (such as the pair of LIGO interferometers at its Hanford Observatory), allowing for possible instrumental correlations between the two detectors. The technique is robust and does not involve any assumptions or approximations regarding the relative strength of gravitational wave signals in the Hanford pair with respect to other sources of correlated instrumental or environmental noise. An expression is given for the effective power spectral density of the combined noise in the pseudodetector. This can then be introduced into the standard optimal Wiener filter used to cross-correlate detector data streams in order to obtain an optimal estimate of the stochastic gravitational wave background. In addition, a dual to the optimal estimate of strain is derived. This dual is constructed to contain no gravitational wave signature and can thus be used as an 'off-source' measurement to test algorithms used in the 'on-source' observation

  17. Effects of QCD equation of state on the stochastic gravitational wave background

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Mohanty, Subhendra [Physical Research Laboratory, Ahmedabad 380009 (India); Dey, Ujjal Kumar, E-mail: sampurn@prl.res.in, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: mohanty@prl.res.in [Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)

    2017-03-01

    Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ω{sub gw} of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ∼ 50% and the peak frequency of the QCD era SGW are shifted higher by ∼ 25% as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.

  18. Cosmological constraints on the very low frequency gravitational-wave background

    International Nuclear Information System (INIS)

    Seto, Naoki; Cooray, Asantha

    2006-01-01

    The curl modes of cosmic microwave background polarization allow one to indirectly constrain the primordial background of gravitational waves with frequencies around 10 -18 to 10 -16 Hz. The proposed high precision timing observations of a large sample of millisecond pulsars with the pulsar timing array or with the square kilometer array can either detect or constrain the stochastic gravitational-wave background at frequencies greater than roughly 0.1 yr -1 . While existing techniques are limited to either observe or constrain the gravitational-wave background across six or more orders of magnitude between 10 -16 and 10 -10 Hz, we suggest that the anisotropy pattern of time variation of the redshift related to a sample of high-redshift objects can be used to study the background around a frequency of 10 -12 Hz. Useful observations to detect an anisotropy signal in the global redshift change include spectroscopic observations of the Ly-α forest in absorption towards a sample of quasars, redshifted 21 cm line observations either in absorption or emission towards a sample of neutral HI regions before or during reionization, and high-frequency (0.1 to 1 Hz) gravitational-wave analysis of a sample of neutron star-neutron star binaries detected with gravitational-wave instruments such as the Decihertz Interferometer Gravitational Wave Observatory (DECIGO). For reasonable observations expected in the future involving extragalactic sources, we find limits at the level of Ω GW -6 at a frequency around 10 -12 Hz while the ultimate limit is likely to be around Ω GW -11 . On the other hand, if there is a background of gravitational waves at 10 -12 Hz with an amplitude larger than this limit, its presence will be visible as a measurable anisotropy in the time-evolving redshift of extragalactic sources

  19. Optimal Search for an Astrophysical Gravitational-Wave Background

    OpenAIRE

    Rory Smith; Eric Thrane

    2018-01-01

    Roughly every 2–10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using M...

  20. Detection of a stochastic background of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.; Grishchuk, L.P.

    1980-01-01

    The possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft is considered. In the geometrical optics limit, the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field is discussed, and it is shown to be gauge (or rather Lie) independent. A detailed examination of the propagation of a free electromagnetic wave in a gravitational radiation field shows that no resonance phenomena can be expected. Thus, the results valid in the geometrical optics limit are also approximately valid for any gravitational radiation spectrum dominated by wavelengths large compared to that of the electromagnetic signal. The ''Doppler noise'' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the aradiation spectrum and the detection system used. A background gravitational radiation with an energy density comparable to the electromagnetic (approx.3 K) background and a spectrum dominated by wavelengths > or approx. =1 AU may be detectable in the near future by the Doppler tracking of interplanetary spacecraft

  1. GW170817: Implications for the Stochastic Gravitational-Wave Backgroud from Compact Binary Coalescences

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S.; Blackburn, J. K.; Blair, C. D.

    2018-01-01

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astro...

  2. Detectability of inflationary gravitational waves with microwave background polarization

    International Nuclear Information System (INIS)

    Kamionkowski, M.; Kosowsky, A.

    1998-01-01

    Inflation predicts specific relations between the amplitudes and spectral indices of the primordial spectrum of density (scalar metric) perturbations and gravitational waves (tensor metric perturbations). Detection of a stochastic gravitational-wave background is essential for identifying this unmistakable signature. Polarization of the cosmic microwave background can isolate these tensor modes in a model-independent way and thereby circumvent the cosmic-variance limit to detecting a small tensor signal with only a temperature map. Here we assess the detectability of a gravity-wave background with a temperature and polarization map. For detector sensitivities better than 10 endash 20μK√ (sec) , the sensitivity to a tensor signal is always dominated by the polarization map. With a detector sensitivity of order 1μK√ (sec) , polarization could improve on a temperature-map sensitivity to tensor modes by two to three orders of magnitude. Even a small amount of reionization substantially enhances tensor-mode detectability. We also argue that the sensitivity of the Planck Surveyor to tensor modes is significantly improved with polarization, even taking into account the resulting degradation of the intensity determination in the high-frequency channels. copyright 1997 The American Physical Society

  3. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    .... Comparison of the conventional Michelson interferometer observable with the fully-symmetric Sagnac data-type allows unambiguous discrimination between a gravitational wave background and instrumental noise. The method presented here can be used to detect a confusion-limited gravitational wave background.

  4. Optimal Search for an Astrophysical Gravitational-Wave Background

    Science.gov (United States)

    Smith, Rory; Thrane, Eric

    2018-04-01

    Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.

  5. Optimal Search for an Astrophysical Gravitational-Wave Background

    Directory of Open Access Journals (Sweden)

    Rory Smith

    2018-04-01

    Full Text Available Roughly every 2–10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both “safe” and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources, simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.

  6. Upper limit on a stochastic background of gravitational waves from seismic measurements in the range 0.05-1 Hz.

    Science.gov (United States)

    Coughlin, Michael; Harms, Jan

    2014-03-14

    In this Letter, we present an upper limit of ΩGW<1.2×108 on an isotropic stochastic gravitational-wave (GW) background integrated over a year in the frequency range 0.05-1 Hz, which improves current upper limits from high-precision laboratory experiments by about 9 orders of magnitude. The limit is obtained using the response of Earth itself to GWs via a free-surface effect described more than 40 years ago by Dyson. The response was measured by a global network of broadband seismometers selected to maximize the sensitivity.

  7. Particle production in a gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  8. Motion of photons in a gravitational wave background

    Science.gov (United States)

    Chang, Zhe; Huang, Chao-Guang; Zhao, Zhi-Chao

    2017-09-01

    Photon motion in a Michelson interferometer is re-analyzed in terms of both geometrical optics and wave optics. The classical paths of the photons in the background of a gravitational wave are derived from the Fermat principle, which is the same as the null geodesics in general relativity. The deformed Maxwell equations and the wave equations of electric fields in the background of a gravitational wave are presented in a flat-space approximation. Both methods show that even the envelope of the response of an interferometer depends on the frequency of a gravitational wave, but it is almost independent of the frequency of the mirror’s vibrations. Supported by National Natural Science Foundation of China (11275207, 11375203, 11690022, 11675182) and Strategic Priority Research Program of the Chinese Academy of Sciences “Multi-waveband Gravitational Wave Universe” (XDB23040000)

  9. Progress on stochastic background search codes for LIGO

    International Nuclear Information System (INIS)

    Whelan, John T; Anderson, Warren G; Casquette, Martha; Diaz, Mario C; Heng, Ik Siong; McHugh, Martin; Romano, Joseph D; Jr, Charlie W Torres; Trejo, Rosa M; Vecchio, Alberto

    2002-01-01

    One of the types of signals for which the LIGO interferometric gravitational wave detectors will search is a stochastic background of gravitational radiation. We review the technique of searching for a background using the optimally filtered cross-correlation statistic, and describe the state of plans to perform such cross-correlations between the two LIGO interferometers as well as between LIGO and other gravitational-wave detectors, in particular the preparation of software to perform such data analysis

  10. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  11. A Practical Theorem on Gravitational Wave Backgrounds

    OpenAIRE

    Phinney, E. S.

    2001-01-01

    There is an extremely simple relationship between the spectrum of the gravitational wave background produced by a cosmological distribution of discrete gravitational wave sources, the total time-integrated energy spectrum of an individual source, and the present-day comoving number density of remnants. Stated in this way, the background is entirely independent of the cosmology, and only weakly dependent on the evolutionary history of the sources. This relationship allows one easily to compute...

  12. On the (In)Efficiency of the Cross-Correlation Statistic for Gravitational Wave Stochastic Background Signals with Non-Gaussian Noise and Heterogeneous Detector Sensitivities

    OpenAIRE

    Lionel, Martellini; Tania, Regimbau

    2015-01-01

    Under standard assumptions including stationary and serially uncorrelated Gaussian gravitational wave stochastic background signal and noise distributions, as well as homogenous detector sensitivities, the standard cross-correlation detection statistic is known to be optimal in the sense of minimizing the probability of a false dismissal at a fixed value of the probability of a false alarm. The focus of this paper is to analyze the comparative efficiency of this statistic, versus a simple alt...

  13. Stochastic and Resolvable Gravitational Waves from Ultralight Bosons.

    Science.gov (United States)

    Brito, Richard; Ghosh, Shrobana; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor; Dvorkin, Irina; Klein, Antoine; Pani, Paolo

    2017-09-29

    Ultralight scalar fields around spinning black holes can trigger superradiant instabilities, forming a long-lived bosonic condensate outside the horizon. We use numerical solutions of the perturbed field equations and astrophysical models of massive and stellar-mass black hole populations to compute, for the first time, the stochastic gravitational-wave background from these sources. In optimistic scenarios the background is observable by Advanced LIGO and LISA for field masses m_{s} in the range ∼[2×10^{-13},10^{-12}] and ∼5×[10^{-19},10^{-16}]  eV, respectively, and it can affect the detectability of resolvable sources. Our estimates suggest that an analysis of the stochastic background limits from LIGO O1 might already be used to marginally exclude axions with mass ∼10^{-12.5}  eV. Semicoherent searches with Advanced LIGO (LISA) should detect ∼15(5) to 200(40) resolvable sources for scalar field masses 3×10^{-13} (10^{-17})  eV. LISA measurements of massive BH spins could either rule out bosons in the range ∼[10^{-18},2×10^{-13}]  eV, or measure m_{s} with 10% accuracy in the range ∼[10^{-17},10^{-13}]  eV.

  14. Chiral primordial gravitational waves from a Lifshitz point.

    Science.gov (United States)

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  15. Searching for Stochastic Gravitational Waves Using Data from the Two Co-Located LIGO Hanford Detectors

    Science.gov (United States)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; hide

    2014-01-01

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a nonco- located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460 - 1000Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f) < 7.7 × 10(exp -4)(f/900Hz)(sup 3), which improves on the previous upper limit by a factor of approx. 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.

  16. The gravitational wave contribution to cosmic microwave background anisotropies and the amplitude of mass fluctuations from COBE results

    Science.gov (United States)

    Lucchin, Francesco; Matarrese, Sabino; Mollerach, Silvia

    1992-01-01

    A stochastic background of primordial gravitational waves may substantially contribute, via the Sachs-Wolfe effect, to the large-scale cosmic microwave background (CMB) anisotropies recently detected by COBE. This implies a bias in any resulting determination of the primordial amplitude of density fluctuations. We consider the constraints imposed on n is less than 1 ('tilted') power-law fluctuation spectra, taking into account the contribution from both scalar and tensor waves, as predicted by power-law inflation. The gravitational wave contribution to CMB anisotropies generally reduces the required rms level of mass fluctuation, thereby increasing the linear bias parameter, even in models where the spectral index is close to the Harrison-Zel'dovich value n = 1. This 'gravitational wave bias' helps to reconcile the predictions of CDM models with observations on pairwise galaxy velocity dispersion on small scales.

  17. Stochastic background search correlating ALLEGRO with LIGO engineering data

    International Nuclear Information System (INIS)

    Whelan, John T; Daw, Edward; Heng, Ik Siong; McHugh, Martin P; Lazzarini, Albert

    2003-01-01

    We describe the role of correlation measurements between the LIGO interferometer in Livingston, LA, and the ALLEGRO resonant bar detector in Baton Rouge, LA, in searches for a stochastic background of gravitational waves. Such measurements provide a valuable complement to correlations between interferometers at the two LIGO sites, since they are sensitive in a different, higher, frequency band. Additionally, the variable orientation of the ALLEGRO detector provides a means to distinguish gravitational wave correlations from correlated environmental noise. We describe the analysis underway to set a limit on the strength of a stochastic background at frequencies near 900 Hz using ALLEGRO data and data from LIGO's E7 Engineering Run

  18. Stochastic background search correlating ALLEGRO with LIGO engineering data

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, John T [Department of Physics, Loyola University, New Orleans, Louisiana 70118 (United States); Daw, Edward [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Heng, Ik Siong [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Aussenstelle Hannover, D-30167 Hannover (Germany); McHugh, Martin P [Department of Physics, Loyola University, New Orleans, Louisiana 70118 (United States); Lazzarini, Albert [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2003-09-07

    We describe the role of correlation measurements between the LIGO interferometer in Livingston, LA, and the ALLEGRO resonant bar detector in Baton Rouge, LA, in searches for a stochastic background of gravitational waves. Such measurements provide a valuable complement to correlations between interferometers at the two LIGO sites, since they are sensitive in a different, higher, frequency band. Additionally, the variable orientation of the ALLEGRO detector provides a means to distinguish gravitational wave correlations from correlated environmental noise. We describe the analysis underway to set a limit on the strength of a stochastic background at frequencies near 900 Hz using ALLEGRO data and data from LIGO's E7 Engineering Run.

  19. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  20. Probing pre-inflationary anisotropy with directional variations in the gravitational wave background

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yu; Niiyama, Yuki; Sendouda, Yuuiti, E-mail: furuya@tap.st.hirosaki-u.ac.jp, E-mail: niiyama@tap.st.hirosaki-u.ac.jp, E-mail: sendouda@hirosaki-u.ac.jp [Graduate School of Science and Technology, Hirosaki University, 3 Bunkyocho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-01

    We perform a detailed analysis on a primordial gravitational-wave background amplified during a Kasner-like pre-inflationary phase allowing for general triaxial anisotropies. It is found that the predicted angular distribution map of gravitational-wave intensity on large scales exhibits topologically distinctive patterns according to the degree of the pre-inflationary anisotropy, thereby serving as a potential probe for the pre-inflationary early universe with future all-sky observations of gravitational waves. We also derive an observational limit on the amplitude of such anisotropic gravitational waves from the B -mode polarisation of the cosmic microwave background.

  1. Scalar field vacuum expectation value induced by gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  2. Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries

    Science.gov (United States)

    Yagi, Kent; Yang, Huan

    2018-05-01

    The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have

  3. Observable tensor-to-scalar ratio and secondary gravitational wave background

    Science.gov (United States)

    Chatterjee, Arindam; Mazumdar, Anupam

    2018-03-01

    In this paper we will highlight how a simple vacuum energy dominated inflection-point inflation can match the current data from cosmic microwave background radiation, and predict large primordial tensor to scalar ratio, r ˜O (10-3-10-2), with observable second order gravitational wave background, which can be potentially detectable from future experiments, such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), Laser Interferometer Space Antenna (eLISA), cosmic explorer (CE), and big bang observatory (BBO).

  4. Quantum field theory in a gravitational shock wave background

    International Nuclear Information System (INIS)

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  5. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  6. Superstring gravitational wave backgrounds with spacetime supersymmetry

    CERN Document Server

    Kiritsis, Elias B; Lüst, Dieter; Kiritsis, E; Kounnas, C; Lüst, D

    1994-01-01

    We analyse the stringy gravitational wave background based on the current algebra E.sup(c).sub(2). We determine its exact spectrum and construct the modular invariant vacuum energy. The corresponding N=1 extension is also constructed. The algebra is again mapped to free bosons and fermions and we show that this background has N=4 (N=2) unbroken spacetime supersymmetry in the type II (heterotic case).

  7. Probing the reheating temperature of the universe with a gravitational wave background

    International Nuclear Information System (INIS)

    Nakayama, Kazunori; Saito, Shun; Suwa, Yudai; Yokoyama, Jun'ichi

    2008-01-01

    The thermal history of the universe after big bang nucleosynthesis (BBN) is well understood both theoretically and observationally, and recent cosmological observations also begin to reveal the inflationary dynamics. However, the epoch between inflation and BBN is scarcely known. In this paper we show that the detection of the stochastic gravitational wave background around 1 Hz provides useful information about thermal history well before BBN. In particular, the reheating temperature of the universe may be determined by future space-based laser interferometer experiments such as DECIGO and/or BBO if it is around 10 6−9 GeV, depending on the tensor-to-scalar ratio r and dilution factor F

  8. Detection of gravitational waves from inflation

    International Nuclear Information System (INIS)

    Kamionkowski, M.; Jaffe, A.H.

    2001-01-01

    Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both of these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in detector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale. (author)

  9. Cosmological Backgrounds of Gravitational Waves and eLISA

    OpenAIRE

    Dufaux, Jean-Francois

    2012-01-01

    We review cosmological backgrounds of gravitational waves with a particular attention to the scientific potential of the eLISA/NGO mission. After an overview of cosmological backgrounds and detectors, we consider different cosmological sources that could lead to an observable signal. We then study the backgrounds produced by first-order phase transitions and networks of cosmic strings, assessing the prospects for their detection.

  10. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  11. Gravitational Waves - New Perspectives

    International Nuclear Information System (INIS)

    Biesiada, M.

    1999-01-01

    Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)

  12. MINIMUM REQUIREMENTS FOR DETECTING A STOCHASTIC GRAVITATIONAL WAVE BACKGROUND USING PULSARS

    International Nuclear Information System (INIS)

    Cordes, J. M.; Shannon, R. M.

    2012-01-01

    We assess the detectability of a nanohertz gravitational wave (GW) background in a pulsar timing array (PTA) program by considering the shape and amplitude of the cross-correlation function summed over pulsar pairs. The distribution of correlation amplitudes is found to be non-Gaussian and highly skewed, which significantly influences detection and false-alarm probabilities. When only white noise combines with GWs in timing data, our detection results are consistent with those found by others. Contamination by red noise from spin variations and from any uncorrected interstellar plasma effects significantly increases the false-alarm probability. The number of arrival times (and thus the observing cadence) is important only as long as the residuals are dominated by white noise. When red noise and GWs dominate, the statistical significance of the correlation estimate can be improved only by increasing the number of pulsars. We characterize plausible detection regimes by evaluating the number of millisecond pulsars (MSPs) that must be monitored in a high-cadence, five-year timing program to detect a GW background spectrum h c (f) = A(f/f 0 ) –2/3 with f 0 = 1 yr –1 and A = 10 –15 . Our results indicate that a sample of 20 super-stable MSPs—those with rms timing residuals σ r ∼ –15 ) from red-noise contributions over a five-year span—will allow detection of the GW background and study of its spectrum. However, a timing program on ∼> 50-100 MSPs is likely needed for a complete PTA program, particularly if red noise is generally present in MSPs.

  13. Imprints of relic gravitational waves in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.

    2006-01-01

    A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary 'tensor modes'. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C l XX ' for X, X ' =T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower l's must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at l≅30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations

  14. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8}    erg cm^{-2} s^{-1} Hz^{-1}(f/25  Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8}  sr^{-1}(f/25  Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5,  and  7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  15. Science with the space-based interferometer eLISA. II. Gravitational waves from cosmological phase transitions

    International Nuclear Information System (INIS)

    Caprini, Chiara; Hindmarsh, Mark; Helsinki Univ.; Huber, Stephan

    2016-04-01

    We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.

  16. Nonlinear metric perturbation enhancement of primordial gravitational waves.

    Science.gov (United States)

    Bastero-Gil, M; Macias-Pérez, J; Santos, D

    2010-08-20

    We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Einstein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensor fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational wave observatories.

  17. Impact of cosmic neutrinos on the gravitational-wave background

    CERN Document Server

    Mangilli, A; Matarrese, S; Riotto, Antonio

    2008-01-01

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultra-relativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  18. Thermal gravitational-wave background in the general pre-inflationary scenario

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Santos, Larissa; Zhao, Wen [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Xia, Jun-Qing, E-mail: ljwk@mail.ustc.edu.cn, E-mail: larissa@ustc.edu.cn, E-mail: xiajq@bnu.edu.cn, E-mail: wzhao7@ustc.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-01-01

    We investigate the primordial gravitational waves (PGWs) in the general scenario where the inflation is preceded by a pre-inflationary stage with the effective equation of state w . Comparing with the results in the usual inflationary models, the power spectrum of PGWs is modified in two aspects: one is the mixture of the perturbation modes caused by he presence of the pre-inflationary period, and the other is the thermal initial state formed at the Planck era of the early Universe. By investigating the observational imprints of these modifications on the B-mode polarization of cosmic microwave background (CMB) radiation, we obtain the constraints on the conformal temperature of the thermal gravitational-wave background T <5.01× 10{sup −4} Mpc{sup −1} and a tensor-to-scalar ratio r <0.084 (95% confident level), which follows the bounds on total number of e-folds N >63.5 for the model with w =1/3, and N >65.7 for that with w =1. By taking into account various noises and the foreground radiations, we forecast the detection possibility of the thermal gravitational-wave background by the future CMBPol mission, and find that if r >0.01, the detection is possible as long as T >1.5× 10{sup −4} Mpc{sup −1}. However, the effect of different w is quite small, and it seems impossible to determine its value from the potential observations of CMBPol mission.

  19. Gravitational waves from Abelian gauge fields and cosmic strings at preheating

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.

