WorldWideScience

Sample records for stochastic differential mixed-effects

  1. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    International Nuclear Information System (INIS)

    Rupšys, P.

    2015-01-01

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE

  2. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    Energy Technology Data Exchange (ETDEWEB)

    Rupšys, P. [Aleksandras Stulginskis University, Studenų g. 11, Akademija, Kaunas district, LT – 53361 Lithuania (Lithuania)

    2015-10-28

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  3. Modelling ventricular fibrillation coarseness during cardiopulmonary resuscitation by mixed effects stochastic differential equations.

    Science.gov (United States)

    Gundersen, Kenneth; Kvaløy, Jan Terje; Eftestøl, Trygve; Kramer-Johansen, Jo

    2015-10-15

    For patients undergoing cardiopulmonary resuscitation (CPR) and being in a shockable rhythm, the coarseness of the electrocardiogram (ECG) signal is an indicator of the state of the patient. In the current work, we show how mixed effects stochastic differential equations (SDE) models, commonly used in pharmacokinetic and pharmacodynamic modelling, can be used to model the relationship between CPR quality measurements and ECG coarseness. This is a novel application of mixed effects SDE models to a setting quite different from previous applications of such models and where using such models nicely solves many of the challenges involved in analysing the available data. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Population stochastic modelling (PSM)-An R package for mixed-effects models based on stochastic differential equations

    DEFF Research Database (Denmark)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode

    2009-01-01

    are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...

  5. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    Science.gov (United States)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  6. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    Science.gov (United States)

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  7. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  8. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys

    2015-01-01

    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  9. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  10. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  11. Stochastic integration and differential equations

    CERN Document Server

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  12. On Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ekhaguere, G.O.S.

    1990-12-01

    Quantum stochastic differential inclusions are introduced and studied within the framework of the Hudson-Parthasarathy formulation of quantum stochastic calculus. Results concerning the existence of solutions of a Lipschitzian quantum stochastic differential inclusion and the relationship between the solutions of such an inclusion and those of its convexification are presented. These generalize the Filippov existence theorem and the Filippov-Wazewski Relaxation Theorem for classical differential inclusions to the present noncommutative setting. (author). 9 refs

  13. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  14. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  15. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  16. A microscopic derivation of stochastic differential equations

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1996-01-01

    With the help of the formulation of Non-Equilibrium Thermo Field Dynamics, a unified canonical operator formalism is constructed for the quantum stochastic differential equations. In the course of its construction, it is found that there are at least two formulations, i.e. one is non-hermitian and the other is hermitian. Having settled which framework should be satisfied by the quantum stochastic differential equations, a microscopic derivation is performed for these stochastic differential equations by extending the projector methods. This investigation may open a new field for quantum systems in order to understand the deeper meaning of dissipation

  17. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  18. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  19. Asymptotic analysis for functional stochastic differential equations

    CERN Document Server

    Bao, Jianhai; Yuan, Chenggui

    2016-01-01

    This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

  20. Stochastic differential equations and diffusion processes

    CERN Document Server

    Ikeda, N

    1989-01-01

    Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

  1. An introduction to stochastic differential equations

    CERN Document Server

    Evans, Lawrence C

    2014-01-01

    These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. -Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. -George Papa

  2. Stochastic partial differential equations an introduction

    CERN Document Server

    Liu, Wei

    2015-01-01

    This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and t...

  3. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  4. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...

  5. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  6. Periodic linear differential stochastic processes

    NARCIS (Netherlands)

    Kwakernaak, H.

    1975-01-01

    Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation

  7. Semiparametric mixed-effects analysis of PK/PD models using differential equations.

    Science.gov (United States)

    Wang, Yi; Eskridge, Kent M; Zhang, Shunpu

    2008-08-01

    Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.

  8. Stochastic Differential Equations and Kondratiev Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Vaage, G.

    1995-05-01

    The purpose of this mathematical thesis was to improve the understanding of physical processes such as fluid flow in porous media. An example is oil flowing in a reservoir. In the first of five included papers, Hilbert space methods for elliptic boundary value problems are used to prove the existence and uniqueness of a large family of elliptic differential equations with additive noise without using the Hermite transform. The ideas are then extended to the multidimensional case and used to prove existence and uniqueness of solution of the Stokes equations with additive noise. The second paper uses functional analytic methods for partial differential equations and presents a general framework for proving existence and uniqueness of solutions to stochastic partial differential equations with multiplicative noise, for a large family of noises. The methods are applied to equations of elliptic, parabolic as well as hyperbolic type. The framework presented can be extended to the multidimensional case. The third paper shows how the ideas from the second paper can be extended to study the moving boundary value problem associated with the stochastic pressure equation. The fourth paper discusses a set of stochastic differential equations. The fifth paper studies the relationship between the two families of Kondratiev spaces used in the thesis. 102 refs.

  9. Potential in stochastic differential equations: novel construction

    International Nuclear Information System (INIS)

    Ao, P

    2004-01-01

    There is a whole range of emergent phenomena in a complex network such as robustness, adaptiveness, multiple-equilibrium, hysteresis, oscillation and feedback. Those non-equilibrium behaviours can often be described by a set of stochastic differential equations. One persistent important question is the existence of a potential function. Here we demonstrate that a dynamical structure built into stochastic differential equation allows us to construct such a global optimization potential function. We present an explicit construction procedure to obtain the potential and relevant quantities. In the procedure no reference to the Fokker-Planck equation is needed. The availability of the potential suggests that powerful statistical mechanics tools can be used in nonequilibrium situations. (letter to the editor)

  10. Differential form representation of stochastic electromagnetic fields

    Directory of Open Access Journals (Sweden)

    M. Haider

    2017-09-01

    Full Text Available In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  11. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have...... description. In order to identify the parameters, a Maximum likelihood estimation method is used together with a simplified truncated second order filter. Because of the continuity feature of the predictor equation, two numerical integration methods, called the Odeint and the Discretization method...

  12. Differential form representation of stochastic electromagnetic fields

    Science.gov (United States)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  13. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  14. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  15. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  16. PC analysis of stochastic differential equations driven by Wiener noise

    KAUST Repository

    Le Maitre, Olivier; Knio, Omar

    2015-01-01

    A polynomial chaos (PC) analysis with stochastic expansion coefficients is proposed for stochastic differential equations driven by additive or multiplicative Wiener noise. It is shown that for this setting, a Galerkin formalism naturally leads

  17. On stochastic differential equations with random delay

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2011-01-01

    We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation

  18. Multivalued stochastic delay differential equations and related ...

    African Journals Online (AJOL)

    We study the existence and uniqueness of a solution for the multivalued stochastic differential equation with delay (the multivalued term is of subdifferential type):. dX(t) + aφ (X(t))dt ∍ b(t,X(t), Y(t), Z(t)) dt. ⎨ +σ (t, X (t), Y (t), Z (t)) dW (t), t ∈ (s, T). X(t) = ξ (t - s), t ∈ [s - δ, s]. Specify that in this case the coefficients at time t ...

  19. Causal interpretation of stochastic differential equations

    DEFF Research Database (Denmark)

    Sokol, Alexander; Hansen, Niels Richard

    2014-01-01

    We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....

  20. Hybrid Differential Dynamic Programming with Stochastic Search

    Science.gov (United States)

    Aziz, Jonathan; Parker, Jeffrey; Englander, Jacob

    2016-01-01

    Differential dynamic programming (DDP) has been demonstrated as a viable approach to low-thrust trajectory optimization, namely with the recent success of NASAs Dawn mission. The Dawn trajectory was designed with the DDP-based Static Dynamic Optimal Control algorithm used in the Mystic software. Another recently developed method, Hybrid Differential Dynamic Programming (HDDP) is a variant of the standard DDP formulation that leverages both first-order and second-order state transition matrices in addition to nonlinear programming (NLP) techniques. Areas of improvement over standard DDP include constraint handling, convergence properties, continuous dynamics, and multi-phase capability. DDP is a gradient based method and will converge to a solution nearby an initial guess. In this study, monotonic basin hopping (MBH) is employed as a stochastic search method to overcome this limitation, by augmenting the HDDP algorithm for a wider search of the solution space.

  1. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Overgaard, Rune Viig; Agerso, H.

    2005-01-01

    of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise...... degarelix. Conclusions. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained......Purpose. The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types...

  2. Symmetries of stochastic differential equations: A geometric approach

    Energy Technology Data Exchange (ETDEWEB)

    De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)

    2016-06-15

    A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.

  3. Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

    OpenAIRE

    Li, Yan; Hu, Junhao

    2013-01-01

    We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.

  4. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  5. Polynomial chaos functions and stochastic differential equations

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2006-01-01

    The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory

  6. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...... a fixed time interval. Rate optimal and effcient estimators areobtained for a one-dimensional diffusion parameter. Stable convergence in distribution isused to achieve a practically applicable Gaussian limit distribution for suitably normalisedestimators. In a simulation example, the limit distributions...... multidimensional parameter. Conditions for rate optimality and effciency of estimatorsof drift-jump and diffusion parameters are given in some special cases. Theseconditions are found to extend the pre-existing conditions applicable to continuous diffusions,and impose much stronger requirements on the estimating...

  7. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  8. Lyapunov functionals and stability of stochastic functional differential equations

    CERN Document Server

    Shaikhet, Leonid

    2013-01-01

    Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...

  9. PC analysis of stochastic differential equations driven by Wiener noise

    KAUST Repository

    Le Maitre, Olivier

    2015-03-01

    A polynomial chaos (PC) analysis with stochastic expansion coefficients is proposed for stochastic differential equations driven by additive or multiplicative Wiener noise. It is shown that for this setting, a Galerkin formalism naturally leads to the definition of a hierarchy of stochastic differential equations governing the evolution of the PC modes. Under the mild assumption that the Wiener and uncertain parameters can be treated as independent random variables, it is also shown that the Galerkin formalism naturally separates parametric uncertainty and stochastic forcing dependences. This enables us to perform an orthogonal decomposition of the process variance, and consequently identify contributions arising from the uncertainty in parameters, the stochastic forcing, and a coupled term. Insight gained from this decomposition is illustrated in light of implementation to simplified linear and non-linear problems; the case of a stochastic bifurcation is also considered.

  10. Numerical methods for stochastic partial differential equations with white noise

    CERN Document Server

    Zhang, Zhongqiang

    2017-01-01

    This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...

  11. Analysis of stability for stochastic delay integro-differential equations.

    Science.gov (United States)

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  12. Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition

    Directory of Open Access Journals (Sweden)

    Marek T. Malinowski

    2016-01-01

    Full Text Available We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.

  13. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  14. Introduction to stochastic analysis integrals and differential equations

    CERN Document Server

    Mackevicius, Vigirdas

    2013-01-01

    This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion pro

  15. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects.

    Science.gov (United States)

    Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam

    2016-01-01

    Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.

  16. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  17. A general comparison theorem for backward stochastic differential equations

    OpenAIRE

    Cohen, Samuel N.; Elliott, Robert J.; Pearce, Charles E. M.

    2010-01-01

    A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectat...

  18. Neutral Backward Stochastic Functional Differential Equations and Their Application

    OpenAIRE

    Wei, Wenning

    2013-01-01

    In this paper we are concerned with a new type of backward equations with anticipation which we call neutral backward stochastic functional differential equations. We obtain the existence and uniqueness and prove a comparison theorem. As an application, we discuss the optimal control of neutral stochastic functional differential equations, establish a Pontryagin maximum principle, and give an explicit optimal value for the linear optimal control.

  19. Pathwise Strategies for Stochastic Differential Games with an Erratum to “Stochastic Differential Games with Asymmetric Information”

    International Nuclear Information System (INIS)

    Cardaliaguet, P.; Rainer, C.

    2013-01-01

    We introduce a new notion of pathwise strategies for stochastic differential games. This allows us to give a correct meaning to some statement asserted in Cardaliaguet and Rainer (Appl. Math. Optim. 59: 1–36, 2009)

  20. Pathwise Strategies for Stochastic Differential Games with an Erratum to 'Stochastic Differential Games with Asymmetric Information'

    Energy Technology Data Exchange (ETDEWEB)

    Cardaliaguet, P., E-mail: cardaliaguet@ceremade.dauphine.fr [Universite Paris-Dauphine, Ceremade (France); Rainer, C., E-mail: Catherine.Rainer@univ-brest.fr [Universite de Bretagne Occidentale (France)

    2013-08-01

    We introduce a new notion of pathwise strategies for stochastic differential games. This allows us to give a correct meaning to some statement asserted in Cardaliaguet and Rainer (Appl. Math. Optim. 59: 1-36, 2009)

  1. Effective action for stochastic partial differential equations

    International Nuclear Information System (INIS)

    Hochberg, David; Molina-Paris, Carmen; Perez-Mercader, Juan; Visser, Matt

    1999-01-01

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of

  2. Effective action for stochastic partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, David [Laboratorio de Astrofisica Espacial y Fisica Fundamental, Apartado 50727, 28080 Madrid, (Spain); Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid, (Spain); Molina-Paris, Carmen [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Perez-Mercader, Juan [Laboratorio de Astrofisica Espacial y Fisica Fundamental, Apartado 50727, 28080 Madrid, (Spain); Visser, Matt [Physics Department, Washington University, Saint Louis, Missouri 63130-4899 (United States)

    1999-12-01

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from

  3. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  4. Degenerate parabolic stochastic partial differential equations

    Czech Academy of Sciences Publication Activity Database

    span class="emphasis">Hofmanová, Martinaspan>

    2013-01-01

    Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf

  5. 2–stage stochastic Runge–Kutta for stochastic delay differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Jusoh Awang, Rahimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang (Malaysia); Bahar, Arifah; Yeak, S. H. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-05-15

    This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.

  6. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, John Joseph Absalom, E-mail: j.j.a.hosking@cma.uio.no [University of Oslo, Centre of Mathematics for Applications (CMA) (Norway)

    2012-12-15

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  7. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    International Nuclear Information System (INIS)

    Hosking, John Joseph Absalom

    2012-01-01

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966–979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197–216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  8. Symmetries of th-Order Approximate Stochastic Ordinary Differential Equations

    OpenAIRE

    Fredericks, E.; Mahomed, F. M.

    2012-01-01

    Symmetries of $n$ th-order approximate stochastic ordinary differential equations (SODEs) are studied. The determining equations of these SODEs are derived in an Itô calculus context. These determining equations are not stochastic in nature. SODEs are normally used to model nature (e.g., earthquakes) or for testing the safety and reliability of models in construction engineering when looking at the impact of random perturbations.

  9. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    Science.gov (United States)

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  10. The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available This paper is devoted to a stochastic differential game (SDG of decoupled functional forward-backward stochastic differential equation (FBSDE. For our SDG, the associated upper and lower value functions of the SDG are defined through the solution of controlled functional backward stochastic differential equations (BSDEs. Applying the Girsanov transformation method introduced by Buckdahn and Li (2008, the upper and the lower value functions are shown to be deterministic. We also generalize the Hamilton-Jacobi-Bellman-Isaacs (HJBI equations to the path-dependent ones. By establishing the dynamic programming principal (DPP, we derive that the upper and the lower value functions are the viscosity solutions of the corresponding upper and the lower path-dependent HJBI equations, respectively.

  11. Probabilistic Forecasts of Solar Irradiance by Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2014-01-01

    approach allows for characterizing both the interdependence structure of prediction errors of short-term solar irradiance and their predictive distribution. Three different stochastic differential equation models are first fitted to a training data set and subsequently evaluated on a one-year test set...... included in probabilistic forecasts may be paramount for decision makers to efficiently make use of this uncertain and variable generation. In this paper, a stochastic differential equation framework for modeling the uncertainty associated with the solar irradiance point forecast is proposed. This modeling...

  12. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  13. A concise course on stochastic partial differential equations

    CERN Document Server

    Prévôt, Claudia

    2007-01-01

    These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices.

  14. Stochastic fractional differential equations: Modeling, method and analysis

    International Nuclear Information System (INIS)

    Pedjeu, Jean-C.; Ladde, Gangaram S.

    2012-01-01

    By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.

  15. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  16. Mild Solutions of Neutral Stochastic Partial Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    T. E. Govindan

    2011-01-01

    Full Text Available This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.

  17. On the existence of weak solutions of quantum stochastic differential ...

    African Journals Online (AJOL)

    We establish further results concerning the existence, uniqueness and stability of weak solutions of quantum stochastic differential equations (QSDEs). Our results are achieved by considering a more general Lipschit condition on the coefficients than our previous considerations in [1]. We exhibit a class of Lipschitzian ...

  18. STABILITY OF SOME KIND OF STOCHASTIC DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,a kind of stochastic differential equation is investigated and the almost sure exponential stability of the equation is obtained using Gronwall's inequality.Further,we also give other noise intensity function to keep the stability of the system.

  19. COMPARISON THEOREM OF BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is devoted to deriving a comparison theorem of solutions to backward doubly stochastic differential equations driven by Brownian motion and backward It-Kunita integral. By the application of this theorem, we give an existence result of the solutions to these equations with continuous coefficients.

  20. A class of degenerate stochastic differential equations with non ...

    Indian Academy of Sciences (India)

    Introduction. In this article we consider (possibly degenerate) stochastic differential equations (SDEs) with non-Lipschitz coefficients. If the coefficients are Lipschitz, we can prove the existence of a unique strong solution (see [9]). But uniqueness fails in the case of non-Lipschitz coefficients. The literature on this topic is not ...

  1. STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we obtain suffcient conditions for the stability in p-th moment of the analytical solutions and the mean square stability of a stochastic differential equation with unbounded delay proposed in [6,10] using the explicit Euler method.

  2. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

    KAUST Repository

    Happola, Juho

    2017-09-19

    Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

  3. Reflected backward stochastic differential equations in an orthant

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Since backward stochastic differential equations were introduced about a decade back there has been a lot .... is given in ([10] pp. 76–80) in connection with financial networks; these authors call ..... Applying Theorem 3.2 to (̂Y. (k) i. , ̂Z. (k).

  4. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

    KAUST Repository

    Happola, Juho

    2017-01-01

    Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

  5. General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

    OpenAIRE

    Ren, Jiagang; Wu, Jing; Zhang, Hua

    2015-01-01

    In this paper, we prove a large deviation principle of Freidlin-Wentzell's type for the multivalued stochastic differential equations. As an application, we derive a functional iterated logarithm law for the solutions of multivalued stochastic differential equations.

