Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-10-01
The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.
Trajectory averaging for stochastic approximation MCMC algorithms
Liang, Faming
2010-01-01
to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic
Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm
Jin, Ick Hoon
2013-10-01
The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Computing gap free Pareto front approximations with stochastic search algorithms.
Schütze, Oliver; Laumanns, Marco; Tantar, Emilia; Coello, Carlos A Coello; Talbi, El-Ghazali
2010-01-01
Recently, a convergence proof of stochastic search algorithms toward finite size Pareto set approximations of continuous multi-objective optimization problems has been given. The focus was on obtaining a finite approximation that captures the entire solution set in some suitable sense, which was defined by the concept of epsilon-dominance. Though bounds on the quality of the limit approximation-which are entirely determined by the archiving strategy and the value of epsilon-have been obtained, the strategies do not guarantee to obtain a gap free approximation of the Pareto front. That is, such approximations A can reveal gaps in the sense that points f in the Pareto front can exist such that the distance of f to any image point F(a), a epsilon A, is "large." Since such gap free approximations are desirable in certain applications, and the related archiving strategies can be advantageous when memetic strategies are included in the search process, we are aiming in this work for such methods. We present two novel strategies that accomplish this task in the probabilistic sense and under mild assumptions on the stochastic search algorithm. In addition to the convergence proofs, we give some numerical results to visualize the behavior of the different archiving strategies. Finally, we demonstrate the potential for a possible hybridization of a given stochastic search algorithm with a particular local search strategy-multi-objective continuation methods-by showing that the concept of epsilon-dominance can be integrated into this approach in a suitable way.
Bounded-Degree Approximations of Stochastic Networks
Energy Technology Data Exchange (ETDEWEB)
Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar
2017-06-01
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Approximation in two-stage stochastic integer programming
W. Romeijnders; L. Stougie (Leen); M. van der Vlerk
2014-01-01
htmlabstractApproximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value.
Approximation in two-stage stochastic integer programming
Romeijnders, W.; Stougie, L.; van der Vlerk, M.H.
2014-01-01
Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value. However,
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung; Liang, Faming
2009-01-01
in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method
DEFF Research Database (Denmark)
Sadegh, Payman
1997-01-01
This paper deals with a projection algorithm for stochastic approximation using simultaneous perturbation gradient approximation for optimization under inequality constraints where no direct gradient of the loss function is available and the inequality constraints are given as explicit functions...... of the optimization parameters. It is shown that, under application of the projection algorithm, the parameter iterate converges almost surely to a Kuhn-Tucker point, The procedure is illustrated by a numerical example, (C) 1997 Elsevier Science Ltd....
Multidimensional stochastic approximation using locally contractive functions
Lawton, W. M.
1975-01-01
A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
Liang, Faming
2014-04-03
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to use this much CPU time. This article proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, for example, a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors. Supplementary materials for this article are available online.
Directory of Open Access Journals (Sweden)
Liu Yang
2017-01-01
Full Text Available We construct a new two-stage stochastic model of supply chain with multiple factories and distributors for perishable product. By introducing a second-order stochastic dominance (SSD constraint, we can describe the preference consistency of the risk taker while minimizing the expected cost of company. To solve this problem, we convert it into a one-stage stochastic model equivalently; then we use sample average approximation (SAA method to approximate the expected values of the underlying random functions. A smoothing approach is proposed with which we can get the global solution and avoid introducing new variables and constraints. Meanwhile, we investigate the convergence of an optimal value from solving the transformed model and show that, with probability approaching one at exponential rate, the optimal value converges to its counterpart as the sample size increases. Numerical results show the effectiveness of the proposed algorithm and analysis.
Annealing evolutionary stochastic approximation Monte Carlo for global optimization
Liang, Faming
2010-04-08
In this paper, we propose a new algorithm, the so-called annealing evolutionary stochastic approximation Monte Carlo (AESAMC) algorithm as a general optimization technique, and study its convergence. AESAMC possesses a self-adjusting mechanism, whose target distribution can be adapted at each iteration according to the current samples. Thus, AESAMC falls into the class of adaptive Monte Carlo methods. This mechanism also makes AESAMC less trapped by local energy minima than nonadaptive MCMC algorithms. Under mild conditions, we show that AESAMC can converge weakly toward a neighboring set of global minima in the space of energy. AESAMC is tested on multiple optimization problems. The numerical results indicate that AESAMC can potentially outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.
Annealing evolutionary stochastic approximation Monte Carlo for global optimization
Liang, Faming
2010-01-01
outperform simulated annealing, the genetic algorithm, annealing stochastic approximation Monte Carlo, and some other metaheuristics in function optimization. © 2010 Springer Science+Business Media, LLC.
Directory of Open Access Journals (Sweden)
Giorgos Minas
2017-07-01
Full Text Available In order to analyse large complex stochastic dynamical models such as those studied in systems biology there is currently a great need for both analytical tools and also algorithms for accurate and fast simulation and estimation. We present a new stochastic approximation of biological oscillators that addresses these needs. Our method, called phase-corrected LNA (pcLNA overcomes the main limitations of the standard Linear Noise Approximation (LNA to remain uniformly accurate for long times, still maintaining the speed and analytically tractability of the LNA. As part of this, we develop analytical expressions for key probability distributions and associated quantities, such as the Fisher Information Matrix and Kullback-Leibler divergence and we introduce a new approach to system-global sensitivity analysis. We also present algorithms for statistical inference and for long-term simulation of oscillating systems that are shown to be as accurate but much faster than leaping algorithms and algorithms for integration of diffusion equations. Stochastic versions of published models of the circadian clock and NF-κB system are used to illustrate our results.
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-01-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration
Stochastic split determinant algorithms
International Nuclear Information System (INIS)
Horvatha, Ivan
2000-01-01
I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
Cheon, Sooyoung
2013-02-16
Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.
Cheon, Sooyoung; Liang, Faming; Chen, Yuguo; Yu, Kai
2013-01-01
Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.
Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods
Bhatnagar, S; Prashanth, L A
2013-01-01
Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...
D-leaping: Accelerating stochastic simulation algorithms for reactions with delays
International Nuclear Information System (INIS)
Bayati, Basil; Chatelain, Philippe; Koumoutsakos, Petros
2009-01-01
We propose a novel, accelerated algorithm for the approximate stochastic simulation of biochemical systems with delays. The present work extends existing accelerated algorithms by distributing, in a time adaptive fashion, the delayed reactions so as to minimize the computational effort while preserving their accuracy. The accuracy of the present algorithm is assessed by comparing its results to those of the corresponding delay differential equations for a representative biochemical system. In addition, the fluctuations produced from the present algorithm are comparable to those from an exact stochastic simulation with delays. The algorithm is used to simulate biochemical systems that model oscillatory gene expression. The results indicate that the present algorithm is competitive with existing works for several benchmark problems while it is orders of magnitude faster for certain systems of biochemical reactions.
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung
2009-11-01
Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.
The theory of hybrid stochastic algorithms
International Nuclear Information System (INIS)
Kennedy, A.D.
1989-01-01
These lectures introduce the family of Hybrid Stochastic Algorithms for performing Monte Carlo calculations in Quantum Field Theory. After explaining the basic concepts of Monte Carlo integration we discuss the properties of Markov processes and one particularly useful example of them: the Metropolis algorithm. Building upon this framework we consider the Hybrid and Langevin algorithms from the viewpoint that they are approximate versions of the Hybrid Monte Carlo method; and thus we are led to consider Molecular Dynamics using the Leapfrog algorithm. The lectures conclude by reviewing recent progress in these areas, explaining higher-order integration schemes, the asymptotic large-volume behaviour of the various algorithms, and some simple exact results obtained by applying them to free field theory. It is attempted throughout to give simple yet correct proofs of the various results encountered. 38 refs
Approximating Preemptive Stochastic Scheduling
Megow Nicole; Vredeveld Tjark
2009-01-01
We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Yin, George; Wang, Le Yi; Zhang, Hongwei
2014-01-01
Stochastic approximation methods have found extensive and diversified applications. Recent emergence of networked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a general framework to support algorithm development for information processing and decisions in such systems. This paper presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct features of networked systems with randomly switching topologies, dynamically evolving parameters, and unknown delays are presented, and control strategies are provided
Approximative solutions of stochastic optimization problem
Czech Academy of Sciences Publication Activity Database
Lachout, Petr
2010-01-01
Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf
Liu Yang; Yao Xiong; Xiao-jiao Tong
2017-01-01
We construct a new two-stage stochastic model of supply chain with multiple factories and distributors for perishable product. By introducing a second-order stochastic dominance (SSD) constraint, we can describe the preference consistency of the risk taker while minimizing the expected cost of company. To solve this problem, we convert it into a one-stage stochastic model equivalently; then we use sample average approximation (SAA) method to approximate the expected values of the underlying r...
A retrodictive stochastic simulation algorithm
International Nuclear Information System (INIS)
Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.
2010-01-01
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
Approximation algorithms for facility location problems with discrete subadditive cost functions
Gabor, A.F.; van Ommeren, Jan C.W.
2005-01-01
In this article we focus on approximation algorithms for facility location problems with subadditive costs. As examples of such problems, we present two facility location problems with stochastic demand and exponential servers, respectively inventory. We present a $(1+\\epsilon,1)$- reduction of the
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This is the second part of a work dealing with key issues that have not been addressed in the modeling and numerical optimization of nonlinear stochastic delay systems. We consider new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. Part I was concerned with issues concerning the class of admissible controls and their approximations, since the classical definitions are inadequate for our models. This part is concerned with transportation equation representations and their approximations. Such representations of nonlinear stochastic delay models have been crucial in the development of numerical algorithms with much reduced memory and computational requirements. The representations for the new models are not obvious and are developed. They also provide a template for the adaptation of the Markov chain approximation numerical methods.
GillespieSSA: Implementing the Gillespie Stochastic Simulation Algorithm in R
Directory of Open Access Journals (Sweden)
Mario Pineda-Krch
2008-02-01
Full Text Available The deterministic dynamics of populations in continuous time are traditionally described using coupled, first-order ordinary differential equations. While this approach is accurate for large systems, it is often inadequate for small systems where key species may be present in small numbers or where key reactions occur at a low rate. The Gillespie stochastic simulation algorithm (SSA is a procedure for generating time-evolution trajectories of finite populations in continuous time and has become the standard algorithm for these types of stochastic models. This article presents a simple-to-use and flexible framework for implementing the SSA using the high-level statistical computing language R and the package GillespieSSA. Using three ecological models as examples (logistic growth, Rosenzweig-MacArthur predator-prey model, and Kermack-McKendrick SIRS metapopulation model, this paper shows how a deterministic model can be formulated as a finite-population stochastic model within the framework of SSA theory and how it can be implemented in R. Simulations of the stochastic models are performed using four different SSA Monte Carlo methods: one exact method (Gillespie's direct method; and three approximate methods (explicit, binomial, and optimized tau-leap methods. Comparison of simulation results confirms that while the time-evolution trajectories obtained from the different SSA methods are indistinguishable, the approximate methods are up to four orders of magnitude faster than the exact methods.
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Approximate models for broken clouds in stochastic radiative transfer theory
International Nuclear Information System (INIS)
Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas
2014-01-01
This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models
Stochastic reaction-diffusion algorithms for macromolecular crowding
Sturrock, Marc
2016-06-01
Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2015-05-15
The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.
Exact Algorithms for Solving Stochastic Games
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels
2012-01-01
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....
Simultaneous perturbation stochastic approximation for tidal models
Altaf, M.U.
2011-05-12
The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.
Simultaneous perturbation stochastic approximation for tidal models
Altaf, M.U.; Heemink, A.W.; Verlaan, M.; Hoteit, Ibrahim
2011-01-01
The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.
Fast stochastic algorithm for simulating evolutionary population dynamics
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
Gabor, Adriana F.; van Ommeren, Jan C.W.