  20. Some aspects of gravitational waves in an isotropic background universe

    International Nuclear Information System (INIS)

    Pandey, S.N.

    1981-06-01

    Gravitational waves are an inescapable consequence of the relativistic theory of gravitation. They are meaningfully comparable with electromagnetic waves. However, they are not conformally invariant. So, to investigate this property for gravitational waves, modified field equations are obtained of which the underlying Lagrangian is based on gravitation only. It gives, if helicity is preserved, amplitude modification, and the wave is represented by Bessel function of zero order. Some aspects of this theory are discussed with reference to gravitational waves only. (author)

  1. Gravitational waves from a very strong electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar [IFIMAR (UNMdP-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, (7600) Mar del Plata (Argentina)

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  2. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  3. Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)

    2017-07-15

    Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)

  4. CMB polarization systematics, cosmological birefringence, and the gravitational waves background

    International Nuclear Information System (INIS)

    Pagano, Luca; Bernardis, Paolo de; Gubitosi, Giulia; Masi, Silvia; Melchiorri, Alessandro; Piacentini, Francesco; De Troia, Grazia; Natoli, Paolo; Polenta, Gianluca

    2009-01-01

    Cosmic microwave background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several nonstandard, symmetry breaking theories of electrodynamics that allow for in vacuo rotation of the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the cosmic microwave background may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle α=-4.3 deg. ±4.1 deg. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then 1 deg. for Planck and 0.2 deg. for the Experimental Probe of Inflationary Cosmology, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a gravitational waves background.

  5. On the gravitational wave background from black hole binaries after the first LIGO detections

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias, E-mail: icholis1@jhu.edu [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, 21218 (United States)

    2017-06-01

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.

  6. Exact scale-invariant background of gravitational waves from cosmic defects.

    Science.gov (United States)

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-08

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

  7. Gravitational wave background from Standard Model physics: qualitative features

    International Nuclear Information System (INIS)

    Ghiglieri, J.; Laine, M.

    2015-01-01

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors

  8. STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY

    International Nuclear Information System (INIS)

    Kotake, Kei; Iwakami, Wakana; Ohnishi, Naofumi; Yamada, Shoichi

    2009-01-01

    We study the properties of gravitational waves (GWs) based on three-dimensional (3D) simulations, which demonstrate neutrino-driven explosions aided by standing accretion shock instability (SASI). Pushed by evidence supporting slow rotation prior to core collapse, we focus on the asphericities in neutrino emissions and matter motions outside the protoneutron star. By performing a ray-tracing calculation in 3D, we estimate accurately the gravitational waveforms from anisotropic neutrino emissions. In contrast to the previous work assuming axisymmetry, we find that the gravitational waveforms vary much more stochastically because the explosion anisotropies depend sensitively on the growth of SASI which develops chaotically in all directions. Our results show that the GW spectrum has its peak near ∼100 Hz, reflecting SASI-induced matter overturns of ∼O(10) ms. We point out that the detection of such signals, possibly visible to the LIGO-class detectors for a Galactic supernova, could be an important probe into the long-veiled explosion mechanism.

  9. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    International Nuclear Information System (INIS)

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-01-01

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans

  10. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    ... formation of several observables. All are independent of lasers and frequency standard phase fluctuations, but have different couplings to gravitational waves and to the various LISA instrumental noises...

  11. Theory and numerics of gravitational waves from preheating after inflation

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Kofman, Lev; Bergman, Amanda; Felder, Gary; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity-wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity-wave interferometric experiments

  12. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, Istvan

    1997-01-01

    If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave

  13. Inflationary gravity waves in light of recent cosmic microwave background anisotropies data

    International Nuclear Information System (INIS)

    Melchiorri, Alessandro; Oedman, Carolina J.

    2003-01-01

    One of the major predictions of inflation is the existence of a stochastic background of cosmological gravitational waves (GW). These gravitational waves can induce significant temperature anisotropies in the cosmic microwave background (CMB) on the angular scales recently probed by the Archeops experiment. Here, we perform a combined analysis of Archeops together with information from other CMB experiments and/or cosmological data sets, in order to constrain the amplitude of the GW background. We find that, for a scale-invariant GW background, the ratio of tensor-scalar perturbations at the CMB quadrupole is now constrained to be r≤0.43 at 95% C.L., while the bound on the spectral index of primordial density fluctuations is n S =0.97 -0.12 +0.10 . We discuss the implications for future GW detections through CMB polarization measurements

  14. Detectable gravitational waves from very strong phase transitions in the general NMSSM

    International Nuclear Information System (INIS)

    Huber, Stephan J.; Nardini, Germano; Bern Univ.

    2015-12-01

    We study the general NMSSM with an emphasis on the parameter regions with a very strong first-order electroweak phase transition (EWPT). In the presence of heavy fields coupled to the Higgs sector, the analysis can be problematic due to the existence of sizable radiative corrections. In this paper we propose a subtraction scheme that helps to circumvent this problem. For simplicity we focus on a parameter region that is by construction hidden from the current collider searches. The analysis proves that (at least) in the identified parameter region the EWPT can be very strong and striking gravitational wave signals can be produced. The corresponding gravitational stochastic background can potentially be detected at the planned space-based gravitational wave observatory eLISA, depending on the specific experiment design that will be approved.

  15. The optimal approach of detecting stochastic gravitational wave from string cosmology using multiple detectors

    International Nuclear Information System (INIS)

    Fan Xilong; Zhu Zonghong

    2008-01-01

    String cosmology models predict a relic background of gravitational wave produced during the dilaton-driven inflation. It's spectrum is most likely to be detected by ground gravitational wave laser interferometers (IFOs), like LIGO, Virgo, GEO, as the energy density grows rapidly with frequency. We show the certain ranges of the parameters that underlying string cosmology model using two approaches, associated with 5% false alarm and 95% detection rate. The result presents that the approach of combining multiple pairs of IFOs is better than the approach of directly combining the outputs of multiple IFOs for LIGOH, LIGOL, Virgo and GEO

  16. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, I.

    1998-01-01

    The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)

  17. Data analysis techniques for gravitational wave observations

    Indian Academy of Sciences (India)

    Astrophysical sources of gravitational waves fall broadly into three categories: (i) transient and bursts, (ii) periodic or continuous wave and (iii) stochastic. Each type of source requires a different type of data analysis strategy. In this talk various data analysis strategies will be reviewed. Optimal filtering is used for extracting ...

  18. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)

  19. Gravitational waves from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information

  20. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  1. Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises

    Science.gov (United States)

    Tinto, Massimo

    2018-04-01

    We propose a data processing technique to cancel monopole and dipole noise sources (such as clock and ephemeris noises, respectively) in pulsar timing array searches for gravitational radiation. These noises are the dominant sources of correlated timing fluctuations in the lower-part (≈10-9-10-8 Hz ) of the gravitational wave band accessible by pulsar timing experiments. After deriving the expressions that reconstruct these noises from the timing data, we estimate the gravitational wave sensitivity of our proposed processing technique to single-source signals to be at least one order of magnitude higher than that achievable by directly processing the timing data from an equal-size array. Since arrays can generate pairs of clock and ephemeris-free timing combinations that are no longer affected by correlated noises, we implement with them the cross-correlation statistic to search for an isotropic stochastic gravitational wave background. We find the resulting optimal signal-to-noise ratio to be more than one order of magnitude larger than that obtainable by correlating pairs of timing data from arrays of equal size.

  2. Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors

    International Nuclear Information System (INIS)

    Regimbau, T.; Hughes, Scott A.

    2009-01-01

    Increasing the sensitivity of a gravitational-wave (GW) detector improves our ability to measure the characteristics of detected sources. It also increases the number of weak signals that contribute to the data. Because GW detectors have nearly all-sky sensitivity, they can be subject to a confusion limit: Many sources which cannot be distinguished may be measured simultaneously, defining a stochastic noise floor to the sensitivity. For GW detectors operating at present and for their planned upgrades, the projected event rate is sufficiently low that we are far from the confusion-limited regime. However, some detectors currently under discussion may have large enough reach to binary inspiral that they enter the confusion-limited regime. In this paper, we examine the binary inspiral confusion limit for terrestrial detectors. We consider a broad range of inspiral rates in the literature, several planned advanced gravitational-wave detectors, and the highly advanced 'Einstein telescope' design. Though most advanced detectors will not be impacted by this limit, the Einstein telescope with a very low-frequency 'seismic wall' may be subject to confusion noise. At a minimum, careful data analysis will be require to separate signals which will appear confused. This result should be borne in mind when designing highly advanced future instruments.

  3. Gravitational waves from self-ordering scalar fields

    CERN Document Server

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  4. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  5. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    Science.gov (United States)

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  6. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  7. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  8. Long gravitational waves in a closed universe

    International Nuclear Information System (INIS)

    Grishchuk, L.P.; Doroshkevich, A.G.; Yudin, V.M.

    The important part played by long gravitational waves in the evolution of a homogeneous closed universe (model of type IX in Biancki's classification) is discussed. It is shown that the metric of this model can be represented in the form of a sum of a background metric, describing nonstationary space of constant positive curvature, and a group of terms that may be interpreted as a set of gravitational waves of maximal length compatible with closure of the space. This subdivision of the metric is exact and does not presuppose necessary smallness of the wave corrections. For this reason the behavior of the wave terms can be traced at all stages of their evolution--both in the epoch when the contribution of the ''energy density'' and ''pressure'' of the gravitational waves to the dynamics of the background universe is negligibly small and in the epoch when this contribution is dominant. It was demonstrated, in particular, that in the limiting case of complete absence of ordinary matter the scale factor of the background metric, because of the negativity of gravitational ''pressure,''can pass during the evolution of the universe through a state of stable regular minimum

  9. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  10. Polarized Microwave Background Technologies for Inflationary Gravitational Wave Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — The detection of primordial gravitational waves (PGWs) from the epoch of inflation is one of the next majors goals in cosmology. These PGWs leave a signature on the...

  11. Preparing GEO 600 for gravitational wave astronomy-a status report

    International Nuclear Information System (INIS)

    Hewitson, M

    2005-01-01

    A number of gravitational wave detectors throughout the world are currently moving from the final stages of commissioning to a more continuous observational mode. Together, these detectors form a global network which will search for gravitational waves from various astrophysical sources, such as continuous wave signals from rotating neutron stars, transient signals from, for example, inspiralling compact objects and supernovae explosions, and stochastic gravitational wave signals from the early universe. GEO 600 is a long baseline laser-interferometric gravitational wave detector which employs advanced optical and suspension techniques to reach its design sensitivity. Almost all of the major installation work at GEO 600 is already completed and the detector is currently being commissioned to prepare it for extended observation periods. The commissioning process involves many activities in the areas of noise reduction, calibration, operational stability and characterization. This report highlights some of the major commissioning steps that have contributed to the increase in sensitivity of the instrument over the period from December 2003 to December 2004. In addition, recent extensions to the on-line calibration scheme used in GEO 600 are briefly discussed

  12. Axial gravitational waves in FLRW cosmology and memory effects

    Science.gov (United States)

    Kulczycki, Wojciech; Malec, Edward

    2017-09-01

    We show initial data for gravitational axial waves that are twice differentiable but that are not C2. They generate wave pulses that interact with matter in the radiation cosmological era. This forces the radiation matter to rotate. This rotation is permanent—it persists after the passage of the gravitational pulse. The observed inhomogeneities of the cosmic microwave background radiation put a bound onto discontinuities of superhorizon metric perturbations. We explicitly show that a class of smooth initial metrics that are at least C2 gives rise to gravitational wave pulses that do not interact with the background during the radiation epoch.

  13. Prospects of detecting gravitational background radiation by Doppler tracking interplanetary spacecraft

    International Nuclear Information System (INIS)

    Bertotti, B.; Carr, B.J.

    1980-01-01

    We examine the theoretical and experimental prospects of detecting a low-frequency, continuous, stochastic background of gravitational waves by Doppler tracking interplanetary spacecraft. From a theoretical standpoint, such a background may have been generated by various postgalactic processes or by pregalactic black hole formation; there could also exist a primordial background which goes back to the beginning of the universe. We review the characteristic frequency and density ranges which one might anticipate for these backgrounds. From an experimental standpoint, one's ability to detect a background is limited by the finite length of the record available and by an imperfect knowledge of the spectrum of various sources of noise. The fundamental contribution to the noise comes from the clock which regulates the frequency of the tracking waves. If one uses a hydrogen maser clock, this noise becomes progressively less important with decreasing frequency: one might hope to detect a critical density of background radiation at frequencies below 10 -2 Hz and a background with 10 -4 times the critical density at frequencies below 10 -5 Hz. It is encouraging that some of the sorts of background which we anticipate from theoretical considerations fall within the observable regime. We discuss the extent to which other sources of noise may exceed the clock noise and the degree to which they can be eliminated

  14. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  15. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    Science.gov (United States)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  16. Stochastic Template Bank for Gravitational Wave Searches for Precessing Neutron Star-Black Hole Coalescence Events

    Science.gov (United States)

    Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana

    2017-01-01

    Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.

  17. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  18. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  19. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves

    CERN Document Server

    Bartolo, Nicola; Domcke, Valerie; Figueroa, Daniel G.; Garcia-Bellido, Juan; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino; Peloso, Marco; Petiteau, Antoine; Ricciardone, Angelo; Sakellariadou, Mairi; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  20. Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino

    2016-01-01

    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.

  1. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  2. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  3. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  4. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  5. Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models

    International Nuclear Information System (INIS)

    Henrot-Versillé, Sophie; Robinet, Florent; Leroy, Nicolas; Plaszczynski, Stéphane; Arnaud, Nicolas; Bizouard, Marie-Anne; Cavalier, Fabien; Christensen, Nelson; Couchot, François; Franco, Samuel; Hello, Patrice; Huet, Dominique; Kasprzack, Marie; Perdereau, Olivier; Spinelli, Marta; Tristram, Matthieu

    2015-01-01

    The production of a primordial stochastic gravitational-wave (GW) background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universe's evolutionary history. Probes like the cosmic microwave background (CMB) or the baryon acoustic oscillations (BAO) can be used to set upper limits on the stochastic GW background energy density Ω GW for frequencies above 10 −15 Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-ℓ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that Ω GW h 0 2 <3.8×10 −6 at a 95% confidence level for adiabatic initial conditions, which improves over the previous limit by a factor 2.3. Assuming that the primordial GW has been produced by a network of cosmic strings, we have derived exclusion limits in the cosmic string parameter space. If the size of the loops is determined by gravitational back-reaction, string tension values greater than ∼4 × 10 −9 are excluded for a reconnection probability of 10 −3 . (paper)

  6. Towards gravitational-wave astronomy of core-collapse supernova explosion

    International Nuclear Information System (INIS)

    Kotake, Kei

    2010-01-01

    We study properties of gravitational waves based on the three-dimensional (3D) simulations, which demonstrate the neutrino-driven explosions aided by the standing accretion shock instability (SASI). Pushed by evidence supporting slow rotation prior to core-collapse, we focus on the asphericities in neutrino emissions and matter motions outside the protoneutron star. By performing a ray-tracing calculation in 3D, we estimate accurately the gravitational waveforms from anisotropic neutrino emissions. In contrast to the previous work assuming axisymmetry, we find that the gravitational waveforms vary much more stochastically because the explosion anisotropies depend sensitively on the growth of the SASI which develops chaotically in all directions. Our results show that the gravitational-wave spectrum has its peak near ∼ 100 Hz, reflecting the SASI-induced matter overturns of ∼ O(10) ms. We point out that the detection of such signals, possibly visible to the LIGO-class detectors for a Galactic supernova, could be an important probe into the long-veiled explosion mechanism.

  7. Gravitational Waves: Search Results, Data Analysis and Parameter Estimation. Amaldi 10 Parallel Session C2

    Science.gov (United States)

    Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi

    2015-01-01

    The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

  8. Gravitational waves: search results, data analysis and parameter estimation: Amaldi 10 Parallel session C2.

    Science.gov (United States)

    Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G

    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

  9. Gravitational waves from primordial black hole mergers

    Energy Technology Data Exchange (ETDEWEB)

    Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi, E-mail: martti.raidal@cern.ch, E-mail: ville.vaskonen@kbfi.ee, E-mail: hardi.veermae@cern.ch [NICPB, Rävala 10, 10143 Tallinn (Estonia)

    2017-09-01

    We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5−30 M {sub ⊙}. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.

  10. Cosmological constraints on the amplitude of relic gravitational waves

    International Nuclear Information System (INIS)

    Novosyadlij, B.; Apunevich, S.

    2005-01-01

    The evolution of the amplitude of relic gravitational waves (RGW) generated in early Universe has been analyzed. The analytical approximation is presented for angular power spectrum of cosmic microwave background anisotropies caused by gravitational waves through Sachs-Wolfe effect. The estimate of the most probable value for this amplitude was obtained on the basis of observation data on cosmic microwave background anisotropies from COBE, WMAP and BOOMERanG experiments along with large-scale structure observations

  11. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  12. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    International Nuclear Information System (INIS)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko

    2016-01-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  13. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko, E-mail: matsui.yuka@f.mbox.nagoya-u.ac.jp, E-mail: horiguchi.kouichirou@h.mbox.nagoya-u.ac.jp, E-mail: nitta.daisuke@g.mbox.nagoya-u.ac.jp, E-mail: kuroyanagi.sachiko@f.mbox.nagoya-u.ac.jp [Department of physics and astrophysics, Nagoya University, Nagoya, 464-8602 (Japan)

    2016-11-01

    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  14. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  15. Turbulence of Weak Gravitational Waves in the Early Universe.

    Science.gov (United States)

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  16. Anomalous cosmic-microwave-background polarization and gravitational chirality.

    Science.gov (United States)

    Contaldi, Carlo R; Magueijo, João; Smolin, Lee

    2008-10-03

    We consider the possibility that gravity breaks parity, with left and right-handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous cosmic microwave background polarization. Nonvanishing temperature-magnetic (TB) mode [and electric-magnetic mode] components emerge, revealing interesting experimental targets. Indeed, if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  17. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  18. Stochastic gravitational waves from a new type of modified Chaplygin gas

    International Nuclear Information System (INIS)

    Bouhmadi-Lopez, Mariam; Frazao, Pedro; Henriques, Alfredo B.

    2010-01-01

    We propose a new scenario for the early Universe where there is a smooth transition between an early de Sitter-like phase and a radiation-dominated era. In this model, the matter content is modeled by a new type of generalized Chaplygin gas [6] for the early Universe, with an underlying scalar field description. We study the gravitational waves generated by the quantum fluctuations. In particular, we calculate the gravitational-wave power spectrum, as it would be measured today, following the method of the Bogoliubov coefficients. We show that the high frequencies region of the spectrum depends strongly on one of the parameters of the model. On the other hand, we use the number of e folds, along with the power spectra and spectral index of the scalar perturbations, to constrain the model observationally.

  19. New cosmic microwave background constraint to primordial gravitational waves.

    Science.gov (United States)

    Smith, Tristan L; Pierpaoli, Elena; Kamionkowski, Marc

    2006-07-14

    Primordial gravitational waves (GWs) with frequencies > or approximately equal to 10(-15) Hz contribute to the radiation density of the Universe at the time of decoupling of the cosmic microwave background (CMB). This affects the CMB and matter power spectra in a manner identical to massless neutrinos, unless the initial density perturbation for the GWs is nonadiabatic, as may occur if such GWs are produced during inflation or some post-inflation phase transition. In either case, current observations provide a constraint to the GW amplitude that competes with that from big-bang nucleosynthesis (BBN), although it extends to much lower frequencies (approximately 10(-15) Hz rather than the approximately 10(-10) Hz from BBN): at 95% confidence level, omega(gw)h(2)

  20. Quantum fluctuations of some gravitational waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Kaya, R.; Ozdemir, N.; Ulker, K.; Yapiskan, B.

    1998-01-01

    We review our previous work on the the calculation of the stress-energy tensor for a scalar particle in the background metric of different types of spherical impulsive, spherical shock and plane impulsive gravitational waves.

  1. Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses

    International Nuclear Information System (INIS)

    Allen, Bruce; Creighton, Jolien D.E.; Flanagan, Eanna E.; Romano, Joseph D.

    2003-01-01

    In a previous paper (paper I), we derived a set of near-optimal signal detection techniques for gravitational wave detectors whose noise probability distributions contain non-Gaussian tails. The methods modify standard methods by truncating or clipping sample values which lie in those non-Gaussian tails. The methods were derived, in the frequentist framework, by minimizing false alarm probabilities at fixed false detection probability in the limit of weak signals. For stochastic signals, the resulting statistic consisted of a sum of an autocorrelation term and a cross-correlation term; it was necessary to discard 'by hand' the autocorrelation term in order to arrive at the correct, generalized cross-correlation statistic. In the present paper, we present an alternative derivation of the same signal detection techniques from within the Bayesian framework. We compute, for both deterministic and stochastic signals, the probability that a signal is present in the data, in the limit where the signal-to-noise ratio squared per frequency bin is small, where the signal is nevertheless strong enough to be detected (integrated signal-to-noise ratio large compared to 1), and where the total probability in the non-Gaussian tail part of the noise distribution is small. We show that, for each model considered, the resulting probability is to a good approximation a monotonic function of the detection statistic derived in paper I. Moreover, for stochastic signals, the new Bayesian derivation automatically eliminates the problematic autocorrelation term

  2. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  3. Gravitational instabilities of the cosmic neutrino background with non-zero lepton number

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2017-09-01

    Full Text Available We argue that a cosmic neutrino background that carries non-zero lepton charge develops gravitational instabilities. Fundamentally, these instabilities are related to the mixed gravity-lepton number anomaly. We have explicitly computed the gravitational Chern–Simons term which is generated quantum-mechanically in the effective action in the presence of a lepton number asymmetric neutrino background. The induced Chern–Simons term has a twofold effect: (i gravitational waves propagating in such a neutrino background exhibit birefringent behaviour leading to an enhancement/suppression of the gravitational wave amplitudes depending on the polarisation, where the magnitude of this effect is related to the size of the lepton asymmetry; (ii Negative energy graviton modes are induced in the high frequency regime, which leads to very fast vacuum decay producing, e.g., positive energy photons and negative energy gravitons. From the constraint on the present radiation energy density, we obtain an interesting bound on the lepton asymmetry of the universe.