  6. Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

    OpenAIRE

    Tarun Kumar Rawat; Abhirup Lahiri; Ashish Gupta

    2008-01-01

    In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parame...

  7. Malliavin Calculus With Applications to Stochastic Partial Differential Equations

    CERN Document Server

    Sanz-Solé, Marta

    2005-01-01

    Developed in the 1970s to study the existence and smoothness of density for the probability laws of random vectors, Malliavin calculus--a stochastic calculus of variation on the Wiener space--has proven fruitful in many problems in probability theory, particularly in probabilistic numerical methods in financial mathematics.This book presents applications of Malliavin calculus to the analysis of probability laws of solutions to stochastic partial differential equations driven by Gaussian noises that are white in time and coloured in space. The first five chapters introduce the calculus itself

  8. Linear stochastic differential equations with anticipating initial conditions

    DEFF Research Database (Denmark)

    Khalifa, Narjess; Kuo, Hui-Hsiung; Ouerdiane, Habib

    In this paper we use the new stochastic integral introduced by Ayed and Kuo (2008) and the results obtained by Kuo et al. (2012b) to find a solution to a drift-free linear stochastic differential equation with anticipating initial condition. Our solution is based on well-known results from...... classical Itô theory and anticipative Itô formula results from Kue et al. (2012b). We also show that the solution obtained by our method is consistent with the solution obtained by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994)....

  9. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  10. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  11. Improved stochastic approximation methods for discretized parabolic partial differential equations

    Science.gov (United States)

    Guiaş, Flavius

    2016-12-01

    We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).

  12. Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

    International Nuclear Information System (INIS)

    Goreac, D.

    2009-01-01

    The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case

  13. Error estimates for discretized quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ayoola, E.O.

    2001-09-01

    This paper is concerned with the error estimates involved in the solution of a discrete approximation of a quantum stochastic differential inclusion (QSDI). Our main results rely on certain properties of the averaged modulus of continuity for multivalued sesquilinear forms associated with QSDI. We obtained results concerning the estimates of the Hausdorff distance between the set of solutions of the QSDI and the set of solutions of its discrete approximation. This extend the results of Dontchev and Farkhi concerning classical differential inclusions to the present noncommutative Quantum setting involving inclusions in certain locally convex space. (author)

  14. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling

    KAUST Repository

    Potsepaev, R.

    2010-09-06

    Existing algorithms of geostatistics for stochastic modelling of reservoir parameters require a mapping (the \\'uvt-transform\\') into the parametric space and reconstruction of a stratigraphic co-ordinate system. The parametric space can be considered to represent a pre-deformed and pre-faulted depositional environment. Existing approximations of this mapping in many cases cause significant distortions to the correlation distances. In this work we propose a coordinate free approach for modelling stochastic textures through the application of stochastic partial differential equations. By avoiding the construction of a uvt-transform and stratigraphic coordinates, one can generate realizations directly in the physical space in the presence of deformations and faults. In particular the solution of the modified Helmholtz equation driven by Gaussian white noise is a zero mean Gaussian stationary random field with exponential correlation function (in 3-D). This equation can be used to generate realizations in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.

  15. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  16. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Juhani, Amnah

    2015-01-01

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  17. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.

    2015-01-07

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  18. Stability of Nonlinear Neutral Stochastic Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Minggao Xue

    2010-01-01

    Full Text Available Neutral stochastic functional differential equations (NSFDEs have recently been studied intensively. The well-known conditions imposed for the existence and uniqueness and exponential stability of the global solution are the local Lipschitz condition and the linear growth condition. Therefore, the existing results cannot be applied to many important nonlinear NSFDEs. The main aim of this paper is to remove the linear growth condition and establish a Khasminskii-type test for nonlinear NSFDEs. New criteria not only cover a wide class of highly nonlinear NSFDEs but they can also be verified much more easily than the classical criteria. Finally, several examples are given to illustrate main results.

  19. On Exponential Hedging and Related Quadratic Backward Stochastic Differential Equations

    International Nuclear Information System (INIS)

    Sekine, Jun

    2006-01-01

    The dual optimization problem for the exponential hedging problem is addressed with a cone constraint. Without boundedness conditions on the terminal payoff and the drift of the Ito-type controlled process, the backward stochastic differential equation, which has a quadratic growth term in the drift, is derived as a necessary and sufficient condition for optimality via a variational method and dynamic programming. Further, solvable situations are given, in which the value and the optimizer are expressed in closed forms with the help of the Clark-Haussmann-Ocone formula

  20. Infinite time interval backward stochastic differential equations with continuous coefficients.

    Science.gov (United States)

    Zong, Zhaojun; Hu, Feng

    2016-01-01

    In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).

  1. A Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik

    2013-01-01

    In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...

  2. Stochastic partial differential equations a modeling, white noise functional approach

    CERN Document Server

    Holden, Helge; Ubøe, Jan; Zhang, Tusheng

    1996-01-01

    This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera­ tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre­ sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in r...

  3. Variational and potential formulation for stochastic partial differential equations

    International Nuclear Information System (INIS)

    Munoz S, A G; Ojeda, J; Sierra D, P; Soldovieri, T

    2006-01-01

    Recently there has been interest in finding a potential formulation for stochastic partial differential equations (SPDEs). The rationale behind this idea lies in obtaining all the dynamical information of the system under study from one single expression. In this letter we formally provide a general Lagrangian formalism for SPDEs using the Hojman et al method. We show that it is possible to write the corresponding effective potential starting from an s-equivalent Lagrangian, and that this potential is able to reproduce all the dynamics of the system once a special differential operator has been applied. This procedure can be used to study the complete time evolution and spatial inhomogeneities of the system under consideration, and is also suitable for the statistical mechanics description of the problem. (letter to the editor)

  4. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper mainly deals with a stochastic differential equation (SDE) with random coefficients. Sufficient conditions which guarantee the existence and uniqueness of solutions to the equation are given.

  5. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Exercise effects in a virtual type 1 diabetes patient: Using stochastic differential equations for model extension

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Schmidt, S.; Nørgaard, K.

    2013-01-01

    extension incorporating exercise effects on insulin and glucose dynamics. Our model is constructed as a stochastic state space model consisting of a set of stochastic differential equations (SDEs). In a stochastic state space model, the residual error is split into random measurement error...

  7. Stationary solutions of linear stochastic delay differential equations: applications to biological systems.

    Science.gov (United States)

    Frank, T D; Beek, P J

    2001-08-01

    Recently, Küchler and Mensch [Stochastics Stochastics Rep. 40, 23 (1992)] derived exact stationary probability densities for linear stochastic delay differential equations. This paper presents an alternative derivation of these solutions by means of the Fokker-Planck approach introduced by Guillouzic [Phys. Rev. E 59, 3970 (1999); 61, 4906 (2000)]. Applications of this approach, which is argued to have greater generality, are discussed in the context of stochastic models for population growth and tracking movements.

  8. Polynomial asymptotic stability of damped stochastic differential equations

    Directory of Open Access Journals (Sweden)

    John Appleby

    2004-08-01

    Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.

  9. Exponential p-stability of impulsive stochastic differential equations with delays

    International Nuclear Information System (INIS)

    Yang Zhiguo; Xu Daoyi; Xiang Li

    2006-01-01

    In this Letter, we establish a method to study the exponential p-stability of the zero solution of impulsive stochastic differential equations with delays. By establishing an L-operator inequality and using the properties of M-cone and stochastic analysis technique, we obtain some new conditions ensuring the exponential p-stability of the zero solution of impulsive stochastic differential equations with delays. Two illustrative examples have been provided to show the effectiveness of our results

  10. Stability analysis for neutral stochastic differential equation of second order driven by Poisson jumps

    Science.gov (United States)

    Chadha, Alka; Bora, Swaroop Nandan

    2017-11-01

    This paper studies the existence, uniqueness, and exponential stability in mean square for the mild solution of neutral second order stochastic partial differential equations with infinite delay and Poisson jumps. By utilizing the Banach fixed point theorem, first the existence and uniqueness of the mild solution of neutral second order stochastic differential equations is established. Then, the mean square exponential stability for the mild solution of the stochastic system with Poisson jumps is obtained with the help of an established integral inequality.

  11. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  12. A stochastic differential equation analysis of cerebrospinal fluid dynamics.

    Science.gov (United States)

    Raman, Kalyan

    2011-01-18

    Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  13. A stochastic differential equation analysis of cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Raman Kalyan

    2011-01-01

    Full Text Available Abstract Background Clinical measurements of intracranial pressure (ICP over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. Methods The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE that accommodates the fluctuations in ICP. Results The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Conclusions Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  14. Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.

    Science.gov (United States)

    Zollanvari, Amin; Dougherty, Edward R

    2016-12-01

    In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.

  15. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  16. A New Control Paradigm for Stochastic Differential Equations

    Science.gov (United States)

    Schmid, Matthias J. A.

    This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension

  17. A stochastic differential equation model of diurnal cortisol patterns

    Science.gov (United States)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  18. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Ishtiaq

    2018-03-01

    Explicit solutions to delay differential equation (DDE) and stochastic delay differential equation (SDDE) can rarely be obtained, therefore numerical methods are adopted to solve these DDE and SDDE. While on the other hand due to unstable nature of both DDE and SDDE numerical solutions are also not straight forward and required more attention. In this study, we derive an efficient numerical scheme for DDE and SDDE based on Legendre spectral-collocation method, which proved to be numerical methods that can significantly speed up the computation. The method transforms the given differential equation into a matrix equation by means of Legendre collocation points which correspond to a system of algebraic equations with unknown Legendre coefficients. The efficiency of the proposed method is confirmed by some numerical examples. We found that our numerical technique has a very good agreement with other methods with less computational effort.

  19. An estimator for the relative entropy rate of path measures for stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Opper, Manfred, E-mail: manfred.opper@tu-berlin.de

    2017-02-01

    We address the problem of estimating the relative entropy rate (RER) for two stochastic processes described by stochastic differential equations. For the case where the drift of one process is known analytically, but one has only observations from the second process, we use a variational bound on the RER to construct an estimator.

  20. Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mourad Kerboua

    2014-12-01

    Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.

  1. Parameter estimation in a simple stochastic differential equation for phytoplankton modelling

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Madsen, Henrik; Carstensen, Jacob

    2011-01-01

    The use of stochastic differential equations (SDEs) for simulation of aquatic ecosystems has attracted increasing attention in recent years. The SDE setting also provides the opportunity for statistical estimation of ecosystem parameters. We present an estimation procedure, based on Kalman...

  2. Stability of numerical method for semi-linear stochastic pantograph differential equations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-01-01

    Full Text Available Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 $h>0$ . Numerical examples further illustrate the obtained theoretical results.

  3. EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.

  4. Some Additional Remarks on the Cumulant Expansion for Linear Stochastic Differential Equations

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumulant expansions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  5. Some additional remarks on the cumulant expansion for linear stochastic differential equations

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1984-01-01

    We summarize our previous results on cumular expasions for linear stochastic differential equations with correlated multipliclative and additive noise. The application of the general formulas to equations with statistically independent multiplicative and additive noise is reconsidered in detail,

  6. The Application of backward stochastic differential equation with stopping time in hedging American contingent claims

    International Nuclear Information System (INIS)

    Wang Bo; Song Ruili

    2009-01-01

    We consider a more general wealth process with a drift coefficient which is Lipschitz continuous and the portfolio process with convex constraint. We convert the problem of hedging American contingent claims into the problem of minimal solution of backward stochastic differential equation with stopping time. We adopt the penalization method for constructing the minimal solution of stochastic differential equations and obtain the upper hedging price of American contingent claims.

  7. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    International Nuclear Information System (INIS)

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  8. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  9. Analytic Approximation of the Solutions of Stochastic Differential Delay Equations with Poisson Jump and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Hua Yang

    2012-01-01

    Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.

  10. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  11. Application of Stochastic Partial Differential Equations to Reservoir Property Modelling

    KAUST Repository

    Potsepaev, R.; Farmer, C.L.

    2010-01-01

    in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.

  12. Stochastic Calculus and Differential Equations for Physics and Finance

    Science.gov (United States)

    McCauley, Joseph L.

    2013-02-01

    1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.

  13. Indirect Inference for Stochastic Differential Equations Based on Moment Expansions

    KAUST Repository

    Ballesio, Marco

    2016-01-06

    We provide an indirect inference method to estimate the parameters of timehomogeneous scalar diffusion and jump diffusion processes. We obtain a system of ODEs that approximate the time evolution of the first two moments of the process by the approximation of the stochastic model applying a second order Taylor expansion of the SDE s infinitesimal generator in the Dynkin s formula. This method allows a simple and efficient procedure to infer the parameters of such stochastic processes given the data by the maximization of the likelihood of an approximating Gaussian process described by the two moments equations. Finally, we perform numerical experiments for two datasets arising from organic and inorganic fouling deposition phenomena.

  14. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  15. Accelerated Genetic Algorithm Solutions Of Some Parametric Families Of Stochastic Differential Equations

    Directory of Open Access Journals (Sweden)

    Eman Ali Hussain

    2015-01-01

    Full Text Available Absract In this project A new method for solving Stochastic Differential Equations SDEs deriving by Wiener process numerically will be construct and implement using Accelerated Genetic Algorithm AGA. An SDE is a differential equation in which one or more of the terms and hence the solutions itself is a stochastic process. Solving stochastic differential equations requires going away from the recognizable deterministic setting of ordinary and partial differential equations into a world where the evolution of a quantity has an inherent random component and where the expected behavior of this quantity can be described in terms of probability distributions. We applied our method on the Ito formula which is equivalent to the SDE to find approximation solution of the SDEs. Numerical experiments illustrate the behavior of the proposed method.

  16. Controllability Results For First Order Impulsive Stochastic Functional Differential Systems with State-Dependent Delay

    Directory of Open Access Journals (Sweden)

    C. Parthasarathy

    2013-03-01

    Full Text Available In this paper, we study the controllability results of first order impulsive stochastic differential and neutral differential systems with state-dependent delay by using semigroup theory. The controllability results are derived by the means of Leray-SchauderAlternative fixed point theorem. An example is provided to illustrate the theory.

  17. Stochastic Analysis of Differential GPS Surveys for Earth Dam ...

    African Journals Online (AJOL)

    In GPS measurement, we try to model not just the deterministic part of the measurement but also try to account for their stochastic behavior using the measurement variance-covariance matrix. The variance-covariance matrices are computed as part of a least squares adjustment. In this study, the results of GPS survey by ...

  18. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    OpenAIRE

    Xiao-Li Ding; Juan J. Nieto

    2018-01-01

    In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochast...

  19. On the definition of an admitted Lie group for stochastic differential equations with multi-Brownian motion

    International Nuclear Information System (INIS)

    Srihirun, B; Meleshko, S V; Schulz, E

    2006-01-01

    The definition of an admitted Lie group of transformations for stochastic differential equations has been already presented for equations with one-dimensional Brownian motion. The transformation of the dependent variables involves time as well, and it has been proven that Brownian motion is transformed to Brownian motion. In this paper, we will discuss this concept for stochastic differential equations involving multi-dimensional Brownian motion and present applications to a variety of stochastic differential equations

  20. On the continuous selections of solution sets of Lipschitzian quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ayoola, E.O.

    2004-05-01

    We prove that a multifunction associated with the set of solutions of Lipschitzian quantum stochastic differential inclusion (QSDI) admits a selection continuous from some subsets of complex numbers to the space of the matrix elements of adapted weakly absolutely continuous quantum stochastic processes. In particular, we show that the solution set map as well as the reachable set of the QSDI admit some continuous representations. (author)

  1. Numerical solution of second-order stochastic differential equations with Gaussian random parameters

    Directory of Open Access Journals (Sweden)

    Rahman Farnoosh

    2014-07-01

    Full Text Available In this paper, we present the numerical solution of ordinary differential equations (or SDEs, from each orderespecially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysisfor second-order equations in specially case of scalar linear second-order equations (damped harmonicoscillators with additive or multiplicative noises. Making stochastic differential equations system from thisequation, it could be approximated or solved numerically by different numerical methods. In the case oflinear stochastic differential equations system by Computing fundamental matrix of this system, it could becalculated based on the exact solution of this system. Finally, this stochastic equation is solved by numericallymethod like E.M. and Milstein. Also its Asymptotic stability and statistical concepts like expectationand variance of solutions are discussed.

  2. Stability of the trivial solution for linear stochastic differential equations with Poisson white noise

    International Nuclear Information System (INIS)

    Grigoriu, Mircea; Samorodnitsky, Gennady

    2004-01-01

    Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method

  3. Short-term Probabilistic Forecasting of Wind Speed Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Morales González, Juan Miguel; Møller, Jan Kloppenborg

    2016-01-01

    and uncertain nature. In this paper, we propose a modeling framework for wind speed that is based on stochastic differential equations. We show that stochastic differential equations allow us to naturally capture the time dependence structure of wind speed prediction errors (from 1 up to 24 hours ahead) and......It is widely accepted today that probabilistic forecasts of wind power production constitute valuable information for both wind power producers and power system operators to economically exploit this form of renewable energy, while mitigating the potential adverse effects related to its variable......, most importantly, to derive point and quantile forecasts, predictive distributions, and time-path trajectories (also referred to as scenarios or ensemble forecasts), all by one single stochastic differential equation model characterized by a few parameters....

  4. PKPD model of interleukin-21 effects on thermoregulation in monkeys--application and evaluation of stochastic differential equations.

    Science.gov (United States)

    Overgaard, Rune Viig; Holford, Nick; Rytved, Klaus A; Madsen, Henrik

    2007-02-01

    To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using NONMEM. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a more realistic description with improved simulation properties, and further changed the model into one that could not be falsified by the autocorrelation function. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a biologically plausible model. The quality of the model was improved by the use of SDEs.

  5. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the step size reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta-Chebyshev (ROCK2) methods for deterministic problems. The convergence, meansquare, and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  6. An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Webster, Clayton G [ORNL; Zhang, Guannan [ORNL; Gunzburger, Max D [ORNL

    2012-10-01

    Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.