2006-01-01
In this article we focus on approximation algorithms for facility location problems with subadditive costs. As examples of such problems, we present three facility location problems with stochastic demand and exponential servers, respectively inventory. We present a $(1+\\varepsilon, 1)$-reduction of
Universal resources for approximate and stochastic measurement-based quantum computation
International Nuclear Information System (INIS)
Mora, Caterina E.; Piani, Marco; Miyake, Akimasa; Van den Nest, Maarten; Duer, Wolfgang; Briegel, Hans J.
2010-01-01
We investigate which quantum states can serve as universal resources for approximate and stochastic measurement-based quantum computation in the sense that any quantum state can be generated from a given resource by means of single-qubit (local) operations assisted by classical communication. More precisely, we consider the approximate and stochastic generation of states, resulting, for example, from a restriction to finite measurement settings or from possible imperfections in the resources or local operations. We show that entanglement-based criteria for universality obtained in M. Van den Nest et al. [New J. Phys. 9, 204 (2007)] for the exact, deterministic case can be lifted to the much more general approximate, stochastic case. This allows us to move from the idealized situation (exact, deterministic universality) considered in previous works to the practically relevant context of nonperfect state preparation. We find that any entanglement measure fulfilling some basic requirements needs to reach its maximum value on some element of an approximate, stochastic universal family of resource states, as the resource size grows. This allows us to rule out various families of states as being approximate, stochastic universal. We prove that approximate, stochastic universality is in general a weaker requirement than deterministic, exact universality and provide resources that are efficient approximate universal, but not exact deterministic universal. We also study the robustness of universal resources for measurement-based quantum computation under realistic assumptions about the (imperfect) generation and manipulation of entangled states, giving an explicit expression for the impact that errors made in the preparation of the resource have on the possibility to use it for universal approximate and stochastic state preparation. Finally, we discuss the relation between our entanglement-based criteria and recent results regarding the uselessness of states with a high
International Nuclear Information System (INIS)
Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George
2016-01-01
The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.
Stochastic quantization and mean field approximation
International Nuclear Information System (INIS)
Jengo, R.; Parga, N.
1983-09-01
In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)
Gabor, A.F.; Ommeren, van J.C.W.
2006-01-01
In this article we focus on approximation algorithms for facility location problems with subadditive costs. As examples of such problems, we present three facility location problems with stochastic demand and exponential servers, respectively inventory. We present a (1+e,1)-reduction of the facility
An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks
Bayer, Christian
2016-01-06
In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce an efficient two-phase algorithm in which the first phase is deterministic and it is intended to provide a starting point for the second phase which is the Monte Carlo EM Algorithm.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions
Kraft, M
2003-01-01
We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.
On benchmarking Stochastic Global Optimization Algorithms
Hendrix, E.M.T.; Lancinskas, A.
2015-01-01
A multitude of heuristic stochastic optimization algorithms have been described in literature to obtain good solutions of the box-constrained global optimization problem often with a limit on the number of used function evaluations. In the larger question of which algorithms behave well on which
Essays on variational approximation techniques for stochastic optimization problems
Deride Silva, Julio A.
This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Directory of Open Access Journals (Sweden)
Eman Ali Hussain
2015-01-01
Full Text Available Absract In this project A new method for solving Stochastic Differential Equations SDEs deriving by Wiener process numerically will be construct and implement using Accelerated Genetic Algorithm AGA. An SDE is a differential equation in which one or more of the terms and hence the solutions itself is a stochastic process. Solving stochastic differential equations requires going away from the recognizable deterministic setting of ordinary and partial differential equations into a world where the evolution of a quantity has an inherent random component and where the expected behavior of this quantity can be described in terms of probability distributions. We applied our method on the Ito formula which is equivalent to the SDE to find approximation solution of the SDEs. Numerical experiments illustrate the behavior of the proposed method.
The Forward-Reverse Algorithm for Stochastic Reaction Networks
Bayer, Christian
2015-01-07
In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.
Vilanova, Pedro
2016-01-07
In this work, we present an extension of the forward-reverse representation introduced in Simulation of forward-reverse stochastic representations for conditional diffusions , a 2014 paper by Bayer and Schoenmakers to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, i.e., SRNs conditional on their values in the extremes of given time-intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the Expectation-Maximization algorithm to the phase I output. By selecting a set of over-dispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.
The theory of hybrid stochastic algorithms
International Nuclear Information System (INIS)
Duane, S.; Kogut, J.B.
1986-01-01
The theory of hybrid stochastic algorithms is developed. A generalized Fokker-Planck equation is derived and is used to prove that the correct equilibrium distribution is generated by the algorithm. Systematic errors following from the discrete time-step used in the numerical implementation of the scheme are computed. Hybrid algorithms which simulate lattice gauge theory with dynamical fermions are presented. They are optimized in computer simulations and their systematic errors and efficiencies are studied. (orig.)
Exact and Approximate Stochastic Simulation of Intracellular Calcium Dynamics
Directory of Open Access Journals (Sweden)
Nicolas Wieder
2011-01-01
pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.
Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
Chkifa, Abdellah
2012-11-29
The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations can be simultaneously approximated in the Hilbert space V = H0 1(D) by multivariate sparse polynomials in the parameter vector y with a controlled number N of terms. The convergence rate in terms of N does not depend on the number of parameters in V, which may be arbitrarily large or countably infinite, thereby breaking the curse of dimensionality. However, these approximation results do not describe the concrete construction of these polynomial expansions, and should therefore rather be viewed as benchmark for the convergence analysis of numerical methods. The present paper presents an adaptive numerical algorithm for constructing a sequence of sparse polynomials that is proved to converge toward the solution with the optimal benchmark rate. Numerical experiments are presented in large parameter dimension, which confirm the effectiveness of the adaptive approach. © 2012 EDP Sciences, SMAI.
Wang, Xiaohu; Lu, Kening; Wang, Bixiang
2018-01-01
In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
Symmetries of th-Order Approximate Stochastic Ordinary Differential Equations
Fredericks, E.; Mahomed, F. M.
2012-01-01
Symmetries of $n$ th-order approximate stochastic ordinary differential equations (SODEs) are studied. The determining equations of these SODEs are derived in an Itô calculus context. These determining equations are not stochastic in nature. SODEs are normally used to model nature (e.g., earthquakes) or for testing the safety and reliability of models in construction engineering when looking at the impact of random perturbations.
COOMA: AN OBJECT-ORIENTED STOCHASTIC OPTIMIZATION ALGORITHM
Directory of Open Access Journals (Sweden)
Stanislav Alexandrovich Tavridovich
2017-09-01
Full Text Available Stochastic optimization methods such as genetic algorithm, particle swarm optimization algorithm, and others are successfully used to solve optimization problems. They are all based on similar ideas and need minimal adaptation when being implemented. But several factors complicate the application of stochastic search methods in practice: multimodality of the objective function, optimization with constraints, finding the best parameter configuration of the algorithm, the increasing of the searching space, etc. This paper proposes a new Cascade Object Optimization and Modification Algorithm (COOMA which develops the best ideas of known stochastic optimization methods and can be applied to a wide variety of real-world problems described in the terms of object-oriented models with practically any types of parameters, variables, and associations between objects. The objects of different classes are organized in pools and pools form the hierarchical structure according to the associations between classes. The algorithm is also executed according to the pool structure: the methods of the upper-level pools before changing their objects call the analogous methods of all their subpools. The algorithm starts with initialization step and then passes through a number of iterations during which the objects are modified until the stop criteria are satisfied. The objects are modified using movement, replication and mutation operations. Two-level version of COOMA realizes a built-in self-adaptive mechanism. The optimization statistics for a number of test problems shows that COOMA is able to solve multi-level problems (with objects of different associated classes, problems with multimodal fitness functions and systems of constraints. COOMA source code on Java is available on request.
Improved stochastic approximation methods for discretized parabolic partial differential equations
Guiaş, Flavius
2016-12-01
We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).
Approximation and inference methods for stochastic biochemical kinetics—a tutorial review
International Nuclear Information System (INIS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2017-01-01
Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics. (topical review)
Finite approximations in discrete-time stochastic control quantized models and asymptotic optimality
Saldi, Naci; Yüksel, Serdar
2018-01-01
In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original mo...
Directory of Open Access Journals (Sweden)
Mourad Kerboua
2014-12-01
Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.
Simulation of anaerobic digestion processes using stochastic algorithm.
Palanichamy, Jegathambal; Palani, Sundarambal
2014-01-01
The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.
Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions
International Nuclear Information System (INIS)
Goreac, D.
2009-01-01
The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (Stochastic Partial Differential Equations and Applications, Series of Lecture Notes in Pure and Appl. Math., vol. 245, pp. 253-260, Chapman and Hall, London, 2006) and Goreac (Applied Analysis and Differential Equations, pp. 153-164, World Scientific, Singapore, 2007) from the finite dimensional to the infinite dimensional case
Comparison of different moment-closure approximations for stochastic chemical kinetics
Energy Technology Data Exchange (ETDEWEB)
Schnoerr, David [School of Biological Sciences, University of Edinburgh, Edinburgh (United Kingdom); School of Informatics, University of Edinburgh, Edinburgh (United Kingdom); Sanguinetti, Guido [School of Informatics, University of Edinburgh, Edinburgh (United Kingdom); Grima, Ramon [School of Biological Sciences, University of Edinburgh, Edinburgh (United Kingdom)
2015-11-14
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.
A note on continuous-time stochastic approximation in infinite dimensions
Czech Academy of Sciences Publication Activity Database
Seidler, Jan; Žák, F.
2017-01-01
Roč. 22, č. 1 (2017), č. článku 36. ISSN 1083-589X R&D Projects: GA ČR(CZ) GA15-08819S Institutional support: RVO:67985556 Keywords : stochastic approximation * stochastic parabolic problems * variational solutions Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 0.416, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/seidler-0475647.pdf
Bayer, Christian
2016-02-20
© 2016 Taylor & Francis Group, LLC. ABSTRACT: In this work, we present an extension of the forward–reverse representation introduced by Bayer and Schoenmakers (Annals of Applied Probability, 24(5):1994–2032, 2014) to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, that is, SRNs conditional on their values in the extremes of given time intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the expectation-maximization algorithm to the phase I output. By selecting a set of overdispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Two new algorithms to combine kriging with stochastic modelling
Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens
2010-05-01
Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Modelling and application of stochastic processes
1986-01-01
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...
International Nuclear Information System (INIS)
Caraballo, T.; Kloeden, P.E.
2006-01-01
Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions
Yosida approximations of stochastic differential equations in infinite dimensions and applications
Govindan, T E
2016-01-01
This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussi...
Unit Stratified Sampling as a Tool for Approximation of Stochastic Optimization Problems
Czech Academy of Sciences Publication Activity Database
Šmíd, Martin
2012-01-01
Roč. 19, č. 30 (2012), s. 153-169 ISSN 1212-074X R&D Projects: GA ČR GAP402/11/0150; GA ČR GAP402/10/0956; GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : Stochastic programming * approximation * stratified sampling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/smid-unit stratified sampling as a tool for approximation of stochastic optimization problems.pdf
Hutzenthaler, Martin
2015-01-01
Many stochastic differential equations (SDEs) in the literature have a superlinearly growing nonlinearity in their drift or diffusion coefficient. Unfortunately, moments of the computationally efficient Euler-Maruyama approximation method diverge for these SDEs in finite time. This article develops a general theory based on rare events for studying integrability properties such as moment bounds for discrete-time stochastic processes. Using this approach, the authors establish moment bounds for fully and partially drift-implicit Euler methods and for a class of new explicit approximation method
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-07
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Hierarchical low-rank approximation for high dimensional approximation
Nouy, Anthony
2016-01-01
Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.
Approximation algorithms for guarding holey polygons ...
African Journals Online (AJOL)
Guarding edges of polygons is a version of art gallery problem.The goal is finding the minimum number of guards to cover the edges of a polygon. This problem is NP-hard, and to our knowledge there are approximation algorithms just for simple polygons. In this paper we present two approximation algorithms for guarding ...