  4. Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach

    International Nuclear Information System (INIS)

    Caprini, Chiara; Durrer, Ruth; Servant, Geraldine

    2008-01-01

    Gravitational wave production from bubble collisions was calculated in the early 1990s using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulas for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA

  5. Distortions of the distribution function of collisionless particles by high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Vainer, B.V.; Nasel'skii, P.D.

    1983-01-01

    Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves

  6. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  7. Breaking a dark degeneracy with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas; Taylor, Andy, E-mail: llo@roe.ac.uk, E-mail: ant@roe.ac.uk [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2016-03-01

    We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self-acceleration of the model implies a present cosmological tensor mode propagation at ∼<95 % of the speed of light with a damping of the wave amplitude that is ∼>5 % less efficient than in general relativity. We show that these discrepancies are endemic to self-accelerated Horndeski theories with degenerate large-scale structure and are tested with measurements of gravitational waves emitted by events at cosmological distances. Hence, gravitational-wave cosmology breaks the dark degeneracy in observations of the large-scale structure between two fundamentally different explanations of cosmic acceleration—a cosmological constant and a scalar-tensor modification of gravity. The gravitational wave event GW150914 recently detected with the aLIGO instruments and its potential association with a weak short gamma-ray burst observed with the Fermi GBM experiment may have provided this crucial measurement.

  8. Electromagnetic waves in gravitational wave spacetimes

    International Nuclear Information System (INIS)

    Haney, M.; Bini, D.; Ortolan, A.; Fortini, P.

    2013-01-01

    We have considered the propagation of electromagnetic waves in a space-time representing an exact gravitational plane wave and calculated the induced changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing a suitable photon round-trip in a Michelson interferometer, we have been able to identify the physical effects of the exact gravitational wave on the electromagnetic field, i.e. phase shift, change of the polarization vector, angular deflection and delay. These results have been exploited to study the response of an interferometric gravitational wave detector beyond the linear approximation of the general theory of relativity. A much more detailed examination of this problem can be found in our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).

  9. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  10. Post-Newtonian evolution of massive black hole triplets in galactic nuclei - III. A robust lower limit to the nHz stochastic background of gravitational waves

    Science.gov (United States)

    Bonetti, Matteo; Sesana, Alberto; Barausse, Enrico; Haardt, Francesco

    2018-04-01

    Inspiraling massive black-hole binaries (MBHBs) forming in the aftermath of galaxy mergers are expected to be the loudest gravitational-wave (GW) sources relevant for pulsar-timing arrays (PTAs) at nHz frequencies. The incoherent overlap of signals from a cosmic population of MBHBs gives rise to a stochastic GW background (GWB) with characteristic strain around hc ˜ 10-15 at a reference frequency of 1 yr-1, although uncertainties around this value are large. Current PTAs are piercing into the GW amplitude range predicted by MBHB-population models, but no detection has been reported so far. To assess the future success prospects of PTA experiments, it is therefore important to estimate the minimum GWB level consistent with our current understanding of the formation and evolution of galaxies and massive black holes (MBHs). To this purpose, we couple a semianalytic model of galaxy evolution and an extensive study of the statistical outcome of triple MBH interactions. We show that even in the most pessimistic scenario where all MBHBs stall before entering the GW-dominated regime, triple interactions resulting from subsequent galaxy mergers inevitably drive a considerable fraction of the MBHB population to coalescence. At frequencies relevant for PTA, the resulting GWB is only a factor of 2-to-3 suppressed compared to a fiducial model where binaries are allowed to merge over Gyr timescales. Coupled with current estimates of the expected GWB amplitude range, our findings suggest that the minimum GWB from cosmic MBHBs is unlikely to be lower than hc ˜ 10-16 (at f = 1 yr-1), well within the expected sensitivity of projected PTAs based on future observations with FAST, MeerKAT and SKA.

  11. Post-Newtonian evolution of massive black hole triplets in galactic nuclei - III. A robust lower limit to the nHz stochastic background of gravitational waves

    Science.gov (United States)

    Bonetti, Matteo; Sesana, Alberto; Barausse, Enrico; Haardt, Francesco

    2018-06-01

    Inspiraling massive black hole binaries (MBHBs) forming in the aftermath of galaxy mergers are expected to be the loudest gravitational-wave (GW) sources relevant for pulsar-timing arrays (PTAs) at nHz frequencies. The incoherent overlap of signals from a cosmic population of MBHBs gives rise to a stochastic GW background (GWB) with characteristic strain around hc ˜ 10-15 at a reference frequency of 1 yr-1, although uncertainties around this value are large. Current PTAs are piercing into the GW amplitude range predicted by MBHB-population models, but no detection has been reported so far. To assess the future success prospects of PTA experiments, it is therefore important to estimate the minimum GWB level consistent with our current understanding of the formation and evolution of galaxies and massive black holes (MBHs). To this purpose, we couple a semi-analytic model of galaxy evolution and an extensive study of the statistical outcome of triple MBH interactions. We show that even in the most pessimistic scenario where all MBHBs stall before entering the GW-dominated regime, triple interactions resulting from subsequent galaxy mergers inevitably drive a considerable fraction of the MBHB population to coalescence. At frequencies relevant for PTA, the resulting GWB is only a factor of 2-3 suppressed compared to a fiducial model where binaries are allowed to merge over Gyr time-scales . Coupled with current estimates of the expected GWB amplitude range, our findings suggest that the minimum GWB from cosmic MBHBs is unlikely to be lower than hc ˜ 10-16 (at f = 1 yr-1), well within the expected sensitivity of projected PTAs based on future observations with FAST, MeerKAT, and SKA.

  12. Gravitational wave from dark sector with dark pion

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, Koji [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yamada, Masatoshi [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-07-01

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiral perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.

  13. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  14. Stochastic quantization and gauge-fixing of the linearized gravitational field

    International Nuclear Information System (INIS)

    Hueffel, H.; Rumpf, H.

    1984-01-01

    Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)

  15. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    International Nuclear Information System (INIS)

    Cordes, J. M.; Jenet, F. A.

    2012-01-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  16. Detecting Gravitational Wave Memory with Pulsar Timing

    Science.gov (United States)

    Cordes, J. M.; Jenet, F. A.

    2012-06-01

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T ≈ 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  17. Primordial gravitational waves, BICEP2 and beyond

    Indian Academy of Sciences (India)

    2016-01-07

    Jan 7, 2016 ... Observations of the imprints of primordial gravitational waves on the ... the cosmic microwave background can provide us with unambiguous clues to the ... by the stress–energy tensor) can be classified, for instance, based on ...

  18. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  19. A perturbative solution for gravitational waves in quadratic gravity

    International Nuclear Information System (INIS)

    Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de

    2003-01-01

    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin

  20. On the background estimation by time slides in a network of gravitational wave detectors

    International Nuclear Information System (INIS)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis

    2010-01-01

    Time shifting the outputs of gravitational wave detectors operating in coincidence is a convenient way to estimate the background in a search for short-duration signals. However, this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates, this error saturates at a large value. Explicit computations are done for two detectors, and for three detectors where the detection statistic relies on the logical 'OR' of the coincidences of the three couples in the network.

  1. On the background estimation by time slides in a network of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis, E-mail: mwas@lal.in2p3.f [LAL, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France)

    2010-01-07

    Time shifting the outputs of gravitational wave detectors operating in coincidence is a convenient way to estimate the background in a search for short-duration signals. However, this procedure is limited as increasing indefinitely the number of time shifts does not provide better estimates. We show that the false alarm rate estimation error saturates with the number of time shifts. In particular, for detectors with very different trigger rates, this error saturates at a large value. Explicit computations are done for two detectors, and for three detectors where the detection statistic relies on the logical 'OR' of the coincidences of the three couples in the network.

  2. Limits on the speed of gravitational waves from pulsar timing

    International Nuclear Information System (INIS)

    Baskaran, D.; Polnarev, A. G.; Pshirkov, M. S.; Postnov, K. A.

    2008-01-01

    In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one to place significant constraints on parameter ε, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on ε and consequently on the mass of the graviton m g . The limits on m g -24 are 2 orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow one to rule out massive gravitons as possible candidates for cold dark matter in the galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing accuracy, will allow one to achieve constraints of ε < or approx. 0.4% and possibly stronger.

  3. Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi

    2011-01-01

    We study the potential impact of detecting the inflationary gravitational wave background by the future space-based gravitational wave detectors, such as DECIGO and BBO. The signal-to-noise ratio of each experiment is calculated for chaotic/natural/hybrid inflation models by using the precise predictions of the gravitational wave spectrum based on numerical calculations. We investigate the dependence of each inflation model on the reheating temperature which influences the amplitude and shape of the spectrum, and find that the gravitational waves could be detected for chaotic/natural inflation models with high reheating temperature. From the detection of the gravitational waves, a lower bound on the reheating temperature could be obtained. The implications of this lower bound on the reheating temperature for particle physics are also discussed.

  4. BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments

    Science.gov (United States)

    Poisson, Eric

    2008-10-01

    , periodic waves, waves from inspiraling binaries, and stochastic backgrounds of cosmological origin. In chapter 8 the author explains the inner workings of (cylindrical and spherical) resonant-mass detectors. The presentation begins with a detailed study of the response a gravitational wave produces in an elastic body. It moves on to the exploration of a simple model for the detector's read-out system, in terms of coupled oscillators. After a survey of noise sources within a resonant bar and a discussion of the standard quantum limit and non-demolition measurements, the author describes the physics of a resonant sphere, whose normal modes of vibrations can reveal each one of the two polarization states of a gravitational wave. Interferometric detectors are the topic of chapter 9, the book's concluding chapter. The author first explains how the passage of a gravitational wave affects the optical path within a simple Michelson interferometer, and he next moves on to the more complicated (and more relevant) case of a Fabry Perot interferometer. Step by step he adds layers of complexity that eventually produce a more realistic (but still idealized) version of an interferometric detector. And after another survey of noise sources, the author describes the current status of the LIGO and VIRGO detectors. I must say that I especially appreciated the last two chapters on detector modeling. What I like most is the fact that while an understanding of gravitational waves and their sources relies mostly on general relativity and astrophysics, an understanding of detectors relies on a lot more of interesting physics. For example, elasticity theory, thermal physics, and quantum mechanics are required to describe the operations of a resonant bar, while wave and quantum optics are required to model an interferometer; the joining of gravitational-wave physics with these subjects gives rise to a very rich field of study. Chapter 9, however, contains a disappointment: except for a short

  5. Search for a stochastic gravitational-wave signal in the second round of the Mock LISA Data Challenges

    International Nuclear Information System (INIS)

    Robinson, E L; Vecchio, A; Romano, J D

    2008-01-01

    The analysis method currently proposed to search for isotropic stochastic radiation with the Laser Interferometer Space Antenna (LISA) relies on the combined use of two LISA channels, one of which is insensitive to gravitational waves, such as the symmetrized Sagnac. For this method to work, it is essential to know how the instrumental noise power in the two channels are related to one another; however, no quantitative estimates of this key information are available to date. The purpose of our study is to assess the performance of the symmetrized Sagnac method for different levels of prior information regarding the instrumental noise. We develop a general approach in the framework of Bayesian inference and an end-to-end analysis algorithm based on Markov chain Monte Carlo methods to compute the posterior probability density functions of the relevant model parameters. We apply this method to data released as part of the second round of the Mock LISA Data Challenges. For the selected (and somewhat idealized) example cases considered here, we find that for a signal whose amplitude dominates the instrumental noise by a factor ∼25, a prior uncertainty of a factor ∼2 in the ratio between the power of the instrumental noise contributions in the two channels allows for the detection of isotropic stochastic radiation. More importantly, we provide a framework for more realistic studies of LISA's performance and development of analysis techniques in the context of searches for stochastic signals

  6. A method for characterization of coherent backgrounds in real time and its application in gravitational wave data analysis

    International Nuclear Information System (INIS)

    Daw, E J; Hewitson, M R

    2008-01-01

    Many experiments, and in particular gravitational wave detectors, produce continuous streams of data whose frequency representations contain discrete, relatively narrowband coherent features at high amplitude. We discuss the application of digital Fourier transforms (DFTs) to characterization of these features, hereafter frequently referred to as lines. Application of DFTs to continuously produced time-domain data is achieved through an algorithm, hereafter referred to as EFC , for efficient time-domain determination of the Fourier coefficients of a data set. We first define EFC and discuss parameters relating to the algorithm that determine its properties and action on the data. In gravitational wave interferometers, these lines are commonly due to parasitic sources of coherent background interference coupling into the instrument. Using GEO 600 data, we next demonstrate that time-domain subtraction of lines can proceed without detrimental effects either on features at frequencies separated from that of the subtracted line, or on features at the frequency of the line but having different stationarity properties

  7. Transient multimessenger astronomy with gravitational waves

    International Nuclear Information System (INIS)

    Marka, S

    2011-01-01

    Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.

  8. No further gravitational wave modes in F(T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu, E-mail: bamba@kmi.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); De Laurentis, Mariafelicia, E-mail: felicia@na.infn.it [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Dipartimento di Fisica, Università di Napoli “Federico II” (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)

    2013-11-25

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity.

  9. No further gravitational wave modes in F(T) gravity

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-01-01

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar–tensor representation of F(T) gravity

  10. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  11. Gravitational wave memory in an expanding universe

    Science.gov (United States)

    Tolish, Alexander; Wald, Robert

    2016-03-01

    We investigate the gravitational wave memory effect in an expanding FLRW spacetime. We find that if the gravitational field is decomposed into gauge-invariant scalar, vector, and tensor modes after the fashion of Bardeen, only the tensor mode gives rise to memory, and this memory can be calculated using the retarded Green's function associated with the tensor wave equation. If locally similar radiation source events occur on flat and FLRW backgrounds, we find that the resulting memories will differ only by a redshift factor, and we explore whether or not this factor depends on the expansion history of the FLRW universe. We compare our results to related work by Bieri, Garfinkle, and Yau.

  12. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  13. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

    Science.gov (United States)

    Covas, P. B.; Effler, A.; Goetz, E.; Meyers, P. M.; Neunzert, A.; Oliver, M.; Pearlstone, B. L.; Roma, V. J.; Schofield, R. M. S.; Adya, V. B.; Astone, P.; Biscoveanu, S.; Callister, T. A.; Christensen, N.; Colla, A.; Coughlin, E.; Coughlin, M. W.; Crowder, S. G.; Dwyer, S. E.; Eggenstein, H.-B.; Hourihane, S.; Kandhasamy, S.; Liu, W.; Lundgren, A. P.; Matas, A.; McCarthy, R.; McIver, J.; Mendell, G.; Ormiston, R.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Rao, K.; Riles, K.; Sammut, L.; Schlassa, S.; Sigg, D.; Strauss, N.; Tao, D.; Thorne, K. A.; Thrane, E.; Trembath-Reichert, S.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Austin, C.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bejger, M.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Blair, R. M.; Bork, R.; Brooks, A. F.; Cao, H.; Ciani, G.; Clara, F.; Clearwater, P.; Cooper, S. J.; Corban, P.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Edo, T. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Galiana, A. Fernández; Ferreira, E. C.; Fisher, R. P.; Fong, H.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gateley, B.; Giaime, J. A.; Giardina, K. D.; Goetz, R.; Goncharov, B.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Inta, R.; Izumi, K.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kennedy, R.; Kijbunchoo, N.; Kim, W.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Laxen, M.; Liu, J.; Lockerbie, N. A.; Lormand, M.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Marsh, P.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIntyre, G.; McRae, T.; Merilh, E. L.; Miller, J.; Mittleman, R.; Mo, G.; Mogushi, K.; Moraru, D.; Moreno, G.; Mueller, G.; Mukund, N.; Mullavey, A.; Munch, J.; Nelson, T. J. N.; Nguyen, P.; Nuttall, L. K.; Oberling, J.; Oktavia, O.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Parker, W.; Pele, A.; Penn, S.; Perez, C. J.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Radkins, H.; Raffai, P.; Ramirez, K. E.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sanchez, L. E.; Sandberg, V.; Savage, R. L.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shoemaker, D. H.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Spencer, A. P.; Staley, A.; Strain, K. A.; Sun, L.; Tanner, D. B.; Tasson, J. D.; Taylor, R.; Thomas, M.; Thomas, P.; Toland, K.; Torrie, C. I.; Traylor, G.; Tse, M.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Wade, M.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Wofford, J.; Worden, J.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zhu, S.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2018-04-01

    Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.

  15. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  16. Primordial gravitational waves and cosmology.

    Science.gov (United States)

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.

  17. Detecting relic gravitational waves in the CMB: Optimal parameters and their constraints

    International Nuclear Information System (INIS)

    Zhao, W.; Baskaran, D.

    2009-01-01

    The prospect of detecting relic gravitational waves, through their imprint in the cosmic microwave background radiation, provides an excellent opportunity to study the very early Universe. In the simplest viable theoretical models the relic gravitational wave background is characterized by two parameters, the tensor-to-scalar ratio r and the tensor spectral index n t . In this paper, we analyze the potential joint constraints on these two parameters, r and n t , using the data from the upcoming cosmic microwave background radiation experiments. Introducing the notion of the best-pivot multipole l t *, we find that at this pivot multipole the parameters r and n t are uncorrelated, and have the smallest variances. We derive the analytical formulas for the best-pivot multipole number l t *, and the variances of the parameters r and n t . We verify these analytical calculations using numerical simulation methods, and find agreement to within 20%. The analytical results provide a simple way to estimate the detection ability for the relic gravitational waves by the future observations of the cosmic microwave background radiation.

  18. Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)

    2017-08-15

    We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)

  19. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  20. Parametric mechanisms for detecting gravitational waves

    International Nuclear Information System (INIS)

    Pustovoit, V.I.; Chernozatonskii, L.A.

    1981-01-01

    An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation

  1. Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers

    International Nuclear Information System (INIS)

    Thrane, Eric; Kandhasamy, Shivaraj; Dorsher, Steven; Mandic, Vuk; Prestegard, Tanner; Ott, Christian D.; Anderson, Warren G.; Christensen, Nelson L.; Coughlin, Michael W.; Giampanis, Stefanos; Mytidis, Antonis; Whiting, Bernard; Raffai, Peter

    2011-01-01

    Searches for gravitational waves (GWs) traditionally focus on persistent sources (e.g., pulsars or the stochastic background) or on transients sources (e.g., compact binary inspirals or core-collapse supernovae), which last for time scales of milliseconds to seconds. We explore the possibility of long GW transients with unknown waveforms lasting from many seconds to weeks. We propose a novel analysis technique to bridge the gap between short O(s)''burst'' analyses and persistent stochastic analyses. Our technique utilizes frequency-time maps of GW strain cross power between two spatially separated terrestrial GW detectors. The application of our cross power statistic to searches for GW transients is framed as a pattern recognition problem, and we discuss several pattern-recognition techniques. We demonstrate these techniques by recovering simulated GW signals in simulated detector noise. We also recover environmental noise artifacts, thereby demonstrating a novel technique for the identification of such artifacts in GW interferometers. We compare the efficiency of this framework to other techniques such as matched filtering.

  2. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  3. Gravitational waves — A review on the theoretical foundations of gravitational radiation

    Science.gov (United States)

    Dirkes, Alain

    2018-05-01

    In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.

  4. Thermal gravitational waves in accelerating universe

    Directory of Open Access Journals (Sweden)

    B Ghayour

    2013-10-01

    Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out

  5. The Japanese space gravitational wave antenna - DECIGO

    International Nuclear Information System (INIS)

    Kawamura, S; Seto, N; Sato, S; Arai, K; Ando, M; Tsubono, K; Agatsuma, K; Akutsu, T; Akutsu, T; Arase, Y; Nakamura, T; Tanaka, T; Funaki, I; Takashima, T; Numata, K; Ioka, K; Kanda, N; Aoyanagi, Koh-Suke; Araya, A; Asada, H

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies

  6. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  7. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  8. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  9. Gravitational waves at interferometer scales and primordial black holes in axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    García-Bellido, Juan [Instituto de Física Teórica UAM-CSIC, Universidad Autonóma de Madrid, Cantoblanco, Madrid, 28049 (Spain); Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu [School of Physics and Astronomy, and Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, 55455 (United States)

    2016-12-01

    We study the prospects of detection at terrestrial and space interferometers, as well as at pulsar timing array experiments, of a stochastic gravitational wave background which can be produced in models of axion inflation. This potential signal, and the development of these experiments, open a new window on inflation on scales much smaller than those currently probed with Cosmic Microwave Background and Large Scale Structure measurements. The sourced signal generated in axion inflation is an ideal candidate for such searches, since it naturally grows at small scales, and it has specific properties (chirality and non-gaussianity) that can distinguish it from an astrophysical background. We study under which conditions such a signal can be produced at an observable level, without the simultaneous overproduction of scalar perturbations in excess of what is allowed by the primordial black hole limits. We also explore the possibility that scalar perturbations generated in a modified version of this model may provide a distribution of primordial black holes compatible with the current bounds, that can act as a seeds of the present black holes in the universe.

  10. Gravitational shock waves and extreme magnetomaterial shock waves

    International Nuclear Information System (INIS)

    Lichnerowicz, Andre.