  7. Attempts at a numerical realisation of stochastic differential equations containing Preisach operator

    International Nuclear Information System (INIS)

    McCarthy, S; Rachinskii, D

    2011-01-01

    We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.

  8. Non-cooperative stochastic differential game theory of generalized Markov jump linear systems

    CERN Document Server

    Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning

    2017-01-01

    This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...

  9. Parametric inference for stochastic differential equations: a smooth and match approach

    NARCIS (Netherlands)

    Gugushvili, S.; Spreij, P.

    2012-01-01

    We study the problem of parameter estimation for a univariate discretely observed ergodic diffusion process given as a solution to a stochastic differential equation. The estimation procedure we propose consists of two steps. In the first step, which is referred to as a smoothing step, we smooth the

  10. Development of a restricted state space stochastic differential equation model for bacterial growth in rich media

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    2012-01-01

    In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states...

  11. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations

    KAUST Repository

    Abdulle, Assyr; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2013-01-01

    We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer

  12. Statistical inference for discrete-time samples from affine stochastic delay differential equations

    DEFF Research Database (Denmark)

    Küchler, Uwe; Sørensen, Michael

    2013-01-01

    Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to calculate in practice. A more general class of prediction-based estimating functions is investigated...

  13. A micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations

    DEFF Research Database (Denmark)

    Debrabant, Kristian; Samaey, Giovanni; Zieliński, Przemysław

    2017-01-01

    We present and analyse a micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations with separation between the (fast) time-scale of individual trajectories and the (slow) time-scale of the macroscopic function of interest. The algorithm combines short...

  14. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    International Nuclear Information System (INIS)

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  15. Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space

    International Nuclear Information System (INIS)

    Du Kai; Qiu, Jinniao; Tang Shanjian

    2012-01-01

    This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.

  16. Backward stochastic differential equations with two distinct reflecting barriers and quadratic growth generator

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We show the existence of a solution for the double-barrier reflected BSDE when the barriers are completely separate and the generator is continuous with quadratic growth. As an application, we solve the risk-sensitive mixed zero-sum stochastic differential game. In addition we deal with recallable options under Knightian uncertainty.

  17. Continuity in a pathwise sense with respect to the coefficients of solutions of stochastic differential equations

    DEFF Research Database (Denmark)

    Knudsen, Thomas Skov

    1997-01-01

    For stochastic differential equations (SDEs) of the form dX(t) = b(X)(t)) dt + sigma(X(t))dW(t) where b and sigma are Lipschitz continuous, it is shown that if we consider a fixed sigma is an element of C-5, bounded and with bounded derivatives, the random field of solutions is pathwise locally...

  18. A stochastic differential equation framework for the timewise dynamics of turbulent velocities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    2008-01-01

    We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...

  19. Modelling the heat dynamics of a building using stochastic differential equations

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik

    2000-01-01

    estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  20. Stem cell proliferation and differentiation and stochastic bistability in gene expression

    International Nuclear Information System (INIS)

    Zhdanov, V. P.

    2007-01-01

    The process of proliferation and differentiation of stem cells is inherently stochastic in the sense that the outcome of cell division is characterized by probabilities that depend on the intracellular properties, extracellular medium, and cell-cell communication. Despite four decades of intensive studies, the understanding of the physics behind this stochasticity is still limited, both in details and conceptually. Here, we suggest a simple scheme showing that the stochastic behavior of a single stem cell may be related to (i) the existence of a short stage of decision whether it will proliferate or differentiate and (ii) control of this stage by stochastic bistability in gene expression or, more specifically, by transcriptional 'bursts.' Our Monte Carlo simulations indicate that our proposed scheme may operate if the number of mRNA (or protein) molecules generated during the high-reactive periods of gene expression is below or about 50. The stochastic-burst window in the space of kinetic parameters is found to increase with decreasing the mRNA and/or regulatory-protein numbers and increasing the number of regulatory sites. For mRNA production with three regulatory sites, for example, the mRNA degradation rate constant may change in the range ±10%

  1. A matlab framework for estimation of NLME models using stochastic differential equations: applications for estimation of insulin secretion rates.

    Science.gov (United States)

    Mortensen, Stig B; Klim, Søren; Dammann, Bernd; Kristensen, Niels R; Madsen, Henrik; Overgaard, Rune V

    2007-10-01

    The non-linear mixed-effects model based on stochastic differential equations (SDEs) provides an attractive residual error model, that is able to handle serially correlated residuals typically arising from structural mis-specification of the true underlying model. The use of SDEs also opens up for new tools for model development and easily allows for tracking of unknown inputs and parameters over time. An algorithm for maximum likelihood estimation of the model has earlier been proposed, and the present paper presents the first general implementation of this algorithm. The implementation is done in Matlab and also demonstrates the use of parallel computing for improved estimation times. The use of the implementation is illustrated by two examples of application which focus on the ability of the model to estimate unknown inputs facilitated by the extension to SDEs. The first application is a deconvolution-type estimation of the insulin secretion rate based on a linear two-compartment model for C-peptide measurements. In the second application the model is extended to also give an estimate of the time varying liver extraction based on both C-peptide and insulin measurements.

  2. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Li Ding

    2018-01-01

    Full Text Available In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. Finally, we give three examples to demonstrate the applicability of our obtained results.

  3. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  4. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    Science.gov (United States)

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  5. Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients

    CERN Document Server

    Hutzenthaler, Martin

    2015-01-01

    Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation method

  6. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-04-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  7. Stochastic Perron's method and elementary strategies for zero-sum differential games

    OpenAIRE

    Sîrbu, Mihai

    2013-01-01

    We develop here the Stochastic Perron Method in the framework of two-player zero-sum differential games. We consider the formulation of the game where both players play, symmetrically, feed-back strategies (as in [CR09] or [PZ12]) as opposed to the Elliott-Kalton formulation prevalent in the literature. The class of feed-back strategies we use is carefully chosen so that the state equation admits strong solutions and the technicalities involved in the Stochastic Perron Method carry through in...

  8. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  9. Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations

    International Nuclear Information System (INIS)

    Khan, Junaid Ali; Raja, Muhammad Asif Zahoor; Qureshi, Ijaz Mansoor

    2011-01-01

    We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed. (general)

  10. Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations

    KAUST Repository

    Jimenez, M. Navarro; Le Maî tre, O. P.; Knio, Omar

    2017-01-01

    A Galerkin polynomial chaos (PC) method was recently proposed to perform variance decomposition and sensitivity analysis in stochastic differential equations (SDEs), driven by Wiener noise and involving uncertain parameters. The present paper extends the PC method to nonintrusive approaches enabling its application to more complex systems hardly amenable to stochastic Galerkin projection methods. We also discuss parallel implementations and the variance decomposition of the derived quantity of interest within the framework of nonintrusive approaches. In particular, a novel hybrid PC-sampling-based strategy is proposed in the case of nonsmooth quantities of interest (QoIs) but smooth SDE solution. Numerical examples are provided that illustrate the decomposition of the variance of QoIs into contributions arising from the uncertain parameters, the inherent stochastic forcing, and joint effects. The simulations are also used to support a brief analysis of the computational complexity of the method, providing insight on the types of problems that would benefit from the present developments.

  11. Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations

    KAUST Repository

    Jimenez, M. Navarro

    2017-04-18

    A Galerkin polynomial chaos (PC) method was recently proposed to perform variance decomposition and sensitivity analysis in stochastic differential equations (SDEs), driven by Wiener noise and involving uncertain parameters. The present paper extends the PC method to nonintrusive approaches enabling its application to more complex systems hardly amenable to stochastic Galerkin projection methods. We also discuss parallel implementations and the variance decomposition of the derived quantity of interest within the framework of nonintrusive approaches. In particular, a novel hybrid PC-sampling-based strategy is proposed in the case of nonsmooth quantities of interest (QoIs) but smooth SDE solution. Numerical examples are provided that illustrate the decomposition of the variance of QoIs into contributions arising from the uncertain parameters, the inherent stochastic forcing, and joint effects. The simulations are also used to support a brief analysis of the computational complexity of the method, providing insight on the types of problems that would benefit from the present developments.

  12. Yosida approximations of stochastic differential equations in infinite dimensions and applications

    CERN Document Server

    Govindan, T E

    2016-01-01

    This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussi...

  13. Exponential formula for the reachable sets of quantum stochastic differential inclusions

    International Nuclear Information System (INIS)

    Ayoola, E.O.

    2001-07-01

    We establish an exponential formula for the reachable sets of quantum stochastic differential inclusions (QSDI) which are locally Lipschitzian with convex values. Our main results partially rely on an auxiliary result concerning the density, in the topology of the locally convex space of solutions, of the set of trajectories whose matrix elements are continuously differentiable By applying the exponential formula, we obtain results concerning convergence of the discrete approximations of the reachable set of the QSDI. This extends similar results of Wolenski for classical differential inclusions to the present noncommutative quantum setting. (author)

  14. A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs

    Directory of Open Access Journals (Sweden)

    Yanfeng Liang

    2016-01-01

    Full Text Available We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs studied by Greenhalgh and Hay (1997. This was based on the original model constructed by Kaplan (1989 which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1 provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.

  15. A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.

    Science.gov (United States)

    Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong

    2016-01-01

    We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.

  16. Fractional Order Stochastic Differential Equation with Application in European Option Pricing

    Directory of Open Access Journals (Sweden)

    Qing Li

    2014-01-01

    Full Text Available Memory effect is an important phenomenon in financial systems, and a number of research works have been carried out to study the long memory in the financial markets. In recent years, fractional order ordinary differential equation is used as an effective instrument for describing the memory effect in complex systems. In this paper, we establish a fractional order stochastic differential equation (FSDE model to describe the effect of trend memory in financial pricing. We, then, derive a European option pricing formula based on the FSDE model and prove the existence of the trend memory (i.e., the mean value function in the option pricing formula when the Hurst index is between 0.5 and 1. In addition, we make a comparison analysis between our proposed model, the classic Black-Scholes model, and the stochastic model with fractional Brownian motion. Numerical results suggest that our model leads to more accurate and lower standard deviation in the empirical study.

  17. Workshop on quantum stochastic differential equations for the quantum simulation of physical systems

    Science.gov (United States)

    2016-09-22

    that would be complimentary to the efforts at ARL. One the other hand, topological quantum field theories have a dual application to topological...Witten provided a path-integral definition of the Jones polynomial using a three-dimensional Chern-Simons quantum field theory (QFT) based on a non...topology, quantum field theory , quantum stochastic differential equations, quantum computing REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  18. T-Stability of the Heun Method and Balanced Method for Solving Stochastic Differential Delay Equations

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhu

    2014-01-01

    Full Text Available This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations (SDDEs. Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the theoretical results proposed.

  19. Picard Approximation of Stochastic Differential Equations and Application to LIBOR Models

    DEFF Research Database (Denmark)

    Papapantoleon, Antonis; Skovmand, David

    The aim of this work is to provide fast and accurate approximation schemes for the Monte Carlo pricing of derivatives in LIBOR market models. Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods are generally slow. Our...... exponential to quadratic using truncated expansions of the product terms. We include numerical illustrations of the accuracy and speed of our method pricing caplets, swaptions and forward rate agreements....

  20. Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review

    Science.gov (United States)

    Falsone, G.

    2018-03-01

    In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.

  1. Estimating the parameters of stochastic differential equations using a criterion function based on the Kolmogorov-Smirnov statistic

    OpenAIRE

    McDonald, A. David; Sandal, Leif Kristoffer

    1998-01-01

    Estimation of parameters in the drift and diffusion terms of stochastic differential equations involves simulation and generally requires substantial data sets. We examine a method that can be applied when available time series are limited to less than 20 observations per replication. We compare and contrast parameter estimation for linear and nonlinear first-order stochastic differential equations using two criterion functions: one based on a Chi-square statistic, put forward by Hurn and Lin...

  2. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game.

    Science.gov (United States)

    Chang, Shuhua; Wang, Xinyu; Wang, Zheng

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions' cooperative and noncooperative optimal emission paths, which maximize the regions' discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games.

  3. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game.

    Directory of Open Access Journals (Sweden)

    Shuhua Chang

    Full Text Available Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM. We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions' cooperative and noncooperative optimal emission paths, which maximize the regions' discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games.

  4. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.

    Science.gov (United States)

    Rackauckas, Christopher; Nie, Qing

    2017-01-01

    Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling provides efficient approaches for solving differential equations. While many such methods exist for solving deterministic systems, little progress has been made for stochastic variants. One challenge in developing adaptive methods for stochastic differential equations (SDEs) is the construction of embedded schemes with direct error estimates. We present a new class of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a natural embedding of strong order 1.0 methods. This allows for the derivation of an error estimate which requires no additional function evaluations. Next we derive a general method to reject the time steps without losing information about the future Brownian path termed Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to do rejection sampling, costing only a few floating point calculations. We show numerically that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we show that this form of adaptivity can be applied to systems of equations, and demonstrate that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms. Our approach only requires the solution to a bridging problem and thus lends itself to natural generalizations beyond SDEs.

  5. A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions

    KAUST Repository

    Butler, T.; Dawson, C.; Wildey, T.

    2011-01-01

    We develop computable a posteriori error estimates for linear functionals of a solution to a general nonlinear stochastic differential equation with random model/source parameters. These error estimates are based on a variational analysis applied to stochastic Galerkin methods for forward and adjoint problems. The result is a representation for the error estimate as a polynomial in the random model/source parameter. The advantage of this method is that we use polynomial chaos representations for the forward and adjoint systems to cheaply produce error estimates by simple evaluation of a polynomial. By comparison, the typical method of producing such estimates requires repeated forward/adjoint solves for each new choice of random parameter. We present numerical examples showing that there is excellent agreement between these methods. © 2011 Society for Industrial and Applied Mathematics.

  6. Modeling real-time balancing power demands in wind power systems using stochastic differential equations

    International Nuclear Information System (INIS)

    Olsson, Magnus; Perninge, Magnus; Soeder, Lennart

    2010-01-01

    The inclusion of wind power into power systems has a significant impact on the demand for real-time balancing power due to the stochastic nature of wind power production. The overall aim of this paper is to present probabilistic models of the impact of large-scale integration of wind power on the continuous demand in MW for real-time balancing power. This is important not only for system operators, but also for producers and consumers since they in most systems through various market solutions provide balancing power. Since there can occur situations where the wind power variations cancel out other types of deviations in the system, models on an hourly basis are not sufficient. Therefore the developed model is in continuous time and is based on stochastic differential equations (SDE). The model can be used within an analytical framework or in Monte Carlo simulations. (author)

  7. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  8. Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuetao; Zhu, Quanxin, E-mail: zqx22@126.com [School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu (China)

    2015-12-15

    In this paper, we are mainly concerned with a class of stochastic neutral functional differential equations of Sobolev-type with Poisson jumps. Under two different sets of conditions, we establish the existence of the mild solution by applying the Leray-Schauder alternative theory and the Sadakovskii’s fixed point theorem, respectively. Furthermore, we use the Bihari’s inequality to prove the Osgood type uniqueness. Also, the mean square exponential stability is investigated by applying the Gronwall inequality. Finally, two examples are given to illustrate the theory results.

  9. Stochastic differential equtions with non-lipschitz coefficients:II. Dependence with respect to initial values

    OpenAIRE

    Fang, Shizan; Zhang, Tusheng

    2003-01-01

    14 pages; The existence of the unique strong solution for a class of stochastic differential equations with non-Lipschitz coefficients was established recently. In this paper, we shall investigate the dependence with respect to the initial values. We shall prove that the non confluence of solutions holds under our general conditions. To obtain a continuous version, the modulus of continuity of coefficients is assumed to be less than $\\dis |x-y|\\log{1\\over|x-y|}$. In this case, it will give ri...

  10. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  11. Emergent user behavior on Twitter modelled by a stochastic differential equation.

    Science.gov (United States)

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.

  12. Governance Mechanism for Global Greenhouse Gas Emissions: A Stochastic Differential Game Approach

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2013-01-01

    Full Text Available Today developed and developing countries have to admit the fact that global warming is affecting the earth, but the fundamental problem of how to divide up necessary greenhouse gas reductions between developed and developing countries remains. In this paper, we propose cooperative and noncooperative stochastic differential game models to describe greenhouse gas emissions decision makings of developed and developing countries, calculate their feedback Nash equilibrium and the Pareto optimal solution, characterize parameter spaces that developed and developing countries can cooperate, design cooperative conditions under which participants buy the cooperative payoff, and distribute the cooperative payoff with Nash bargaining solution. Lastly, numerical simulations are employed to illustrate the above results.

  13. Stochastic differential equations for quantum dynamics of spin-boson networks

    International Nuclear Information System (INIS)

    Mandt, Stephan; Sadri, Darius; Houck, Andrew A; Türeci, Hakan E

    2015-01-01

    A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation. (paper)

  14. Tuning of Controller for Type 1 Diabetes Treatment with Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Boiroux, Dimitri; Schmidt, Signe

    2012-01-01

    due to the noise corrupted observations from the CGM. In this paper we present a method to estimate the optimal Kalman gain in the controller based on stochastic differential equation modeling. With this model type we could estimate the process noise and observation noise separately based on data from......People with type 1 diabetes need several insulin injections every day to keep their blood glucose level in the normal range and thereby avoiding the acute and long term complications of diabetes. One of the recent treatments consists of a pump injecting insulin into the subcutaneous layer combined...

  15. Price dynamics of the financial markets using the stochastic differential equation for a potential double well

    Science.gov (United States)

    Lima, L. S.; Miranda, L. L. B.

    2018-01-01

    We have used the Itô's stochastic differential equation for the double well with additive white noise as a mathematical model for price dynamics of the financial market. We have presented a model which allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents, with respect to the facts of financial markets. We have obtained the mean price in terms of the β parameter that represents the force of the randomness term of the model.

  16. Backward-stochastic-differential-equation approach to modeling of gene expression.

    Science.gov (United States)

    Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F; Aguiar, Paulo

    2017-03-01

    In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).

  17. Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation.

    Science.gov (United States)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

  18. Higher-order stochastic differential equations and the positive Wigner function

    Science.gov (United States)

    Drummond, P. D.