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Richtarik, Peter; Taká č, Martin
2017-01-01
We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.
Stochastic Reformulations of Linear Systems: Algorithms and Convergence Theory
Richtarik, Peter
2017-06-04
We develop a family of reformulations of an arbitrary consistent linear system into a stochastic problem. The reformulations are governed by two user-defined parameters: a positive definite matrix defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our reformulation has several equivalent interpretations, allowing for researchers from various communities to leverage their domain specific insights. In particular, our reformulation can be equivalently seen as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for the reformulation to be exact. Further, we propose and analyze three stochastic algorithms for solving the reformulated problem---basic, parallel and accelerated methods---with global linear convergence rates. The rates can be interpreted as condition numbers of a matrix which depends on the system matrix and on the reformulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning, and which refers to the problem of finding parameters (matrix and distribution) leading to a sufficiently small condition number. Our basic method can be equivalently interpreted as stochastic gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied to the reformulations.
The Forward-Reverse Algorithm for Stochastic Reaction Networks
Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro
2015-01-01
In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem
Application of third order stochastic dominance algorithm in investments ranking
Directory of Open Access Journals (Sweden)
Lončar Sanja
2012-01-01
Full Text Available The paper presents the use of third order stochastic dominance in ranking Investment alternatives, using TSD algorithms (Levy, 2006for testing third order stochastic dominance. The main goal of using TSD rule is minimization of efficient investment set for investor with risk aversion, who prefers more money and likes positive skew ness.
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
Energy Technology Data Exchange (ETDEWEB)
Xiu, Dongbin [Univ. of Utah, Salt Lake City, UT (United States)
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
Directory of Open Access Journals (Sweden)
Meili Li
2015-01-01
Full Text Available The approximate controllability of semilinear neutral stochastic integrodifferential inclusions with infinite delay in an abstract space is studied. Sufficient conditions are established for the approximate controllability. The results are obtained by using the theory of analytic resolvent operator, the fractional power theory, and the theorem of nonlinear alternative for Kakutani maps. Finally, an example is provided to illustrate the theory.
Low Rank Approximation Algorithms, Implementation, Applications
Markovsky, Ivan
2012-01-01
Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...
Approximate Computing Techniques for Iterative Graph Algorithms
Energy Technology Data Exchange (ETDEWEB)
Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram
2017-12-18
Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul
2014-01-01
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
International Nuclear Information System (INIS)
Franke, B.C.; Kensek, R.P.; Prinja, A.K.
2013-01-01
Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)
Algorithmic detectability threshold of the stochastic block model
Kawamoto, Tatsuro
2018-03-01
The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.
Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.
Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation
International Nuclear Information System (INIS)
Devooght, J.; Smidts, O.F.
1996-01-01
A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)
A Volterra series approach to the approximation of stochastic nonlinear dynamics
Wouw, van de N.; Nijmeijer, H.; Campen, van D.H.
2002-01-01
A response approximation method for stochastically excited, nonlinear, dynamic systems is presented. Herein, the output of the nonlinear system isapproximated by a finite-order Volterra series. The original nonlinear system is replaced by a bilinear system in order to determine the kernels of this
Directory of Open Access Journals (Sweden)
Wang Yajun
2008-12-01
Full Text Available In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM based on the harmonious finite element (HFE technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
Stochastic process variation in deep-submicron CMOS circuits and algorithms
Zjajo, Amir
2014-01-01
One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and ne...
Structural factoring approach for analyzing stochastic networks
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Stochastic Averaging and Stochastic Extremum Seeking
Liu, Shu-Jun
2012-01-01
Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering and analysis of bacterial convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...
A Resampling-Based Stochastic Approximation Method for Analysis of Large Geostatistical Data
Liang, Faming; Cheng, Yichen; Song, Qifan; Park, Jincheol; Yang, Ping
2013-01-01
large number of observations. This article proposes a resampling-based stochastic approximation method to address this challenge. At each iteration of the proposed method, a small subsample is drawn from the full dataset, and then the current estimate
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim; Tempone, Raul; Nobile, Fabio; Tamellini, Lorenzo
2012-01-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim
2012-09-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
A constrained approach to multiscale stochastic simulation of chemically reacting systems
Cotter, Simon L.
2011-01-01
Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems. © 2011 American Institute of Physics.
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2011-11-01
It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.
Algorithm for the Stochastic Generalized Transportation Problem
Directory of Open Access Journals (Sweden)
Marcin Anholcer
2012-01-01
Full Text Available The equalization method for the stochastic generalized transportation problem has been presented. The algorithm allows us to find the optimal solution to the problem of minimizing the expected total cost in the generalized transportation problem with random demand. After a short introduction and literature review, the algorithm is presented. It is a version of the method proposed by the author for the nonlinear generalized transportation problem. It is shown that this version of the method generates a sequence of solutions convergent to the KKT point. This guarantees the global optimality of the obtained solution, as the expected cost functions are convex and twice differentiable. The computational experiments performed for test problems of reasonable size show that the method is fast. (original abstract
Lorig, Matthew; Sircar, Ronnie
2015-01-01
We study the finite horizon Merton portfolio optimization problem in a general local-stochastic volatility setting. Using model coefficient expansion techniques, we derive approximations for the both the value function and the optimal investment strategy. We also analyze the `implied Sharpe ratio' and derive a series approximation for this quantity. The zeroth-order approximation of the value function and optimal investment strategy correspond to those obtained by Merton (1969) when the risky...
Local Approximation and Hierarchical Methods for Stochastic Optimization
Cheng, Bolong
In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the
Energy Technology Data Exchange (ETDEWEB)
Liu, Yunlong; Wang, Aiping; Guo, Lei; Wang, Hong
2017-07-09
This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.
Stochastic geometry, spatial statistics and random fields models and algorithms
2015-01-01
Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.
Stochastic quasi-gradient based optimization algorithms for dynamic reliability applications
International Nuclear Information System (INIS)
Bourgeois, F.; Labeau, P.E.
2001-01-01
On one hand, PSA results are increasingly used in decision making, system management and optimization of system design. On the other hand, when severe accidental transients are considered, dynamic reliability appears appropriate to account for the complex interaction between the transitions between hardware configurations, the operator behavior and the dynamic evolution of the system. This paper presents an exploratory work in which the estimation of the system unreliability in a dynamic context is coupled with an optimization algorithm to determine the 'best' safety policy. Because some reliability parameters are likely to be distributed, the cost function to be minimized turns out to be a random variable. Stochastic programming techniques are therefore envisioned to determine an optimal strategy. Monte Carlo simulation is used at all stages of the computations, from the estimation of the system unreliability to that of the stochastic quasi-gradient. The optimization algorithm is illustrated on a HNO 3 supply system
Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates
Directory of Open Access Journals (Sweden)
Marcus C. Christiansen
2013-10-01
Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.
Groenwold, A.A.; Wood, D.W.; Etman, L.F.P.; Tosserams, S.
2009-01-01
We implement and test a globally convergent sequential approximate optimization algorithm based on (convexified) diagonal quadratic approximations. The algorithm resides in the class of globally convergent optimization methods based on conservative convex separable approximations developed by
Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm
Directory of Open Access Journals (Sweden)
Zhengyu Duan
2015-11-01
Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik
2014-01-01
This paper presents a decomposition algorithm for solving the optimal control problem (OCP) that arises in Mean-Variance Economic Model Predictive Control of stochastic linear systems. The algorithm applies the alternating direction method of multipliers to a reformulation of the OCP...
A faster 1.375-approximation algorithm for sorting by transpositions.
Cunha, Luís Felipe I; Kowada, Luis Antonio B; Hausen, Rodrigo de A; de Figueiredo, Celina M H
2015-11-01
Sorting by Transpositions is an NP-hard problem for which several polynomial-time approximation algorithms have been developed. Hartman and Shamir (2006) developed a 1.5-approximation [Formula: see text] algorithm, whose running time was improved to O(nlogn) by Feng and Zhu (2007) with a data structure they defined, the permutation tree. Elias and Hartman (2006) developed a 1.375-approximation O(n(2)) algorithm, and Firoz et al. (2011) claimed an improvement to the running time, from O(n(2)) to O(nlogn), by using the permutation tree. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them. In addition, we propose a 1.375-approximation algorithm, modifying Elias and Hartman's approach with the use of permutation trees and achieving O(nlogn) time.
Improved algorithms for approximate string matching (extended abstract
Directory of Open Access Journals (Sweden)
Papamichail Georgios
2009-01-01
Full Text Available Abstract Background The problem of approximate string matching is important in many different areas such as computational biology, text processing and pattern recognition. A great effort has been made to design efficient algorithms addressing several variants of the problem, including comparison of two strings, approximate pattern identification in a string or calculation of the longest common subsequence that two strings share. Results We designed an output sensitive algorithm solving the edit distance problem between two strings of lengths n and m respectively in time O((s - |n - m|·min(m, n, s + m + n and linear space, where s is the edit distance between the two strings. This worst-case time bound sets the quadratic factor of the algorithm independent of the longest string length and improves existing theoretical bounds for this problem. The implementation of our algorithm also excels in practice, especially in cases where the two strings compared differ significantly in length. Conclusion We have provided the design, analysis and implementation of a new algorithm for calculating the edit distance of two strings with both theoretical and practical implications. Source code of our algorithm is available online.
Stochastic vehicle routing with recourse
DEFF Research Database (Denmark)
Gørtz, Inge Li; Nagarajan, Viswanath; Saket, Rishi
2012-01-01
instantiations, a recourse route is computed - but costs here become more expensive by a factor λ. We present an O(log2n ·log(nλ))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular...
Numerical methods for stochastic partial differential equations with white noise
Zhang, Zhongqiang
2017-01-01
This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...
Sparse Learning with Stochastic Composite Optimization.
Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei
2017-06-01
In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).
On the relationship between Gaussian stochastic blockmodels and label propagation algorithms
International Nuclear Information System (INIS)
Zhang, Junhao; Hu, Junfeng; Chen, Tongfei
2015-01-01
The problem of community detection has received great attention in recent years. Many methods have been proposed to discover communities in networks. In this paper, we propose a Gaussian stochastic blockmodel that uses Gaussian distributions to fit weight of edges in networks for non-overlapping community detection. The maximum likelihood estimation of this model has the same objective function as general label propagation with node preference. The node preference of a specific vertex turns out to be a value proportional to the intra-community eigenvector centrality (the corresponding entry in principal eigenvector of the adjacency matrix of the subgraph inside that vertex's community) under maximum likelihood estimation. Additionally, the maximum likelihood estimation of a constrained version of our model is highly related to another extension of the label propagation algorithm, namely, the label propagation algorithm under constraint. Experiments show that the proposed Gaussian stochastic blockmodel performs well on various benchmark networks. (paper)
Weighted Flow Algorithms (WFA) for stochastic particle coagulation
International Nuclear Information System (INIS)
DeVille, R.E.L.; Riemer, N.; West, M.
2011-01-01
Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.
Weighted Flow Algorithms (WFA) for stochastic particle coagulation
DeVille, R. E. L.; Riemer, N.; West, M.
2011-09-01
Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.
Dynamic and stochastic multi-project planning
Melchiors, Philipp
2015-01-01
This book deals with dynamic and stochastic methods for multi-project planning. Based on the idea of using queueing networks for the analysis of dynamic-stochastic multi-project environments this book addresses two problems: detailed scheduling of project activities, and integrated order acceptance and capacity planning. In an extensive simulation study, the book thoroughly investigates existing scheduling policies. To obtain optimal and near optimal scheduling policies new models and algorithms are proposed based on the theory of Markov decision processes and Approximate Dynamic programming.
Bonus algorithm for large scale stochastic nonlinear programming problems
Diwekar, Urmila
2015-01-01
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...
Picard Approximation of Stochastic Differential Equations and Application to LIBOR Models
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
The aim of this work is to provide fast and accurate approximation schemes for the Monte Carlo pricing of derivatives in LIBOR market models. Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods are generally slow. Our...... exponential to quadratic using truncated expansions of the product terms. We include numerical illustrations of the accuracy and speed of our method pricing caplets, swaptions and forward rate agreements....