    1975-01-01

    Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr

  11. Effect of Earth gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested

  12. Gravitational Wave Speed: Undefined. Experiments Proposed

    Directory of Open Access Journals (Sweden)

    Daniel Russell

    2018-04-01

    Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.

  13. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  14. The Japanese space gravitational wave antenna; DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  15. The Japanese space gravitational wave antenna - DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  16. Gravitational waves from instabilities in relativistic stars

    International Nuclear Information System (INIS)

    Andersson, Nils

    2003-01-01

    This paper provides an overview of stellar instabilities as sources of gravitational waves. The aim is to put recent work on secular and dynamical instabilities in compact stars in context, and to summarize the current thinking about the detectability of gravitational waves from various scenarios. As a new generation of kilometre length interferometric detectors is now coming online this is a highly topical theme. The review is motivated by two key questions for future gravitational-wave astronomy: are the gravitational waves from various instabilities detectable? If so, what can these gravitational-wave signals teach us about neutron star physics? Even though we may not have clear answers to these questions, recent studies of the dynamical bar-mode instability and the secular r-mode instability have provided new insights into many of the difficult issues involved in modelling unstable stars as gravitational-wave sources. (topical review)

  17. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  18. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  19. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  20. Coherent network detection of gravitational waves: the redundancy veto

    International Nuclear Information System (INIS)

    Wen Linqing; Schutz, Bernard F

    2005-01-01

    A network of gravitational wave detectors is called redundant if, given the direction to a source, the strain induced by a gravitational wave in one or more of the detectors can be fully expressed in terms of the strain induced in others in the network. Because gravitational waves have only two polarizations, any network of three or more differently oriented interferometers with similar observing bands is redundant. The three-armed LISA space interferometer has three outputs that are redundant at low frequencies. The two aligned LIGO interferometers at Hanford WA are redundant, and the LIGO detector at Livingston LA is nearly redundant with either of the Hanford detectors. Redundant networks have a powerful veto against spurious noise, a linear combination of the detector outputs that contains no gravitational wave signal. For LISA, this 'null' output is known as the Sagnac mode, and its use in discriminating between detector noise and a cosmological gravitational wave background is well understood. But the usefulness of the null veto for ground-based detector networks has been ignored until now. We show that it should make it possible to discriminate in a model-independent way between real gravitational waves and accidentally coincident non-Gaussian noise 'events' in redundant networks of two or more broadband detectors. It has been shown that with three detectors, the null output can even be used to locate the direction to the source, and then two other linear combinations of detector outputs give the optimal 'coherent' reconstruction of the two polarization components of the signal. We discuss briefly the implementation of such a detection strategy in realistic networks, where signals are weak, detector calibration is a significant uncertainty, and the various detectors may have different (but overlapping) observing bands

  1. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  2. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  3. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  4. Physics, Astrophysics and Cosmology with Gravitational Waves.

    Science.gov (United States)

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  5. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  6. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  7. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  8. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  9. Gravitational Waves: A New Observational Window

    Science.gov (United States)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  10. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  11. Gravitational Wave Astrophysics: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  12. Rapid Monte Carlo Simulation of Gravitational Wave Galaxies

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2015-01-01

    With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.

  13. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  14. Possibility of Landau damping of gravitational waves

    International Nuclear Information System (INIS)

    Gayer, S.; Kennel, C.F.

    1979-01-01

    There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible

  15. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  16. Progress in gravitational wave detection: Interferometers

    International Nuclear Information System (INIS)

    Kuroda, Kazuaki

    2002-01-01

    A gravitational wave (GW) is a physical entity of space-time derived from Einstein's theory of general relativity. Challenging projects to observe gravitational waves are being conducted throughout the world. A Japanese project involving a 300 m baseline laser interferometer, TAMA, achieved 1000 hr of continuous observation with the best sensitivity in the world during the summer of 2001. After achieving promising results, the realization of LCGT (Large-scale Cryogenic Gravitational wave Telescope) will become possible in the near future

  17. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  18. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  19. Gravitational Waves from Oscillons after Inflation.

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-06

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  20. The Japanese space gravitational wave antenna-DECIGO

    International Nuclear Information System (INIS)

    Kawamura, Seiji; Nakamura, Takashi; Ando, Masaki

    2006-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. It aims at detecting various kinds of gravitational waves between 1 mHz and 100 Hz frequently enough to open a new window of observation for gravitational wave astronomy. The pre-conceptual design of DECIGO consists of three drag-free satellites, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO in 2024 after a long and intense development phase, including two pathfinder missions for verification of required technologies

  1. Problems of generation and reception of gravitational waves

    International Nuclear Information System (INIS)

    Pisarev, A.F.

    1975-01-01

    The present day status of the problems of gravitation, wave radiation and reception is surveyed. The physical presentation and mathematical description of the processes of radiation, propagation and interaction of gravitation waves with matter and the electromagnetic field are given. The experiments on the search for gravitation waves of astophysical nature are analysed. The laboratory and cosmic sources of these waves and the methods of their reception are described. Special attention is drawn to the analysis of the proposals to perform a complete laboratory gravitation wave experiment

  2. Displacement-noise-free gravitational-wave detection

    International Nuclear Information System (INIS)

    Kawamura, Seiji; Chen Yanbei

    2004-01-01

    We present a new idea that allows us to detect gravitational waves without being disturbed by any kind of displacement noise, based on the fact that gravitational waves and test-mass motions affect the propagations of light differently. We demonstrate this idea by analyzing a simple toy model consisting of three equally-separated objects on a line. By taking a certain combination of light travel times between these objects, we construct an observable free from the displacement of each object, which has a reasonable sensitivity to gravitational waves

  3. Linear interaction of gravitational waves

    International Nuclear Information System (INIS)

    Ciubotariu, C.D.

    1992-01-01

    Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)

  4. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    Science.gov (United States)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On

  5. Radiation and detection of gravitational waves in laboratory conditions

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Pisarev, A.F.; Shavokhina, N.S.

    1981-01-01

    Two variants are proposed and analyzed for an experiment on radiation and detection of gravitational waves in laboratory conditions in the optical and superhigh frequency range (band). In the first variant the laser light is parametrically transformed to the gravitational wave in the optical-inhomogeneous medium. The gravitational flux produced is registered by the inverse parametric transformation of the gravitational to light wave. In the second variant the radiation of gravitational waves is realized through hypersonic oscillations in piezocrystals, and the reception of waves is made by the superconducting coaxial resonator in which the gravitational wave resonantly transforms into the electromag= . netic wave. The analysis performed testifies to the possibility of an experiment of this type at the present time [ru

  6. Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts

    International Nuclear Information System (INIS)

    Yunes, Nicolas; O'Shaughnessy, Richard; Owen, Benjamin J.; Alexander, Stephon

    2010-01-01

    Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance to the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.

  7. Gravity's kiss the detection of gravitational waves

    CERN Document Server

    Collins, Harry

    2017-01-01

    Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...

  8. Conversion of electromagnetic to gravitational waves in the Reissner-Nordstroem spacetime

    International Nuclear Information System (INIS)

    Crispino, Luis C.B.; Oliveira, Ednilton S.; Higuchi, Atsushi

    2011-01-01

    Full text: Wave scattering by black holes is a subject that has received much attention in the 1970s, and has been extensively studied since then. Some recent works have been devoted to computing the scalar absorption and scattering cross sections of charged black holes. The presence of a background electromagnetic field leads to a coupling between electromagnetic and gravitational perturbations. To study the propagation of the electromagnetic field in Reissner-Nordstroem spacetime, one has to take into account this electromagnetic-gravitational mixing. In this work we compute numerically the absorption cross section of Reissner-Nordstroem black holes for the electromagnetic field for arbitrary frequencies, taking into account the coupling of the electromagnetic and gravitational perturbations. We also compute the conversion coefficients of electromagnetic to gravitational waves by scattering from a Reissner-Nordstroem black hole. (author)

  9. Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer: Geometric properties of antenna patterns and their angular power

    International Nuclear Information System (INIS)

    Kudoh, Hideaki; Taruya, Atsushi

    2005-01-01

    We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h eff ∼10 -20 Hz -1/2 may reach l∼8-10 at f∼f * =10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (l=0) intensity anisotropy, and also to the dipole (l=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (l=odd), independently of the frequency band

  10. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  11. Gravitational-wave research: Current status and future prospects

    International Nuclear Information System (INIS)

    Thorne, K.S.

    1980-01-01

    There is a reasonably good change that in the 1980s cosmic gravitational waves will be discovered and will become a powerful tool for astronomy. This prospect has stimulated a three-pronged research effort. First, relativity theorists are developing new mathematical tools for the analysis of gravitational radiation: including (i) methods of analyzing the generation of gravity waves by sources with strong self-gravity and large internal velocities (e.g., collisions of black holes), (ii) methods of computing radiation reaction in sources, and (iii) methods of analyzing how gravitational waves propagate through our lumpy curved-space Universe. Second, astrophysicists are attempting to identify the most promissing sources of gravitational waves, and are using the relativity theorists' mathematical tools to estimate the characteristics of the waves they emit. Third, with the estimated wave characteristics in mind, experimenters are designing and constructing a second generation of gravitational-wave detectors: detectors of three types: Doppler tracking of interplanetary spacecraft, Earth-based laser interferometers, and Earth-based Weber-type resonant bars. This article reviews, in brief, all three prongs of the research effort and gives references to more detailed articles about specialized aspects of gravitational-wave physics

  12. CMB B-mode auto-bispectrum produced by primordial gravitational waves

    Science.gov (United States)

    Tahara, Hiroaki W. H.; Yokoyama, Jun'ichi

    2018-01-01

    Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitational waves in the most general covariant scalar field theory having second-order field equations, namely, generalized G-inflation. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can constrain the new one but cannot detect the general relativistic one.

  13. Probing the early universe with inflationary gravitational waves

    International Nuclear Information System (INIS)

    Boyle, Latham A.; Steinhardt, Paul J.

    2008-01-01

    Near comoving wave number k, the gravitational-wave background (GWB) from inflation carries information about the physical conditions near two moments in cosmic history: the moment when k 'left the horizon' during inflation, and the moment when it 're-entered the horizon' after inflation. We investigate the extent to which this information can be extracted if the GWB is measured by a combination of cosmic-microwave-background polarization experiments on large scales and space-based laser-interferometer experiments on small scales. To disentangle this information, we derive a new gravitational-wave transfer function that incorporates a number of physical effects that were treated less accurately, less generally, or were missing altogether in previous treatments. In particular, it incorporates: (i) dark energy with time-varying equation of state w(z); (ii) tensor anisotropic stress due to free-streaming relativistic particles in the early universe; and (iii) a variety of physical effects that cause deviations from the standard equation of state w=1/3 during the radiation era. Based on this transfer function, we consider the degree to which the GWB can be used to test inflation and to probe the 'primordial dark age' between the end of inflation and the electroweak phase transition.

  14. Experimental signatures of gravitational wave bursters

    International Nuclear Information System (INIS)

    Dubath, Florian; Foffa, Stefano; Gasparini, Maria Alice; Maggiore, Michele; Sturani, Riccardo

    2005-01-01

    Gravitational wave bursters are sources which emit repeatedly bursts of gravitational waves, and have been recently suggested as potentially interesting candidates for gravitational wave (GW) detectors. Mechanisms that could give rise to a GW burster can be found for instance in highly magnetized neutron stars (the 'magnetars' which explain the phenomenon of soft gamma repeaters), in accreting neutron stars and in hybrid stars with a quark core. We point out that these sources have very distinctive experimental signatures. In particular, as already observed in the γ-ray bursts from soft gamma repeaters, the energy spectrum of the events is a power-law, dN∼E -γ dE with γ≅1.6, and they have a distribution of waiting times (the times between one outburst and the next) significantly different from the distribution of uncorrelated events. We discuss possible detection strategies that could be used to search for these events in existing gravitational wave detectors

  15. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  16. Hunting for dark particles with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  17. Hunting for Dark Particles with Gravitational Waves

    Science.gov (United States)

    Giudice, Gian F.

    2017-12-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  18. Hunting for dark particles with gravitational waves

    International Nuclear Information System (INIS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  19. Hunting for Dark Particles with Gravitational Waves

    CERN Document Server

    Giudice, Gian F.; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  20. Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure

    International Nuclear Information System (INIS)

    Lim, S.C.

    1983-05-01

    It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)

  1. Japanese space gravitational wave antenna DECIGO and DPF

    Science.gov (United States)

    Musha, Mitsuru

    2017-11-01

    The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.

  2. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  3. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  4. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  5. Interaction of gravitational waves with magnetic and electric fields

    International Nuclear Information System (INIS)

    Barrabes, C.; Hogan, P. A.

    2010-01-01

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  6. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar's contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the ...

  7. GLINT. Gravitational-wave laser INterferometry triangle

    Science.gov (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  8. Environmental Effects for Gravitational-wave Astrophysics

    International Nuclear Information System (INIS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy. (paper)

  9. Gravitational wave searches using the DSN (Deep Space Network)

    International Nuclear Information System (INIS)

    Nelson, S.J.; Armstrong, J.W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed

  10. Robust Likelihoods for Inflationary Gravitational Waves from Maps of Cosmic Microwave Background Polarization

    Science.gov (United States)

    Switzer, Eric Ryan; Watts, Duncan J.

    2016-01-01

    The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.

  11. Problems of generation and reception of gravitational waves. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, A F [Joint Inst. for Nuclear Research, Dubna (USSR)

    1975-01-01

    The present day status of the problems of gravitation, wave radiation and reception is surveyed. The physical presentation and mathematical description of the processes of radiation, propagation and interaction of gravitation waves with matter and the electromagnetic field are given. The experiments on the search for gravitation waves of astophysical nature are analysed. The laboratory and cosmic sources of these waves and the methods of their reception are described. Special attention is drawn to the analysis of the proposals to perform a complete laboratory gravitation wave experiment.

  12. Directional limits on persistent gravitational waves using LIGO S5 science data.

    Science.gov (United States)

    Abadie, J; Abbott, B P; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G S; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arain, M A; Araya, M C; Aronsson, M; Arun, K G; Aso, Y; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belletoile, A; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coulon, J-P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J-C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Engel, R; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Fotopoulos, N; Fournier, J-D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gossler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Hayau, J-F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A W; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E J; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A D; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIvor, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Nolting, D; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Pardi, S; Pareja, M; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Radke, T; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Röver, C; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Speirits, F C; Sperandio, L; Stein, A J; Stein, L C; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szokoly, G P; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2011-12-30

    The gravitational-wave (GW) sky may include nearby pointlike sources as well as stochastic backgrounds. We perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. Finding no evidence to support the detection of GWs, we present 90% confidence level (C.L.) upper-limit maps of GW strain power with typical values between 2-20×10(-50)  strain(2) Hz(-1) and 5-35×10(-49)  strain(2) Hz(-1) sr(-1) for pointlike and extended sources, respectively. The latter result is the first of its kind. We also set 90% C.L. limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN 1987A and the Galactic center as low as ≈7×10(-25) in the most sensitive frequency range near 160 Hz.

  13. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, Iver H.

    2001-01-01

    Localized bursty plasma waves are detected by spacecraft in many space plasmas. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the system, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it far longer than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. These mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing and power-law distributed in strong turbulence. Recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type III solar radio sources, the Earth's foreshock, magnetosheath, and polar cap regions. It is shown that when combined with wave-wave processes, SGT also accounts for associated radio emissions

  14. Gravitational waves in hybrid quintessential inflationary models

    International Nuclear Information System (INIS)

    Sa, Paulo M; Henriques, Alfredo B

    2011-01-01

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.

  15. Gravitational-wave detection using redshifted 21-cm observations

    International Nuclear Information System (INIS)

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-01-01

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different μ dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  16. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  17. Gravitational waves from neutron stars and asteroseismology.

    Science.gov (United States)

    Ho, Wynn C G

    2018-05-28

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  18. The gravitational-wave discovery space of pulsar timing arrays

    Science.gov (United States)

    Cutler, Curt; Burke-Spolaor, Sarah; Vallisneri, Michele; Lazio, Joseph; Majid, Walid

    2014-02-01

    Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive black hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potential for discovering unanticipated sources. We derive significant constraints on the available discovery space based solely on energetic and statistical considerations: we show that a PTA detection of GWs at frequencies above ˜10-5 Hz would either be an extraordinary coincidence or violate "cherished beliefs;" we show that for PTAs GW memory can be more detectable than direct GWs, and that, as we consider events at ever higher redshift, the memory effect increasingly dominates an event's total signal-to-noise ratio. The paper includes also a simple analysis of the effects of pulsar red noise in PTA searches, and a demonstration that the effects of periodic GWs in the ˜10-7-10-4.5 Hz band would not be degenerate with small errors in standard pulsar parameters (except in a few narrow bands).

  19. Gravitational-wave astronomy: delivering on the promises

    Science.gov (United States)

    Schutz, B. F.

    2018-05-01

    Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  20. Gravitational waves in hybrid quintessential inflationary models

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-09-22

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.

  1. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    Science.gov (United States)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The

  2. The gravitational wave emission from white dwarf interactions in globular clusters

    International Nuclear Information System (INIS)

    Loren-Aguilar, P; Garcia-Berro, E; Lobo, J A; Isern, J

    2009-01-01

    In the dense central regions of globular clusters close encounters of two white dwarfs are relatively frequent. The estimated frequency is one or more strong encounters per star in the lifetime of the cluster. Such encounters should be then potential sources of gravitational wave radiation. Thus, it is foreseeable that these collisions could be either individually detected by LISA or they could contribute significantly to the background noise of the detector. We compute the pattern of gravitational wave emission from these encounters for a sufficiently broad range of system parameters, namely the masses, the relative velocities and the distances of the two white dwarfs involved in the encounter.

  3. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, I.H.

    2000-01-01

    Full text: Localized bursty plasma waves occur in many natural systems, where they are detected by spacecraft. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the wave-driver interaction, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; observed bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it for much longer times and distances than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. Growth mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing, power-law distributed in strong turbulence, and uniformly distributed in log under secular growth. After delineating stochastic growth and strong-turbulence regimes, recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type II and III solar radio sources, foreshock regions upstream of the bow shocks of Earth and planets, and Earth's magnetosheath, auroras, and polar-caps. It is shown that when combined with wave-wave processes, SGT accounts for type II and III solar radio emissions. SGT thus removes longstanding problems in understanding persistent unstable distributions, bursty fields, and radio emissions observed in space

  4. Imprints of cosmic strings on the cosmological gravitational wave background

    Science.gov (United States)

    Kleidis, K.; Papadopoulos, D. B.; Verdaguer, E.; Vlahos, L.

    2008-07-01

    The equation which governs the temporal evolution of a gravitational wave (GW) in curved space-time can be treated as the Schrödinger equation for a particle moving in the presence of an effective potential. When GWs propagate in an expanding universe with constant effective potential, there is a critical value (kc) of the comoving wave number which discriminates the metric perturbations into oscillating (k>kc) and nonoscillating (k

  5. The dawn of gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    On Sep 14 2015, gravitational waves were for the first time detected directly. This observation by the LIGO interferometric detectors marks the dawn of a new era in our observational study of the cosmos as a qualitatively new window to its exploration has been opened. This talk reviews some of the fundamental concepts of gravitational waves and the methodology employed for their observation. The first event, dubbed GW150914, and the properties of its source, as inferred from the observation, will be discussed. The talk concludes with a selected set of the most important topics where we expect gravitational-wave observations to deepen and either challenge or confirm our present understanding of the laws and the history of our universe.

  6. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Basic Science Research Institute, Ewha Womans University, Seoul 03760 (Korea, Republic of); Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-10-20

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  7. Search for gravitational wave bursts by the network of resonant detectors

    CERN Document Server

    Astone, P; Busby, D; Bassan, M; Blair, D G; Bonaldi, M; Bonifazi, P; Carelli, P; Cerdonio, M; Coccia, E; Conti, L; Cosmelli, C; D'Antonio, S; Fafone, V; Falferi, P; Fortini, P; Frasca, S; Hamilton, W O; Heng, I S; Ivanov, E N; Johnson, W W; Locke, C R; Marini, A; Mauceli, E; McHugh, M P; Mezzena, R; Minenkov, Y; Modena, I; Modestino, G; Moleti, A; Ortolan, A; Pallottino, G V; Pizzella, G; Prodi, G A; Quintieri, L; Rocchi, A; Rocco, E; Ronga, F; Salemi, F; Santostasi, G; Taffarello, L; Terenzi, R; Tobar, M E; Vedovato, G; Vinante, A; Visco, M; Vitale, S; Zendri, J P

    2002-01-01

    The groups operating cryogenic bar detectors of gravitational waves are performing a coordinated search for short signals within the International Gravitational Event Collaboration (IGEC). We review the most relevant aspects of the data analysis, based on a time-coincidence search among triggers from different detectors, and the properties of the data exchanged by each detector under a recently-upgraded agreement. The IGEC is currently analysing the observations from 1997 to 2000, when up to four detectors were operating simultaneously. 10% and 50% of this time period were covered by simultaneous observations, respectively, of at least three or at least two detectors. Typical signal search thresholds were in the range 2-6 10 sup - sup 2 sup 1 /Hz. The coincidences found are within the estimated background, hence improved upper limits on incoming GW (gravitational wave) bursts have been set.

  8. Gravitational-wave astronomy: delivering on the promises.

    Science.gov (United States)

    Schutz, B F

    2018-05-28

    Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  9. General relativity and gravitational waves

    CERN Document Server

    Weber, Johanna

    1961-01-01

    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta

  10. An Atomic Gravitational Wave Interferometric Sensor (AGIS)

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-08-01

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

  11. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  12. Source modelling at the dawn of gravitational-wave astronomy

    Science.gov (United States)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  13. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  14. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    Science.gov (United States)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  15. Gravitational wave detector on the basis of light diffraction

    International Nuclear Information System (INIS)

    Segizboev, T.I.; Uzhinskij, V.V.