    2017-12-01

    General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.

  19. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  20. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  1. On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions.

    Science.gov (United States)

    Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora

    2017-11-01

    In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.

  2. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    Science.gov (United States)

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  3. Nonzero-Sum Stochastic Differential Portfolio Games under a Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Chaoqun Ma

    2015-01-01

    Full Text Available We consider a nonzero-sum stochastic differential portfolio game problem in a continuous-time Markov regime switching environment when the price dynamics of the risky assets are governed by a Markov-modulated geometric Brownian motion (GBM. The market parameters, including the bank interest rate and the appreciation and volatility rates of the risky assets, switch over time according to a continuous-time Markov chain. We formulate the nonzero-sum stochastic differential portfolio game problem as two utility maximization problems of the sum process between two investors’ terminal wealth. We derive a pair of regime switching Hamilton-Jacobi-Bellman (HJB equations and two systems of coupled HJB equations at different regimes. We obtain explicit optimal portfolio strategies and Feynman-Kac representations of the two value functions. Furthermore, we solve the system of coupled HJB equations explicitly in a special case where there are only two states in the Markov chain. Finally we provide comparative statics and numerical simulation analysis of optimal portfolio strategies and investigate the impact of regime switching on optimal portfolio strategies.

  4. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    International Nuclear Information System (INIS)

    Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.

    2015-01-01

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method

  5. Application of stochastic differential geometry to the term structure of interst rates in developed markets

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, Y.; Barnes, C.

    1996-12-31

    This paper deals with further developments of the new theory that applies stochastic differential geometry (SDG) to dynamics of interest rates. We examine mathematical constraints on the evolution of interest rate volatilities that arise from stochastic differential calculus under assumptions of an arbitrage free evolution of zero coupon bonds and developed markets (i.e., none of the party/factor can drive the whole market). The resulting new theory incorporates the Heath-Jarrow-Morton (HJM) model of interest rates and provides new equations for volatilities which makes the system of equations for interest rates and volatilities complete and self consistent. It results in much smaller amount of volatility data that should be guessed for the SDG model as compared to the HJM model. Limited analysis of the market volatility data suggests that the assumption of the developed market is violated around maturity of two years. Such maturities where the assumptions of the SDG model are violated are suggested to serve as boundaries at which volatilities should be specified independently from the model. Our numerical example with two boundaries (two years and five years) qualitatively resembles the market behavior. Under some conditions solutions of the SDG model become singular that may indicate market crashes. More detail comparison with the data is needed before the theory can be established or refuted.

  6. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  7. Model identification using stochastic differential equation grey-box models in diabetes.

    Science.gov (United States)

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik

    2013-03-01

    The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.

  8. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    Science.gov (United States)

    Dennis, Graham R.; Hope, Joseph J.; Johnsson, Mattias T.

    2013-01-01

    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code. Program summaryProgram title: XMDS2 Catalogue identifier: AENK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 872490 No. of bytes in distributed program, including test data, etc.: 45522370 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer with a Unix-like system, a C++ compiler and Python. Operating system: Any Unix-like system; developed under Mac OS X and GNU/Linux. RAM: Problem dependent (roughly 50 bytes per grid point) Classification: 4.3, 6.5. External routines: The external libraries required are problem-dependent. Uses FFTW3 Fourier transforms (used only for FFT-based spectral methods), dSFMT random number generation (used only for stochastic problems), MPI message-passing interface (used only for distributed problems), HDF5, GNU Scientific Library (used only for Bessel-based spectral methods) and a BLAS implementation (used only for non-FFT-based spectral methods). Nature of problem: General coupled initial-value stochastic partial differential equations. Solution method: Spectral method

  9. Analyzing a stochastic time series obeying a second-order differential equation.

    Science.gov (United States)

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  10. Stochastic Differential Equation Models for the Price of European CO2 Emissions Allowances

    Directory of Open Access Journals (Sweden)

    Wugan Cai

    2017-02-01

    Full Text Available Understanding the stochastic nature of emissions allowances is crucial for risk management in emissions trading markets. In this study, we discuss the emissions allowances spot price within the European Union Emissions Trading Scheme: Powernext and European Climate Exchange. To compare the fitness of five stochastic differential equations (SDEs to the European Union allowances spot price, we apply regression theory to obtain the point and interval estimations for the parameters of the SDEs. An empirical evaluation demonstrates that the mean reverting square root process (MRSRP has the best fitness of five SDEs to forecast the spot price. To reduce the degree of smog, we develop a new trading scheme in which firms have to hand many more allowances to the government when they emit one unit of air pollution on heavy pollution days, versus one allowance on clean days. Thus, we set up the SDE MRSRP model with Markovian switching to analyse the evolution of the spot price in such a scheme. The analysis shows that the allowances spot price will not jump too much in the new scheme. The findings of this study could contribute to developing a new type of emissions trading.

  11. Approximate reduction of linear population models governed by stochastic differential equations: application to multiregional models.

    Science.gov (United States)

    Sanz, Luis; Alonso, Juan Antonio

    2017-12-01

    In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.

  12. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback.

    Science.gov (United States)

    Gaudreault, Mathieu; Drolet, François; Viñals, Jorge

    2010-11-01

    Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.

  13. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  14. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data

    KAUST Repository

    Babuška, Ivo; Nobile, Fabio; Tempone, Raul

    2010-01-01

    This work proposes and analyzes a stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms. These input data are assumed to depend on a finite number of random variables. The method consists of a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space, and naturally leads to the solution of uncoupled deterministic problems as in the Monte Carlo approach. It treats easily a wide range of situations, such as input data that depend nonlinearly on the random variables, diffusivity coefficients with unbounded second moments, and random variables that are correlated or even unbounded. We provide a rigorous convergence analysis and demonstrate exponential convergence of the “probability error” with respect to the number of Gauss points in each direction of the probability space, under some regularity assumptions on the random input data. Numerical examples show the effectiveness of the method. Finally, we include a section with developments posterior to the original publication of this work. There we review sparse grid stochastic collocation methods, which are effective collocation strategies for problems that depend on a moderately large number of random variables.

  15. From quantum stochastic differential equations to Gisin-Percival state diffusion

    Science.gov (United States)

    Parthasarathy, K. R.; Usha Devi, A. R.

    2017-08-01

    Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.

  16. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  17. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  18. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    Science.gov (United States)

    Seif, Dariush; Ghoniem, Nasr M.

    2014-12-01

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô's calculus, rate equations for the first five moments of the size distribution in helium-vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium-vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  19. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    International Nuclear Information System (INIS)

    Seif, Dariush; Ghoniem, Nasr M.

    2014-01-01

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô’s calculus, rate equations for the first five moments of the size distribution in helium–vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium–vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  20. A stochastic differential equations approach for the description of helium bubble size distributions in irradiated metals

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Dariush, E-mail: dariush.seif@iwm-extern.fraunhofer.de [Fraunhofer Institut für Werkstoffmechanik, Freiburg 79108 (Germany); Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597 (United States); Ghoniem, Nasr M. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597 (United States)

    2014-12-15

    A rate theory model based on the theory of nonlinear stochastic differential equations (SDEs) is developed to estimate the time-dependent size distribution of helium bubbles in metals under irradiation. Using approaches derived from Itô’s calculus, rate equations for the first five moments of the size distribution in helium–vacancy space are derived, accounting for the stochastic nature of the atomic processes involved. In the first iteration of the model, the distribution is represented as a bivariate Gaussian distribution. The spread of the distribution about the mean is obtained by white-noise terms in the second-order moments, driven by fluctuations in the general absorption and emission of point defects by bubbles, and fluctuations stemming from collision cascades. This statistical model for the reconstruction of the distribution by its moments is coupled to a previously developed reduced-set, mean-field, rate theory model. As an illustrative case study, the model is applied to a tungsten plasma facing component under irradiation. Our findings highlight the important role of stochastic atomic fluctuations on the evolution of helium–vacancy cluster size distributions. It is found that when the average bubble size is small (at low dpa levels), the relative spread of the distribution is large and average bubble pressures may be very large. As bubbles begin to grow in size, average bubble pressures decrease, and stochastic fluctuations have a lessened effect. The distribution becomes tighter as it evolves in time, corresponding to a more uniform bubble population. The model is formulated in a general way, capable of including point defect drift due to internal temperature and/or stress gradients. These arise during pulsed irradiation, and also during steady irradiation as a result of externally applied or internally generated non-homogeneous stress fields. Discussion is given into how the model can be extended to include full spatial resolution and how the

  1. A stochastic differential equation model for the foraging behavior of fish schools.

    Science.gov (United States)

    Tạ, Tôn Việt; Nguyen, Linh Thi Hoai

    2018-03-15

    Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.

  2. Efficient Galerkin solution of stochastic fractional differential equations using second kind Chebyshev wavelets

    Directory of Open Access Journals (Sweden)

    Fakhrodin Mohammadi

    2017-10-01

    Full Text Available ‎Stochastic fractional differential equations (SFDEs have been used for modeling many physical problems in the fields of turbulance‎, ‎heterogeneous‎, ‎flows and matrials‎, ‎viscoelasticity and electromagnetic theory‎. ‎In this paper‎, ‎an‎ efficient wavelet Galerkin method based on the second kind Chebyshev wavelets are proposed for approximate solution of SFDEs‎. ‎In ‎this ‎app‎roach‎‎, ‎o‎perational matrices of the second kind Chebyshev wavelets ‎are used ‎for reducing SFDEs to a linear system of algebraic equations that can be solved easily‎. ‎C‎onvergence and error analysis of the proposed method is ‎considered‎.‎ ‎Some numerical examples are performed to confirm the applicability and efficiency of the proposed method‎.

  3. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    KAUST Repository

    Hall, Eric Joseph

    2016-12-08

    We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.

  4. Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps

    International Nuclear Information System (INIS)

    Di Nunno, Giulia; Khedher, Asma; Vanmaele, Michèle

    2015-01-01

    We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure with infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk

  5. Model Identification Using Stochastic Differential Equation Grey-Box Models in Diabetes

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard

    2013-01-01

    are uncorrelated and provides the possibility to pinpoint model deficiencies. METHODS: An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters...... in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. CONCLUSION: This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained...... are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. RESULTS: We found that the transformation of the ODE model into an SDE-GB resulted...

  6. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    Science.gov (United States)

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  7. A stochastic differential equation model for the foraging behavior of fish schools

    Science.gov (United States)

    Tạ, Tôn ệt, Vi; Hoai Nguyen, Linh Thi

    2018-05-01

    Constructing models of living organisms locating food sources has important implications for understanding animal behavior and for the development of distribution technologies. This paper presents a novel simple model of stochastic differential equations for the foraging behavior of fish schools in a space including obstacles. The model is studied numerically. Three configurations of space with various food locations are considered. In the first configuration, fish swim in free but limited space. All individuals can find food with large probability while keeping their school structure. In the second and third configurations, they move in limited space with one and two obstacles, respectively. Our results reveal that the probability of foraging success is highest in the first configuration, and smallest in the third one. Furthermore, when school size increases up to an optimal value, the probability of foraging success tends to increase. When it exceeds an optimal value, the probability tends to decrease. The results agree with experimental observations.

  8. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics.

    Science.gov (United States)

    Boulet, Jason; Balasubramaniam, Ramesh; Daffertshofer, Andreas; Longtin, André

    2010-01-28

    We report on experiments and modelling involving the 'visuo-postural control loop' in the upright stance. We experimentally manipulated an artificial delay to the visual feedback during standing, presented at delays ranging from 0 to 1 s in increments of 250 ms. Using stochastic delay differential equations, we explicitly modelled the centre-of-pressure (COP) and centre-of-mass (COM) dynamics with two independent delay terms for vision and proprioception. A novel 'drifting fixed point' hypothesis was used to describe the fluctuations of the COM with the COP being modelled as a faster, corrective process of the COM. The model was in good agreement with the data in terms of probability density functions, power spectral densities, short- and long-term correlations (Hurst exponents) as well the critical time between the two ranges. This journal is © 2010 The Royal Society

  9. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-10-01

    Full Text Available Abstract The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs. It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order 1 2 $\\frac{1}{2}$ to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  10. Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunno, Giulia, E-mail: giulian@math.uio.no [University of Oslo, Center of Mathematics for Applications (Norway); Khedher, Asma, E-mail: asma.khedher@tum.de [Technische Universität München, Chair of Mathematical Finance (Germany); Vanmaele, Michèle, E-mail: michele.vanmaele@ugent.be [Ghent University, Department of Applied Mathematics, Computer Science and Statistics (Belgium)

    2015-12-15

    We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure with infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.

  11. Density-based Monte Carlo filter and its applications in nonlinear stochastic differential equation models.

    Science.gov (United States)

    Huang, Guanghui; Wan, Jianping; Chen, Hui

    2013-02-01

    Nonlinear stochastic differential equation models with unobservable state variables are now widely used in analysis of PK/PD data. Unobservable state variables are usually estimated with extended Kalman filter (EKF), and the unknown pharmacokinetic parameters are usually estimated by maximum likelihood estimator. However, EKF is inadequate for nonlinear PK/PD models, and MLE is known to be biased downwards. A density-based Monte Carlo filter (DMF) is proposed to estimate the unobservable state variables, and a simulation-based M estimator is proposed to estimate the unknown parameters in this paper, where a genetic algorithm is designed to search the optimal values of pharmacokinetic parameters. The performances of EKF and DMF are compared through simulations for discrete time and continuous time systems respectively, and it is found that the results based on DMF are more accurate than those given by EKF with respect to mean absolute error. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Zugno, Marco; Madsen, Henrik

    2016-01-01

    The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known...... that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic-type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state......-dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non-parametric modelling to explore conditional correlation...

  13. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-02-15

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

  14. On parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations

    International Nuclear Information System (INIS)

    Phan Thanh An; Phan Le Na; Ngo Quoc Chung

    2004-05-01

    We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)

  15. A Convergence Result for the Euler-Maruyama Method for a Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Schiøler, Henrik; Leth, John-Josef

    2014-01-01

    The Euler-Maruyama method is applied to a simple stochastic differential equation (SDE) with discontinuous drift. Convergence aspects are investigated in the case, where the Euler-Maruyama method is simulated in dyadic points. A strong rate of convergence is presented for the numerical simulations...

  16. Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: Applications to financial physics and neurophysics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2007-01-01

    We present a generalized Kramers-Moyal expansion for stochastic differential equations with single and multiple delays. In particular, we show that the delay Fokker-Planck equation derived earlier in the literature is a special case of the proposed Kramers-Moyal expansion. Applications for bond pricing and a self-inhibitory neuron model are discussed

  17. Green function of the double-fractional Fokker-Planck equation: Path integral and stochastic differential equations

    Science.gov (United States)

    Kleinert, H.; Zatloukal, V.

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  18. PKPD model of interleukin-21 effects on thermoregulation in monkeys - Application and evaluation of stochastic differential equations

    DEFF Research Database (Denmark)

    Overgaard, Rune Viig; Holford, Nick; Rytved, K. A.

    2007-01-01

    Purpose To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differentia...

  19. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Mao Yu

    2009-07-01

    Full Text Available Abstract Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method. This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS and Progression Score (PS in progression analysis, True Positive Rate (TPR in gene pair analysis, and Pathway Enrichment Score (PES in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From

  20. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    Science.gov (United States)

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. CRPropa 3.1—a low energy extension based on stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Merten, Lukas; Tjus, Julia Becker; Eichmann, Björn [Theoretische Physik IV: Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany); Fichtner, Horst [Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany); Sigl, Günter, E-mail: lukas.merten@rub.de, E-mail: julia.tjus@rub.de, E-mail: hf@tp4.rub.de, E-mail: eiche@tp4.rub.de, E-mail: guenter.sigl@desy.de [II Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-06-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ{sub ∥} and perpendicular κ{sub ⊥} diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  2. CRPropa 3.1—a low energy extension based on stochastic differential equations

    International Nuclear Information System (INIS)

    Merten, Lukas; Tjus, Julia Becker; Eichmann, Björn; Fichtner, Horst; Sigl, Günter

    2017-01-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ ∥ and perpendicular κ ⊥ diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  3. Stochastic differential equation (SDE) model of opening gold share price of bursa saham malaysia

    Science.gov (United States)

    Hussin, F. N.; Rahman, H. A.; Bahar, A.

    2017-09-01

    Black and Scholes option pricing model is one of the most recognized stochastic differential equation model in mathematical finance. Two parameter estimation methods have been utilized for the Geometric Brownian model (GBM); historical and discrete method. The historical method is a statistical method which uses the property of independence and normality logarithmic return, giving out the simplest parameter estimation. Meanwhile, discrete method considers the function of density of transition from the process of diffusion normal log which has been derived from maximum likelihood method. These two methods are used to find the parameter estimates samples of Malaysians Gold Share Price data such as: Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas, and Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas Shariah. Modelling of gold share price is essential since fluctuation of gold affects worldwide economy nowadays, including Malaysia. It is found that discrete method gives the best parameter estimates than historical method due to the smallest Root Mean Square Error (RMSE) value.

  4. Weak-noise limit of a piecewise-smooth stochastic differential equation.

    Science.gov (United States)

    Chen, Yaming; Baule, Adrian; Touchette, Hugo; Just, Wolfram

    2013-11-01

    We investigate the validity and accuracy of weak-noise (saddle-point or instanton) approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example a piecewise-constant SDE, which serves as a simple model of Brownian motion with solid friction. For this model, we show that the weak-noise approximation of the path integral correctly reproduces the known propagator of the SDE at lowest order in the noise power, as well as the main features of the exact propagator with higher-order corrections, provided the singularity of the path integral associated with the nonsmooth SDE is treated with some heuristics. We also show that, as in the case of smooth SDEs, the deterministic paths of the noiseless system correctly describe the behavior of the nonsmooth SDE in the low-noise limit. Finally, we consider a smooth regularization of the piecewise-constant SDE and study to what extent this regularization can rectify some of the problems encountered when dealing with discontinuous drifts and singularities in SDEs.