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application
Chambolle, Antonin; Ehrhardt, Matthias J.; Richtarik, Peter; Schö nlieb, Carola-Bibiane
2017-01-01
We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application
Chambolle, Antonin
2017-06-15
We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.
An Improved Direction Finding Algorithm Based on Toeplitz Approximation
Directory of Open Access Journals (Sweden)
Qing Wang
2013-01-01
Full Text Available In this paper, a novel direction of arrival (DOA estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.
A Pumping Algorithm for Ergodic Stochastic Mean Payoff Games with Perfect Information
Boros, Endre; Elbassioni, Khaled; Gurvich, Vladimir; Makino, Kazuhisa
In this paper, we consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph G = (V = V B ∪ V W ∪ V R , E), with local rewards r: E to { R}, and three types of vertices: black V B , white V W , and random V R . The game is played by two players, White and Black: When the play is at a white (black) vertex v, White (Black) selects an outgoing arc (v,u). When the play is at a random vertex v, a vertex u is picked with the given probability p(v,u). In all cases, Black pays White the value r(v,u). The play continues forever, and White aims to maximize (Black aims to minimize) the limiting mean (that is, average) payoff. It was recently shown in [7] that BWR-games are polynomially equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic games, simple stochastic games (SSG's), stochastic parity games, and Markov decision processes. In this paper, we give a new algorithm for solving BWR-games in the ergodic case, that is when the optimal values do not depend on the initial position. Our algorithm solves a BWR-game by reducing it, using a potential transformation, to a canonical form in which the optimal strategies of both players and the value for every initial position are obvious, since a locally optimal move in it is optimal in the whole game. We show that this algorithm is pseudo-polynomial when the number of random nodes is constant. We also provide an almost matching lower bound on its running time, and show that this bound holds for a wider class of algorithms. Let us add that the general (non-ergodic) case is at least as hard as SSG's, for which no pseudo-polynomial algorithm is known.
Nakayama, Hiromasa
2006-01-01
We give an algorithm to compute the local $b$ function. In this algorithm, we use the Mora division algorithm in the ring of differential operators and an approximate division algorithm in the ring of differential operators with power series coefficient.
National Research Council Canada - National Science Library
Frazier, John; Chusak, Yaroslav; Foy, Brent
2008-01-01
.... The software uses either exact or approximate stochastic simulation algorithms for generating Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks...
An inductive algorithm for smooth approximation of functions
International Nuclear Information System (INIS)
Kupenova, T.N.
2011-01-01
An inductive algorithm is presented for smooth approximation of functions, based on the Tikhonov regularization method and applied to a specific kind of the Tikhonov parametric functional. The discrepancy principle is used for estimation of the regularization parameter. The principle of heuristic self-organization is applied for assessment of some parameters of the approximating function
Efficient AM Algorithms for Stochastic ML Estimation of DOA
Directory of Open Access Journals (Sweden)
Haihua Chen
2016-01-01
Full Text Available The estimation of direction-of-arrival (DOA of signals is a basic and important problem in sensor array signal processing. To solve this problem, many algorithms have been proposed, among which the Stochastic Maximum Likelihood (SML is one of the most concerned algorithms because of its high accuracy of DOA. However, the estimation of SML generally involves the multidimensional nonlinear optimization problem. As a result, its computational complexity is rather high. This paper addresses the issue of reducing computational complexity of SML estimation of DOA based on the Alternating Minimization (AM algorithm. We have the following two contributions. First using transformation of matrix and properties of spatial projection, we propose an efficient AM (EAM algorithm by dividing the SML criterion into two components. One depends on a single variable parameter while the other does not. Second when the array is a uniform linear array, we get the irreducible form of the EAM criterion (IAM using polynomial forms. Simulation results show that both EAM and IAM can reduce the computational complexity of SML estimation greatly, while IAM is the best. Another advantage of IAM is that this algorithm can avoid the numerical instability problem which may happen in AM and EAM algorithms when more than one parameter converges to an identical value.
Approximate Dual Averaging Method for Multiagent Saddle-Point Problems with Stochastic Subgradients
Directory of Open Access Journals (Sweden)
Deming Yuan
2014-01-01
Full Text Available This paper considers the problem of solving the saddle-point problem over a network, which consists of multiple interacting agents. The global objective function of the problem is a combination of local convex-concave functions, each of which is only available to one agent. Our main focus is on the case where the projection steps are calculated approximately and the subgradients are corrupted by some stochastic noises. We propose an approximate version of the standard dual averaging method and show that the standard convergence rate is preserved, provided that the projection errors decrease at some appropriate rate and the noises are zero-mean and have bounded variance.
Dentate Gyrus circuitry features improve performance of sparse approximation algorithms.
Directory of Open Access Journals (Sweden)
Panagiotis C Petrantonakis
Full Text Available Memory-related activity in the Dentate Gyrus (DG is characterized by sparsity. Memory representations are seen as activated neuronal populations of granule cells, the main encoding cells in DG, which are estimated to engage 2-4% of the total population. This sparsity is assumed to enhance the ability of DG to perform pattern separation, one of the most valuable contributions of DG during memory formation. In this work, we investigate how features of the DG such as its excitatory and inhibitory connectivity diagram can be used to develop theoretical algorithms performing Sparse Approximation, a widely used strategy in the Signal Processing field. Sparse approximation stands for the algorithmic identification of few components from a dictionary that approximate a certain signal. The ability of DG to achieve pattern separation by sparsifing its representations is exploited here to improve the performance of the state of the art sparse approximation algorithm "Iterative Soft Thresholding" (IST by adding new algorithmic features inspired by the DG circuitry. Lateral inhibition of granule cells, either direct or indirect, via mossy cells, is shown to enhance the performance of the IST. Apart from revealing the potential of DG-inspired theoretical algorithms, this work presents new insights regarding the function of particular cell types in the pattern separation task of the DG.
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.
Chang, Joshua; Paydarfar, David
2014-12-01
Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.
Multistage stochastic optimization
Pflug, Georg Ch
2014-01-01
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book
A 1.375-approximation algorithm for sorting by transpositions.
Elias, Isaac; Hartman, Tzvika
2006-01-01
Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.
Directory of Open Access Journals (Sweden)
Hua Yang
2012-01-01
Full Text Available We are concerned with the stochastic differential delay equations with Poisson jump and Markovian switching (SDDEsPJMSs. Most SDDEsPJMSs cannot be solved explicitly as stochastic differential equations. Therefore, numerical solutions have become an important issue in the study of SDDEsPJMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEsPJMSs when the drift and diffusion coefficients are Taylor approximations.
Multi-level methods and approximating distribution functions
International Nuclear Information System (INIS)
Wilson, D.; Baker, R. E.
2016-01-01
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.
Multi-level methods and approximating distribution functions
Energy Technology Data Exchange (ETDEWEB)
Wilson, D., E-mail: daniel.wilson@dtc.ox.ac.uk; Baker, R. E. [Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)
2016-07-15
Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie’s direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie’s direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146–179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.
Tamellini, L.; Le Maî tre, O.; Nouy, A.
2014-01-01
In this paper we consider a proper generalized decomposition method to solve the steady incompressible Navier-Stokes equations with random Reynolds number and forcing term. The aim of such a technique is to compute a low-cost reduced basis approximation of the full stochastic Galerkin solution of the problem at hand. A particular algorithm, inspired by the Arnoldi method for solving eigenproblems, is proposed for an efficient greedy construction of a deterministic reduced basis approximation. This algorithm decouples the computation of the deterministic and stochastic components of the solution, thus allowing reuse of preexisting deterministic Navier-Stokes solvers. It has the remarkable property of only requiring the solution of m uncoupled deterministic problems for the construction of an m-dimensional reduced basis rather than M coupled problems of the full stochastic Galerkin approximation space, with m l M (up to one order of magnitudefor the problem at hand in this work). © 2014 Society for Industrial and Applied Mathematics.
An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks
Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro
2016-01-01
In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem
DEFF Research Database (Denmark)
Seldin, Yevgeny; Lugosi, Gábor
2017-01-01
We present a new strategy for gap estimation in randomized algorithms for multiarmed bandits and combine it with the EXP3++ algorithm of Seldin and Slivkins (2014). In the stochastic regime the strategy reduces dependence of regret on a time horizon from $(ln t)^3$ to $(ln t)^2$ and eliminates...
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
Energy Technology Data Exchange (ETDEWEB)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at [University of Innsbruck, Department of Mathematics (Austria); Tuffaha, Amjad, E-mail: atufaha@aus.edu [American University of Sharjah, Department of Mathematics (United Arab Emirates)
2017-06-15
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solution of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.
Multi-fidelity stochastic collocation method for computation of statistical moments
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu [Department of Mathematics, University of Iowa, Iowa City, IA 52242 (United States); Linebarger, Erin M., E-mail: aerinline@sci.utah.edu [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Xiu, Dongbin, E-mail: xiu.16@osu.edu [Department of Mathematics, The Ohio State University, Columbus, OH 43210 (United States)
2017-07-15
We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.
APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags
DEFF Research Database (Denmark)
Zong, Yu; Xu, Guandong; Jin, Pin
2011-01-01
algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...
Bayesian posterior sampling via stochastic gradient Fisher scoring
Ahn, S.; Korattikara, A.; Welling, M.; Langford, J.; Pineau, J.
2012-01-01
In this paper we address the following question: "Can we approximately sample from a Bayesian posterior distribution if we are only allowed to touch a small mini-batch of data-items for every sample we generate?". An algorithm based on the Langevin equation with stochastic gradients (SGLD) was
Rational approximations and quantum algorithms with postselection
Mahadev, U.; de Wolf, R.
2015-01-01
We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using post-selection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We
The ISI distribution of the stochastic Hodgkin-Huxley neuron.
Rowat, Peter F; Greenwood, Priscilla E
2014-01-01
The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Barthel, Thomas; De Bacco, Caterina; Franz, Silvio
2018-01-01
We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2014-01-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model
An adaptive algorithm for simulation of stochastic reaction-diffusion processes
International Nuclear Information System (INIS)
Ferm, Lars; Hellander, Andreas; Loetstedt, Per
2010-01-01
We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.
Cheap contouring of costly functions: the Pilot Approximation Trajectory algorithm
International Nuclear Information System (INIS)
Huttunen, Janne M J; Stark, Philip B
2012-01-01
The Pilot Approximation Trajectory (PAT) contour algorithm can find the contour of a function accurately when it is not practical to evaluate the function on a grid dense enough to use a standard contour algorithm, for instance, when evaluating the function involves conducting a physical experiment or a computationally intensive simulation. PAT relies on an inexpensive pilot approximation to the function, such as interpolating from a sparse grid of inexact values, or solving a partial differential equation (PDE) numerically using a coarse discretization. For each level of interest, the location and ‘trajectory’ of an approximate contour of this pilot function are used to decide where to evaluate the original function to find points on its contour. Those points are joined by line segments to form the PAT approximation of the contour of the original function. Approximating a contour numerically amounts to estimating a lower level set of the function, the set of points on which the function does not exceed the contour level. The area of the symmetric difference between the true lower level set and the estimated lower level set measures the accuracy of the contour. PAT measures its own accuracy by finding an upper confidence bound for this area. In examples, PAT can estimate a contour more accurately than standard algorithms, using far fewer function evaluations than standard algorithms require. We illustrate PAT by constructing a confidence set for viscosity and thermal conductivity of a flowing gas from simulated noisy temperature measurements, a problem in which each evaluation of the function to be contoured requires solving a different set of coupled nonlinear PDEs. (paper)
Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2013-01-01
The stochastic volatility model is one of volatility models which infer latent volatility of asset returns. The Bayesian inference of the stochastic volatility (SV) model is performed by the hybrid Monte Carlo (HMC) algorithm which is superior to other Markov Chain Monte Carlo methods in sampling volatility variables. We perform the HMC simulations of the SV model for two liquid stock returns traded on the Tokyo Stock Exchange and measure the volatilities of those stock returns. Then we calculate the accuracy of the volatility measurement using the realized volatility as a proxy of the true volatility and compare the SV model with the GARCH model which is one of other volatility models. Using the accuracy calculated with the realized volatility we find that empirically the SV model performs better than the GARCH model.