    1985-01-01

    A method for detection of gravitational waves by means of light diffraction at the first maximum on oscillations in optically transparent matter under effect of gravitational waves is considered. Intensity of light flux scattering on oscillations of elastic rod is calculated. A possibility of using the diffraction method for detection of gravitational waves is disclosed

  16. Bayesian reconstruction of gravitational wave bursts using chirplets

    Science.gov (United States)

    Millhouse, Margaret; Cornish, Neil J.; Littenberg, Tyson

    2018-05-01

    The LIGO-Virgo Collaboration uses a variety of techniques to detect and characterize gravitational waves. One approach is to use templates—models for the signals derived from Einstein's equations. Another approach is to extract the signals directly from the coherent response of the detectors in the LIGO-Virgo network. Both approaches played an important role in the first gravitational wave detections. Here we extend the BayesWave analysis algorithm, which reconstructs gravitational wave signals using a collection of continuous wavelets, to use a generalized wavelet family, known as chirplets, that have time-evolving frequency content. Since generic gravitational wave signals have frequency content that evolves in time, a collection of chirplets provides a more compact representation of the signal, resulting in more accurate waveform reconstructions, especially for low signal-to-noise events, and events that occupy a large time-frequency volume.

  17. Congratulations on the direct detection of gravitational waves

    CERN Multimedia

    2016-01-01

    This week saw the announcement of an extraordinary physics result: the first direct detection of gravitational waves by the LIGO Scientific Collaboration, which includes the GEO team, and the Virgo Collaboration, using the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors located in Livingston, Louisiana, and Hanford, Washington, USA.   Albert Einstein predicted gravitational waves in a paper published 100 years ago in 1916. They are a natural consequence of the theory of general relativity, which describes the workings of gravity and was published a few months earlier. Until now, they have remained elusive. Gravitational waves are tiny ripples in space-time produced by violent gravitational phenomena. Because the fractional change in the space-time geometry can be at the level of 10-21 or smaller, extremely sophisticated, high-sensitivity instruments are needed to detect them. Recently, the Advanced LIGO detector increased its sensitivity by alm...

  18. Development of Mirror Coatings for Gravitational Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stuart Reid

    2016-11-01

    Full Text Available The first detections of gravitational waves, GW150914 and GW151226, were associated with the coalescence of stellar mass black holes, heralding the opening of an entirely new way to observe the Universe. Many decades of development were invested to achieve the sensitivities required to observe gravitational waves, with peak strains associated with GW150914 at the level of 10−21. Gravitational wave detectors currently operate as modified Michelson interferometers, where thermal noise associated with the highly reflective mirror coatings sets a critical limit to the sensitivity of current and future instruments. This article presents an overview of the mirror coating development relevant to gravitational wave detection and the prospective for future developments in the field.

  19. Multiple Signal Classification for Gravitational Wave Burst Search

    Science.gov (United States)

    Cao, Junwei; He, Zhengqi

    2013-01-01

    This work is mainly focused on the application of the multiple signal classification (MUSIC) algorithm for gravitational wave burst search. This algorithm extracts important gravitational wave characteristics from signals coming from detectors with arbitrary position, orientation and noise covariance. In this paper, the MUSIC algorithm is described in detail along with the necessary adjustments required for gravitational wave burst search. The algorithm's performance is measured using simulated signals and noise. MUSIC is compared with the Q-transform for signal triggering and with Bayesian analysis for direction of arrival (DOA) estimation, using the Ω-pipeline. Experimental results show that MUSIC has a lower resolution but is faster. MUSIC is a promising tool for real-time gravitational wave search for multi-messenger astronomy.

  20. Gravitational waves from rotating strained neutron stars

    International Nuclear Information System (INIS)

    Jones, D I

    2002-01-01

    In this review we examine the dynamics and gravitational wave detectability of rotating strained neutron stars. The discussion is divided into two halves: triaxial stars and precessing stars. We summarize recent studies on how crustal strains and magnetic fields can sustain triaxiality, and suggest that Magnus forces connected with pinned superfluid vortices might contribute to deformation also. The conclusions that could be drawn following the successful gravitational wave detection of a triaxial star are discussed, and areas requiring further study identified. The latest ideas regarding free precession are then outlined, and the recent suggestion of Middleditch et al (Middleditch et al 2000 New Astronomy 5 243; 2000 Preprint astro-ph/0010044) that the remnant of SN1987A contains a freely precessing star, spinning down by gravitational wave energy loss, is examined critically. We describe what we would learn about neutron stars should the gravitational wave detectors prove this hypothesis to be correct

  1. CνB Damping of Primordial Gravitational Waves and the Fine-Tuning of the CγB Temperature Anisotropy

    Directory of Open Access Journals (Sweden)

    A. E. Bernardini

    2014-01-01

    Full Text Available Damping of primordial gravitational waves due to the anisotropic stress contribution owing to the cosmological neutrino background (CνB is investigated in the context of a radiation-to-matter dominated universe. Besides its inherent effects on the gravitational wave propagation, the inclusion of the CνB anisotropic stress into the dynamical equations also affects the tensor mode contribution to the anisotropy of the cosmological microwave background (CγB temperature. The mutual effects on the gravitational waves and on the CγB are obtained through a unified prescription for a radiation-to-matter dominated scenario. The results are confronted with some preliminary results for the radiation dominated scenario. Both scenarios are supported by a simplified analytical framework, in terms of a scale independent dynamical variable, kη, that relates cosmological scales, k, and the conformal time, η. The background relativistic (hot dark matter essentially works as an effective dispersive medium for the gravitational waves such that the damping effect is intensified for the universe evolving to the matter dominated era. Changes on the temperature variance owing to the inclusion of neutrino collision terms into the dynamical equations result in spectral features that ratify that the multipole expansion coefficients ClT’s die out for l~100.

  2. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  3. Parametric resonance and cosmological gravitational waves

    International Nuclear Information System (INIS)

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-01-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  4. Parametric resonance and cosmological gravitational waves

    Science.gov (United States)

    Sá, Paulo M.; Henriques, Alfredo B.

    2008-03-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  5. Acceleration of low energy charged particles by gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Voyatzis, G. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)]. E-mail: voyatzis@auth.gr; Vlahos, L. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Ichtiaroglou, S. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece); Papadopoulos, D. [University of Thessaloniki, Department of Physics, 54124 Thessaloniki (Greece)

    2006-04-03

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  6. Acceleration of low energy charged particles by gravitational waves

    International Nuclear Information System (INIS)

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2006-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state

  7. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been ...

  8. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  9. Data quality studies of enhanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    McIver, Jessica

    2012-01-01

    Data quality assessment plays an essential role in the quest to detect gravitational wave signals in data from the LIGO and Virgo interferometric gravitational wave detectors. Interferometer data contain a high rate of noise transients from the environment, the detector hardware and the detector control systems. These transients severely limit the statistical significance of gravitational wave candidates of short duration and/or poorly modeled waveforms. This paper describes the data quality studies that have been performed in recent LIGO and Virgo observing runs to mitigate the impact of transient detector artifacts on the gravitational wave searches. (paper)

  10. Relic gravitational waves and the generalized second law

    International Nuclear Information System (INIS)

    Izquierdo, German; Pavon, Diego

    2004-01-01

    The generalized second law of gravitational thermodynamics is applied to the present era of accelerated expansion of the Universe. In spite of the fact that the entropy of matter and relic gravitational waves inside the event horizon diminish, the mentioned law is fulfilled provided that the expression for the entropy density of the gravitational waves satisfies a certain condition

  11. The Schenberg gravitational wave detector: status report

    International Nuclear Information System (INIS)

    Aguiar, O.D.; Barroso, J.J; Bessada, D.F.A.; Carvalho, N.C; Castro, P.J.; Montana, C.E. Cedeno; Costa, C.F. da Silva; Araujo, J.C.N de; Evangelista, E.F.D.; Furtado, S.R; Miranda, O.D.; Moraes, P.H.R.S.; Pereira, Eduardo S.; Silveira, P.R.; Stellati, C.; Weber, J.

    2011-01-01

    Full text: The quest for gravitational wave detection has been one of the toughest technological challenges ever faced by experimental physicists and engineers. Despite all difficulties, after four decades of research, the community involved in this area is continuously growing. One of the main reasons for this is because the first gravitational wave detection and the regular observation of gravitational waves are among the most important scientific goals for the beginning of this millennium. They will test one of the foundations of physics, Einstein's theory of general relativity, and will open a new window for the observation of the universe, which certainly will cause a revolution in our knowledge of physics and astrophysics. In this talk we present the status report of the Brazilian Schenberg gravitational wave detector, which started commissioning runs in September 2006 under the full support of FAPESP. We have been upgrading the detector since 2008, installing a dilution refrigerator, a new complete set of transducers, and a new suspension and vibration isolation system for the cabling and microstrip antennas, in order to restart operation with a higher sensitivity. We also have been studying an innovative approach, which could transform Schenberg into a broadband gravitational wave detector by the use of an ultra-high sensitivity non-resonant nanogap transducer, constructed by the application of recent achievements of nanotechnology. A spherical antenna, such as Schenberg or Mini-Grail, could add to this quality the advantage of wave position and polarity determination. (author)

  12. Production of gravitation waves by electromagnetic radiation

    International Nuclear Information System (INIS)

    Buchner, K.; Rosca, R.

    1980-01-01

    An exact solution of Einstein's equations is presented that corresponds to an axisymmetric bundle of electromagnetic waves with finite cross section. Outside this bundle, there is gravitational radiation parallel to the electromagnetic radiation. If no static electromagnetic fields are present, the frequency of the gravitational waves is twice the frequency of the electromagnetic waves. Einstein's energy complex vanishes identically. The covariant energy complex, however, yields also a radial momentum. (author)

  13. Extraction of gravitational waves in numerical relativity.

    Science.gov (United States)

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  14. First detections of gravitational waves from binary black holes

    International Nuclear Information System (INIS)

    Bejger, Michał

    2017-01-01

    Recent direct detections of gravitational waves from coalescing binary black holes systems herald a new era in the observational astronomy, as well as in experimental verifications of the theories of gravity. I will present the principles of detection of gravitational waves, current state-of-art laser interferometric detectors (Advanced LIGO and Advanced Virgo), and the most promising astrophysical sources of gravitational waves. (paper)

  15. Imprint of the merger and ring-down on the gravitational wave background from black hole binaries coalescence

    Science.gov (United States)

    Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.

    2011-12-01

    We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts zrate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated gravitational wave emission.

  16. Gravitational waves: an introduction and a progress report

    International Nuclear Information System (INIS)

    Hamilton, W.O.

    1983-01-01

    The author gives a description of the effect an experimentalist has to measure to detect gravitational waves. He goes on to describe the design of gravitational wave detectors and the sensitivity of the components. (Auth.)

  17. Gravitational wave memory in ΛCDM cosmology

    International Nuclear Information System (INIS)

    Bieri, Lydia; Garfinkle, David; Yunes, Nicolás

    2017-01-01

    We examine gravitational wave memory in the case where sources and detector are in a ΛCDM cosmology. We consider the case where the Universe can be highly inhomogeneous, but gravitational radiation is treated in the short wavelength approximation. We find results very similar to those of gravitational wave memory in an asymptotically flat spacetime; however, the overall magnitude of the memory effect is enhanced by a redshift-dependent factor. In addition, we find the memory can be affected by lensing. (paper)

  18. Looking towards gravitational wave detection

    Science.gov (United States)

    Barsotti, Lisa

    2009-05-01

    It is an exciting time in gravitational wave research. The first generation ground detectors, which aim to detect gravitational waves in the audio-frequency region, have been successfully operated at their design sensitivity. One integrated year of coincident data from the three LIGO interferometers in United States has been collected between 2005 and 2007, in partial coincidence with the two European detectors, VIRGO and GEO. All the detectors are currently being upgraded, and they will come back on-line in the next few months with a factor 2 better sensitivity. A major upgrade of LIGO and VIRGO, scheduled to happen immediately after their upcoming science runs, will bring on-line second generation detectors 4 years from now. Their sensitivity is designed to be 10 times better than the first generation detectors, resulting in an expected event rate of at least a few per year. Looking farther into the future, space-based detectors such as LISA propose to cover a lower range of frequencies which are inaccessible on Earth, enhancing the opportunity of understanding our Universe trough gravitational waves.

  19. Gravitational waves from cosmic bubble collisions

    International Nuclear Information System (INIS)

    Kim, Dong-Hoon; Lee, Bum-Hoon; Lee, Wonwoo; Yang, Jongmann; Yeom, Dong-han

    2015-01-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  20. VIGOR: Virtual Interaction with Gravitational Waves to Observe Relativity

    Science.gov (United States)

    Kitagawa, Midori; Kesden, Michael; Tranm, Ngoc; Venlayudam, Thulasi Sivampillai; Urquhart, Mary; Malina, Roger

    2017-05-01

    In 2015, a century after Albert Einstein published his theory of general relativity, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves from binary black holes fully consistent with this theory. Our goal for VIGOR (Virtual-reality Interaction with Gravitational waves to Observe Relativity) is to communicate this revolutionary discovery to the public by visualizing the gravitational waves emitted by binary black holes. VIGOR has been developed using the Unity game engine and VR headsets (Oculus Rift DK2 and Samsung Gear VR). Wearing a VR headset, VIGOR users control an avatar to "fly" around binary black holes, experiment on the black holes by manipulating their total mass, mass ratio, and orbital separation, and witness how gravitational waves emitted by the black holes stretch and squeeze the avatar. We evaluated our prototype of VIGOR with high school students in 2016 and are further improving VIGOR based on our findings.

  1. NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    Some astrophysical sources of gravitational waves can produce a 'memory effect', which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensor's contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an 'effective-one-body' (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to redshifts z ∼< 2. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to 'gravitate'.

  2. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...

  3. Gravity waves from tachyonic preheating after hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dufaux, Jean-Francois [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Felder, Gary [Department of Physics, Clark Science Center, Smith College, Northampton, MA 01063 (United States); Kofman, Lev [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Navros, Olga, E-mail: jeff.dufaux@uam.es, E-mail: gfelder@email.smith.edu, E-mail: kofman@cita.utoronto.ca, E-mail: navros@email.unc.edu [Department of Mathematics, University of North Carolina Chapel Hill, CB3250 Philips Hall, Chapel Hill, NC 27599 (United States)

    2009-03-15

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  4. Response of a Doppler canceling system to plane gravitational waves

    International Nuclear Information System (INIS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-canceled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences

  5. Do cosmic rays perturb the operation of a large resonant spherical detector of gravitational waves?

    International Nuclear Information System (INIS)

    Pizzella, G.

    1999-01-01

    The sensitivity of resonant gravitational wave detectors is reviewed. The effect of cosmic rays on a large spherical detector is considered. It is shown that the sensibility to short bursts, to monochromatic and to stochastic GW is not significantly degraded by cosmic rays. For a two-detector experiment, only one detector needs to be installed in an underground laboratory. This supports the idea to install a resonant detector at sea-level near a GW interferometer

  6. Do cosmic rays perturb the operation of a large resonant spherical detector of gravitational waves?

    Energy Technology Data Exchange (ETDEWEB)

    Pizzella, G. [Rome Univ. Tor Vergata, Rome (Italy). Physics Dept.; Inst. for Nuclear Physics, Frascati, RM (Italy)

    1999-07-01

    The sensitivity of resonant gravitational wave detectors is reviewed. The effect of cosmic rays on a large spherical detector is considered. It is shown that the sensibility to short bursts, to monochromatic and to stochastic GW is not significantly degraded by cosmic rays. For a two-detector experiment, only one detector needs to be installed in an underground laboratory. This supports the idea to install a resonant detector at sea-level near a GW interferometer.

  7. Lensing of 21-cm fluctuations by primordial gravitational waves.

    Science.gov (United States)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  8. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  9. Effects of transients in LIGO suspensions on searches for gravitational waves.

    Science.gov (United States)

    Walker, M; Abbott, T D; Aston, S M; González, G; Macleod, D M; McIver, J; Abbott, B P; Abbott, R; Adams, C; Adhikari, R X; Anderson, S B; Ananyeva, A; Appert, S; Arai, K; Ballmer, S W; Barker, D; Barr, B; Barsotti, L; Bartlett, J; Bartos, I; Batch, J C; Bell, A S; Betzwieser, J; Billingsley, G; Birch, J; Biscans, S; Biwer, C; Blair, C D; Bork, R; Brooks, A F; Ciani, G; Clara, F; Countryman, S T; Cowart, M J; Coyne, D C; Cumming, A; Cunningham, L; Danzmann, K; Da Silva Costa, C F; Daw, E J; DeBra, D; DeRosa, R T; DeSalvo, R; Dooley, K L; Doravari, S; Driggers, J C; Dwyer, S E; Effler, A; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fair, H; Fernández Galiana, A; Fisher, R P; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Giaime, J A; Giardina, K D; Goetz, E; Goetz, R; Gras, S; Gray, C; Grote, H; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, E D; Hammond, G; Hanks, J; Hanson, J; Hardwick, T; Harry, G M; Heintze, M C; Heptonstall, A W; Hough, J; Izumi, K; Jones, R; Kandhasamy, S; Karki, S; Kasprzack, M; Kaufer, S; Kawabe, K; Kijbunchoo, N; King, E J; King, P J; Kissel, J S; Korth, W Z; Kuehn, G; Landry, M; Lantz, B; Lockerbie, N A; Lormand, M; Lundgren, A P; MacInnis, M; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martin, I W; Martynov, D V; Mason, K; Massinger, T J; Matichard, F; Mavalvala, N; McCarthy, R; McClelland, D E; McCormick, S; McIntyre, G; Mendell, G; Merilh, E L; Meyers, P M; Miller, J; Mittleman, R; Moreno, G; Mueller, G; Mullavey, A; Munch, J; Nuttall, L K; Oberling, J; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ottaway, D J; Overmier, H; Palamos, J R; Paris, H R; Parker, W; Pele, A; Penn, S; Phelps, M; Pierro, V; Pinto, I; Principe, M; Prokhorov, L G; Puncken, O; Quetschke, V; Quintero, E A; Raab, F J; Radkins, H; Raffai, P; Reid, S; Reitze, D H; Robertson, N A; Rollins, J G; Roma, V J; Romie, J H; Rowan, S; Ryan, K; Sadecki, T; Sanchez, E J; Sandberg, V; Savage, R L; Schofield, R M S; Sellers, D; Shaddock, D A; Shaffer, T J; Shapiro, B; Shawhan, P; Shoemaker, D H; Sigg, D; Slagmolen, B J J; Smith, B; Smith, J R; Sorazu, B; Staley, A; Strain, K A; Tanner, D B; Taylor, R; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Torrie, C I; Traylor, G; Tuyenbayev, D; Vajente, G; Valdes, G; van Veggel, A A; Vecchio, A; Veitch, P J; Venkateswara, K; Vo, T; Vorvick, C; Ward, R L; Warner, J; Weaver, B; Weiss, R; Weßels, P; Willke, B; Wipf, C C; Worden, J; Wu, G; Yamamoto, H; Yancey, C C; Yu, Hang; Yu, Haocun; Zhang, L; Zucker, M E; Zweizig, J

    2017-12-01

    This paper presents an analysis of the transient behavior of the Advanced LIGO (Laser Interferometer Gravitational-wave Observatory) suspensions used to seismically isolate the optics. We have characterized the transients in the longitudinal motion of the quadruple suspensions during Advanced LIGO's first observing run. Propagation of transients between stages is consistent with modeled transfer functions, such that transient motion originating at the top of the suspension chain is significantly reduced in amplitude at the test mass. We find that there are transients seen by the longitudinal motion monitors of quadruple suspensions, but they are not significantly correlated with transient motion above the noise floor in the gravitational wave strain data, and therefore do not present a dominant source of background noise in the searches for transient gravitational wave signals. Using the suspension transfer functions, we compared the transients in a week of gravitational wave strain data with transients from a quadruple suspension. Of the strain transients between 10 and 60 Hz, 84% are loud enough that they would have appeared above the sensor noise in the top stage quadruple suspension monitors if they had originated at that stage at the same frequencies. We find no significant temporal correlation with the suspension transients in that stage, so we can rule out suspension motion originating at the top stage as the cause of those transients. However, only 3.2% of the gravitational wave strain transients are loud enough that they would have been seen by the second stage suspension sensors, and none of them are above the sensor noise levels of the penultimate stage. Therefore, we cannot eliminate the possibility of transient noise in the detectors originating in the intermediate stages of the suspension below the sensing noise.

  10. Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela, E-mail: Gabriela.Barenboim@uv.es; Park, Wan-Il, E-mail: Wanil.Park@uv.es

    2016-08-10

    We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.

  11. Asymmetric rotator as a detector of monochromatic gravitational waves

    International Nuclear Information System (INIS)

    Gliner, Eh.B.; Mitrofanov, I.G.

    1979-01-01

    The interaction between a rotating asymmetric (principal moments of inertia are different) body with a gravitational wave is considered. A resonance rotational detector of monocrhomatic gravitational waves is proposed in which the turning due to the incident wave and the rotation which ensures resonance between the detector and wave correspond to different degrees of freedom. This significantly facilitates the creation of such detectors. The interference due to the gradient of the gravitational acceleration of the Earth and to rotation of the detector as a whole is estimated

  12. The present gravitational wave detection effort

    International Nuclear Information System (INIS)

    Riles, Keith

    2010-01-01

    Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.

  13. Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Directory of Open Access Journals (Sweden)

    Wen Zhao

    2014-10-01

    Full Text Available The B-mode polarization of the cosmic microwave background (CMB radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.