  5. CRPropa 3.1—a low energy extension based on stochastic differential equations

    Science.gov (United States)

    Merten, Lukas; Becker Tjus, Julia; Fichtner, Horst; Eichmann, Björn; Sigl, Günter

    2017-06-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ∥ and perpendicular κ⊥ diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  6. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Møller, Jonas Bech; Overgaard, R.V.; Madsen, Henrik

    2010-01-01

    Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of ...... obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method is concluded to have high relevance not only in theory but also in practice....

  7. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    Science.gov (United States)

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  8. STOCHASTIC FLOWS OF MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.

  9. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  10. Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations.

    Science.gov (United States)

    Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O

    2016-06-01

    Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.

  11. Exponential mean-square stability of two classes of theta Milstein methods for stochastic delay differential equations

    Science.gov (United States)

    Rouz, Omid Farkhondeh; Ahmadian, Davood; Milev, Mariyan

    2017-12-01

    This paper establishes exponential mean square stability of two classes of theta Milstein methods, namely split-step theta Milstein (SSTM) method and stochastic theta Milstein (STM) method, for stochastic differential delay equations (SDDEs). We consider the SDDEs problem under a coupled monotone condition on drift and diffusion coefficients, as well as a necessary linear growth condition on the last term of theta Milstein method. It is proved that the SSTM method with θ ∈ [0, ½] can recover the exponential mean square stability of the exact solution with some restrictive conditions on stepsize, but for θ ∈ (½, 1], we proved that the stability results hold for any stepsize. Then, based on the stability results of SSTM method, we examine the exponential mean square stability of the STM method and obtain the similar stability results to that of the SSTM method. In the numerical section the figures show thevalidity of our claims.

  12. Using random walk in models specified by stochastic differential equations to determine the best expression for the bacterial growth rate

    DEFF Research Database (Denmark)

    method allows us to develop a new expression for the growth rate. The method is based on the stochastic continuous-discrete time state-space model, with a continuous-time state equation (a stochastic differential equation, SDE) combined with a discrete-time measurement equation. In our study the SDE...... described by Kristensen et. al [2]. The resulting time series allows us graphically to inspect the functional dependence of the growth rate on the substrate content. From the method described above we find three new plausible expressions for μ(S). Therefore we apply the likelihood-ratio test to compare...... for the Monod expression. Thus, the method was applied to successfully determine a significant better expression for the substrate dependent growth expression, and we find the method generally applicable for model development. References [1] Kristensen NR, Madsen H, Jørgensen, SB (2004) A method for systematic...

  13. Stochastic Partial Differential Equation Solver for Hydroacoustic Modeling: Improvements to Paracousti Sound Propagation Solver

    Science.gov (United States)

    Preston, L. A.

    2017-12-01

    Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories

  14. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty.

    Science.gov (United States)

    Zhang, Huifeng; Lei, Xiaohui; Wang, Chao; Yue, Dong; Xie, Xiangpeng

    2017-01-01

    Since wind power is integrated into the thermal power operation system, dynamic economic emission dispatch (DEED) has become a new challenge due to its uncertain characteristics. This paper proposes an adaptive grid based multi-objective Cauchy differential evolution (AGB-MOCDE) for solving stochastic DEED with wind power uncertainty. To properly deal with wind power uncertainty, some scenarios are generated to simulate those possible situations by dividing the uncertainty domain into different intervals, the probability of each interval can be calculated using the cumulative distribution function, and a stochastic DEED model can be formulated under different scenarios. For enhancing the optimization efficiency, Cauchy mutation operation is utilized to improve differential evolution by adjusting the population diversity during the population evolution process, and an adaptive grid is constructed for retaining diversity distribution of Pareto front. With consideration of large number of generated scenarios, the reduction mechanism is carried out to decrease the scenarios number with covariance relationships, which can greatly decrease the computational complexity. Moreover, the constraint-handling technique is also utilized to deal with the system load balance while considering transmission loss among thermal units and wind farms, all the constraint limits can be satisfied under the permitted accuracy. After the proposed method is simulated on three test systems, the obtained results reveal that in comparison with other alternatives, the proposed AGB-MOCDE can optimize the DEED problem while handling all constraint limits, and the optimal scheme of stochastic DEED can decrease the conservation of interval optimization, which can provide a more valuable optimal scheme for real-world applications.

  15. Kriging with mixed effects models

    Directory of Open Access Journals (Sweden)

    Alessio Pollice

    2007-10-01

    Full Text Available In this paper the effectiveness of the use of mixed effects models for estimation and prediction purposes in spatial statistics for continuous data is reviewed in the classical and Bayesian frameworks. A case study on agricultural data is also provided.

  16. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    Science.gov (United States)

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  17. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  18. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    International Nuclear Information System (INIS)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-01-01

    Highlights: ► The frequency of C7 differentiation into osteoclast was low and constant. ► Only extended C7 cell cultures exponentially increased osteoclast+ cultures. ► C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’. ► The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’ rather than requiring specific signals to drive this process.

  19. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...

  20. On the pth moment estimates of solutions to stochastic functional differential equations in the G-framework.

    Science.gov (United States)

    Faizullah, Faiz

    2016-01-01

    The aim of the current paper is to present the path-wise and moment estimates for solutions to stochastic functional differential equations with non-linear growth condition in the framework of G-expectation and G-Brownian motion. Under the nonlinear growth condition, the pth moment estimates for solutions to SFDEs driven by G-Brownian motion are proved. The properties of G-expectations, Hölder's inequality, Bihari's inequality, Gronwall's inequality and Burkholder-Davis-Gundy inequalities are used to develop the above mentioned theory. In addition, the path-wise asymptotic estimates and continuity of pth moment for the solutions to SFDEs in the G-framework, with non-linear growth condition are shown.

  1. Functional stochastic differential equations: mathematical theory of nonlinear parabolic systems with applications in field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Doering, C.R.

    1985-01-01

    Applications of nonlinear parabolic stochastic differential equations with additive colored noise in equilibrium and nonequilibrium statistical mechanics and quantum field theory are developed in detail, providing a new unified mathematical approach to many problems. The existence and uniqueness of solutions to these equations is established, and some of the properties of the solutions are investigated. In particular, asymptotic expansions for the correlation functions of the solutions are introduced and compared to rigorous nonperturbative bounds on the moments. It is found that the perturbative analysis is in qualitative disagreement with the exact result in models corresponding to cut-off self-interacting nonperturbatively renormalizable scalar quantum field theories. For these theories the nonlinearities cannot be considered as perturbations of the linearized theory

  2. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  3. Efficient Multilevel and Multi-index Sampling Methods in Stochastic Differential Equations

    KAUST Repository

    Haji-Ali, Abdul Lateef

    2016-05-22

    of this thesis is the novel Multi-index Monte Carlo (MIMC) method which is an extension of MLMC in high dimensional problems with significant computational savings. Under reasonable assumptions on the weak and variance convergence, which are related to the mixed regularity of the underlying problem and the discretization method, the order of the computational complexity of MIMC is, at worst up to a logarithmic factor, independent of the dimensionality of the underlying parametric equation. We also apply the same multi-index methodology to another sampling method, namely the Stochastic Collocation method. Hence, the novel Multi-index Stochastic Collocation method is proposed and is shown to be more efficient in problems with sufficient mixed regularity than our novel MIMC method and other standard methods. Finally, MIMC is applied to approximate quantities of interest of stochastic particle systems in the mean-field when the number of particles tends to infinity. To approximate these quantities of interest up to an error tolerance, TOL, MIMC has a computational complexity of O(TOL-2log(TOL)2). This complexity is achieved by building a hierarchy based on two discretization parameters: the number of time steps in an Milstein scheme and the number of particles in the particle system. Moreover, we use a partitioning estimator to increase the correlation between two stochastic particle systems with different sizes. In comparison, the optimal computational complexity of MLMC in this case is O(TOL-3) and the computational complexity of Monte Carlo is O(TOL-4).

  4. Intermittency for stochastic partial differential equations driven by strongly inhomogeneous space-time white noises

    Science.gov (United States)

    Xie, Bin

    2018-01-01

    In this paper, the main topic is to investigate the intermittent property of the one-dimensional stochastic heat equation driven by an inhomogeneous Brownian sheet, which is a noise deduced from the study of the catalytic super-Brownian motion. Under some proper conditions on the catalytic measure of the inhomogeneous Brownian sheet, we show that the solution is weakly full intermittent based on the estimates of moments of the solution. In particular, it is proved that the second moment of the solution grows at the exponential rate. The novelty is that the catalytic measure relative to the inhomogeneous noise is not required to be absolutely continuous with respect to the Lebesgue measure on R.

  5. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr; Cohen, David; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration

  6. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

    KAUST Repository

    Dolgov, Sergey; Khoromskij, Boris N.; Litvinenko, Alexander; Matthies, Hermann G.

    2015-01-01

    We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some

  7. Theory of stochastic differential equations with jumps and applications mathematical and analytical techniques with applications to engineering

    CERN Document Server

    SITU, Rong

    2005-01-01

    Derivation of Ito's formulas, Girsanov's theorems and martingale representation theorem for stochastic DEs with jumpsApplications to population controlReflecting stochastic DE techniqueApplications to the stock market. (Backward stochastic DE approach)Derivation of Black-Scholes formula for market with and without jumpsNon-linear filtering problems with jumps.

  8. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  9. Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations.

    Science.gov (United States)

    Cuenod, Charles-André; Favetto, Benjamin; Genon-Catalot, Valentine; Rozenholc, Yves; Samson, Adeline

    2011-09-01

    Dynamic Contrast Enhanced imaging (DCE-imaging) following a contrast agent bolus allows the extraction of information on tissue micro-vascularization. The dynamic signals obtained from DCE-imaging are modeled by pharmacokinetic compartmental models which integrate the Arterial Input Function. These models use ordinary differential equations (ODEs) to describe the exchanges between the arterial and capillary plasma and the extravascular-extracellular space. Their least squares fitting takes into account measurement noises but fails to deal with unpredictable fluctuations due to external/internal sources of variations (patients' anxiety, time-varying parameters, measurement errors in the input function, etc.). Adding Brownian components to the ODEs leads to stochastic differential equations (SDEs). In DCE-imaging, SDEs are discretely observed with an additional measurement noise. We propose to estimate the parameters of these noisy SDEs by maximum likelihood, using the Kalman filter. In DCE-imaging, the contrast agent injected in vein arrives in plasma with an unknown time delay. The delay parameter induces a change-point in the drift of the SDE and ODE models, which is estimated also. Estimations based on the SDE and ODE pharmacokinetic models are compared to real DCE-MRI data. They show that the use of SDE provides robustness in the estimation results. A simulation study confirms these results. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Mean-Square Convergence of Drift-Implicit One-Step Methods for Neutral Stochastic Delay Differential Equations with Jump Diffusion

    Directory of Open Access Journals (Sweden)

    Lin Hu

    2011-01-01

    Full Text Available A class of drift-implicit one-step schemes are proposed for the neutral stochastic delay differential equations (NSDDEs driven by Poisson processes. A general framework for mean-square convergence of the methods is provided. It is shown that under certain conditions global error estimates for a method can be inferred from estimates on its local error. The applicability of the mean-square convergence theory is illustrated by the stochastic θ-methods and the balanced implicit methods. It is derived from Theorem 3.1 that the order of the mean-square convergence of both of them for NSDDEs with jumps is 1/2. Numerical experiments illustrate the theoretical results. It is worth noting that the results of mean-square convergence of the stochastic θ-methods and the balanced implicit methods are also new.

  11. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes

    International Nuclear Information System (INIS)

    Loulou, Richard; Labriet, Maryse; Kanudia, Amit

    2009-01-01

    in the reference scenario. This is particularly observable in the power generation sector and in some end-use sectors. Finally, the article discusses the pros and cons of the stochastic programming treatment of forcing targets, and compares it with the separate simulations of the various deterministic cases.

  12. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    Science.gov (United States)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  13. Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type

    Energy Technology Data Exchange (ETDEWEB)

    Basharov, A. M., E-mail: basharov@gmail.com [National Research Centre ' Kurchatov Institute,' (Russian Federation)

    2012-09-15

    It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are 'locked' inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.

  14. Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type

    International Nuclear Information System (INIS)

    Basharov, A. M.

    2012-01-01

    It is shown that the effective Hamiltonian representation, as it is formulated in author’s papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are “locked” inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.

  15. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    Science.gov (United States)

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  16. Exponential growth and Gaussian-like fluctuations of solutions of stochastic differential equations with maximum functionals

    International Nuclear Information System (INIS)

    Appleby, J A D; Wu, H

    2008-01-01

    In this paper we consider functional differential equations subjected to either instantaneous state-dependent noise, or to a white noise perturbation. The drift of the equations depend linearly on the current value and on the maximum of the solution. The functional term always provides positive feedback, while the instantaneous term can be mean-reverting or can exhibit positive feedback. We show in the white noise case that if the instantaneous term is mean reverting and dominates the history term, then solutions are recurrent, and upper bounds on the a.s. growth rate of the partial maxima of the solution can be found. When the instantaneous term is weaker, or is of positive feedback type, we determine necessary and sufficient conditions on the diffusion coefficient which ensure the exact exponential growth of solutions. An application of these results to an inefficient financial market populated by reference traders and speculators is given, in which the difference between the current instantaneous returns and maximum of the returns over the last few time units is used to determine trading strategies.

  17. Visualizing Statistical Mix Effects and Simpson's Paradox.

    Science.gov (United States)

    Armstrong, Zan; Wattenberg, Martin

    2014-12-01

    We discuss how "mix effects" can surprise users of visualizations and potentially lead them to incorrect conclusions. This statistical issue (also known as "omitted variable bias" or, in extreme cases, as "Simpson's paradox") is widespread and can affect any visualization in which the quantity of interest is an aggregated value such as a weighted sum or average. Our first contribution is to document how mix effects can be a serious issue for visualizations, and we analyze how mix effects can cause problems in a variety of popular visualization techniques, from bar charts to treemaps. Our second contribution is a new technique, the "comet chart," that is meant to ameliorate some of these issues.

  18. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test.

    Science.gov (United States)

    Møller, Jonas B; Overgaard, Rune V; Madsen, Henrik; Hansen, Torben; Pedersen, Oluf; Ingwersen, Steen H

    2010-02-01

    Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of the OGTT is a difficult problem in need of further investigation. The present work aimed at investigating the power of SDEs to predict the first phase insulin secretion (AIR (0-8)) in the IVGTT based on parameters obtained from the minimal model of the OGTT, published by Breda et al. (Diabetes 50(1):150-158, 2001). In total 174 subjects underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of parameters in the oral minimal model (OMM) was performed using the FOCE-method in NONMEM VI on insulin and C-peptide measurements. The suggested SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlenbeck process, and the extended Kalman filter was implemented in order to estimate the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process caused improved description of the variation in the data as measured by the autocorrelation function (ACF) of one-step prediction errors. A main result was that application of SDE models improved the correlation between the individual first phase indexes obtained from OGTT and AIR (0-8) (r = 0.36 to r = 0.49 and r = 0.32 to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to the increased correlation also the properties of the indexes obtained using the SDE models more correctly assessed the properties of the first phase indexes obtained from the IVGTT. In general it is concluded that the presented SDE approach not only caused autocorrelation of errors to decrease but also improved estimation of clinical measures obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method

  19. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    Science.gov (United States)

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  1. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  2. Three novel approaches to structural identifiability analysis in mixed-effects models.

    Science.gov (United States)

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2016-05-06

    Structural identifiability is a concept that considers whether the structure of a model together with a set of input-output relations uniquely determines the model parameters. In the mathematical modelling of biological systems, structural identifiability is an important concept since biological interpretations are typically made from the parameter estimates. For a system defined by ordinary differential equations, several methods have been developed to analyse whether the model is structurally identifiable or otherwise. Another well-used modelling framework, which is particularly useful when the experimental data are sparsely sampled and the population variance is of interest, is mixed-effects modelling. However, established identifiability analysis techniques for ordinary differential equations are not directly applicable to such models. In this paper, we present and apply three different methods that can be used to study structural identifiability in mixed-effects models. The first method, called the repeated measurement approach, is based on applying a set of previously established statistical theorems. The second method, called the augmented system approach, is based on augmenting the mixed-effects model to an extended state-space form. The third method, called the Laplace transform mixed-effects extension, is based on considering the moment invariants of the systems transfer function as functions of random variables. To illustrate, compare and contrast the application of the three methods, they are applied to a set of mixed-effects models. Three structural identifiability analysis methods applicable to mixed-effects models have been presented in this paper. As method development of structural identifiability techniques for mixed-effects models has been given very little attention, despite mixed-effects models being widely used, the methods presented in this paper provides a way of handling structural identifiability in mixed-effects models previously not

  3. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

    KAUST Repository

    Dolgov, Sergey

    2015-11-03

    We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.

  4. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    Science.gov (United States)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  5. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  6. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    Science.gov (United States)

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  7. Introduction to stochastic calculus

    CERN Document Server

    Karandikar, Rajeeva L

    2018-01-01

    This book sheds new light on stochastic calculus, the branch of mathematics that is most widely applied in financial engineering and mathematical finance. The first book to introduce pathwise formulae for the stochastic integral, it provides a simple but rigorous treatment of the subject, including a range of advanced topics. The book discusses in-depth topics such as quadratic variation, Ito formula, and Emery topology. The authors briefly address continuous semi-martingales to obtain growth estimates and study solution of a stochastic differential equation (SDE) by using the technique of random time change. Later, by using Metivier–Pellumail inequality, the solutions to SDEs driven by general semi-martingales are discussed. The connection of the theory with mathematical finance is briefly discussed and the book has extensive treatment on the representation of martingales as stochastic integrals and a second fundamental theorem of asset pricing. Intended for undergraduate- and beginning graduate-level stud...

  8. Stochastic Analysis with Financial Applications

    CERN Document Server

    Kohatsu-Higa, Arturo; Sheu, Shuenn-Jyi

    2011-01-01

    Stochastic analysis has a variety of applications to biological systems as well as physical and engineering problems, and its applications to finance and insurance have bloomed exponentially in recent times. The goal of this book is to present a broad overview of the range of applications of stochastic analysis and some of its recent theoretical developments. This includes numerical simulation, error analysis, parameter estimation, as well as control and robustness properties for stochastic equations. This book also covers the areas of backward stochastic differential equations via the (non-li

  9. Environmental vs Demographic Stochasticity in Population Growth

    OpenAIRE

    Braumann, C. A.