An effective algorithm for approximating adaptive behavior in seasonal environments
DEFF Research Database (Denmark)
Sainmont, Julie; Andersen, Ken Haste; Thygesen, Uffe Høgsbro
2015-01-01
Behavior affects most aspects of ecological processes and rates, and yet modeling frameworks which efficiently predict and incorporate behavioral responses into ecosystem models remain elusive. Behavioral algorithms based on life-time optimization, adaptive dynamics or game theory are unsuited...... for large global models because of their high computational demand. We compare an easily integrated, computationally efficient behavioral algorithm known as Gilliam's rule against the solution from a life-history optimization. The approximation takes into account only the current conditions to optimize...... behavior; the so-called "myopic approximation", "short sighted", or "static optimization". We explore the performance of the myopic approximation with diel vertical migration (DVM) as an example of a daily routine, a behavior with seasonal dependence that trades off predation risk with foraging...
International Nuclear Information System (INIS)
Yeh, W.-C.
2004-01-01
A MP/minimal cutset (MC) is a path/cut set such that if any edge is removed from this path/cut set, then the remaining set is no longer a path/cut set. An intuitive method is proposed to evaluate the reliability in terms of MCs in a stochastic-flow network subject to both edge and node failures under the condition that all of the MCs are given in advance. This is an extension of the best of known algorithms for solving the d-MC (a special MC but formatted in a system-state vector, where d is the lower bound points of the system capacity level) problem from the stochastic-flow network without unreliable nodes to with unreliable nodes by introducing some simple concepts. These concepts were first developed in the literature to implement the proposed algorithm to reduce the number of d-MC candidates. This method is more efficient than the best of known existing algorithms regardless if the network has or does not have unreliable nodes. Two examples are illustrated to show how the reliability is determined using the proposed algorithm in the network with or without unreliable nodes. The computational complexity of the proposed algorithm is analyzed and compared with the existing methods
Statistical trajectory of an approximate EM algorithm for probabilistic image processing
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Titterington, D M
2007-01-01
We calculate analytically a statistical average of trajectories of an approximate expectation-maximization (EM) algorithm with generalized belief propagation (GBP) and a Gaussian graphical model for the estimation of hyperparameters from observable data in probabilistic image processing. A statistical average with respect to observed data corresponds to a configuration average for the random-field Ising model in spin glass theory. In the present paper, hyperparameters which correspond to interactions and external fields of spin systems are estimated by an approximate EM algorithm. A practical algorithm is described for gray-level image restoration based on a Gaussian graphical model and GBP. The GBP approach corresponds to the cluster variation method in statistical mechanics. Our main result in the present paper is to obtain the statistical average of the trajectory in the approximate EM algorithm by using loopy belief propagation and GBP with respect to degraded images generated from a probability density function with true values of hyperparameters. The statistical average of the trajectory can be expressed in terms of recursion formulas derived from some analytical calculations
Sanz, Luis; Alonso, Juan Antonio
2017-12-01
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.
An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering
Directory of Open Access Journals (Sweden)
Ming Yan
2006-01-01
Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.
A Resampling-Based Stochastic Approximation Method for Analysis of Large Geostatistical Data
Liang, Faming
2013-03-01
The Gaussian geostatistical model has been widely used in modeling of spatial data. However, it is challenging to computationally implement this method because it requires the inversion of a large covariance matrix, particularly when there is a large number of observations. This article proposes a resampling-based stochastic approximation method to address this challenge. At each iteration of the proposed method, a small subsample is drawn from the full dataset, and then the current estimate of the parameters is updated accordingly under the framework of stochastic approximation. Since the proposed method makes use of only a small proportion of the data at each iteration, it avoids inverting large covariance matrices and thus is scalable to large datasets. The proposed method also leads to a general parameter estimation approach, maximum mean log-likelihood estimation, which includes the popular maximum (log)-likelihood estimation (MLE) approach as a special case and is expected to play an important role in analyzing large datasets. Under mild conditions, it is shown that the estimator resulting from the proposed method converges in probability to a set of parameter values of equivalent Gaussian probability measures, and that the estimator is asymptotically normally distributed. To the best of the authors\\' knowledge, the present study is the first one on asymptotic normality under infill asymptotics for general covariance functions. The proposed method is illustrated with large datasets, both simulated and real. Supplementary materials for this article are available online. © 2013 American Statistical Association.
P.A.N. Bosman (Peter); J.A. La Poutré (Han); D. Thierens (Dirk)
2007-01-01
htmlabstractThe focus of this paper is on how to design evolutionary algorithms (EAs) for solving stochastic dynamic optimization problems online, i.e. as time goes by. For a proper design, the EA must not only be capable of tracking shifting optima, it must also take into account the future
Schmandt, Nicolaus T; Galán, Roberto F
2012-09-14
Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.
Drift-Implicit Multi-Level Monte Carlo Tau-Leap Methods for Stochastic Reaction Networks
Ben Hammouda, Chiheb
2015-05-12
In biochemical systems, stochastic e↵ects can be caused by the presence of small numbers of certain reactant molecules. In this setting, discrete state-space and stochastic simulation approaches were proved to be more relevant than continuous state-space and deterministic ones. These stochastic models constitute the theory of stochastic reaction networks (SRNs). Furthermore, in some cases, the dynamics of fast and slow time scales can be well separated and this is characterized by what is called sti↵ness. For such problems, the existing discrete space-state stochastic path simulation methods, such as the stochastic simulation algorithm (SSA) and the explicit tau-leap method, can be very slow. Therefore, implicit tau-leap approxima- tions were developed to improve the numerical stability and provide more e cient simulation algorithms for these systems. One of the interesting tasks for SRNs is to approximate the expected values of some observables of the process at a certain fixed time T. This is can be achieved using Monte Carlo (MC) techniques. However, in a recent work, Anderson and Higham in 2013, proposed a more computationally e cient method which combines multi-level Monte Carlo (MLMC) technique with explicit tau-leap schemes. In this MSc thesis, we propose new fast stochastic algorithm, particularly designed 5 to address sti↵ systems, for approximating the expected values of some observables of SRNs. In fact, we take advantage of the idea of MLMC techniques and drift-implicit tau-leap approximation to construct a drift-implicit MLMC tau-leap estimator. In addition to accurately estimating the expected values of a given observable of SRNs at a final time T , our proposed estimator ensures the numerical stability with a lower cost than the MLMC explicit tau-leap algorithm, for systems including simultane- ously fast and slow species. The key contribution of our work is the coupling of two drift-implicit tau-leap paths, which is the basic brick for
International Nuclear Information System (INIS)
Xie Shaofei; Xiang Bingren; Deng Haishan; Xiang Suyun; Lu Jun
2007-01-01
Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses
Directory of Open Access Journals (Sweden)
Hong Zhang
2017-01-01
Full Text Available In order to formulate water allocation schemes under uncertainties in the water resources management systems, an inexact multistage stochastic chance constrained programming (IMSCCP model is proposed. The model integrates stochastic chance constrained programming, multistage stochastic programming, and inexact stochastic programming within a general optimization framework to handle the uncertainties occurring in both constraints and objective. These uncertainties are expressed as probability distributions, interval with multiply distributed stochastic boundaries, dynamic features of the long-term water allocation plans, and so on. Compared with the existing inexact multistage stochastic programming, the IMSCCP can be used to assess more system risks and handle more complicated uncertainties in water resources management systems. The IMSCCP model is applied to a hypothetical case study of water resources management. In order to construct an approximate solution for the model, a hybrid algorithm, which incorporates stochastic simulation, back propagation neural network, and genetic algorithm, is proposed. The results show that the optimal value represents the maximal net system benefit achieved with a given confidence level under chance constraints, and the solutions provide optimal water allocation schemes to multiple users over a multiperiod planning horizon.
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Linear Time Local Approximation Algorithm for Maximum Stable Marriage
Directory of Open Access Journals (Sweden)
Zoltán Király
2013-08-01
Full Text Available We consider a two-sided market under incomplete preference lists with ties, where the goal is to find a maximum size stable matching. The problem is APX-hard, and a 3/2-approximation was given by McDermid [1]. This algorithm has a non-linear running time, and, more importantly needs global knowledge of all preference lists. We present a very natural, economically reasonable, local, linear time algorithm with the same ratio, using some ideas of Paluch [2]. In this algorithm every person make decisions using only their own list, and some information asked from members of these lists (as in the case of the famous algorithm of Gale and Shapley. Some consequences to the Hospitals/Residents problem are also discussed.
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
AESS: Accelerated Exact Stochastic Simulation
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Directory of Open Access Journals (Sweden)
Daniel J Klein
Full Text Available Decision makers in epidemiology and other disciplines are faced with the daunting challenge of designing interventions that will be successful with high probability and robust against a multitude of uncertainties. To facilitate the decision making process in the context of a goal-oriented objective (e.g., eradicate polio by [Formula: see text], stochastic models can be used to map the probability of achieving the goal as a function of parameters. Each run of a stochastic model can be viewed as a Bernoulli trial in which "success" is returned if and only if the goal is achieved in simulation. However, each run can take a significant amount of time to complete, and many replicates are required to characterize each point in parameter space, so specialized algorithms are required to locate desirable interventions. To address this need, we present the Separatrix Algorithm, which strategically locates parameter combinations that are expected to achieve the goal with a user-specified probability of success (e.g. 95%. Technically, the algorithm iteratively combines density-corrected binary kernel regression with a novel information-gathering experiment design to produce results that are asymptotically correct and work well in practice. The Separatrix Algorithm is demonstrated on several test problems, and on a detailed individual-based simulation of malaria.
Stochastic models of solute transport in highly heterogeneous geologic media
Energy Technology Data Exchange (ETDEWEB)
Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.
2009-09-15
A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.
MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation
Directory of Open Access Journals (Sweden)
Howard Daniel
2006-01-01
Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .
A new stochastic algorithm for inversion of dust aerosol size distribution
Wang, Li; Li, Feng; Yang, Ma-ying
2015-08-01
Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.
International Nuclear Information System (INIS)
Vignes, J.
1986-01-01
Any result of algorithms provided by a computer always contains an error resulting from floating-point arithmetic round-off error propagation. Furthermore signal processing algorithms are also generally performed with data containing errors. The permutation-perturbation method, also known under the name CESTAC (controle et estimation stochastique d'arrondi de calcul) is a very efficient practical method for evaluating these errors and consequently for estimating the exact significant decimal figures of any result of algorithms performed on a computer. The stochastic approach of this method, its probabilistic proof, and the perfect agreement between the theoretical and practical aspects are described in this paper [fr
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
Energy Technology Data Exchange (ETDEWEB)
Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fraction of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.
Performance analysis of manufacturing systems : queueing approximations and algorithms
Vuuren, van M.
2007-01-01
Performance Analysis of Manufacturing Systems Queueing Approximations and Algorithms This thesis is concerned with the performance analysis of manufacturing systems. Manufacturing is the application of tools and a processing medium to the transformation of raw materials into finished goods for sale.
Vilanova, Pedro
2016-01-01
reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, i.e., SRNs conditional on their values in the extremes of given time-intervals. We then employ
DEFF Research Database (Denmark)
Seldin, Yevgeny; Lugosi, Gábor
We present a new strategy for gap estimation in randomized algorithms for multiarmed bandits and combine it with the EXP3++ algorithm of Seldin and Slivkins (2014). In the stochastic regime the strategy reduces dependence of regret on a time horizon from $(ln t)^3$ to $(ln t)^2$ and eliminates an...... an additive factor of order $\\Delta e^{\\Delta^2}$, where $\\Delta$ is the minimal gap of a problem instance. In the adversarial regime regret guarantee remains unchanged....