  14. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  15. SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226

    International Nuclear Information System (INIS)

    Abe, K.; Haga, K.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tasaka, S.; Tomura, T.

    2016-01-01

    We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected gravitational-wave events, GW150914 and GW151226, as well as LVT151012, using a neutrino energy range from 3.5 MeV to 100 PeV. We searched for coincident neutrino events within a time window of ±500 s around the gravitational-wave detection time. Four neutrino candidates are found for GW150914, and no candidates are found for GW151226. The remaining neutrino candidates are consistent with the expected background events. We calculated the 90% confidence level upper limits on the combined neutrino fluence for both gravitational-wave events, which depends on event energy and topologies. Considering the upward-going muon data set (1.6 GeV–100 PeV), the neutrino fluence limit for each gravitational-wave event is 14–37 (19–50) cm"−"2 for muon neutrinos (muon antineutrinos), depending on the zenith angle of the event. In the other data sets, the combined fluence limits for both gravitational-wave events range from 2.4 × 10"4 to 7.0 × 10"9 cm"−"2.

  16. Ion stochastic heating by obliquely propagating magnetosonic waves

    International Nuclear Information System (INIS)

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-01-01

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  17. The matter-wave laser interferometer gravitation antenna (MIGA: New perspectives for fundamental physics and geosciences

    Directory of Open Access Journals (Sweden)

    Canuel B.

    2014-01-01

    Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.

  18. Black Hole Kicks as New Gravitational Wave Observables.

    Science.gov (United States)

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  19. Observation of Gravitational Waves from a Binary Black Hole Merger

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M.A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, R.M.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.A.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10−21. It matches

  20. Incorporating information from source simulations into searches for gravitational-wave bursts

    International Nuclear Information System (INIS)

    Brady, Patrick R; Ray-Majumder, Saikat

    2004-01-01

    The detection of gravitational waves from astrophysical sources of gravitational waves is a realistic goal for the current generation of interferometric gravitational-wave detectors. Short duration bursts of gravitational waves from core-collapse supernovae or mergers of binary black holes may bring a wealth of astronomical and astrophysical information. The weakness of the waves and the rarity of the events urges the development of optimal methods to detect the waves. The waves from these sources are not generally known well enough to use matched filtering however; this drives the need to develop new ways to exploit source simulation information in both detection and information extraction. We present an algorithmic approach to using catalogues of gravitational-wave signals developed through numerical simulation, or otherwise, to enhance our ability to detect these waves. As more detailed simulations become available, it is straightforward to incorporate the new information into the search method. This approach may also be useful when trying to extract information from a gravitational-wave observation by allowing direct comparison between the observation and simulations

  1. Issues concerning gravity waves from first-order phase transitions

    International Nuclear Information System (INIS)

    Kosowsky, A.

    1993-01-01

    The stochastic background of gravitational radiation is a unique and potentially valuable source of information about the early universe. Photons thermally decoupled when the universe was around 100,000 years old; electromagnetic radiation cannot directly provide information about the epoch earlier than this. In contrast, gravitons presumably decoupled around the Planck time, when the universe was only 10 -44 seconds old. Since gravity wave propagate virtually unimpeded, any energetic event in the evolution of the universe will leave an imprint on the gravity wave background. Turner and Wilczek first suggested that first-order phase transitions, and particularly transitions which occur via the nucleation, expansion, and percolation of vacuum bubbles, will be a particularly efficient source of gravitational radiation. Detailed calculations with scalar-field vacuum bubbles confirm this conjecture and show that strongly first-order phase transitions are probably the strongest stochastic gravity-wave source yet conjectured. In this work the author first reviews the vacuum bubble calculations, stressing their physical assumptions. The author then discusses realistic scenarios for first-order phase transitions and describes how the calculations must be modified and extended to produce reliable results. 11 refs

  2. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    Science.gov (United States)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  3. Velocity Memory Effect for polarized gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  4. Gravitational Waves from Oscillons with Cuspy Potentials.

    Science.gov (United States)

    Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary

    2018-01-19

    We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

  5. Stabilized lasers for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr

    2008-01-01

    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

  6. Gravitational-wave mediated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-04-09

    We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  7. Gravitational waves from phase transition in split NMSSM

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2018-04-01

    We discuss gravitational wave signal from the strongly first order electroweak phase transition in the split NMSSM. We find that for sets of parameters predicting successful electroweak baryogenesis the gravitational wave signal can be within the reach of future experiments LISA, BBO and Ultimate DECIGO.

  8. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  9. Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space

    Science.gov (United States)

    Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark

    2012-06-01

    Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).

  10. On propagation of electromagnetic and gravitational waves in the expanding Universe

    International Nuclear Information System (INIS)

    Gladyshev, V O

    2016-01-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object. (paper)

  11. Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches

    Science.gov (United States)

    Mukherjee, Arunava; Messenger, Chris; Riles, Keith

    2018-02-01

    The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.

  12. Interpreting the Recent Upper Limit on the Gravitational Wave Background from the Parkes Pulsar Timing Array

    OpenAIRE

    The NANOGrav Collaboration

    2016-01-01

    We provide comments on the article by Shannon et al. (Sep 2015) entitled "Gravitational waves from binary supermassive black holes missing in pulsar observations". The purpose of this letter is to address several misconceptions of the public and other scientists regarding the conclusions of that work.

  13. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  14. Singularities and horizons in the collisions of gravitational waves

    International Nuclear Information System (INIS)

    Yurtsever, U.H.

    1989-01-01

    This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and the generic initial data for the colliding plane waves always produce pure spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction. In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wave-fronts; i.e., it must leave behind tails in the spacetime region through which is passes

  15. Gravitational Waves From a Dark (Twin) Phase Transition

    CERN Document Server

    Schwaller, Pedro

    2015-01-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.

  16. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  17. Pulsar timing arrays: the promise of gravitational wave detection.

    Science.gov (United States)

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  18. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  19. Resonant interaction of photons with gravitational waves

    International Nuclear Information System (INIS)

    Mendonca, J.T.; Drury, L. O'C.

    2002-01-01

    The interaction of photons with a low-amplitude gravitational wave propagating in a flat space-time is studied by using an exact model of photon dynamics. The existence of nearly resonant interactions between the photons and the gravitational waves, which can take place over large distances, can lead to a strong photon acceleration. Such a resonant mechanism can eventually be useful to build consistent new models of gamma-ray emitters

  20. Gravitational Waves and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  1. Gravitational wave sources: reflections and echoes

    Science.gov (United States)

    Price, Richard H.; Khanna, Gaurav

    2017-11-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.

  2. Gravitational wave sources: reflections and echoes

    International Nuclear Information System (INIS)

    Price, Richard H; Khanna, Gaurav

    2017-01-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes. (paper)

  3. Streamlining Collaboration for the Gravitational-wave Astronomy Community

    Science.gov (United States)

    Koranda, S.

    2016-12-01

    In the morning hours of September 14, 2015 the LaserInterferometer Gravitational-wave Observatory (LIGO) directlydetected gravitational waves from inspiraling and coalescingblack holes, confirming a major prediction of AlbertEinstein's general theory of relativity and beginning the eraof gravitational-wave astronomy. With the LIGO detectors in the United States, the Virgo andGEO detectors in Europe, and the KAGRA detector in Japan thegravitational-wave astrononmy community is opening a newwindow on our Universe. Realizing the full science potentialof LIGO and the other interferometers requires globalcollaboration not only within the gravitational-wave astronomycommunity but also with the astronomers and astrophysicists acrossmultipe disciplines working to realize and leverage the powerof multi-messenger astronomy. Enabling thousands of researchers from around the world andacross multiple projects to efficiently collaborate, share,and analyze data and provide streamlined access to services,computing, and tools requires new and scalable approaches toidentity and access management (IAM). We will discuss LIGO'sIAM journey that began in 2007 and how today LIGO leveragesinternal identity federations like InCommon and eduGAIN toprovide scalable and managed access for the gravitational-waveastronomy community. We will discuss the steps both largeand small research organizations and projects take as theirIAM infrastructure matures from ad-hoc silos of independent services to fully integrated and federated services thatstreamline collaboration so that scientists can focus onresearch and not managing passwords.

  4. The electromagnetic interferent antennae for gravitational waves detection

    International Nuclear Information System (INIS)

    Kulak, A.

    1984-01-01

    An electromagnetic wave propagating in the toroidal waveguide is considered as an electromagnetic gravitational antenna. An interferometric method is applied to measure the disturbances of phase of the electromagnetic field caused by the incident gravitational wave. The calculations presented take into account the dispersive and dissipative phenomena occurring during the interaction between electromagnetic and gravitational fields. The active cross-section of the antenna interacting with coherent and pulsed gravitational radiation is estimated. Experimental possibilities presently available are discussed. Limiting fluxes in the astrophysical range of frequencies measured by the interferometric electromagnetic antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna. Moreover the antenna could be used for carrying out a gravitational Hertz experiment. (author)

  5. Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Camp, Jordan B.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  6. Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

    NARCIS (Netherlands)

    Aasi, J.; et al., [Unknown; Hessels, J.W.T.

    2014-01-01

    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and

  7. Testing strong gravity with gravitational waves and Love numbers

    International Nuclear Information System (INIS)

    Franzin, E; Cardoso, V; Raposo, G; Pani, P

    2017-01-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects. (paper)

  8. Astronomy and astrophysics with gravitational waves in the advanced detector era

    International Nuclear Information System (INIS)

    Weinstein, Alan J

    2012-01-01

    With the advanced gravitational wave detectors coming on line in the next 5 years, we expect to make the first detections of gravitational waves from astrophysical sources, and study the properties of the waves themselves as tests of general relativity. In addition, these gravitational waves will be powerful tools for the study of their astrophysical sources and source populations. They carry information that is quite complementary to what can be learned from electromagnetic or neutrino observations, probing the central gravitational engines that power the electromagnetic emissions at the outer layers of the source. Preparations are being made to enable near-simultaneous observations of both gravitational wave and electromagnetic observations of transient sources, using low-latency search pipelines and rapid sky localization. We will review the many opportunities for multi-messenger astronomy and astrophysics with gravitational waves enabled by the advanced detectors, and the preparations that are being made to quickly and fully exploit them. (paper)

  9. Application of artificial neural network to search for gravitational-wave signals associated with short gamma-ray bursts

    International Nuclear Information System (INIS)

    Kim, Kyungmin; Lee, Hyun Kyu; Harry, Ian W; Hodge, Kari A; Kim, Young-Min; Lee, Chang-Hwan; Oh, John J; Oh, Sang Hoon; Son, Edwin J

    2015-01-01

    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts (GRBs). The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability (FAP) is improved by the artificial neural network in comparison to the conventional detection statistic. Specifically, the distance at 50% detection probability at a fixed false positive rate is increased about 8%–14% for the considered waveform models. We also evaluate a few seconds of the gravitational-wave data segment using the trained networks and obtain the FAP. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short GRBs. (paper)

  10. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  11. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  12. The potential for very high-frequency gravitational wave detection

    International Nuclear Information System (INIS)

    Cruise, A M

    2012-01-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies. (paper)

  13. How to observe a non-Kerr spacetime using gravitational waves.

    Science.gov (United States)

    Apostolatos, Theocharis A; Lukes-Gerakopoulos, Georgios; Contopoulos, George

    2009-09-11

    We present a generic criterion which can be used in gravitational-wave data analysis to distinguish an extreme-mass-ratio inspiral into a Kerr background spacetime from one into a non-Kerr spacetime. We exploit the fact that when an integrable system, such as the system that describes geodesic orbits in a Kerr spacetime, is perturbed, the tori in phase space which initially corresponded to resonances disintegrate so as to form Birkhoff chains on a surface of section. The KAM curves of the islands in such a chain share the same ratio of frequencies, even though the frequencies themselves vary from one KAM curve to another inside an island. However the KAM curves, which do not lie in a Birkhoff chain, do not share this characteristic property. Such a temporal constancy of the ratio of frequencies during the evolution of the gravitational-wave signal will signal a non-Kerr spacetime.

  14. Detection of gravitational waves with resonant antennas

    International Nuclear Information System (INIS)

    Ronga, Francesco

    2006-01-01

    The status of the 4 operating cylindrical gravitational waves resonant antenna detectors is summarized. A short review is given of the experimental results and of the next generation projects. Resonant detectors are now sensitive to the strongest potential sources of gravitational waves in our galaxy and in the local group. Recently interferometric detectors have achieved very good perfomances, but resonant detectors are still competitive particularly for what concern the very good live-time

  15. PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves

    Science.gov (United States)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    (The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such

  16. Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts

    International Nuclear Information System (INIS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Brown, D. A.; Busby, D.; Cardenas, L.; Chandler, A.

    2005-01-01

    We report on the first joint search for gravitational waves by the TAMA and LIGO collaborations. We looked for millisecond-duration unmodeled gravitational-wave bursts in 473 hr of coincident data collected during early 2003. No candidate signals were found. We set an upper limit of 0.12 events per day on the rate of detectable gravitational-wave bursts, at 90% confidence level. From software simulations, we estimate that our detector network was sensitive to bursts with root-sum-square strain amplitude above approximately 1-3x10 -19 Hz -1/2 in the frequency band 700-2000 Hz. We describe the details of this collaborative search, with particular emphasis on its advantages and disadvantages compared to searches by LIGO and TAMA separately using the same data. Benefits include a lower background and longer observation time, at some cost in sensitivity and bandwidth. We also demonstrate techniques for performing coincidence searches with a heterogeneous network of detectors with different noise spectra and orientations. These techniques include using coordinated software signal injections to estimate the network sensitivity, and tuning the analysis to maximize the sensitivity and the livetime, subject to constraints on the background

  17. Observing gravitational-wave transient GW150914 with minimal assumptions

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwa, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. C.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brocki, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. R.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritsche, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; de Haas, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijhunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, R.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mende, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prolchorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shithriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlhruch, H.; Vajente, G.; Valdes, G.; Van Bakel, N.; Van Beuzekom, Martin; Van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, R. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be

  18. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  19. Experimental Limits on Gravitational Waves in the MHz frequency Range

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, Robert Jr. [Univ. of Chicago, IL (United States)

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  20. Glitches and gravitational waves

    Indian Academy of Sciences (India)

    A M Srivastava

    2017-10-09

    Oct 9, 2017 ... We also discuss gravitational wave production due to rapidly changing ... efficient source of energy loss during the cooling of the neutron star. ..... [3] U S Gupta, R K Mohapatra, A M Srivastava and V K. Tiwari, Phys. Rev. D 82 ...

  1. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  2. Gravity the quest for gravitational wave

    CERN Document Server

    Binétruy, Pierre

    2018-01-01

    What force do the Big Bang, the expansion of the Universe, dark matter and dark energy, black holes, and gravitational waves all have in common? This book uncovers gravity as a key to understanding these fascinating phenomena that have so captivated public interest in recent years. Readers will discover the latest findings on how this familiar force in our everyday lives powers the most colossal changes in the Universe. Written by the widely recognized French public scientist and leading astrophysicist Pierre Binetruy, the book also explains the recent experimental confirmation of the existence of gravitational waves.

  3. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  4. Method to measure a relative transverse velocity of a source-lens-observer system using gravitational lensing of gravitational waves

    International Nuclear Information System (INIS)

    Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto

    2009-01-01

    Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.

  5. Gravitational Waves: An Entirely New Window onto the Cosmos

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    On September 14, 2015, scientists from the LIGO Scientific Collaboration and the Virgo Collaboration using the LIGO detectors observed the collision and fusion of two black holes by directly measuring the gravitational waves emitted during their collision.  This detection came almost exactly 100 years after Einstein developed his revolutionary general theory of relativity that predicted their existence, and 50 years after scientists began searching for them in earnest.  Since then, two more gravitational-wave events have been confidently detected. These discoveries have truly profound implications for physics and astronomy.   Gravitational waves provide unique information on the most energetic astrophysical events, revealing unique insights into the nature of gravity, matter, space, and time. LIGO has opened a new window onto the cosmos.  I will talk about how we made the detection and discuss how gravitational wave astronomy promises to change our understanding o...

  6. LIGO: the Laser Interferometer Gravitational-Wave Observatory

    International Nuclear Information System (INIS)

    Abbott, B P; Abbott, R; Adhikari, R; Anderson, S B; Araya, M; Armandula, H; Aso, Y; Ballmer, S; Ajith, P; Allen, B; Aulbert, C; Allen, G; Amin, R S; Anderson, W G; Armor, P; Arain, M A; Aston, S; Aufmuth, P; Babak, S; Baker, P

    2009-01-01

    The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves (GWs) of astrophysical origin. Direct detection of GWs holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black holes and neutron stars and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than one part in 10 21 . With this unprecedented sensitivity, the data are being analyzed to detect or place limits on GWs from a variety of potential astrophysical sources.

  7. Mass loss due to gravitational waves with Λ > 0

    Science.gov (United States)

    Saw, Vee-Liem

    2017-07-01

    The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.

  8. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    Science.gov (United States)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  9. Gravitational waves from the axial perturbations of hyperon stars

    International Nuclear Information System (INIS)

    Wen De-Hua; Yan Jing; Liu Xue-Mei

    2012-01-01

    The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined. It is shown that as the appearance of hyperons softens the equation of state of the super-density matter, the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass. Moreover, the eigenfrequencies of hyperon stars also have scaling universality. It is shown that the EURO third-generation gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star. (general)

  10. Gravitational waves and electrodynamics: new perspectives.

    Science.gov (United States)

    Cabral, Francisco; Lobo, Francisco S N

    2017-01-01

    Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.

  11. Gravitational waves and electrodynamics: new perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Francisco; Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)

    2017-04-15

    Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics. (orig.)

  12. Quantum Measurement Theory in Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stefan L. Danilishin

    2012-04-01

    Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  13. Quantum Measurement Theory in Gravitational-Wave Detectors.

    Science.gov (United States)

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  14. Space gravitational wave detector DECIGO/pre-DECIGO

    Science.gov (United States)

    Musha, Mitsuru

    2017-09-01

    The gravitational wave (GW) is ripples in gravitational fields caused by the motion of mass such as inspiral and merger of blackhole binaries or explosion of super novae, which was predicted by A.Einstein in his general theory of relativity. In Japan, besides the ground-base GW detector, KAGRA, the space gravitational wave detector, DECIGO, is also promoted for detecting GW at lower frequency range. DECIGO (DECi-heltz Gravitational-wave Observatory) consists of 3 satellites, forming a 1000-km triangle-shaped Fabry-Perot laser interferometer whose designed strain sensitivity is ?l/l planned a milestone mission for DECIGO named Pre-DECIGO, which has almost the same configuration as DECIGO with shorter arm length of 100 km. Pre-DECIGO is aimed for detecting GW from merger of blackhole binaries with less sensitivity as DECIGO, and also for feasibility test of key technologies for realizing DECIGO. Pre-DECIGO is now under designing and developing for launching in late 2020s, with the financial support of JAXA and JSPS. In our presentation, we will review DECIGO project, and show the design and current status of Pre-DECIGO.

  15. Stochastic Procedures for Extreme Wave Load Predictions- Wave Bending Moment in Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2009-01-01

    A discussion of useful stochastic procedures for stochastic wave load problems is given, covering the range from slightly linear to strongly non-linear (bifurcation) problems. The methods are: Hermite transformation, Critical wave episodes and the First Order Reliability Method (FORM). The proced......). The procedures will be illustrated by results for the extreme vertical wave bending moment in ships....

  16. Astrometric and Timing Effects of Gravitational Waves from Localized Sources

    OpenAIRE

    Kopeikin, Sergei M.; Schafer, Gerhard; Gwinn, Carl R.; Eubanks, T. Marshall

    1998-01-01

    A consistent approach for an exhaustive solution of the problem of propagation of light rays in the field of gravitational waves emitted by a localized source of gravitational radiation is developed in the first post-Minkowskian and quadrupole approximation of General Relativity. We demonstrate that the equations of light propagation in the retarded gravitational field of an arbitrary localized source emitting quadrupolar gravitational waves can be integrated exactly. The influence of the gra...

  17. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  18. Maximum Redshift of Gravitational Wave Merger Events

    Science.gov (United States)

    Koushiappas, Savvas M.; Loeb, Abraham

    2017-12-01

    Future generations of gravitational wave detectors will have the sensitivity to detect gravitational wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the observed event rate is greater than one event per year at redshifts z ≥40 , then the probability distribution of primordial density fluctuations must be significantly non-Gaussian or the events originate from primordial black holes. The nature of the excess events can be determined from the redshift distribution of the merger rate.

  19. Detection of gravitational waves: a hundred year journey

    Science.gov (United States)

    Mavalvala, Nergis

    2016-05-01

    In February 2016, scientists announced the first ever detection of gravitational waves from colliding black holes, launching a new era of gravitational wave astronomy and unprecedented tests of Einstein's theory of general relativity. I will describe the science and technology, and also the human story, behind the long quest that led to this discovery. Bio: Nergis Mavalvala is Professor of Physics at the Massachusetts Institute of Technology (MIT). Her research links the world of quantum mechanics, usually apparent only at the atomic scale, with gravitational waves, arising from some of the most powerful, yet elusive, forces in the cosmos. In 2016, she was part of the team that announced the first detection of gravitational waves from colliding black holes. She received a B.A. from Wellesley College in 1990 and a Ph.D. from MIT in 1997. She was a postdoctoral fellow and research scientist at the California Institute of Technology between 1997 and 2002. Since 2002, she has been on the Physics faculty at MIT, and was named a MacArthur Fellow in 2010. She is a Fellow of the American Physical Society and the Optical Society of America.