    2010-01-01

    Compares the effect on population growth of envinonmental stochasticity (random environmental variations described by stochastic differential equations) with demographic stochasticity (random variations in births and deaths described by branching processes and birth-and-death processes), in the density-independent and the density-dependent cases.

  10. Stochastic TDHF and the Boltzman-Langevin equation

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations

  11. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  12. Numerical Simulation of the Heston Model under Stochastic Correlation

    Directory of Open Access Journals (Sweden)

    Long Teng

    2017-12-01

    Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.

  13. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  14. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Stochastic optimization methods

    CERN Document Server

    Marti, Kurt

    2005-01-01

    Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.

  16. Stochastic Analysis : A Series of Lectures

    CERN Document Server

    Dozzi, Marco; Flandoli, Franco; Russo, Francesco

    2015-01-01

    This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...

  17. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  18. Delayed Stochastic Linear-Quadratic Control Problem and Related Applications

    Directory of Open Access Journals (Sweden)

    Li Chen

    2012-01-01

    stochastic differential equations (FBSDEs with Itô’s stochastic delay equations as forward equations and anticipated backward stochastic differential equations as backward equations. Especially, we present the optimal feedback regulator for the time delay system via a new type of Riccati equations and also apply to a population optimal control problem.

  19. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  20. Stochastic quantization

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1983-01-01

    The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)

  1. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  2. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  3. Fractional Stochastic Field Theory

    Science.gov (United States)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  4. Stochasticity and determinism in models of hematopoiesis.

    Science.gov (United States)

    Kimmel, Marek

    2014-01-01

    This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.

  5. Pesin’s entropy formula for stochastic flows of diffeomorphisms

    Institute of Scientific and Technical Information of China (English)

    刘培东

    1996-01-01

    Pesin’s entropy formula relating entropy and Lyapunov exponents within the context of random dynamical systems generated by (discrete or continuous) stochastic flows of diffeomorphisms (including solution flows of stochastic differential equations on manifolds) is proved.

  6. STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...

    African Journals Online (AJOL)

    eobe

    STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.

  7. Set-Valued Stochastic Lebesque Integral and Representation Theorems

    Directory of Open Access Journals (Sweden)

    Jungang Li

    2008-06-01

    Full Text Available In this paper, we shall firstly illustrate why we should introduce set-valued stochastic integrals, and then we shall discuss some properties of set-valued stochastic processes and the relation between a set-valued stochastic process and its selection set. After recalling the Aumann type definition of stochastic integral, we shall introduce a new definition of Lebesgue integral of a set-valued stochastic process with respect to the time t . Finally we shall prove the presentation theorem of set-valued stochastic integral and dis- cuss further properties that will be useful to study set-valued stochastic differential equations with their applications.

  8. Mixed-effects and fMRI studies

    DEFF Research Database (Denmark)

    Friston, K.J; Stephan, K.E; Ellegaard Lund, Torben

    2005-01-01

    This note concerns mixed-effect (MFX) analyses in multisession functional magnetic resonance imaging (fMRI) studies. It clarifies the relationship between mixed-effect analyses and the two-stage 'summary statistics' procedure (Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects...

  9. Brownian motion, martingales, and stochastic calculus

    CERN Document Server

    Le Gall, Jean-François

    2016-01-01

    This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested i...

  10. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  11. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  12. Quantum Ito's formula and stochastic evolutions

    International Nuclear Information System (INIS)

    Hudson, R.L.; Parthasarathy, K.R.

    1984-01-01

    Using only the Boson canonical commutation relations and the Riemann-Lebesgue integral we construct a simple theory of stochastic integrals and differentials with respect to the basic field operator processes. This leads to a noncommutative Ito product formula, a realisation of the classical Poisson process in Fock space which gives a noncommutative central limit theorem, the construction of solutions of certain noncommutative stochastic differential equations, and finally to the integration of certain irreversible equations of motion governed by semigroups of completely positive maps. The classical Ito product formula for stochastic differentials with respect to Brownian motion and the Poisson process is a special case. (orig.)

  13. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  14. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  15. Stochastic processes

    CERN Document Server

    Borodin, Andrei N

    2017-01-01

    This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

  16. A large mixing effect on eta,eta' and iota

    International Nuclear Information System (INIS)

    Kawai, E.

    1983-01-01

    We quantitatively investigate a possible large mixing effect on eta(549), eta'(958) and iota(1440) in a phenomenological way, taking both SU(3) symmetry breaking and gluon intervention into due account. (orig.)

  17. Stochastic B-series and order conditions for exponential integrators

    DEFF Research Database (Denmark)

    Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne

    2018-01-01

    We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting...

  18. The mixing effects for real gases and their mixtures

    Science.gov (United States)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  19. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  20. Performance of nonlinear mixed effects models in the presence of informative dropout.

    Science.gov (United States)

    Björnsson, Marcus A; Friberg, Lena E; Simonsson, Ulrika S H

    2015-01-01

    Informative dropout can lead to bias in statistical analyses if not handled appropriately. The objective of this simulation study was to investigate the performance of nonlinear mixed effects models with regard to bias and precision, with and without handling informative dropout. An efficacy variable and dropout depending on that efficacy variable were simulated and model parameters were reestimated, with or without including a dropout model. The Laplace and FOCE-I estimation methods in NONMEM 7, and the stochastic simulations and estimations (SSE) functionality in PsN, were used in the analysis. For the base scenario, bias was low, less than 5% for all fixed effects parameters, when a dropout model was used in the estimations. When a dropout model was not included, bias increased up to 8% for the Laplace method and up to 21% if the FOCE-I estimation method was applied. The bias increased with decreasing number of observations per subject, increasing placebo effect and increasing dropout rate, but was relatively unaffected by the number of subjects in the study. This study illustrates that ignoring informative dropout can lead to biased parameters in nonlinear mixed effects modeling, but even in cases with few observations or high dropout rate, the bias is relatively low and only translates into small effects on predictions of the underlying effect variable. A dropout model is, however, crucial in the presence of informative dropout in order to make realistic simulations of trial outcomes.

  1. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  2. Stochastic Jeux

    Directory of Open Access Journals (Sweden)

    Romanu Ekaterini

    2006-01-01

    Full Text Available This article shows the similarities between Claude Debussy’s and Iannis Xenakis’ philosophy of music and work, in particular the formers Jeux and the latter’s Metastasis and the stochastic works succeeding it, which seem to proceed parallel (with no personal contact to what is perceived as the evolution of 20th century Western music. Those two composers observed the dominant (German tradition as outsiders, and negated some of its elements considered as constant or natural by "traditional" innovators (i.e. serialists: the linearity of musical texture, its form and rhythm.

  3. Functional Mixed Effects Model for Small Area Estimation.

    Science.gov (United States)

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  4. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  5. Fundamentals of stochastic nature sciences

    CERN Document Server

    Klyatskin, Valery I

    2017-01-01

    This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens – or doesn’t! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under wh...

  6. Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control

    International Nuclear Information System (INIS)

    Masiero, Federica

    2005-01-01

    Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations

  7. Stochastic modeling

    CERN Document Server

    Lanchier, Nicolas

    2017-01-01

    Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

  8. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  9. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  10. Stochastic biomathematical models with applications to neuronal modeling

    CERN Document Server

    Batzel, Jerry; Ditlevsen, Susanne

    2013-01-01

    Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

  11. Stochastic Averaging and Stochastic Extremum Seeking

    CERN Document Server

    Liu, Shu-Jun

    2012-01-01

    Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering  and analysis of bacterial  convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...

  12. Longitudinal mixed-effects models for latent cognitive function

    NARCIS (Netherlands)

    van den Hout, Ardo; Fox, Gerardus J.A.; Muniz-Terrera, Graciela

    2015-01-01

    A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response

  13. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  14. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when

  15. Some Topics in Stochastic Control

    Science.gov (United States)

    2010-10-14

    assimilation problems. (a) Papers published in peer-reviewed journals (N/A for none) 1. R. Atar and A. Budhiraja. A stochastic differential game for...the inhomogeneous infinity-Laplace equation. Ann. Prob., 38 (2010), no. 2, 498--531. 2. R. Atar and A. Budhiraja. On near optimal trajectories for a...G. Aronsson. A mathematical model in sand mechanics: presentation and analysis. SIAM J. Appl. Math., 22 (1972), 437-458 [3] R. Atar and A. Budhiraja

  16. Stochastic resonance

    International Nuclear Information System (INIS)

    Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

    2004-01-01

    We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise

  17. Stochastic population theories

    CERN Document Server

    Ludwig, Donald

    1974-01-01

    These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. The research was supported by the Na...

  18. Vibrometer based on a self-mixing effect interferometer

    International Nuclear Information System (INIS)

    Marti-Lopez, Luis; Gonzalez-Penna, R.; Martinez-Celorio, R. A.

    2009-01-01

    We outline the basic principles of the self-mixing effect and present the design and construction of an interferometer based on this phenomenon. It differs from the previously reported in the literature by the use of two photodetectors, located at different arms of the interferometer. This feature allows widening the arsenal of strategies for the digital processing of the signal. The interferometer is used as vibrometer for the characterization of professional loudspeakers. Experimental results are presented as an illustration. (Author)

  19. Marketing mix effects on private labels brand equity

    OpenAIRE

    Abril, Carmen; Rodriguez-Cánovas, Belén

    2017-01-01

    The present study explores some marketing mix effects on private labels brand equity creation. The research aims to study the effect of some elements under retailer's direct control such as in-store communications, in-store promotions and distribution intensity as well as other general marketing mix levers such as advertising, perceived price, and monetary promotions. The results indicate that the most efficient marketing mix tools for private label brand equity creation are private labels in...

  20. Time-ordered product expansions for computational stochastic system biology

    International Nuclear Information System (INIS)

    Mjolsness, Eric

    2013-01-01

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie’s stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems. (paper)

  1. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  2. Invariant measures for stochastic nonlinear beam and wave equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Ondreját, Martin; Seidler, Jan

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4157-4179 ISSN 0022-0396 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic partial differential equation * stochastic beam equation * stochastic wave equation * invariant measure Subject RIV: BA - General Mathematics Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/ondrejat-0453412.pdf

  3. QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION

    Directory of Open Access Journals (Sweden)

    A.E.Kobryn

    2003-01-01

    Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.

  4. American option pricing with stochastic volatility processes

    Directory of Open Access Journals (Sweden)

    Ping LI

    2017-12-01

    Full Text Available In order to solve the problem of option pricing more perfectly, the option pricing problem with Heston stochastic volatility model is considered. The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed. In view of the fact that there is no analytical American option pricing formula, through the space discretization parameters, the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations, and then using high order compact finite difference method, numerical solutions are obtained for the option price. The numerical experiments are carried out to verify the theoretical results and simulation. The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared, and the results show that the optimal exercise boundary also has stochastic volatility. Under the setting of parameters, the behavior and the nature of volatility are analyzed, the volatility curve is simulated, the calculation results of high order compact difference method are compared, and the numerical option solution is obtained, so that the method is verified. The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

  5. Interpretable inference on the mixed effect model with the Box-Cox transformation.

    Science.gov (United States)

    Maruo, K; Yamaguchi, Y; Noma, H; Gosho, M

    2017-07-10

    We derived results for inference on parameters of the marginal model of the mixed effect model with the Box-Cox transformation based on the asymptotic theory approach. We also provided a robust variance estimator of the maximum likelihood estimator of the parameters of this model in consideration of the model misspecifications. Using these results, we developed an inference procedure for the difference of the model median between treatment groups at the specified occasion in the context of mixed effects models for repeated measures analysis for randomized clinical trials, which provided interpretable estimates of the treatment effect. From simulation studies, it was shown that our proposed method controlled type I error of the statistical test for the model median difference in almost all the situations and had moderate or high performance for power compared with the existing methods. We illustrated our method with cluster of differentiation 4 (CD4) data in an AIDS clinical trial, where the interpretability of the analysis results based on our proposed method is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A Linear Mixed-Effects Model of Wireless Spectrum Occupancy

    Directory of Open Access Journals (Sweden)

    Pagadarai Srikanth

    2010-01-01

    Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.

  7. On Some Fractional Stochastic Integrodifferential Equations in Hilbert Space

    Directory of Open Access Journals (Sweden)

    Hamdy M. Ahmed

    2009-01-01

    Full Text Available We study a class of fractional stochastic integrodifferential equations considered in a real Hilbert space. The existence and uniqueness of the Mild solutions of the considered problem is also studied. We also give an application for stochastic integropartial differential equations of fractional order.

  8. Noncausal stochastic calculus

    CERN Document Server

    Ogawa, Shigeyoshi

    2017-01-01

    This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but ...

  9. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  10. Jacobian elliptic function expansion solutions of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Wei Caimin; Xia Zunquan; Tian Naishuo

    2005-01-01

    Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation

  11. Rough flows and homogenization in stochastic turbulence

    OpenAIRE

    Bailleul, I.; Catellier, R.

    2016-01-01

    We provide in this work a tool-kit for the study of homogenisation of random ordinary differential equations, under the form of a friendly-user black box based on the tehcnology of rough flows. We illustrate the use of this setting on the example of stochastic turbulence.

  12. Latent Fundamentals Arbitrage with a Mixed Effects Factor Model

    Directory of Open Access Journals (Sweden)

    Andrei Salem Gonçalves

    2012-09-01

    Full Text Available We propose a single-factor mixed effects panel data model to create an arbitrage portfolio that identifies differences in firm-level latent fundamentals. Furthermore, we show that even though the characteristics that affect returns are unknown variables, it is possible to identify the strength of the combination of these latent fundamentals for each stock by following a simple approach using historical data. As a result, a trading strategy that bought the stocks with the best fundamentals (strong fundamentals portfolio and sold the stocks with the worst ones (weak fundamentals portfolio realized significant risk-adjusted returns in the U.S. market for the period between July 1986 and June 2008. To ensure robustness, we performed sub period and seasonal analyses and adjusted for trading costs and we found further empirical evidence that using a simple investment rule, that identified these latent fundamentals from the structure of past returns, can lead to profit.

  13. Maximum principle for a stochastic delayed system involving terminal state constraints.

    Science.gov (United States)

    Wen, Jiaqiang; Shi, Yufeng

    2017-01-01

    We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.

  14. Problems of Mathematical Finance by Stochastic Control Methods

    Science.gov (United States)

    Stettner, Łukasz

    The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.

  15. Elitism and Stochastic Dominance

    OpenAIRE

    Bazen, Stephen; Moyes, Patrick

    2011-01-01

    Stochastic dominance has typically been used with a special emphasis on risk and inequality reduction something captured by the concavity of the utility function in the expected utility model. We claim that the applicability of the stochastic dominance approach goes far beyond risk and inequality measurement provided suitable adpations be made. We apply in the paper the stochastic dominance approach to the measurment of elitism which may be considered the opposite of egalitarianism. While the...

  16. Stochastic calculus an introduction through theory and exercises

    CERN Document Server

    Baldi, Paolo

    2017-01-01

    This book provides a comprehensive introduction to the theory of stochastic calculus and some of its applications. It is the only textbook on the subject to include more than two hundred exercises with complete solutions. After explaining the basic elements of probability, the author introduces more advanced topics such as Brownian motion, martingales and Markov processes. The core of the book covers stochastic calculus, including stochastic differential equations, the relationship to partial differential equations, numerical methods and simulation, as well as applications of stochastic processes to finance. The final chapter provides detailed solutions to all exercises, in some cases presenting various solution techniques together with a discussion of advantages and drawbacks of the methods used. Stochastic Calculus will be particularly useful to advanced undergraduate and graduate students wishing to acquire a solid understanding of the subject through the theory and exercises. Including full mathematical ...

  17. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  18. Multiple fields in stochastic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Assadullahi, Hooshyar [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Noorbala, Mahdiyar [Department of Physics, University of Tehran,P.O. Box 14395-547, Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vennin, Vincent; Wands, David [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2016-06-24

    Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.

  19. Stochastic processes, slaves and supersymmetry

    International Nuclear Information System (INIS)

    Drummond, I T; Horgan, R R

    2012-01-01

    We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)

  20. Stochastic analysis of biochemical systems

    CERN Document Server

    Anderson, David F

    2015-01-01

    This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology.  The book should serve well as a supplement for courses in probability and stochastic processes.  While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations, and elementary probability and who are well-motivated by the applications will find this book of interest.    David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other ar...

  1. Stochastic analytic regularization

    International Nuclear Information System (INIS)

    Alfaro, J.

    1984-07-01

    Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)

  2. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  3. Stochastic climate theory

    NARCIS (Netherlands)

    Gottwald, G.A.; Crommelin, D.T.; Franzke, C.L.E.; Franzke, C.L.E.; O'Kane, T.J.

    2017-01-01

    In this chapter we review stochastic modelling methods in climate science. First we provide a conceptual framework for stochastic modelling of deterministic dynamical systems based on the Mori-Zwanzig formalism. The Mori-Zwanzig equations contain a Markov term, a memory term and a term suggestive of

  4. On Stochastic Dependence

    Science.gov (United States)

    Meyer, Joerg M.

    2018-01-01

    The contrary of stochastic independence splits up into two cases: pairs of events being favourable or being unfavourable. Examples show that both notions have quite unexpected properties, some of them being opposite to intuition. For example, transitivity does not hold. Stochastic dependence is also useful to explain cases of Simpson's paradox.

  5. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  6. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  7. Stochastic control with rough paths

    International Nuclear Information System (INIS)

    Diehl, Joscha; Friz, Peter K.; Gassiat, Paul

    2017-01-01

    We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).

  8. Stochastic control with rough paths

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Joscha [University of California San Diego (United States); Friz, Peter K., E-mail: friz@math.tu-berlin.de [TU & WIAS Berlin (Germany); Gassiat, Paul [CEREMADE, Université Paris-Dauphine, PSL Research University (France)

    2017-04-15

    We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).

  9. Evaluating significance in linear mixed-effects models in R.

    Science.gov (United States)

    Luke, Steven G

    2017-08-01

    Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.