DEFF Research Database (Denmark)
Seldin, Yevgeny; Lugosi, Gábor
2017-01-01
We present a new strategy for gap estimation in randomized algorithms for multiarmed bandits and combine it with the EXP3++ algorithm of Seldin and Slivkins (2014). In the stochastic regime the strategy reduces dependence of regret on a time horizon from $(ln t)^3$ to $(ln t)^2$ and eliminates...... an additive factor of order $\\Delta e^{\\Delta^2}$, where $\\Delta$ is the minimal gap of a problem instance. In the adversarial regime regret guarantee remains unchanged....
A multi-phase algorithm for a joint lot-sizing and pricing problem with stochastic demands
DEFF Research Database (Denmark)
Jenny Li, Hongyan; Thorstenson, Anders
2014-01-01
to a practically viable approach to decision-making. In addition to incorporating market uncertainty and pricing decisions in the traditional production and inventory planning process, our approach also accommodates the complexity of time-varying cost and capacity constraints. Finally, our numerical results show......Stochastic lot-sizing problems have been addressed quite extensively, but relatively few studies also consider marketing factors, such as pricing. In this paper, we address a joint stochastic lot-sizing and pricing problem with capacity constraints and backlogging for a ﬁrm that produces a single...... that the multi-phase heuristic algorithm solves the example problems effectively....
Qin, Xiaosheng; Huang, Guohe; Liu, Lei
2010-01-01
A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.
An Approximate L p Difference Algorithm for Massive Data Streams
Directory of Open Access Journals (Sweden)
Jessica H. Fong
2001-12-01
Full Text Available Several recent papers have shown how to approximate the difference ∑ i |a i-b i | or ∑|a i-b i | 2 between two functions, when the function values a i and b i are given in a data stream, and their order is chosen by an adversary. These algorithms use little space (much less than would be needed to store the entire stream and little time to process each item in the stream. They approximate with small relative error. Using different techniques, we show how to approximate the L p-difference ∑ i |a i-b i | p for any rational-valued p∈(0,2], with comparable efficiency and error. We also show how to approximate ∑ i |a i-b i | p for larger values of p but with a worse error guarantee. Our results fill in gaps left by recent work, by providing an algorithm that is precisely tunable for the application at hand. These results can be used to assess the difference between two chronologically or physically separated massive data sets, making one quick pass over each data set, without buffering the data or requiring the data source to pause. For example, one can use our techniques to judge whether the traffic on two remote network routers are similar without requiring either router to transmit a copy of its traffic. A web search engine could use such algorithms to construct a library of small ``sketches,'' one for each distinct page on the web; one can approximate the extent to which new web pages duplicate old ones by comparing the sketches of the web pages. Such techniques will become increasingly important as the enormous scale, distributional nature, and one-pass processing requirements of data sets become more commonplace.
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
International Nuclear Information System (INIS)
Brett, Tobias; Galla, Tobias
2014-01-01
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period
Brett, Tobias; Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Stochastic Resonance algorithms to enhance damage detection in bearing faults
Directory of Open Access Journals (Sweden)
Castiglione Roberto
2015-01-01
Full Text Available Stochastic Resonance is a phenomenon, studied and mainly exploited in telecommunication, which permits the amplification and detection of weak signals by the assistance of noise. The first papers on this technique are dated early 80 s and were developed to explain the periodically recurrent ice ages. Other applications mainly concern neuroscience, biology, medicine and obviously signal analysis and processing. Recently, some researchers have applied the technique for detecting faults in mechanical systems and bearings. In this paper, we try to better understand the conditions of applicability and which is the best algorithm to be adopted for these purposes. In fact, to get the methodology profitable and efficient to enhance the signal spikes due to fault in rings and balls/rollers of bearings, some parameters have to be properly selected. This is a problem since in system identification this procedure should be as blind as possible. Two algorithms are analysed: the first exploits classical SR with three parameters mutually dependent, while the other uses Woods-Saxon potential, with three parameters yet but holding a different meaning. The comparison of the performances of the two algorithms and the optimal choice of their parameters are the scopes of this paper. Algorithms are tested on simulated and experimental data showing an evident capacity of increasing the signal to noise ratio.
Stochastic optimization methods
Marti, Kurt
2005-01-01
Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given.
Detection of cracks in shafts with the Approximated Entropy algorithm
Sampaio, Diego Luchesi; Nicoletti, Rodrigo
2016-05-01
The Approximate Entropy is a statistical calculus used primarily in the fields of Medicine, Biology, and Telecommunication for classifying and identifying complex signal data. In this work, an Approximate Entropy algorithm is used to detect cracks in a rotating shaft. The signals of the cracked shaft are obtained from numerical simulations of a de Laval rotor with breathing cracks modelled by the Fracture Mechanics. In this case, one analysed the vertical displacements of the rotor during run-up transients. The results show the feasibility of detecting cracks from 5% depth, irrespective of the unbalance of the rotating system and crack orientation in the shaft. The results also show that the algorithm can differentiate the occurrence of crack only, misalignment only, and crack + misalignment in the system. However, the algorithm is sensitive to intrinsic parameters p (number of data points in a sample vector) and f (fraction of the standard deviation that defines the minimum distance between two sample vectors), and good results are only obtained by appropriately choosing their values according to the sampling rate of the signal.
Solution verification, goal-oriented adaptive methods for stochastic advection–diffusion problems
Almeida, Regina C.
2010-08-01
A goal-oriented analysis of linear, stochastic advection-diffusion models is presented which provides both a method for solution verification as well as a basis for improving results through adaptation of both the mesh and the way random variables are approximated. A class of model problems with random coefficients and source terms is cast in a variational setting. Specific quantities of interest are specified which are also random variables. A stochastic adjoint problem associated with the quantities of interest is formulated and a posteriori error estimates are derived. These are used to guide an adaptive algorithm which adjusts the sparse probabilistic grid so as to control the approximation error. Numerical examples are given to demonstrate the methodology for a specific model problem. © 2010 Elsevier B.V.
Solution verification, goal-oriented adaptive methods for stochastic advection–diffusion problems
Almeida, Regina C.; Oden, J. Tinsley
2010-01-01
A goal-oriented analysis of linear, stochastic advection-diffusion models is presented which provides both a method for solution verification as well as a basis for improving results through adaptation of both the mesh and the way random variables are approximated. A class of model problems with random coefficients and source terms is cast in a variational setting. Specific quantities of interest are specified which are also random variables. A stochastic adjoint problem associated with the quantities of interest is formulated and a posteriori error estimates are derived. These are used to guide an adaptive algorithm which adjusts the sparse probabilistic grid so as to control the approximation error. Numerical examples are given to demonstrate the methodology for a specific model problem. © 2010 Elsevier B.V.
Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience
Directory of Open Access Journals (Sweden)
Li Rui
2017-07-01
Full Text Available It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.
Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power
DEFF Research Database (Denmark)
Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte
2010-01-01
This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...
Stochastic optimization: beyond mathematical programming
CERN. Geneva
2015-01-01
Stochastic optimization, among which bio-inspired algorithms, is gaining momentum in areas where more classical optimization algorithms fail to deliver satisfactory results, or simply cannot be directly applied. This presentation will introduce baseline stochastic optimization algorithms, and illustrate their efficiency in different domains, from continuous non-convex problems to combinatorial optimization problem, to problems for which a non-parametric formulation can help exploring unforeseen possible solution spaces.
Fastest Rates for Stochastic Mirror Descent Methods
Hanzely, Filip; Richtarik, Peter
2018-01-01
Relative smoothness - a notion introduced by Birnbaum et al. (2011) and rediscovered by Bauschke et al. (2016) and Lu et al. (2016) - generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as a particular instances of stochastic mirror descent algorithms. One of them, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.
Fastest Rates for Stochastic Mirror Descent Methods
Hanzely, Filip
2018-03-20
Relative smoothness - a notion introduced by Birnbaum et al. (2011) and rediscovered by Bauschke et al. (2016) and Lu et al. (2016) - generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as a particular instances of stochastic mirror descent algorithms. One of them, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.
ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms
DEFF Research Database (Denmark)
Aumüller, Martin; Bernhardsson, Erik; Faithfull, Alexander
2017-01-01
This paper describes ANN-Benchmarks, a tool for evaluating the performance of in-memory approximate nearest neighbor algorithms. It provides a standard interface for measuring the performance and quality achieved by nearest neighbor algorithms on different standard data sets. It supports several...... visualise these as images, Open image in new window plots, and websites with interactive plots. ANN-Benchmarks aims to provide a constantly updated overview of the current state of the art of k-NN algorithms. In the short term, this overview allows users to choose the correct k-NN algorithm and parameters...... for their similarity search task; in the longer term, algorithm designers will be able to use this overview to test and refine automatic parameter tuning. The paper gives an overview of the system, evaluates the results of the benchmark, and points out directions for future work. Interestingly, very different...
Diliberto–Straus algorithm for the uniform approximation by a sum of ...
Indian Academy of Sciences (India)
In 1951, Diliberto and Straus [5] proposed a levelling algorithm for the uniform approximation of a bivariate function, defined on a rectangle with sides parallel to the coordinate axes, by sums of univariate functions. In the current paper, we consider the problem of approximation of a continuous function defined on a compact ...
Time-ordered product expansions for computational stochastic system biology
International Nuclear Information System (INIS)
Mjolsness, Eric
2013-01-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie’s stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems. (paper)
Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi
2016-01-01
The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. Copyright © 2015 Elsevier Inc. All rights reserved.
Chkifa, Abdellah
2015-04-08
Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [A. Cohen, M A. Davenport and D. Leviatan. Found. Comput. Math. 13 (2013) 819–834] and in probability in [G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Found. Comput. Math. 14 (2014) 419–456], under suitable conditions that relate the number of samples with respect to the dimension of the polynomial space. Here “quasi-optimal” means that the accuracy of the least-squares approximation is comparable with that of the best approximation in the given polynomial space. In this paper, we discuss the quasi-optimality of the polynomial least-squares method in arbitrary dimension. Our analysis applies to any arbitrary multivariate polynomial space (including tensor product, total degree or hyperbolic crosses), under the minimal requirement that its associated index set is downward closed. The optimality criterion only involves the relation between the number of samples and the dimension of the polynomial space, independently of the anisotropic shape and of the number of variables. We extend our results to the approximation of Hilbert space-valued functions in order to apply them to the approximation of parametric and stochastic elliptic PDEs. As a particular case, we discuss “inclusion type” elliptic PDE models, and derive an exponential convergence estimate for the least-squares method. Numerical results confirm our estimate, yet pointing out a gap between the condition necessary to achieve optimality in the theory, and the condition that in practice yields the optimal convergence rate.
Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan
2016-12-01
The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.
Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei
2007-05-01
The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.
Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo
Martinez, Josue G.
2010-06-01
The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.
Moraes, Alvaro
2015-01-01
Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference
Bucur, Doina
2017-01-01
A genetic algorithm with stochastic macro mutation operators which merge, split, move, reverse and align DNA contigs on a scaffold is shown to accurately and consistently assemble raw DNA reads from an accurately sequenced single-read library into a contiguous genome. A candidate solution is a
An Approximation Algorithm for the Facility Location Problem with Lexicographic Minimax Objective
Directory of Open Access Journals (Sweden)
Ľuboš Buzna
2014-01-01
Full Text Available We present a new approximation algorithm to the discrete facility location problem providing solutions that are close to the lexicographic minimax optimum. The lexicographic minimax optimum is a concept that allows to find equitable location of facilities serving a large number of customers. The algorithm is independent of general purpose solvers and instead uses algorithms originally designed to solve the p-median problem. By numerical experiments, we demonstrate that our algorithm allows increasing the size of solvable problems and provides high-quality solutions. The algorithm found an optimal solution for all tested instances where we could compare the results with the exact algorithm.
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik
2009-06-01
The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.
FERN - a Java framework for stochastic simulation and evaluation of reaction networks.
Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf
2008-08-29
Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new
The NLO jet vertex in the small-cone approximation for kt and cone algorithms
International Nuclear Information System (INIS)
Colferai, D.; Niccoli, A.
2015-01-01
We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet “radius” R=0.5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.
The NLO jet vertex in the small-cone approximation for kt and cone algorithms
Energy Technology Data Exchange (ETDEWEB)
Colferai, D.; Niccoli, A. [Dipartimento di Fisica e Astronomia, Università di Firenze and INFN, Sezione di Firenze, 50019 Sesto Fiorentino (Italy)
2015-04-15
We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet “radius” R=0.5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.
Modeling stochasticity and robustness in gene regulatory networks.
Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis
2009-06-15
Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
Using genetic algorithm to solve a new multi-period stochastic optimization model
Zhang, Xin-Li; Zhang, Ke-Cun
2009-09-01
This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.
Helaers, Raphaël; Milinkovitch, Michel C
2010-07-15
The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high
Elsheikh, Ahmed H.
2013-06-01
We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.
Directory of Open Access Journals (Sweden)
Mark D McDonnell
2013-05-01
Full Text Available The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of action-potential arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic action potential, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.
Glick, Meir; Rayan, Anwar; Goldblum, Amiram
2002-01-01
The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838
Multivariable controller for discrete stochastic amplitude-constrained systems
Directory of Open Access Journals (Sweden)
Hannu T. Toivonen
1983-04-01
Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.
STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB
Klingbeil, G.
2011-02-25
Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. Results: The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user\\'s models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. © The Author 2011. Published by Oxford University Press. All rights reserved.
Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm
Energy Technology Data Exchange (ETDEWEB)
Volkov, V A; Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)
2013-09-30
The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth of 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)
Hall, Eric Joseph
2016-12-08
We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.
Stochastic models: theory and simulation.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2008-03-01
Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.
PARAMETRIC IDENTIFICATION OF STOCHASTIC SYSTEM BY NON-GRADIENT RANDOM SEARCHING
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2017-01-01
Full Text Available At this moment we know a great variety of identification objects, tasks and methods and its significance is constantly increasing in various fields of science and technology. The identification problem is dependent on a priori information about identification object, besides that the existing approaches and methods of identification are determined by the form of mathematical models (deterministic, stochastic, frequency, temporal, spectral etc.. The paper considers a problem for determination of system parameters (identification object which is assigned by the stochastic mathematical model including random functions of time. It has been shown that while making optimization of the stochastic systems subject to random actions deterministic methods can be applied only for a limited approximate optimization of the system by taking into account average random effects and fixed structure of the system. The paper proposes an algorithm for identification of parameters in a mathematical model of the stochastic system by non-gradient random searching. A specific feature of the algorithm is its applicability practically to mathematic models of any type because the applied algorithm does not depend on linearization and differentiability of functions included in the mathematical model of the system. The proposed algorithm ensures searching of an extremum for the specified quality criteria in terms of external uncertainties and limitations while using random searching of parameters for a mathematical model of the system. The paper presents results of the investigations on operational capability of the considered identification method while using mathematical simulation of hypothetical control system with a priori unknown parameter values of the mathematical model. The presented results of the mathematical simulation obviously demonstrate the operational capability of the proposed identification method.
5th International Conference on Algorithms for Approximation
Levesley, Jeremy
2007-01-01
Approximation methods are vital in many challenging applications of computational science and engineering. This is a collection of papers from world experts in a broad variety of relevant applications, including pattern recognition, machine learning, multiscale modelling of fluid flow, metrology, geometric modelling, tomography, signal and image processing. It documents recent theoretical developments which have lead to new trends in approximation, it gives important computational aspects and multidisciplinary applications, thus making it a perfect fit for graduate students and researchers in science and engineering who wish to understand and develop numerical algorithms for the solution of their specific problems. An important feature of the book is that it brings together modern methods from statistics, mathematical modelling and numerical simulation for the solution of relevant problems, with a wide range of inherent scales. Contributions of industrial mathematicians, including representatives from Microso...
Approximated Function Based Spectral Gradient Algorithm for Sparse Signal Recovery
Directory of Open Access Journals (Sweden)
Weifeng Wang
2014-02-01
Full Text Available Numerical algorithms for the l0-norm regularized non-smooth non-convex minimization problems have recently became a topic of great interest within signal processing, compressive sensing, statistics, and machine learning. Nevertheless, the l0-norm makes the problem combinatorial and generally computationally intractable. In this paper, we construct a new surrogate function to approximate l0-norm regularization, and subsequently make the discrete optimization problem continuous and smooth. Then we use the well-known spectral gradient algorithm to solve the resulting smooth optimization problem. Experiments are provided which illustrate this method is very promising.
Turbulent response in a stochastic regime
International Nuclear Information System (INIS)
Molvig, K.; Freidberg, J.P.; Potok, R.; Hirshman, S.P.; Whitson, J.C.; Tajima, T.
1981-06-01
The theory for the non-linear, turbulent response in a system with intrinsic stochasticity is considered. It is argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (DIA), are inherently unsuited to describe such a system. The exponentiation property that characterizes stochasticity appears in the Lagrangian picture and cannot even be defined in the Eulerian representation. An approximation for stochastic systems - the Normal Stochastic Approximation - is developed and states that the perturbed orbit functions (Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian statistics and, in fact, we treat the Eulerian fluctuations as fixed. A simple model problem (appropriate for the electron response in the drift wave) is subjected to a series of computer experiments. To within numerical noise the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA for this mode show substantial qualitative and quantitative departures from the observations
Fsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2013-01-01
the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
Optimization in engineering sciences approximate and metaheuristic methods
Stefanoiu, Dan; Popescu, Dumitru; Filip, Florin Gheorghe; El Kamel, Abdelkader
2014-01-01
The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU's FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods o
Stochastic Blind Motion Deblurring
Xiao, Lei
2015-05-13
Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.
Hybrid stochastic simplifications for multiscale gene networks
Directory of Open Access Journals (Sweden)
Debussche Arnaud
2009-09-01
Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
An Exploration Algorithm for Stochastic Simulators Driven by Energy Gradients
Directory of Open Access Journals (Sweden)
Anastasia S. Georgiou
2017-06-01
Full Text Available In recent work, we have illustrated the construction of an exploration geometry on free energy surfaces: the adaptive computer-assisted discovery of an approximate low-dimensional manifold on which the effective dynamics of the system evolves. Constructing such an exploration geometry involves geometry-biased sampling (through both appropriately-initialized unbiased molecular dynamics and through restraining potentials and, machine learning techniques to organize the intrinsic geometry of the data resulting from the sampling (in particular, diffusion maps, possibly enhanced through the appropriate Mahalanobis-type metric. In this contribution, we detail a method for exploring the conformational space of a stochastic gradient system whose effective free energy surface depends on a smaller number of degrees of freedom than the dimension of the phase space. Our approach comprises two steps. First, we study the local geometry of the free energy landscape using diffusion maps on samples computed through stochastic dynamics. This allows us to automatically identify the relevant coarse variables. Next, we use the information garnered in the previous step to construct a new set of initial conditions for subsequent trajectories. These initial conditions are computed so as to explore the accessible conformational space more efficiently than by continuing the previous, unbiased simulations. We showcase this method on a representative test system.
A stochastic cloud model for cloud and ozone retrievals from UV measurements
International Nuclear Information System (INIS)
Efremenko, Dmitry S.; Schüssler, Olena; Doicu, Adrian; Loyola, Diego
2016-01-01
The new generation of satellite instruments provides measurements in and around the Oxygen A-band on a global basis and with a relatively high spatial resolution. These data are commonly used for the determination of cloud properties. A stochastic model and radiative transfer model, previously developed by the authors, is used as the forward model component in retrievals of cloud parameters and ozone total and partial columns. The cloud retrieval algorithm combines local and global optimization routines, and yields a retrieval accuracy of about 1% and a fast computational time. Retrieved parameters are the cloud optical thickness and the cloud-top height. It was found that the use of the independent pixel approximation instead of the stochastic cloud model leads to large errors in the retrieved cloud parameters, as well as, in the retrieved ozone height resolved partial columns. The latter can be reduced by using the stochastic cloud model to compute the optimal value of the regularization parameter in the framework of Tikhonov regularization. - Highlights: • A stochastic radiative transfer model for retrieving clouds/ozone is designed. • Errors of independent pixel approximation (IPA) for O3 total column are small. • The error of IPA for ozone profile retrieval may become large. • The use of stochastic model reduces the error of ozone profile retrieval.
Dynamical and hamiltonian dilations of stochastic processes
International Nuclear Information System (INIS)
Baumgartner, B.; Gruemm, H.-R.
1982-01-01
This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)
Stochastic solution of population balance equations for reactor networks
International Nuclear Information System (INIS)
Menz, William J.; Akroyd, Jethro; Kraft, Markus
2014-01-01
This work presents a sequential modular approach to solve a generic network of reactors with a population balance model using a stochastic numerical method. Full-coupling to the gas-phase is achieved through operator-splitting. The convergence of the stochastic particle algorithm in test networks is evaluated as a function of network size, recycle fraction and numerical parameters. These test cases are used to identify methods through which systematic and statistical error may be reduced, including by use of stochastic weighted algorithms. The optimal algorithm was subsequently used to solve a one-dimensional example of silicon nanoparticle synthesis using a multivariate particle model. This example demonstrated the power of stochastic methods in resolving particle structure by investigating the transient and spatial evolution of primary polydispersity, degree of sintering and TEM-style images. Highlights: •An algorithm is presented to solve reactor networks with a population balance model. •A stochastic method is used to solve the population balance equations. •The convergence and efficiency of the reported algorithms are evaluated. •The algorithm is applied to simulate silicon nanoparticle synthesis in a 1D reactor. •Particle structure is reported as a function of reactor length and time
Directory of Open Access Journals (Sweden)
Milinkovitch Michel C
2010-07-01
Full Text Available Abstract Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood, including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these
Domínguez, Luis F.
2012-06-25
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally
Estimating Propensity Parameters Using Google PageRank and Genetic Algorithms.
Murrugarra, David; Miller, Jacob; Mueller, Alex N
2016-01-01
Stochastic Boolean networks, or more generally, stochastic discrete networks, are an important class of computational models for molecular interaction networks. The stochasticity stems from the updating schedule. Standard updating schedules include the synchronous update, where all the nodes are updated at the same time, and the asynchronous update where a random node is updated at each time step. The former produces a deterministic dynamics while the latter a stochastic dynamics. A more general stochastic setting considers propensity parameters for updating each node. Stochastic Discrete Dynamical Systems (SDDS) are a modeling framework that considers two propensity parameters for updating each node and uses one when the update has a positive impact on the variable, that is, when the update causes the variable to increase its value, and uses the other when the update has a negative impact, that is, when the update causes it to decrease its value. This framework offers additional features for simulations but also adds a complexity in parameter estimation of the propensities. This paper presents a method for estimating the propensity parameters for SDDS. The method is based on adding noise to the system using the Google PageRank approach to make the system ergodic and thus guaranteeing the existence of a stationary distribution. Then with the use of a genetic algorithm, the propensity parameters are estimated. Approximation techniques that make the search algorithms efficient are also presented and Matlab/Octave code to test the algorithms are available at http://www.ms.uky.edu/~dmu228/GeneticAlg/Code.html.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Directory of Open Access Journals (Sweden)
Yang Jian
2007-01-01
Full Text Available We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Kuzishchin, V. F.; Merzlikina, E. I.; Van Va, Hoang
2017-11-01
The problem of PID and PI-algorithms tuning by means of the approximation by the least square method of the frequency response of a linear algorithm to the sub-optimal algorithm is considered. The advantage of the method is that the parameter values are obtained through one cycle of calculation. Recommendations how to choose the parameters of the least square method taking into consideration the plant dynamics are given. The parameters mentioned are the time constant of the filter, the approximation frequency range and the correction coefficient for the time delay parameter. The problem is considered for integrating plants for some practical cases (the level control system in a boiler drum). The transfer function of the suboptimal algorithm is determined relating to the disturbance that acts in the point of the control impact input, it is typical for thermal plants. In the recommendations it is taken into consideration that the overregulation for the transient process when the setpoint is changed is also limited. In order to compare the results the systems under consideration are also calculated by the classical method with the limited frequency oscillation index. The results given in the paper can be used by specialists dealing with tuning systems with the integrating plants.