  20. Relic gravitational waves from light primordial black holes

    International Nuclear Information System (INIS)

    Dolgov, Alexander D.; Ejlli, Damian

    2011-01-01

    The energy density of relic gravitational waves (GWs) emitted by primordial black holes (PBHs) is calculated. We estimate the intensity of GWs produced at quantum and classical scattering of PBHs, the classical graviton emission from the PBH binaries in the early Universe, and the graviton emission due to PBH evaporation. If nonrelativistic PBHs dominated the cosmological energy density prior to their evaporation, the probability of formation of dense clusters of PBHs and their binaries in such clusters would be significant and the energy density of the generated gravitational waves in the present-day universe could exceed that produced by other known mechanisms. The intensity of these gravitational waves would be maximal in the GHz frequency band of the spectrum or higher and makes their observation very difficult by present detectors but also gives a rather good possibility to investigate it by present and future high-frequency gravitational waves electromagnetic detectors. However, the low-frequency part of the spectrum in the range f∼0.1-10 Hz may be detectable by the planned space interferometers DECIGO/BBO. For sufficiently long duration of the PBH matter-dominated stage, the cosmological energy fraction of GWs from inflation would be noticeably diluted.

  1. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  2. Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Gong Yungui

    2018-01-01

    Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.

  3. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  4. Astrophysical sources of gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G. E-mail: losurdo@galileo.pi.infn.it

    2000-05-01

    The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.

  5. Using the HHT to Search for Gravitational Waves

    Science.gov (United States)

    Camp, Jordan

    2008-01-01

    Gravitational waves are a consequence of Einstein's theory of general relativity applied to the motion of very dense and massive objects such as black holes and neutron stars. Their detection will reveal a wealth of information about these mysterious objects that cannot be obtained with electromagnetic probes. Two projects are underway to attempt the detection of gravitational waves: NASA's Laser Interferometer Space Antenna (LISA), a space based mission being designed to search for waves from supermassive black holes at the centers of galaxies, and the NSF's Laser Interferometer Gravitational Wave Observatory (LIGO), a ground based facility that is now searching for waves from supernovae. pulsars, and the coalescence of black hole and neutron star systems. Because general relativity is an inherently non-linear theory, many of the predicted source waveforms show strong frequency modulation. In addition, the LIGO and LISA detectors are highly sensitive devices that produce a variety of non-linear transient noise features. Thus the unique capabilities of the HHT. the extraction of intrawave modulation and the characterization of non-linear and non-stationary signals, have a natural application to both signal detection and experimental characterization of the detectors. In this talk I will give an overview of the status of the field. including some of the expected sources of gravitational waves, and I will also describe the LISA and LIGO detectors. Then I will describe some applications of the HHT to waveform detection and detector noise characterization.

  6. Development of mirror coatings for gravitational-wave detectors

    Science.gov (United States)

    Steinlechner, J.

    2018-05-01

    Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  7. Forward modeling of space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier

    2004-01-01

    Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction

  8. Virgo an interferometer for gravitational wave detection

    International Nuclear Information System (INIS)

    Passaquieti, R.

    2000-01-01

    Gravitational waves propagating from rapidly accelerating star masses can be detected by means of interfer- ometric techniques. The Virgo detector is a Michelson interferometer, with two 3 km long Fabry-Perot cavities, that is going to be built in the countryside of Pisa (Italy). Principles of interferometric gravitational wave detection, and the main noise sources in the Virgo apparatus are treated. The Virgo optical scheme and its main components are also described. Finally, an overview on the status of works at the Virgo site is presented

  9. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  10. A Brief History of Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Jorge L. Cervantes-Cota

    2016-09-01

    Full Text Available This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery.

  11. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    International Nuclear Information System (INIS)

    Abbott, B.; Babak, S.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Ajith, P.; Allen, B.; Aulbert, C.; Allen, G.; Amin, R.; Anderson, W. G.; Armor, P.; Arain, M. A.; Aso, Y.; Aston, S.; Aufmuth, P.; Bantilan, H.

    2008-01-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  12. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  13. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  14. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  15. On the cosmological gravitational waves and cosmological distances

    Science.gov (United States)

    Belinski, V. A.; Vereshchagin, G. V.

    2018-03-01

    We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.

  16. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    Science.gov (United States)

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  17. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  18. An application of information theory to stochastic classical gravitational fields

    Science.gov (United States)

    Angulo, J.; Angulo, J. C.; Angulo, J. M.

    2018-06-01

    The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.

  19. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  20. Beyond concordance cosmology with magnification of gravitational-wave standard sirens.

    Science.gov (United States)

    Camera, Stefano; Nishizawa, Atsushi

    2013-04-12

    We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer.

  1. Scattering theory of stochastic electromagnetic light waves.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  2. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Ghosh, V. Germain Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzlez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of

  3. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NARCIS (Netherlands)

    Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.

    2013-01-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic

  4. The gravitational wave spectrum from cosmological B-L breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-05-01

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  5. The gravitational wave spectrum from cosmological B-L breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)

    2013-05-15

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  6. Gravitational waves and antennas

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...

  7. Reduced time delay for gravitational waves with dark matter emulators

    International Nuclear Information System (INIS)

    Desai, S.; Kahya, E. O.; Woodard, R. P.

    2008-01-01

    We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles

  8. Gravitational waves from a first-order electroweak phase transition: a brief review.

    Science.gov (United States)

    Weir, David J

    2018-03-06

    We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  9. On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences

    Science.gov (United States)

    McKechan, David J. A.

    2010-11-01

    This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.

  10. How to adapt broad-band gravitational-wave searches for r-modes

    International Nuclear Information System (INIS)

    Owen, Benjamin J.

    2010-01-01

    Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic) quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is necessary to convert the gravitational-wave amplitude to an r-mode amplitude. Also, it is helpful to know indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational waves to obtain r-mode results. I also show that searches of existing data can already have interesting sensitivities to r-modes.

  11. Possibility to determine the radius of accretion disk by gravitational waves

    International Nuclear Information System (INIS)

    Sotani, H; Saijo, M

    2007-01-01

    We investigate gravitational waves from a dust disk around a Schwarzschild black hole to focus on whether we can extract any of its physical properties from a direct detection of gravitational waves. We adopt a black hole perturbation approach in a time domain, which is a satisfactory approximation to illustrate a dust disk in a supermassive black hole. We find that we can determine the radius of the disk by using the power spectrum of gravitational waves and that our method to extract the radius works for a disk of arbitrary density distribution. Therefore we believe a possibility exists for determining the radius of the disk from a direct observation of gravitational waves detected by the Laser Interferometer Space Antenna

  12. Gravitational wave generation by stellar core collapse

    International Nuclear Information System (INIS)

    Moore, T.A.

    1981-01-01

    Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer

  13. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.

    1989-12-01

    Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs

  14. Detecting Lorentz Violations with Gravitational Waves From Black Hole Binaries

    Science.gov (United States)

    Sotiriou, Thomas P.

    2018-01-01

    Gravitational wave observations have been used to test Lorentz symmetry by looking for dispersive effects that are caused by higher order corrections to the dispersion relation. In this Letter I argue on general grounds that, when such corrections are present, there will also be a scalar excitation. Hence, a smoking-gun observation of Lorentz symmetry breaking would be the direct detection of scalar waves that travel at a speed other than the speed of the standard gravitational wave polarizations or the speed of light. Interestingly, in known Lorentz-breaking gravity theories the difference between the speeds of scalar and tensor waves is virtually unconstrained, whereas the difference between the latter and the speed of light is already severely constrained by the coincident detection of gravitational waves and gamma rays from a binary neutron star merger.

  15. Propagation of gravitational waves in the generalized tensor-vector-scalar theory

    International Nuclear Information System (INIS)

    Sagi, Eva

    2010-01-01

    Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.

  16. Search for Gravitational Wave Counterparts with Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  17. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  18. Does the source energy change when gravitaion waves are emitted in the einstein's gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    It is shown that in the Einstein's gravitation theory the total ''energy'' of a plane gravitational wave calculated with any pseudotensor is equal to zero. The known Einstein's result, according to which the energy of a sourceis decreased when plane weak gravitational waves are emitted, have no place in the Einstein's gravitational theory. The examples are given of exact wave solutions for which the pseudotensor is strictly equal to zero. The energy-momentum of any weak gravitational waves is always equal to zero in the Einstein's gravitation theory. When such waves are emitted the energy of the source cannot change, although these waves are real curvature waves. By the means in the Einstein's gravitation theory the energy, e, is in essenc generated from nothing

  19. Gravitational Wave in Linear General Relativity

    Science.gov (United States)

    Cubillos, D. J.

    2017-07-01

    General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.

  20. Gamma-ray-burst beaming and gravitational-wave observations.

    Science.gov (United States)

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  1. Sources and astrophysical effects of gravitational waves

    International Nuclear Information System (INIS)

    Rees, M.J.

    1974-01-01

    The probable sources of short intense gravitational wave emissions are discussed and it is concluded, on the basis of current astrophysical ideas, that the number of events detected by an apparatus such as Weber's would not be more than one pulse par century. Some proposed explanations of a higher event rate are examined briefly but it is suggested that the sensitivity would probably have to be improved by a factor 10 8 if a few events per year due to extragalactic supernovae are to be detectable. The article concludes by mentioning several other kinds of gravitational waves of potential interest in astrophysics

  2. Gravity's shadow the search for gravitational waves

    CERN Document Server

    Collins, Harry

    2004-01-01

    According to the theory of relativity, we are constantly bathed in gravitational radiation. When stars explode or collide, a portion of their mass becomes energy that disturbs the very fabric of the space-time continuum like ripples in a pond. But proving the existence of these waves has been difficult; the cosmic shudders are so weak that only the most sensitive instruments can be expected to observe them directly. Fifteen times during the last thirty years scientists have claimed to have detected gravitational waves, but so far none of those claims have survived the scrutiny of the scie

  3. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A. [Dept. of Physics, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com [Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Universitetskij pr. 13, 119234 Moscow (Russian Federation)

    2017-09-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  4. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    International Nuclear Information System (INIS)

    Dolgov, A.; Postnov, K.

    2017-01-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  5. Maximum gravitational-wave energy emissible in magnetar flares

    Science.gov (United States)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (˜1049erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc.MNRAA40035-8711 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  6. Maximum gravitational-wave energy emissible in magnetar flares

    International Nuclear Information System (INIS)

    Corsi, Alessandra; Owen, Benjamin J.

    2011-01-01

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (∼10 49 erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10 48 -10 49 erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  7. Comparison of advanced gravitational-wave detectors

    International Nuclear Information System (INIS)

    Harry, Gregory M.; Houser, Janet L.; Strain, Kenneth A.

    2002-01-01

    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

  8. Gravitational Wave Detection in the Introductory Lab

    Science.gov (United States)

    Burko, Lior M.

    2017-05-01

    A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of 410 Mpc. When the waves were emitted, the most complex life forms on Earth were eukaryotes. As the gravitational waves propagated toward Earth, it changed much. Five hundred million years after the waves were emitted, or 800 million years ago, the first multicellular life forms emerged on Earth. Earth saw the Cambrian explosion 500 million years ago. Sixty-six million years ago the Cretaceous-Paleogene extinction event caused the disappearance of the dinosaurs. The first modern humans appeared 250,000 years ago.

  9. Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

    International Nuclear Information System (INIS)

    Chatterji, Shourov; Lazzarini, Albert; Stein, Leo; Sutton, Patrick J.; Searle, Antony; Tinto, Massimo

    2006-01-01

    The sensitivity of current searches for gravitational-wave bursts is limited by non-Gaussian, nonstationary noise transients which are common in real detectors. Existing techniques for detecting gravitational-wave bursts assume the output of the detector network to be the sum of a stationary Gaussian noise process and a gravitational-wave signal. These techniques often fail in the presence of noise nonstationarities by incorrectly identifying such transients as possible gravitational-wave bursts. Furthermore, consistency tests currently used to try to eliminate these noise transients are not applicable to general networks of detectors with different orientations and noise spectra. In order to address this problem we introduce a fully coherent consistency test that is robust against noise nonstationarities and allows one to distinguish between gravitational-wave bursts and noise transients in general detector networks. This technique does not require any a priori knowledge of the putative burst waveform

  10. Compact binary coalescences in the band of ground-based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Mandel, Ilya; O'Shaughnessy, Richard

    2010-01-01

    As the ground-based gravitational-wave telescopes LIGO, Virgo and GEO 600 approach the era of first detections, we review the current knowledge of the coalescence rates and the mass and spin distributions of merging neutron-star and black-hole binaries. We emphasize the bi-directional connection between gravitational-wave astronomy and conventional astrophysics. Astrophysical input will make possible informed decisions about optimal detector configurations and search techniques. Meanwhile, rate upper limits, detected merger rates and the distribution of masses and spins measured by gravitational-wave searches will constrain astrophysical parameters through comparisons with astrophysical models. Future developments necessary to the success of gravitational-wave astronomy are discussed.

  11. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  12. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  13. Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis

    CERN Document Server

    Creighton, Jolien D E

    2011-01-01

    This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation

  14. Non-stationary ionization in the low ionosphere by gravitational wave action

    International Nuclear Information System (INIS)

    Nikitin, M.A.; Kashchenko, N.M.

    1977-01-01

    Non-stationary effects in the lower ionosphere caused by gravitation waves are analyzed. Time dependences are obtained for extremum electron concentrations, which describe the dynamics of heterogeneous layer formation from the initially homogeneous distribution under the effect of gravitation waves. Diffusion of plasma and its complex composition are not taken into account. The problem is solved for two particular cases of low and high frequency gravitation waves impact on the ionosphere. Only in the former case electron concentration in the lower ionosphere deviates considerably from the equilibrium

  15. Gravitational waves from domain walls and their implications

    Directory of Open Access Journals (Sweden)

    Kazunori Nakayama

    2017-07-01

    Full Text Available We evaluate the impact of domain-wall annihilation on the currently ongoing and planned gravitational wave experiments, including a case in which domain walls experience a frictional force due to interactions with the ambient plasma. We show the sensitivity reach in terms of physical parameters, namely, the wall tension and the annihilation temperature. We find that a Higgs portal scalar, which stabilizes the Higgs potential at high energy scales, can form domain walls whose annihilation produces a large amount of gravitational waves within the reach of the advanced LIGO experiment (O5. Domain wall annihilation can also generate baryon asymmetry if the scalar is coupled to either SU(2L gauge fields or the (B−L current. This is a variant of spontaneous baryogenesis, but it naturally avoids the isocurvature constraint due to the scaling behavior of the domain-wall evolution. We delineate the parameter space where the domain-wall baryogenesis works successfully and discuss its implications for the gravitational wave experiments.

  16. The Virgo gravitational wave interferometer: status and perspectives

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The first recording of a signal from a binary neutron star system by the Advanced LIGO and Advanced Virgo interferometers, and the observation of its remnants by telescopes in all bands of the electromagnetic spectrum, marked the beginning of multimessenger astronomy with gravitational waves. This followed the detection of gravitational wave signals by the LIGO interferometers in 2015, which started the detailed study of highly curved space time. These achievements come after decades of work spent understanding how to measure the tiny space time strain (h ~ 10-21) carried by gravitational waves. In the future, detectors will able to extract much more precise information from these events, or record signals from fainter sources, providing a new view of the Universe. After a presentation of the Virgo interferometer, the main results obtained from binary black hole and neutron star detection are reviewed. The focus will then shift on the perspective offered by a further reduction of noise in ground based interf...

  17. Christodoulou's nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation

    International Nuclear Information System (INIS)

    Wiseman, A.G.; Will, C.M.

    1991-01-01

    Christodoulou has found a new nonlinear contribution to the net change in the wave form caused by the passage of a burst of gravity waves (''memory of the burst''). We argue that this effect is nothing but the gravitational wave form generated by the stress energy in the burst itself. We derive an explicit formula for this effect in terms of a retarded-time integral of products of time derivatives of wave-zone gravitational wave forms. The resulting effect corresponds in size to a correction 2.5 post-Newtonian orders [O((Gm/rc 2 ) 5/2 ) =(O(v/c) 5 )] beyond the quadrupole approximation, and is therefore negligible for all but the most relativistic of systems. For gravitational bremsstrahlung from two stars moving at 300 km s -1 , the effect is much less than 10 -10 of the usual linear quadrupole wave form, while for a system of coalescing binary compact objects we estimate that the effect is of order 10 -1 for two neutron stars

  18. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  19. Gravitational wave emission from a bounded source: A treatment in the full nonlinear regime

    International Nuclear Information System (INIS)

    Oliveiral, H.P. de; Damiao Soares, I.

    2004-03-01

    The dynamics of a bounded gravitational collapsing configuration emitting gravitational waves is studied. The exterior spacetime is described by Robinson-Trautman geometries and have the Schwarzschild black hole as its final gravitational configuration, when the gravitational wave emission ceases. The full nonlinear regime is examined by using the Galerkin method that allows us to reduce the equations governing the dynamics to a finite-dimensional dynamical system, after a proper truncation procedure. Gravitational wave emission patterns from given initial configurations are exhibited for several phases of the collapse and the mass-loss ratio that characterizes the amount of mass extracted by the gravitational wave emission is evaluated. We obtain that the smaller initial mass M init of the configuration, the more rapidly the Schwarzschild solution is attained and a larger fraction of M init is lost in the process of gravitational wave emission. Within all our numerical experiments, the distribution of the mass fraction extracted by gravitational wave emission is shown to satisfy the distribution law of nonextensive statistics and this result is independent of the initial configurations considered. (author)

  20. Alfven-wave current drive and magnetic field stochasticity

    International Nuclear Information System (INIS)

    Litwin, C.; Hegna, C.C.

    1993-01-01

    Propagating Alfven waves can generate parallel current through an alpha effect. In resistive MHD however, the dynamo field is proportional to resistivity and as such cannot drive significant currents for realistic parameters. In the search for an enhancement of this effect the authors investigate the role of magnetic field stochasticity. They show that the presence of a stochastic magnetic field, either spontaneously generated by instabilities or induced externally, can enhance the alpha effect of the wave. This enhancement is caused by an increased wave dissipation due to both current diffusion and filamentation. For the range of parameters of current drive experiments at Phaedrus-T tokamak, a moderate field stochasticity leads to significant modifications in the loop voltage

  1. Can JWST Follow Up on Gravitational-Wave Detections?

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs

  2. The gravitational-wave memory from eccentric binaries

    International Nuclear Information System (INIS)

    Favata, Marc

    2011-01-01

    The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.

  3. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  4. Geodesics analysis of colliding gravitational shock waves

    International Nuclear Information System (INIS)

    Pozdeeva, E.

    2011-01-01

    Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential

  5. The memory effect for plane gravitational waves

    Science.gov (United States)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  6. Hough transform search for continuous gravitational waves

    International Nuclear Information System (INIS)

    Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano

    2004-01-01

    This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities

  7. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  8. Stochastic acceleration by a single wave in a magnetized plasma

    International Nuclear Information System (INIS)

    Smith, R.

    1977-01-01

    A particularly simple problem exhibiting stochasticity is the motion of a charged particle in a uniform magnetic field and a single wave. Detailed studies of this wave-particle interaction show the following features. An electrostatic wave propagating obliquely to the magnetic field causes stochastic motion if the wave amplitude exceeds a certain threshold. The overlap of cyclotron resonances then destroys a constant of the motion, allowing strong particle acceleration. A wave of large enough amplitude would thus suffer severe damping and lead to rapid heating of a particle distribution. The stochastic motion resembles a diffusion process even though the wave spectrum contains only a single wave. The motion of ions in a nonuniform magnetic field and a single electrostatic wave is treated in our study of a possible saturation mechanism of the dissipative trapped-ion instability in a tokamak. A theory involving the overlap of bounce resonances predicts the main features found in the numerical integration of the equations of motion. Ions in a layer near the trapped-circulating boundary move stochastically. This motion leads to nonlinear stabilization mechanisms which are described qualitatively

  9. Signatures of extra dimensions in gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Andriot, David; Gómez, Gustavo Lucena, E-mail: andriotphysics@gmail.com, E-mail: glucenag@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14467 Potsdam-Golm (Germany)

    2017-06-01

    Considering gravitational waves propagating on the most general 4+ N -dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski{sub 4} times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.

  10. Blandford's argument: The strongest continuous gravitational wave signal

    International Nuclear Information System (INIS)

    Knispel, Benjamin; Allen, Bruce

    2008-01-01

    For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test the assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.

  11. Gravitational waves from pulsars in the context of magnetic ellipticity

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A. [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Sao Jose dos Campos, SP (Brazil)

    2017-05-15

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on the pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular as regards gravitational wave generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best h ∝ 10{sup -28}. This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, if the ellipticity has a magnetic origin. (orig.)

  12. Gravitational waves from pulsars in the context of magnetic ellipticity

    International Nuclear Information System (INIS)

    Araujo, Jose C.N. de; Coelho, Jaziel G.; Costa, Cesar A.

    2017-01-01

    In one of our previous articles we have considered the role of a time dependent magnetic ellipticity on the pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular as regards gravitational wave generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best h ∝ 10 -28 . This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, if the ellipticity has a magnetic origin. (orig.)

  13. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

    Science.gov (United States)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-01

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  14. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.

    Science.gov (United States)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-06

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  15. Causal properties of nonlinear gravitational waves in modified gravity

    Science.gov (United States)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  16. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  17. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J

    2005-01-01

    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  18. Gravitational wave emission from the coalescence of white dwarfs

    International Nuclear Information System (INIS)

    Garcia-Berro, E; Loren-Aguilar, P; Isern, J; Pedemonte, A G; Guerrero, J; Lobo, J A

    2005-01-01

    We have computed the gravitational wave emission arising from the coalescence of several close white dwarf binary systems. In order to do so, we have followed the evolution of such systems using a smoothed particle hydrodynamics code. Here we present some of the results obtained so far, paying special attention to the detectability of the emitted gravitational waves. Within this context, we show which could be the impact of individual merging episodes for LISA

  19. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline inter- ... gravitational waves for LIGO are: (i) binary coalescing neutron star systems, (ii) ..... The fundamental mode of this basis is a purely Gaussian function which means.