  10. Developmental lead exposure has mixed effects on butterfly cognitive processes.

    Science.gov (United States)

    Philips, Kinsey H; Kobiela, Megan E; Snell-Rood, Emilie C

    2017-01-01

    While the effects of lead pollution have been well studied in vertebrates, it is unclear to what extent lead may negatively affect insect cognition. Lead pollution in soils can elevate lead in plant tissues, suggesting it could negatively affect neural development of insect herbivores. We used the cabbage white butterfly (Pieris rapae) as a model system to study the effect of lead pollution on insect cognitive processes, which play an important role in how insects locate and handle resources. Cabbage white butterfly larvae were reared on a 4-ppm lead diet, a concentration representative of vegetation in polluted sites; we measured eye size and performance on a foraging assay in adults. Relative to controls, lead-reared butterflies did not differ in time or ability to search for a food reward associated with a less preferred color. Indeed, lead-treated butterflies were more likely to participate in the behavioral assay itself. Lead exposure did not negatively affect survival or body size, and it actually sped up development time. The effects of lead on relative eye size varied with sex: lead tended to reduce eye size in males, but increase eye size in females. These results suggest that low levels of lead pollution may have mixed effects on butterfly vision, but only minimal impacts on performance in foraging tasks, although follow-up work is needed to test whether this result is specific to cabbage whites, which are often associated with disturbed areas.

  11. Computational stochastic model of ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zmievskaya, Galina I., E-mail: zmi@gmail.ru; Bondareva, Anna L., E-mail: bal310775@yandex.ru [M.V. Keldysh Institute of Applied Mathematics RAS, 4,Miusskaya sq., 125047 Moscow (Russian Federation); Levchenko, Tatiana V., E-mail: tatlevchenko@mail.ru [VNII Geosystem Russian Federal Center, Varshavskoye roadway, 8, Moscow (Russian Federation); Maino, Giuseppe, E-mail: giuseppe.maino@enea.it [Scuola di Lettere e BeniCulturali, University di Bologna, sede di Ravenna, via Mariani 5, 48100 Ravenna (Italy)

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  12. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  13. Stochastic Differential Equations in Artificial Pancreas Modelling

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine

    Type 1 diabetes accounts for approximately 5% of the total diabetes population. It is caused by the destruction of insulin producing β-cells in the pancreas. Various treatment strategies are available today, some of which include advanced technological devices such as an insulin pump and a contin......Type 1 diabetes accounts for approximately 5% of the total diabetes population. It is caused by the destruction of insulin producing β-cells in the pancreas. Various treatment strategies are available today, some of which include advanced technological devices such as an insulin pump...... of the insulin pump and the CGM has paved the way for a fully automatic treatment regime, the artificial pancreas. The idea is to connect the CGM with the insulin pump via a control algorithm running on e.g. the patients smart phone. The CGM observations are sent to the smart phone and based on this information...... of the system directly. The purpose of this PhD-project was to investigate the potential of SDEs in the artificial pancreas development. Especially, the emerging continuous monitoring of glucose levels makes SDEs highly applicable to this field. The current thesis aims at demonstrating and discussing...

  14. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  15. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  16. Stochastic equations for complex systems theoretical and computational topics

    CERN Document Server

    Bessaih, Hakima

    2015-01-01

    Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics.  The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality.  This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations ...

  17. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  18. Stochastic coalgebraic logic

    CERN Document Server

    Doberkat, Ernst-Erich

    2009-01-01

    Combining coalgebraic reasoning, stochastic systems and logic, this volume presents the principles of coalgebraic logic from a categorical perspective. Modal logics are also discussed, including probabilistic interpretations and an analysis of Kripke models.

  19. Stochastic parameterizing manifolds and non-Markovian reduced equations stochastic manifolds for nonlinear SPDEs II

    CERN Document Server

    Chekroun, Mickaël D; Wang, Shouhong

    2015-01-01

    In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

  20. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  1. The stochastic goodwill problem

    OpenAIRE

    Marinelli, Carlo

    2003-01-01

    Stochastic control problems related to optimal advertising under uncertainty are considered. In particular, we determine the optimal strategies for the problem of maximizing the utility of goodwill at launch time and minimizing the disutility of a stream of advertising costs that extends until the launch time for some classes of stochastic perturbations of the classical Nerlove-Arrow dynamics. We also consider some generalizations such as problems with constrained budget and with discretionar...

  2. BRST stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1990-01-01

    After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)

  3. Linear mixed-effects modeling approach to FMRI group analysis.

    Science.gov (United States)

    Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

    2013-06-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity

  4. Stochastic integration by parts and functional Itô calculus

    CERN Document Server

    Vives, Josep

    2016-01-01

    This volume contains lecture notes from the courses given by Vlad Bally and Rama Cont at the Barcelona Summer School on Stochastic Analysis (July 2012). The notes of the course by Vlad Bally, co-authored with Lucia Caramellino, develop integration by parts formulas in an abstract setting, extending Malliavin's work on abstract Wiener spaces. The results are applied to prove absolute continuity and regularity results of the density for a broad class of random processes. Rama Cont's notes provide an introduction to the Functional Itô Calculus, a non-anticipative functional calculus that extends the classical Itô calculus to path-dependent functionals of stochastic processes. This calculus leads to a new class of path-dependent partial differential equations, termed Functional Kolmogorov Equations, which arise in the study of martingales and forward-backward stochastic differential equations. This book will appeal to both young and senior researchers in probability and stochastic processes, as well as to pract...

  5. The interpolation method of stochastic functions and the stochastic variational principle

    International Nuclear Information System (INIS)

    Liu Xianbin; Chen Qiu

    1993-01-01

    Uncertainties have been attaching more importance to increasingly in modern engineering structural design. Viewed on an appropriate scale, the inherent physical attributes (material properties) of many structural systems always exhibit some patterns of random variation in space and time, generally the random variation shows a small parameter fluctuation. For a linear mechanical system, the random variation is modeled as a random one of a linear partial differential operator and, in stochastic finite element method, a random variation of a stiffness matrix. Besides the stochasticity of the structural physical properties, the influences of random loads which always represent themselves as the random boundary conditions bring about much more complexities in structural analysis. Now the stochastic finite element method or the probabilistic finite element method is used to study the structural systems with random physical parameters, whether or not the loads are random. Differing from the general finite element theory, the main difficulty which the stochastic finite element method faces is the inverse operation of stochastic operators and stochastic matrices, since the inverse operators and the inverse matrices are statistically correlated to the random parameters and random loads. So far, many efforts have been made to obtain the reasonably approximate expressions of the inverse operators and inverse matrices, such as Perturbation Method, Neumann Expansion Method, Galerkin Method (in appropriate Hilbert Spaces defined for random functions), Orthogonal Expansion Method. Among these methods, Perturbation Method appear to be the most available. The advantage of these methods is that the fairly accurate response statistics can be obtained under the condition of the finite information of the input. However, the second-order statistics obtained by use of Perturbation Method and Neumann Expansion Method are not always the appropriate ones, because the relevant second

  6. Extending existing structural identifiability analysis methods to mixed-effects models.

    Science.gov (United States)

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2018-01-01

    The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Stochastic stability of four-wheel-steering system

    International Nuclear Information System (INIS)

    Huang Dongwei; Wang Hongli; Zhu Zhiwen; Feng Zhang

    2007-01-01

    A four-wheel-steering system subjected to white noise excitations was reduced to a two-degree-of-freedom quasi-non-integrable-Hamiltonian system. Subsequently we obtained an one-dimensional Ito stochastic differential equation for the averaged Hamiltonian of the system by using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems. Thus, the stochastic stability of four-wheel-steering system was analyzed by analyzing the sample behaviors of the averaged Hamiltonian at the boundary H = 0 and calculating its Lyapunov exponent. An example given at the end demonstrated that the conclusion obtained is of considerable significance

  8. Project Evaluation and Cash Flow Forecasting by Stochastic Simulation

    Directory of Open Access Journals (Sweden)

    Odd A. Asbjørnsen

    1983-10-01

    Full Text Available The net present value of a discounted cash flow is used to evaluate projects. It is shown that the LaPlace transform of the cash flow time function is particularly useful when the cash flow profiles may be approximately described by ordinary linear differential equations in time. However, real cash flows are stochastic variables due to the stochastic nature of the disturbances during production.

  9. Fitting PAC spectra with stochastic models: PolyPacFit

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics and Geology (United States); Evenson, W. E. [Utah Valley University, College of Science and Health (United States); Newhouse, R.; Collins, G. S. [Washington State University, Department of Physics and Astronomy (United States)

    2010-04-15

    PolyPacFit is an advanced fitting program for time-differential perturbed angular correlation (PAC) spectroscopy. It incorporates stochastic models and provides robust options for customization of fits. Notable features of the program include platform independence and support for (1) fits to stochastic models of hyperfine interactions, (2) user-defined constraints among model parameters, (3) fits to multiple spectra simultaneously, and (4) any spin nuclear probe.

  10. Stochastic bosonization for a d ≥ 3 Fermi system

    International Nuclear Information System (INIS)

    Accardi, L.; Lu, Y.G.; Mastropietro, V.

    1997-01-01

    We consider a system of fermions interacting via an external field and we prove, in d ≥ 3, that a suitable collective operator, bilinear in the fermionic fields, in the stochastic limit becomes a boson quantum brownian motion. The evolution operator after the limit satisfies a quantum stochastic differential equation, in which the imaginary part of the Ito correction is the ground state shift while its real part is the lifetime of the ground state. (orig.)

  11. Stochastic Analysis of Gaussian Processes via Fredholm Representation

    Directory of Open Access Journals (Sweden)

    Tommi Sottinen

    2016-01-01

    Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

  12. Stochastic quantization and mean field approximation

    International Nuclear Information System (INIS)

    Jengo, R.; Parga, N.

    1983-09-01

    In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)

  13. Stochastic models for tumoral growth

    Science.gov (United States)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  14. Stochastic beam dynamics in storage rings

    International Nuclear Information System (INIS)

    Pauluhn, A.

    1993-12-01

    In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)

  15. Transport in Stochastic Media

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.; Thieberger, R.

    1998-01-01

    Classical transport of neutral particles in a binary, scattering, stochastic media is discussed. It is assumed that the cross-sections of the constituent materials and their volume fractions are known. The inner structure of the media is stochastic, but there exist a statistical knowledge about the lump sizes, shapes and arrangement. The transmission through the composite media depends on the specific heterogeneous realization of the media. The current research focuses on the averaged transmission through an ensemble of realizations, frm which an effective cross-section for the media can be derived. The problem of one dimensional transport in stochastic media has been studied extensively [1]. In the one dimensional description of the problem, particles are transported along a line populated with alternating material segments of random lengths. The current work discusses transport in two-dimensional stochastic media. The phenomenon that is unique to the multi-dimensional description of the problem is obstacle bypassing. Obstacle bypassing tends to reduce the opacity of the media, thereby reducing its effective cross-section. The importance of this phenomenon depends on the manner in which the obstacles are arranged in the media. Results of transport simulations in multi-dimensional stochastic media are presented. Effective cross-sections derived from the simulations are compared against those obtained for the one-dimensional problem, and against those obtained from effective multi-dimensional models, which are partially based on a Markovian assumption

  16. A Stochastic Delay Model For Pricing Debt And Loan Guarantees: Theoretical Results

    OpenAIRE

    Kemajou, Elisabeth; Mohammed, Salah-Eldin; Tambue, Antoine

    2012-01-01

    We consider that the price of a firm follows a non linear stochastic delay differential equation. We also assume that any claim value whose value depends on firm value and time follows a non linear stochastic delay differential equation. Using self-financed strategy and replication we are able to derive a Random Partial Differential Equation (RPDE) satisfied by any corporate claim whose value is a function of firm value and time. Under specific final and boundary conditions, we solve the RPDE...

  17. Stochastic approach to microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.C.

    1987-01-01

    The presently widespread idea of ''vacuum population'', together with the quantum concept of vacuum fluctuations leads to assume a random level below that of matter. This stochastic approach starts by a reminder of the author's previous work, first on the relation of diffusion laws with the foundations of microphysics, and then on hadron spectrum. Following the latter, a random quark model is advanced; it gives to quark pairs properties similar to those of a harmonic oscillator or an elastic string, imagined as an explanation to their asymptotic freedom and their confinement. The stochastic study of such interactions as electron-nucleon, jets in e/sup +/e/sup -/ collisions, or pp -> ..pi../sup 0/ + X, gives form factors closely consistent with experiment. The conclusion is an epistemological comment (complementarity between stochastic and quantum domains, E.P.R. paradox, etc...).

  18. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  19. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  20. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  1. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  2. Stochastic Feedforward Control Technique

    Science.gov (United States)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  3. Markov stochasticity coordinates

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  4. Stochastic dynamics and control

    CERN Document Server

    Sun, Jian-Qiao; Zaslavsky, George

    2006-01-01

    This book is a result of many years of author's research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress proc

  5. Stochastic singular optics

    CSIR Research Space (South Africa)

    Roux, FS

    2013-09-01

    Full Text Available Roux Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013 CSIR National Laser Centre, Pretoria, South Africa – p. 1/24 Contents ⊲ Defining Stochastic Singular Optics (SSO) ⊲ Tools of Stochastic... of vortices: topological charge ±1 (higher order are unstable). Positive and negative vortex densities np(x, y, z) and nn(x, y, z) ⊲ Vortex density: V = np + nn ⊲ Topological charge density: T = np − nn – p. 4/24 Subfields of SSO ⊲ Homogeneous, normally...

  6. Foundations of stochastic analysis

    CERN Document Server

    Rao, M M; Lukacs, E

    1981-01-01

    Foundations of Stochastic Analysis deals with the foundations of the theory of Kolmogorov and Bochner and its impact on the growth of stochastic analysis. Topics covered range from conditional expectations and probabilities to projective and direct limits, as well as martingales and likelihood ratios. Abstract martingales and their applications are also discussed. Comprised of five chapters, this volume begins with an overview of the basic Kolmogorov-Bochner theorem, followed by a discussion on conditional expectations and probabilities containing several characterizations of operators and mea

  7. Markov stochasticity coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2017-01-15

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  8. Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps

    Directory of Open Access Journals (Sweden)

    Xiaona Leng

    2017-06-01

    Full Text Available Abstract This paper proposes a new nonlinear stochastic SIVS epidemic model with double epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate the threshold dynamics of the stochastic SIVS epidemic model. By using the technique of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in mean and extinction of the stochastic system and the threshold which governs the extinction and the spread of the epidemic diseases. Finally, this paper describes the results of numerical simulations investigating the dynamical effects of stochastic disturbance. Our results significantly improve and generalize the corresponding results in recent literatures. The developed theoretical methods and stochastic inequalities technique can be used to investigate the high-dimensional nonlinear stochastic differential systems.

  9. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  10. Mixed-Effects Modeling of Neurofeedback Self-Regulation Performance: Moderators for Learning in Children with ADHD.

    Science.gov (United States)

    Zuberer, Agnieszka; Minder, Franziska; Brandeis, Daniel; Drechsler, Renate

    2018-01-01

    Neurofeedback (NF) has gained increasing popularity as a training method for children and adults with attention deficit hyperactivity disorder (ADHD). However, it is unclear to what extent children learn to regulate their brain activity and in what way NF learning may be affected by subject- and treatment-related factors. In total, 48 subjects with ADHD (age 8.5-16.5 years; 16 subjects on methylphenidate (MPH)) underwent 15 double training sessions of NF in either a clinical or a school setting. Four mixed-effects models were employed to analyze learning: training within-sessions, across-sessions, with continuous feedback, and with transfer in which performance feedback is delayed. Age and MPH affected the NF performance in all models. Cross-session learning in the feedback condition was mainly moderated by age and MPH, whereas NF learning in the transfer condition was mainly boosted by MPH. Apart from IQ and task types, other subject-related or treatment-related effects were unrelated to NF learning. This first study analyzing moderators of NF learning in ADHD with a mixed-effects modeling approach shows that NF performance is moderated differentially by effects of age and MPH depending on the training task and time window. Future studies may benefit from using this approach to analyze NF learning and NF specificity. The trial name Neurofeedback and Computerized Cognitive Training in Different Settings for Children and Adolescents With ADHD is registered with NCT02358941.

  11. Stochastic quantisation: theme and variation

    International Nuclear Information System (INIS)

    Klauder, J.R.; Kyoto Univ.

    1987-01-01

    The paper on stochastic quantisation is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. Stochastic quantisation reformulates Euclidean quantum field theory in the language of Langevin equations. The generalised free field is discussed from the viewpoint of stochastic quantisation. An artificial family of highly singular model theories wherein the space-time derivatives are dropped altogether is also examined. Finally a modified form of stochastic quantisation is considered. (U.K.)

  12. Effective computation of stochastic protein kinetic equation by reducing stiffness via variable transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin, E-mail: ljwang@ucas.ac.cn [School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-06-08

    The stochastic protein kinetic equations can be stiff for certain parameters, which makes their numerical simulation rely on very small time step sizes, resulting in large computational cost and accumulated round-off errors. For such situation, we provide a method of reducing stiffness of the stochastic protein kinetic equation by means of a kind of variable transformation. Theoretical and numerical analysis show effectiveness of this method. Its generalization to a more general class of stochastic differential equation models is also discussed.

  13. New Exact Solutions for the Wick-Type Stochastic Kudryashov–Sinelshchikov Equation

    International Nuclear Information System (INIS)

    Ray, S. Saha; Singh, S.

    2017-01-01

    In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space. (paper)

  14. The Long Time Behavior of a Stochastic Logistic Model with Infinite Delay and Impulsive Perturbation

    OpenAIRE

    Lu, Chun; Wu, Kaining

    2016-01-01

    This paper considers a stochastic logistic model with infinite delay and impulsive perturbation. Firstly, with the space $C_{g}$ as phase space, the definition of solution to a stochastic functional differential equation with infinite delay and impulsive perturbation is established. According to this definition, we show that our model has an unique global positive solution. Then we establish the sufficient and necessary conditions for extinction and stochastic permanence of the...

  15. Stochastic quantization of Proca field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-03-01

    We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)

  16. Stochastic Estimation via Polynomial Chaos

    Science.gov (United States)

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  17. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  18. Affine stochastic mortality

    NARCIS (Netherlands)

    Schrager, D.F.

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing

  19. Composite stochastic processes

    NARCIS (Netherlands)

    Kampen, N.G. van

    Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This

  20. Entropy Production in Stochastics

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2017-10-01

    Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.

  1. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...

  2. Research in Stochastic Processes.

    Science.gov (United States)

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  3. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  4. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  5. Symbolic Computing in Probabilistic and Stochastic Analysis

    Directory of Open Access Journals (Sweden)

    Kamiński Marcin

    2015-12-01

    Full Text Available The main aim is to present recent developments in applications of symbolic computing in probabilistic and stochastic analysis, and this is done using the example of the well-known MAPLE system. The key theoretical methods discussed are (i analytical derivations, (ii the classical Monte-Carlo simulation approach, (iii the stochastic perturbation technique, as well as (iv some semi-analytical approaches. It is demonstrated in particular how to engage the basic symbolic tools implemented in any system to derive the basic equations for the stochastic perturbation technique and how to make an efficient implementation of the semi-analytical methods using an automatic differentiation and integration provided by the computer algebra program itself. The second important illustration is probabilistic extension of the finite element and finite difference methods coded in MAPLE, showing how to solve boundary value problems with random parameters in the environment of symbolic computing. The response function method belongs to the third group, where interference of classical deterministic software with the non-linear fitting numerical techniques available in various symbolic environments is displayed. We recover in this context the probabilistic structural response in engineering systems and show how to solve partial differential equations including Gaussian randomness in their coefficients.

  6. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  7. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  8. Stochastic control theory dynamic programming principle

    CERN Document Server

    Nisio, Makiko

    2015-01-01

    This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...

  9. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  10. Simulation and inference for stochastic processes with YUIMA a comprehensive R framework for SDEs and other stochastic processes

    CERN Document Server

    Iacus, Stefano M

    2018-01-01

    The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these ...

  11. Stochastic calculus and applications

    CERN Document Server

    Cohen, Samuel N

    2015-01-01

    Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to wo...

  12. Some illustrations of stochasticity

    International Nuclear Information System (INIS)

    Laslett, L.J.

    1977-01-01

    A complex, and apparently stochastic, character frequently can be seen to occur in the solutions to simple Hamiltonian problems. Such behavior is of interest, and potentially of importance, to designers of particle accelerators--as well as to workers in other fields of physics and related disciplines. Even a slow development of disorder in the motion of particles in a circular accelerator or storage ring could be troublesome, because a practical design requires the beam particles to remain confined in an orderly manner within a narrow beam tube for literally tens of billions of revolutions. The material presented is primarily the result of computer calculations made to investigate the occurrence of ''stochasticity,'' and is organized in a manner similar to that adopted for presentation at a 1974 accelerator conference

  13. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  14. Essentials of stochastic processes

    CERN Document Server

    Durrett, Richard

    2016-01-01

    Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...

  15. Dynamic stochastic optimization

    CERN Document Server

    Ermoliev, Yuri; Pflug, Georg

    2004-01-01

    Uncertainties and changes are pervasive characteristics of modern systems involving interactions between humans, economics, nature and technology. These systems are often too complex to allow for precise evaluations and, as a result, the lack of proper management (control) may create significant risks. In order to develop robust strategies we need approaches which explic­ itly deal with uncertainties, risks and changing conditions. One rather general approach is to characterize (explicitly or implicitly) uncertainties by objec­ tive or subjective probabilities (measures of confidence or belief). This leads us to stochastic optimization problems which can rarely be solved by using the standard deterministic optimization and optimal control methods. In the stochastic optimization the accent is on problems with a large number of deci­ sion and random variables, and consequently the focus ofattention is directed to efficient solution procedures rather than to (analytical) closed-form solu­ tions. Objective an...

  16. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  17. Stochastic stacking without filters

    International Nuclear Information System (INIS)

    Johnson, R.P.; Marriner, J.

    1982-12-01

    The rate of accumulation of antiprotons is a critical factor in the design of p anti p colliders. A design of a system to accumulate higher anti p fluxes is presented here which is an alternative to the schemes used at the CERN AA and in the Fermilab Tevatron I design. Contrary to these stacking schemes, which use a system of notch filters to protect the dense core of antiprotons from the high power of the stack tail stochastic cooling, an eddy current shutter is used to protect the core in the region of the stack tail cooling kicker. Without filters one can have larger cooling bandwidths, better mixing for stochastic cooling, and easier operational criteria for the power amplifiers. In the case considered here a flux of 1.4 x 10 8 per sec is achieved with a 4 to 8 GHz bandwidth

  18. Multistage stochastic optimization

    CERN Document Server

    Pflug, Georg Ch

    2014-01-01

    Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization.  It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book

  19. Dynamics of stochastic systems

    CERN Document Server

    Klyatskin, Valery I

    2005-01-01

    Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...

  20. Stochastic integration in Banach spaces theory and applications

    CERN Document Server

    Mandrekar, Vidyadhar

    2015-01-01

    Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...

  1. Identifiability in stochastic models

    CERN Document Server

    1992-01-01

    The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.

  2. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  3. Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture

    Science.gov (United States)

    Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong

    The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.

  4. Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage

    Science.gov (United States)

    Guo, Wenjuan; Cai, Yongli; Zhang, Qimin; Wang, Weiming

    2018-02-01

    This paper aims to study an SIS epidemic model with media coverage from a general deterministic model to a stochastic differential equation with environment fluctuation. Mathematically, we use the Markov semigroup theory to prove that the basic reproduction number R0s can be used to control the dynamics of stochastic system. Epidemiologically, we show that environment fluctuation can inhibit the occurrence of the disease, namely, in the case of disease persistence for the deterministic model, the disease still dies out with probability one for the stochastic model. So to a great extent the stochastic perturbation under media coverage affects the outbreak of the disease.

  5. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Salama, Khaled N.

    2015-01-01

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  6. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan

    2015-10-26

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  7. Stochastic quantization of instantons

    International Nuclear Information System (INIS)

    Grandati, Y.; Berard, A.; Grange, P.

    1996-01-01

    The method of Parisi and Wu to quantize classical fields is applied to instanton solutions var-phi I of euclidian non-linear theory in one dimension. The solution var-phi var-epsilon of the corresponding Langevin equation is built through a singular perturbative expansion in var-epsilon=h 1/2 in the frame of the center of the mass of the instanton, where the difference var-phi var-epsilon -var-phi I carries only fluctuations of the instanton form. The relevance of the method is shown for the stochastic K dV equation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, the authors obtain explicit expressions for the first two orders in var-epsilon of the pertrubed instanton of its Green function. Specializing to the Sine-Gordon and var-phi 4 models, the first anaharmonic correction is obtained analytically. The calculation is carried to second order for the var-phi 4 model, showing good convergence. 21 refs., 5 fig

  8. Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...

  9. Periodic solutions of Wick-type stochastic Korteweg–de Vries ...

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... 2Department of Applied Mathematics, Kyung Hee University, Yongin 446-701, Republic of Korea. ∗ ... Abstract. Nonlinear stochastic partial differential equations have a wide range of applications in science and engineering.

  10. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

    Science.gov (United States)

    Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P

    2017-03-01

    The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Stochastic and non-stochastic effects - a conceptual analysis

    International Nuclear Information System (INIS)

    Karhausen, L.R.

    1980-01-01

    The attempt to divide radiation effects into stochastic and non-stochastic effects is discussed. It is argued that radiation or toxicological effects are contingently related to radiation or chemical exposure. Biological effects in general can be described by general laws but these laws never represent a necessary connection. Actually stochastic effects express contingent, or empirical, connections while non-stochastic effects represent semantic and non-factual connections. These two expressions stem from two different levels of discourse. The consequence of this analysis for radiation biology and radiation protection is discussed. (author)

  12. The solution of the neutron point kinetics equation with stochastic extension: an analysis of two moments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard, E-mail: milena.wollmann@ufrgs.br, E-mail: vilhena@mat.ufrgs.br, E-mail: bardobodmann@ufrgs.br, E-mail: richard.vasques@fulbrightmail.org [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2015-07-01

    The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)

  13. The solution of the neutron point kinetics equation with stochastic extension: an analysis of two moments

    International Nuclear Information System (INIS)

    Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard

    2015-01-01

    The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)

  14. A contribution to the systematics of stochastic volatility models

    Czech Academy of Sciences Publication Activity Database

    Slanina, František

    2010-01-01

    Roč. 389, č. 16 (2010), s. 3230-3239 ISSN 0378-4371 R&D Projects: GA MŠk OC09078 Institutional research plan: CEZ:AV0Z10100520 Keywords : fluctuations * econophysics * stochastic differential equations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.521, year: 2010

  15. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  16. A retrodictive stochastic simulation algorithm

    International Nuclear Information System (INIS)

    Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.

    2010-01-01

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  17. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  18. Conference on Stochastic Analysis and Related Topics

    CERN Document Server

    Peterson, Jonathon

    2017-01-01

    The articles in this collection are a sampling of some of the research presented during the conference “Stochastic Analysis and Related Topics”, held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Bañuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Lévy processes, Brownian motion on manifolds, and spin glasses, among other topics.

  19. Conservative diffusions: a constructive approach to Nelson's stochastic mechanics

    International Nuclear Information System (INIS)

    Carlen, E.A.

    1984-01-01

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. Concern here is with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: ''Do the diffusion of stochastic mechanics - which are formally given by stochastic differential equations with extremely singular coefficients - really exist.'' Given that they exist, one can ask, ''Do these diffusions have physically reasonable paths to study the behavior of physical systems.'' These are the questions treated in this thesis. In Chapter 1, stochastic mechanics and diffusion theory are reviewed, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. Chapter II settles the first of the questions raised above. Using PDE methods, the diffusions of stochastic mechanics are constructed. The result is sufficiently general to be of independent mathematical interest. In Chapter III, potential scattering in stochastic mechanics is treated and direct probabilistic methods of studying quantum scattering problems are discussed. The results provide a solid YES in answer to the second question raised above

  20. Differential equations driven by rough paths with jumps

    Science.gov (United States)

    Friz, Peter K.; Zhang, Huilin

    2018-05-01

    We develop the rough path counterpart of Itô stochastic integration and differential equations driven by general semimartingales. This significantly enlarges the classes of (Itô/forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.

  1. Stationary stochastic processes theory and applications

    CERN Document Server

    Lindgren, Georg

    2012-01-01

    Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

  2. The ISI distribution of the stochastic Hodgkin-Huxley neuron.

    Science.gov (United States)

    Rowat, Peter F; Greenwood, Priscilla E

    2014-01-01

    The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.

  3. Stochastic Cell Fate Progression in Embryonic Stem Cells

    Science.gov (United States)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  4. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis

    Directory of Open Access Journals (Sweden)

    Linda J.S. Allen

    2017-05-01

    Full Text Available Some mathematical methods for formulation and numerical simulation of stochastic epidemic models are presented. Specifically, models are formulated for continuous-time Markov chains and stochastic differential equations. Some well-known examples are used for illustration such as an SIR epidemic model and a host-vector malaria model. Analytical methods for approximating the probability of a disease outbreak are also discussed. Keywords: Branching process, Continuous-time Markov chain, Minor outbreak, Stochastic differential equation, 2000 MSC: 60H10, 60J28, 92D30

  5. The stochastic spectator

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Byrnes, Christian T.; Torrado, Jesús, E-mail: robert.hardwick@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: c.byrnes@sussex.ac.uk, E-mail: jesus.torrado@sussex.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-10-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  6. The stochastic spectator

    International Nuclear Information System (INIS)

    Hardwick, Robert J.; Vennin, Vincent; Wands, David; Byrnes, Christian T.; Torrado, Jesús

    2017-01-01

    We study the stochastic distribution of spectator fields predicted in different slow-roll inflation backgrounds. Spectator fields have a negligible energy density during inflation but may play an important dynamical role later, even giving rise to primordial density perturbations within our observational horizon today. During de-Sitter expansion there is an equilibrium solution for the spectator field which is often used to estimate the stochastic distribution during slow-roll inflation. However slow roll only requires that the Hubble rate varies slowly compared to the Hubble time, while the time taken for the stochastic distribution to evolve to the de-Sitter equilibrium solution can be much longer than a Hubble time. We study both chaotic (monomial) and plateau inflaton potentials, with quadratic, quartic and axionic spectator fields. We give an adiabaticity condition for the spectator field distribution to relax to the de-Sitter equilibrium, and find that the de-Sitter approximation is never a reliable estimate for the typical distribution at the end of inflation for a quadratic spectator during monomial inflation. The existence of an adiabatic regime at early times can erase the dependence on initial conditions of the final distribution of field values. In these cases, spectator fields acquire sub-Planckian expectation values. Otherwise spectator fields may acquire much larger field displacements than suggested by the de-Sitter equilibrium solution. We quantify the information about initial conditions that can be obtained from the final field distribution. Our results may have important consequences for the viability of spectator models for the origin of structure, such as the simplest curvaton models.

  7. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    Science.gov (United States)

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  8. Stochastic ontogenetic growth model

    Science.gov (United States)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  9. Stochastic calculus in physics

    International Nuclear Information System (INIS)

    Fox, R.F.

    1987-01-01

    The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations

  10. The stochastic quality calculus

    DEFF Research Database (Denmark)

    Zeng, Kebin; Nielson, Flemming; Nielson, Hanne Riis

    2014-01-01

    We introduce the Stochastic Quality Calculus in order to model and reason about distributed processes that rely on each other in order to achieve their overall behaviour. The calculus supports broadcast communication in a truly concurrent setting. Generally distributed delays are associated...... with the outputs and at the same time the inputs impose constraints on the waiting times. Consequently, the expected inputs may not be available when needed and therefore the calculus allows to express the absence of data.The communication delays are expressed by general distributions and the resulting semantics...

  11. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  12. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  13. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  14. Mean Field Games for Stochastic Growth with Relative Utility

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Minyi, E-mail: mhuang@math.carleton.ca [Carleton University, School of Mathematics and Statistics (Canada); Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu [University of Puerto Rico, Department of Mathematics (United States)

    2016-12-15

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  15. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  16. Stochastic responses of tumor–immune system with periodic treatment

    International Nuclear Information System (INIS)

    Li Dong-Xi; Li Ying

    2017-01-01

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment. Firstly, a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation. Then, sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula. Finally, numerical simulations are introduced to illustrate and verify the results. The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells, especially for combining the immunotherapy and the traditional tools. (paper)

  17. Mean Field Games for Stochastic Growth with Relative Utility

    International Nuclear Information System (INIS)

    Huang, Minyi; Nguyen, Son Luu

    2016-01-01

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  18. Stochastic Optimal Prediction with Application to Averaged Euler Equations

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chorin, Alexandre J. [Univ. of California, Berkeley, CA (United States); Crutchfield, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-24

    Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.

  19. Backward Stochastic H2/H∞ Control: Infinite Horizon Case

    Directory of Open Access Journals (Sweden)

    Zhen Wu

    2014-01-01

    Full Text Available The mixed H2/H∞ control problem is studied for systems governed by infinite horizon backward stochastic differential equations (BSDEs with exogenous disturbance signal. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The equivalent feedback solution is also discussed. Contrary to deterministic or stochastic forward case, the feedback solution is no longer feedback of the current state; rather, it is feedback of the entire history of the state.

  20. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  1. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  2. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  3. Simple stochastic simulation.

    Science.gov (United States)

    Schilstra, Maria J; Martin, Stephen R

    2009-01-01

    Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.

  4. AA, stochastic precooling pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling". In this picture of a precooling pickup, the injection orbit is to the left, the stack orbit to the far right. After several seconds of precooling with the system's kickers (in momentum and in the vertical plane), the precooled antiprotons were transferred, by means of RF, to the stack tail, where they were subjected to further stochastic cooling in momentum and in both transverse planes, until they ended up, deeply cooled, in the stack core. During precooling, a shutter near the central orbit shielded the pickups from the signals emanating from the stack-core, whilst the stack-core was shielded from the violent action of the precooling kickers by a shutter on these. All shutters were opened briefly during transfer of the precooled antiprotons to the stack tail. Here, the shutter is not yet mounted. Precooling pickups and kickers had the same design, except that the kickers had cooling circuits and the pickups had none. Peering th...

  5. Behavioral Stochastic Resonance

    Science.gov (United States)

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  6. Stochastic programming with integer recourse

    NARCIS (Netherlands)

    van der Vlerk, Maarten Hendrikus

    1995-01-01

    In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic

  7. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  8. Stochastic Pi-calculus Revisited

    DEFF Research Database (Denmark)

    Cardelli, Luca; Mardare, Radu Iulian

    2013-01-01

    We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

  9. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  10. Stochastic ferromagnetism analysis and numerics

    CERN Document Server

    Brzezniak, Zdzislaw; Neklyudov, Mikhail; Prohl, Andreas

    2013-01-01

    This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). Comparative computational studies with the stochastic model are included. Constructive tools such as e.g. finite element methods are used to derive the theoretical results, which are then used for computational studies.

  11. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle

    Science.gov (United States)

    Lewis Jordon; Richard F. Daniels; Alexander Clark; Rechun He

    2005-01-01

    Earlywood and latewood microfibril angle (MFA) was determined at I-millimeter intervals from disks at 1.4 meters, then at 3-meter intervals to a height of 13.7 meters, from 18 loblolly pine (Pinus taeda L.) trees grown in southeastern Texas. A modified three-parameter logistic function with mixed effects is used for modeling earlywood and latewood...

  12. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    Science.gov (United States)

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  13. Examples of mixed-effects modeling with crossed random effects and with binomial data

    NARCIS (Netherlands)

    Quené, H.; van den Bergh, H.

    2008-01-01

    Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not

  14. Mixed-effects height–diameter models for ten conifers in the inland ...

    African Journals Online (AJOL)

    To demonstrate the utility of mixed-effects height–diameter models when conducting forest inventories, mixedeffects height–diameter models are presented for several commercially and ecologically important conifers in the inland Northwest of the USA. After obtaining height–diameter measurements from a plot/stand of ...

  15. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  16. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  17. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  18. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  19. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  20. Discrete stochastic analogs of Erlang epidemic models.

    Science.gov (United States)

    Getz, Wayne M; Dougherty, Eric R

    2018-12-01

    Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.