  20. Search for gravitational waves from galactic and extra-galactic binary neutron stars

    International Nuclear Information System (INIS)

    Abbott, B.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Brown, D.A.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.

    2005-01-01

    We use 373 hours (≅15 days) of data from the second science run of the LIGO gravitational-wave detectors to search for signals from binary neutron star coalescences within a maximum distance of about 1.5 Mpc, a volume of space which includes the Andromeda Galaxy and other galaxies of the Local Group of galaxies. This analysis requires a signal to be found in data from detectors at the two LIGO sites, according to a set of coincidence criteria. The background (accidental coincidence rate) is determined from the data and is used to judge the significance of event candidates. No inspiral gravitational-wave events were identified in our search. Using a population model which includes the Local Group, we establish an upper limit of less than 47 inspiral events per year per Milky Way equivalent galaxy with 90% confidence for nonspinning binary neutron star systems with component masses between 1 and 3M ·

  1. Observation of Gravitational Waves from a Binary Black Hole Merger

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  2. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  3. The Prospect of Neutrinos with Gravitational Waves

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    With the first detection of gravitational waves in 2015, scientists celebrated the opening of a new window to the universe. But multi-messenger astronomy astronomy based on detections of not just photons, but other signals as well was not a new idea at the time: we had already detected tiny, lightweight neutrinos emitted from astrophysical sources. Will we be able to combine observations of neutrinos and gravitational waves in the future to provide a deeper picture of astrophysical events?Signs of a MergerArtists impression of the first stage of a binary neutron star merger. [NASA, ESA, and A. Feild (STScI)]If the answer is yes, the key will probably be short gamma-ray bursts (SGRBs). Theory predicts that when a neutron star merges with another compact object (either another neutron star or a black hole), a number of signals may be observable. These include:gravitational waves as the binary spirals inward,a brief burst of gamma rays at merger (this is the SGRB),high-energy neutrino emission during the SGRB,optical and infrared emission after the merger in the form of a kilonova, andradio afterglows of the merger remnants.While weve observed the various electromagnetic components of this picture, the multi-messenger part is lacking: gravitational-wave detections havent been made in conjunction with electromagnetic counterparts thus far, and the only confirmed astrophysical sources of neutrinos are the Sun and Supernova 1987A.Pedicted neutrino fluxes during different stages of emission in an SGRB. [Kimura et al. 2017]Can we expect this to change in the future? A team of authors led by Shigeo Kimura (Pennsylvania State University) has now explored the likelihood that well be able to detect high-energy neutrinos in association with future gravitational-wave events.Detecting the SGRB NeutrinosKimura and collaborators first estimate the flux of high-energy neutrinos expected during various emission phases of an SGRB. They show that a period of late-time emission, known

  4. Astronomers Get New Tools for Gravitational-Wave Detection

    Science.gov (United States)

    2010-01-01

    Teamwork between gamma-ray and radio astronomers has produced a breakthrough in finding natural cosmic tools needed to make the first direct detections of the long-elusive gravitational waves predicted by Albert Einstein nearly a century ago. An orbiting gamma-ray telescope has pointed radio astronomers to specific locations in the sky where they can discover new millisecond pulsars. Millisecond pulsars, rapidly-spinning superdense neutron stars, can serve as extremely precise and stable natural clocks. Astronomers hope to detect gravitational waves by measuring tiny changes in the pulsars' rotation caused by the passage of the gravitational waves. To do this, they need a multitude of millisecond pulsars dispersed widely throughout the sky. However, nearly three decades after the discovery of the first millisecond pulsar, only about 150 of them had been found, some 90 of those clumped tightly in globular star clusters and thus unusable for detecting gravitational waves. The problem was that millisecond pulsars could only be discovered through arduous, computing-intensive searches of small portions of sky. "We've probably found far less than one percent of the millisecond pulsars in the Milky Way Galaxy," said Scott Ransom of the National Radio Astronomy Observatory (NRAO). The breakthrough came when an instrument aboard NASA's Fermi Gamma-Ray Space Telescope began surveying the sky in 2008. This instrument located hundreds of gamma-ray-emitting objects throughout our Galaxy, and astronomers suspected many of these could be millisecond pulsars. Paul Ray of the Naval Research Laboratory initiated an international collaboration to use radio telescopes to confirm the identity of these objects as millisecond pulsars. "The data from Fermi were like a buried-treasure map," Ransom said. "Using our radio telescopes to study the objects located by Fermi, we found 17 millisecond pulsars in three months. Large-scale searches had taken 10-15 years to find that many," Ransom

  5. Stochastic three-wave interaction in flaring solar loops

    Science.gov (United States)

    Vlahos, L.; Sharma, R. R.; Papadopoulos, K.

    1983-01-01

    A model is proposed for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic waves in the upper hybrid branch. Coherent upconversion of the electrostatic waves to electromagnetic waves produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably trapped electron fluxes. The role of the density and temperature of the ambient plasma in the wave growth and the transition of the three wave upconversion to stochastic, despite the stationarity of the energy source, are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma.

  6. Stochastic three-wave interaction in flaring solar loops

    International Nuclear Information System (INIS)

    Vlahos, L.; Sharma, R.R.; Papadopoulos, K.

    1983-01-01

    We propose a model for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic waves in the upper hybrid branch. Coherent upconversion of the electrostatic waves to electromagnetic waves produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably trapped electron fluxes. The role of the density and temperature of the ambient plasma in the wave growth and the transition of the three wave upconversion to stochastic, despite the stationarity of the energy source are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma

  7. Results of the IGEC-2 search for gravitational wave bursts during 2005

    International Nuclear Information System (INIS)

    Astone, P.; Babusci, D.; Giordano, G.; Marini, A.; Modestino, G.; Quintieri, L.; Ronga, F.; Baggio, L.; Bassan, M.; Fafone, V.; Moleti, A.; Bignotto, M.; Cerdonio, M.; Conti, L.; Drago, M.; Liguori, N.; Bonaldi, M.; Falferi, P.; Vinante, A.; Camarda, M.

    2007-01-01

    The network of resonant bar detectors of gravitational waves resumed coordinated observations within the International Gravitational Event Collaboration (IGEC-2). Four detectors are taking part in this Collaboration: ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was the only gravitational wave observatory in operation. The implemented network data analysis is based on a time coincidence search among AURIGA, EXPLORER and NAUTILUS; ALLEGRO data was reserved for follow-up studies. The network amplitude sensitivity to bursts improved by a factor ≅3 over the 1997-2000 IGEC observations; the wider sensitive band also allowed the analysis to be tuned over a larger class of waveforms. Given the higher single-detector duty factors, the analysis was based on threefold coincidence, to ensure the identification of any single candidate of gravitational waves with high statistical confidence. The false detection rate was as low as 1 per century. No candidates were found

  8. A computational test facility for distributed analysis of gravitational wave signals

    International Nuclear Information System (INIS)

    Amico, P; Bosi, L; Cattuto, C; Gammaitoni, L; Punturo, M; Travasso, F; Vocca, H

    2004-01-01

    In the gravitational wave detector Virgo, the in-time detection of a gravitational wave signal from a coalescing binary stellar system is an intensive computational task. A parallel computing scheme using the message passing interface (MPI) is described. Performance results on a small-scale cluster are reported

  9. Baryon asymmetry and gravitational waves from pseudoscalar inflation

    Science.gov (United States)

    Jiménez, Daniel; Kamada, Kohei; Schmitz, Kai; Xu, Xun-Jie

    2017-12-01

    In models of inflation driven by an axion-like pseudoscalar field, the inflaton, a, may couple to the standard model hypercharge via a Chern-Simons-type interaction, Script L ⊃ a/(4Λ) Ftilde F. This coupling results in explosive gauge field production during inflation, especially at its last stage, which has interesting phenomenological consequences: For one thing, the primordial hypermagnetic field is maximally helical. It is thus capable of sourcing the generation of nonzero baryon number, via the standard model chiral anomaly, around the time of electroweak symmetry breaking. For another thing, the gauge field production during inflation feeds back into the primordial tensor power spectrum, leaving an imprint in the stochastic background of gravitational waves (GWs). In this paper, we focus on the correlation between these two phenomena. Working in the approximation of instant reheating, we (1) update the investigation of baryogenesis via hypermagnetic fields from pseudoscalar inflation and (2) examine the corresponding implications for the GW spectrum. We find that successful baryogenesis requires a suppression scale Λ of around Λ ~ 3 × 1017 GeV, which corresponds to a relatively weakly coupled axion. The gauge field production at the end of inflation is then typically accompanied by a peak in the GW spectrum at frequencies in the MHz range or above. The detection of such a peak is out of reach of present-day technology; but in the future, it may serve as a smoking-gun signal for baryogenesis from pseudoscalar inflation. Conversely, models that do yield an observable GW signal suffer from the overproduction of baryon number, unless the reheating temperature is lower than the electroweak scale.

  10. Gravitational Waves in Locally Rotationally Symmetric (LRS Class II Cosmologies

    Directory of Open Access Journals (Sweden)

    Michael Bradley

    2017-10-01

    Full Text Available In this work we consider perturbations of homogeneous and hypersurface orthogonal cosmological backgrounds with local rotational symmetry (LRS, using a method based on the 1 + 1 + 2 covariant split of spacetime. The backgrounds, of LRS class II, are characterised by that the vorticity, the twist of the 2-sheets, and the magnetic part of the Weyl tensor all vanish. They include the flat Friedmann universe as a special case. The matter contents of the perturbed spacetimes are given by vorticity-free perfect fluids, but otherwise the perturbations are arbitrary and describe gravitational, shear, and density waves. All the perturbation variables can be given in terms of the time evolution of a set of six harmonic coefficients. This set decouples into one set of four coefficients with the density perturbations acting as source terms, and another set of two coefficients describing damped source-free gravitational waves with odd parity. We also consider the flat Friedmann universe, which has been considered by several others using the 1 + 3 covariant split, as a check of the isotropic limit. In agreement with earlier results we find a second-order wavelike equation for the magnetic part of the Weyl tensor which decouples from the density gradient for the flat Friedmann universes. Assuming vanishing vector perturbations, including the density gradient, we find a similar equation for the electric part of the Weyl tensor, which was previously unnoticed.

  11. Soft Gravitons & the Memory Effect for Plane Gravitational Waves

    OpenAIRE

    Zhang, P. -M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-01-01

    The "gravitational memory effect" due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with soft gravitons. It is explained how the presence of the latter may be detected by observing the motion of freely falling particles or other forms of gravitational wave detection. Numerical calculations confirm the relevance of the first, second and third time integrals of the Riemann tensor pointed out earlier. Solutions for various profiles are constr...

  12. Low-Frequency Gravitational-Wave Science with eLISA/ NGO

    Science.gov (United States)

    Amaro-Seoane, Pau; Aoudia, Sofiane; Babak, Stanislav; Binetruy, Pierre; Berti, Emanuele; Bohe, Alejandro; Caprini, Chiara; Colpi, Monica; Cornish, Neil J.; Danzmann, Karsten; hide

    2011-01-01

    We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultracompact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISA's high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.

  13. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    International Nuclear Information System (INIS)

    Casentini, Claudio

    2016-01-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project. (paper)

  14. MHz gravitational waves from short-term anisotropic inflation

    International Nuclear Information System (INIS)

    Ito, Asuka; Soda, Jiro

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  15. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    Science.gov (United States)

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  16. Heuristic introduction to gravitational waves

    International Nuclear Information System (INIS)

    Sandberg, V.D.

    1982-01-01

    The purpose of this article is to provide a rough and somewhat heuristic theoretical background and introduction to gravitational radiation, its generation, and its detection based on Einstein's general theory of relativity

  17. Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario

    Directory of Open Access Journals (Sweden)

    Asuka Ito

    2017-08-01

    Full Text Available Both inflationary and ekpyrotic scenarios can account for the origin of the large scale structure of the universe. It is often said that detecting primordial gravitational waves is the key to distinguish both scenarios. We show that this is not true if the gauge kinetic function is present in the ekpyrotic scenario. In fact, primordial gravitational waves sourced by the gauge field can be produced in an ekpyrotic universe. We also study scalar fluctuations sourced by the gauge field and show that it is negligible compared to primordial gravitational waves. This comes from the fact that the fast roll condition holds in ekpyrotic models.

  18. First VESF School on Advanced Detectors for Gravitational Waves

    CERN Document Server

    Advanced Interferometers and the Search for Gravitational Waves

    2014-01-01

    The search for gravitational radiation with optical interferometers is gaining momentum worldwide. Beside the VIRGO and GEO gravitational wave observatories in Europe and the two LIGOs in the United States, which have operated successfully during the past decade, further observatories are being completed (KAGRA in Japan) or planned (ILIGO in India). The sensitivity of the current observatories, although spectacular, has not allowed direct discovery of gravitational waves. The advanced detectors (Advanced LIGO and Advanced Virgo), at present in the development phase, will improve sensitivity by a factor of 10, probing the universe up to 200 Mpc for signal from inspiraling binary compact stars. This book covers all experimental aspects of the search for gravitational radiation with optical interferometers. Every facet of the technological development underlying the evolution of advanced interferometers is thoroughly described, from configuration to optics and coatings, and from thermal compensation to suspensio...

  19. Nuclear limits on gravitational waves from elliptically deformed pulsars

    International Nuclear Information System (INIS)

    Krastev, Plamen G.; Li Baoan; Worley, Aaron

    2008-01-01

    Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the star's quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude h 0 depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances 0.18 kpc to 0.35 kpc from Earth, the maximalh 0 is found to be in the range of ∼[0.4-1.5]x10 -24 . This prediction serves as the first direct nuclear constraint on the gravitational radiation. Its implications are discussed

  20. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    Science.gov (United States)

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-04

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  1. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; hide

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  2. First Search for Gravitational Waves from Known Pulsars with Advanced LIGO

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, A. J. K.; Chua, S. S. Y.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Galiana, A. Fernandez; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, H.C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath Hoareau, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meador, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C.C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P.

    2017-01-01

    We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet

  3. Effect of extra dimensions on gravitational waves from cosmic strings.

    Science.gov (United States)

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.

  4. Gravitational waves from a pulsar kick caused by neutrino conversions

    International Nuclear Information System (INIS)

    Loveridge, Lee C.

    2004-01-01

    It has been suggested that the observed pulsar velocities are caused by an asymmetric neutrino emission from a hot neutron star during the first seconds after the supernova collapse. We calculate the magnitude of gravitational waves produced by the asymmetries in the emission of neutrinos. The resulting periodic gravitational waves may be detectable by LIGO and LISA in the event of a nearby supernova explosion

  5. On constraining the speed of gravitational waves following GW150914

    CERN Document Server

    Blas, Diego; Sawicki, Ignacy; Sibiryakov, Sergey

    2016-07-31

    We point out that the observed time delay between the detection of the signal at the Hanford and Livingston LIGO sites from the gravitational wave event GW150914 places an upper bound on the speed of propagation of gravitational waves, $c_{gw}\\lesssim 1.7$ in the units of speed of light. Combined with the lower bound from the absence of gravitational Cherenkov losses by cosmic rays that rules out most of subluminal velocities, this gives a model-independent double-sided constraint $1\\lesssim c_{gw}\\lesssim 1.7$. We compare this result to model-specific constraints from pulsar timing and cosmology.

  6. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    Science.gov (United States)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  7. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  8. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  9. Gravitational wave detection using laser interferometry beyond the standard quantum limit

    Science.gov (United States)

    Heurs, M.

    2018-05-01

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  10. Gravitational waves emitted by extrasolar planetary systems

    International Nuclear Information System (INIS)

    Berti, E.; Ferrari, V.

    2001-01-01

    The recently discovered Extrasolar Planetary Systems (EPS's) are potentially interesting sources of gravitational waves, since they are very close to Earth (at distances ∼ 10 pc), and their orbital features and positions in the sky are quite well known. As a first estimate, we compute the orbital emission of these systems using the quadrupole formula. Then we show that, in principle, the orbiting planet could resonantly excite the quasi-normal modes of the central star. We use the general-relativistic theory of stellar pulsations to estimate the effects of such a resonance on the gravitational-wave emission of the system. We also consider radiation-reaction effects on the orbital evolution, and give upper limits on the timescales required for a planet to get off-resonance. (author)

  11. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  12. Gravitational wave constraints on multi-brane inflation

    International Nuclear Information System (INIS)

    Huston, Ian; Lidsey, James E; Thomas, Steven; Ward, John

    2008-01-01

    A class of non-canonical inflationary models is identified, where the leading-order contribution to the non-Gaussianity of the curvature perturbation is determined by the sound speed of the fluctuations in the inflaton field. Included in this class of models is the effective action for multiple coincident branes in the finite n limit. The action for this configuration is determined using a powerful iterative technique, based upon the fundamental representation of SU(2). In principle the upper bounds on the tensor–scalar ratio that arise in the standard, single-brane DBI inflationary scenario can be relaxed in such multi-brane configurations if a large and detectable non-Gaussianity is generated. Moreover models with a small number of coincident branes could generate a gravitational wave background that will be observable in future experiments

  13. Gravitational wave constraints on multi-brane inflation

    Energy Technology Data Exchange (ETDEWEB)

    Huston, Ian; Lidsey, James E [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Thomas, Steven [Centre for Research in String Theory, Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Ward, John, E-mail: I.Huston@qmul.ac.uk, E-mail: J.E.Lidsey@qmul.ac.uk, E-mail: S.Thomas@qmul.ac.uk, E-mail: jwa@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada)

    2008-05-15

    A class of non-canonical inflationary models is identified, where the leading-order contribution to the non-Gaussianity of the curvature perturbation is determined by the sound speed of the fluctuations in the inflaton field. Included in this class of models is the effective action for multiple coincident branes in the finite n limit. The action for this configuration is determined using a powerful iterative technique, based upon the fundamental representation of SU(2). In principle the upper bounds on the tensor-scalar ratio that arise in the standard, single-brane DBI inflationary scenario can be relaxed in such multi-brane configurations if a large and detectable non-Gaussianity is generated. Moreover models with a small number of coincident branes could generate a gravitational wave background that will be observable in future experiments.

  14. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  15. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  16. Merging Black Holes, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Centrella, Joan M.

    2009-01-01

    The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  17. Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    International Nuclear Information System (INIS)

    Ando, Masaki; Aso, Youichi; Iida, Yukiyoshi; Nishi, Yuhiko; Otsuka, Shigemi; Seki, Hidetsugu; Soida, Kenji; Taniguchi, Shinsuke; Tochikubo, Kuniharu; Tsubono, Kimio; Yoda, Tatsuo; Arai, Koji; Beyersdorf, Peter; Kawamura, Seiji; Sato, Shuichi; Takahashi, Ryutaro; Tatsumi, Daisuke; Tsunesada, Yoshiki; Zhu, Zong-Hong; Fujimoto, Masa-Katsu

    2005-01-01

    We present data-analysis schemes and results of observations with the TAMA300 gravitational wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp wave analysis, because precise waveform templates are not available. We used an excess -power filter for the extraction of gravitational wave candidates, and developed two methods for the reduction of fake events caused by nonstationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. In addition, in order to interpret the event candidates from an astronomical viewpoint, we performed a Monte-Carlo simulation with an assumed Galactic event distribution model and with burst waveforms obtained from numerical simulations of stellar-core collapses. We set an upper limit of 5.0x10 3 events/sec on the burst gravitational wave event rate in our Galaxy with a confidence level of 90%. This work shows prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

  18. Signs of cosmic rays in gravitational wave detectors

    International Nuclear Information System (INIS)

    Tavares, Denis Borgarelli

    2010-01-01

    One of the phenomena predicted by Einstein in the derivation of general relativity is the existence of small perturbations of the metric that he named gravitational waves. As they travel through space oscillates the space-time according to its polarization. This is the only major prediction of general relativity not yet proven completely. The small signal generated by the passage of a gravitational wave compared to the noise in the system of detection makes their direct detection one challenge of modern science. In this paper we study the noise generated by cosmic rays in the gravitational antenna Mario Schenberg, located in the city of Sao Paulo. Single muons and hadrons flux measurements held in the northern hemisphere were used to calculate the expected flux of these particles in the city of Sao Paulo. The calculation of the energy deposited in the detector of gravitational waves from cosmic rays was performed by Monte Carlo simulations using Geant4. The transport of muons and protons, with several energy and some different angles of incidence, across the building and the resonant sphere was simulated. We developed a thermo-acoustic model, called multi-point, suitable for calculating the energy deposited in the normal modes from the energy deposited on the sphere by elementary particles. With these results we calculate the expected rate of cosmic ray signals in the main detection mode of gravitational waves, nl = 12, of the Mario Schenberg detector, for temperatures T noise between 10 -5 and 10 -7 K. The results showed for the designed for 4.2 K sensitivity of the Mario Schenberg detector that the rate of signals due to cosmic rays is very small, being around 5 events per day. However, when it will reach the quantum limit will be needed a more detailed analysis of the antenna signal output, since the expected number of cosmic ray noise increases considerably, reaching about 250 signals per day. (author)

  19. Two-time physics with gravitational and gauge field backgrounds

    International Nuclear Information System (INIS)

    Bars, Itzhak

    2000-01-01

    It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d dimensions (one time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the world line formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1)+1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target (d+2)-dimensional spacetime. The gravitational background obeys a closed homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher (d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden

  20. Gravitational wave signals and cosmological consequences of gravitational reheating

    Science.gov (United States)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.