Azad, Mohammad; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2012-01-01
The paper is devoted to the study of a greedy algorithm for construction of approximate tests (super-reducts) This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions For a given
A new approach to stochastic transport via the functional Volterra expansion
International Nuclear Information System (INIS)
Ziya Akcasu, A.; Corngold, N.
2005-01-01
In this paper we present a new algorithm (FDA) for the calculation of the mean and the variance of the flux in stochastic transport when the transport equation contains a spatially random parameter θ(r), such as the density of the medium. The approach is based on the renormalized functional Volterra expansion of the flux around its mean. The attractive feature of the approach is that it explicitly displays the functional dependence of the flux on the products of θ(r i ), and hence enables one to take ensemble averages directly to calculate the moments of the flux in terms of the correlation functions of the underlying random process. The renormalized deterministic transport equation for the mean flux has been obtained to the second order in θ(r), and a functional relationship between the variance and the mean flux has been derived to calculate the variance to this order. The feasibility and accuracy of FDA has been demonstrated in the case of stochastic diffusion, using the diffusion equation with a spatially random diffusion coefficient. The connection of FDA with the well-established approximation schemes in the field of stochastic linear differential equations, such as the Bourret approximation, developed by Van Kampen using cumulant expansion, and by Terwiel using projection operator formalism, which has recently been extended to stochastic transport by Corngold. We hope that FDA's potential will be explored numerically in more realistic applications of the stochastic transport. (authors)
Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky
2018-03-01
The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.
Automated Flight Routing Using Stochastic Dynamic Programming
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Application of Stochastic Partial Differential Equations to Reservoir Property Modelling
Potsepaev, R.
2010-09-06
Existing algorithms of geostatistics for stochastic modelling of reservoir parameters require a mapping (the \\'uvt-transform\\') into the parametric space and reconstruction of a stratigraphic co-ordinate system. The parametric space can be considered to represent a pre-deformed and pre-faulted depositional environment. Existing approximations of this mapping in many cases cause significant distortions to the correlation distances. In this work we propose a coordinate free approach for modelling stochastic textures through the application of stochastic partial differential equations. By avoiding the construction of a uvt-transform and stratigraphic coordinates, one can generate realizations directly in the physical space in the presence of deformations and faults. In particular the solution of the modified Helmholtz equation driven by Gaussian white noise is a zero mean Gaussian stationary random field with exponential correlation function (in 3-D). This equation can be used to generate realizations in parametric space. In order to sample in physical space we introduce a stochastic elliptic PDE with tensor coefficients, where the tensor is related to correlation anisotropy and its variation is physical space.
Real-Time Demand Side Management Algorithm Using Stochastic Optimization
Directory of Open Access Journals (Sweden)
Moses Amoasi Acquah
2018-05-01
Full Text Available A demand side management technique is deployed along with battery energy-storage systems (BESS to lower the electricity cost by mitigating the peak load of a building. Most of the existing methods rely on manual operation of the BESS, or even an elaborate building energy-management system resorting to a deterministic method that is susceptible to unforeseen growth in demand. In this study, we propose a real-time optimal operating strategy for BESS based on density demand forecast and stochastic optimization. This method takes into consideration uncertainties in demand when accounting for an optimal BESS schedule, making it robust compared to the deterministic case. The proposed method is verified and tested against existing algorithms. Data obtained from a real site in South Korea is used for verification and testing. The results show that the proposed method is effective, even for the cases where the forecasted demand deviates from the observed demand.
Directory of Open Access Journals (Sweden)
Hui Huang
2017-01-01
Full Text Available According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.
Forecasting with Universal Approximators and a Learning Algorithm
DEFF Research Database (Denmark)
Kock, Anders Bredahl
2011-01-01
to the performance of the best single model in the set of models combined from. The use of universal approximators along with a combination scheme for which explicit loss bounds exist should give a solid theoretical foundation to the way the forecasts are performed. The practical performance will be investigated...... combination has a long history in econometrics focus has not been on proving loss bounds for the combination rules applied. We apply the Weighted Average Algorithm (WAA) of Kivinen & Warmuth (1999) for which such loss bounds exist. Specifically, one can bound the worst case performance of the WAA compared...
Forecasting with Universal Approximators and a Learning Algorithm
DEFF Research Database (Denmark)
Kock, Anders Bredahl
bounds for the combination rules applied. We apply the Weighted Average Algorithm (WAA) of Kivinen and Warmuth (1999) for which such loss bounds exist. Specifically, one can bound the worst case performance of the WAA compared to the performance of the best single model in the set of models combined from....... The use of universal approximators along with a combination scheme for which explicit loss bounds exist should give a solid theoretical foundation to the way the forecasts are performed. The practical performance will be investigated by considering various monthly postwar macroeconomic data sets for the G...
Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M
2003-01-01
Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.
STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION
Directory of Open Access Journals (Sweden)
Nataša Krejić
2014-12-01
Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.
Miró, Anton; Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Egea, Jose A; Jiménez, Laureano
2012-05-10
The estimation of parameter values for mathematical models of biological systems is an optimization problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of multiple minima in which standard optimization methods may fall during the search. Deterministic global optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead to large computational burdens. This work presents a deterministic outer approximation-based algorithm for the global optimization of dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied. The capabilities of our approach were tested in two benchmark problems, in which the performance of our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.
Azad, Mohammad
2012-12-14
The paper is devoted to the study of a greedy algorithm for construction of approximate tests (super-reducts) This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions For a given row, we should find a decision from the set attached to this row We consider bounds on the precision of this algorithm relative to the cardinality of tests.
International Nuclear Information System (INIS)
Gougam, L.A.; Taibi, H.; Chikhi, A.; Mekideche-Chafa, F.
2009-01-01
The problem of determining the analytical description for a set of data arises in numerous sciences and applications and can be referred to as data modeling or system identification. Neural networks are a convenient means of representation because they are known to be universal approximates that can learn data. The desired task is usually obtained by a learning procedure which consists in adjusting the s ynaptic weights . For this purpose, many learning algorithms have been proposed to update these weights. The convergence for these learning algorithms is a crucial criterion for neural networks to be useful in different applications. The aim of the present contribution is to use a training algorithm for feed forward wavelet networks used for function approximation. The training is based on the minimization of the least-square cost function. The minimization is performed by iterative second order gradient-based methods. We make use of the Levenberg-Marquardt algorithm to train the architecture of the chosen network and, then, the training procedure starts with a simple gradient method which is followed by a BFGS (Broyden, Fletcher, Glodfarb et Shanno) algorithm. The performances of the two algorithms are then compared. Our method is then applied to determine the energy of the ground state associated to a sextic potential. In fact, the Schrodinger equation does not always admit an exact solution and one has, generally, to solve it numerically. To this end, the sextic potential is, firstly, approximated with the above outlined wavelet network and, secondly, implemented into a numerical scheme. Our results are in good agreement with the ones found in the literature.
Stochastic B-series and order conditions for exponential integrators
DEFF Research Database (Denmark)
Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne
2018-01-01
We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting...
Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy
Directory of Open Access Journals (Sweden)
Joseph Y.J. Chow
2016-10-01
Full Text Available Given the rapid advances in unmanned aerial vehicles, or drones, and increasing need to monitor at a city level, one of the current research gaps is how to systematically deploy drones over multiple periods. We propose a real-time data-driven approach: we formulate the first deterministic arc-inventory routing problem and derive its stochastic dynamic policy. The policy is expected to be of greatest value in scenarios where uncertainty is highest and costliest, such as city monitoring during major events. The Bellman equation for an approximation of the proposed inventory routing policy is formulated as a selective vehicle routing problem. We propose an approximate dynamic programming algorithm based on Least Squares Monte Carlo simulation to find that policy. The algorithm has been modified so that the least squares dependent variable is defined to be the “expected stock out cost upon the next replenishment”. The new algorithm is tested on 30 simulated instances of real time trajectories over 5 time periods of the selective vehicle routing problem to evaluate the proposed policy and algorithm. Computational results on the selected instances show that the algorithm on average outperforms the myopic policy by 23–28%, depending on the parametric design. Further tests are conducted on classic benchmark arc routing problem instances. The 11-link instance gdb19 (Golden et al., 1983 is expanded into a sequential 15-period stochastic dynamic example and used to demonstrate why a naïve static multi-period deployment plan would not be effective in real networks.
Higher Order Improvements for Approximate Estimators
DEFF Research Database (Denmark)
Kristensen, Dennis; Salanié, Bernard
Many modern estimation methods in econometrics approximate an objective function, through simulation or discretization for instance. The resulting "approximate" estimator is often biased; and it always incurs an efficiency loss. We here propose three methods to improve the properties of such appr......Many modern estimation methods in econometrics approximate an objective function, through simulation or discretization for instance. The resulting "approximate" estimator is often biased; and it always incurs an efficiency loss. We here propose three methods to improve the properties...... of such approximate estimators at a low computational cost. The first two methods correct the objective function so as to remove the leading term of the bias due to the approximation. One variant provides an analytical bias adjustment, but it only works for estimators based on stochastic approximators......, such as simulation-based estimators. Our second bias correction is based on ideas from the resampling literature; it eliminates the leading bias term for non-stochastic as well as stochastic approximators. Finally, we propose an iterative procedure where we use Newton-Raphson (NR) iterations based on a much finer...
Yan, S.; Lin, H. C.; Jiang, X. Y.
2012-04-01
In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.
Estimating Propensity Parameters using Google PageRank and Genetic Algorithms
Directory of Open Access Journals (Sweden)
David Murrugarra
2016-11-01
Full Text Available Stochastic Boolean networks, or more generally, stochastic discrete networks, are an important class of computational models for molecular interaction networks. The stochasticity stems from the updating schedule. Standard updating schedules include the synchronous update, where all the nodes are updated at the same time, and the asynchronous update where a random node is updated at each time step. The former produces a deterministic dynamics while the latter a stochastic dynamics. A more general stochastic setting considers propensity parameters for updating each node. Stochastic Discrete Dynamical Systems (SDDS are a modeling framework that considers two propensity parameters for updating each node and uses one when the update has a positive impact on the variable, that is, when the update causes the variable to increase its value, and uses the other when the update has a negative impact, that is, when the update causes it to decrease its value. This framework offers additional features for simulations but also adds a complexity in parameter estimation of the propensities. This paper presents a method for estimating the propensity parameters for SDDS. The method is based on adding noise to the system using the Google PageRank approach to make the system ergodic and thus guaranteeing the existence of a stationary distribution. Then with the use of a genetic algorithm, the propensity parameters are estimated. Approximation techniques that make the search algorithms efficient are also presented and Matlab/Octave code to test the algorithms are available at~href{http://www.ms.uky.edu/~dmu228/GeneticAlg/Code.html}{http://www.ms.uky.edu/$sim$dmu228GeneticAlgCode.html}.
Directory of Open Access Journals (Sweden)
Hosseinali Salemi
2016-04-01
Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.
Gower, Robert M.
2018-02-12
We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite matrices in such a way that all iterates (approximate solutions) generated by the algorithm are positive definite matrices themselves. This opens the way for many applications in the field of optimization and machine learning. As an application of our general theory, we develop the {\\\\em first accelerated (deterministic and stochastic) quasi-Newton updates}. Our updates lead to provably more aggressive approximations of the inverse Hessian, and lead to speed-ups over classical non-accelerated rules in numerical experiments. Experiments with empirical risk minimization show that our rules can accelerate training of machine learning models.
Hybrid framework for the simulation of stochastic chemical kinetics
International Nuclear Information System (INIS)
Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos
2016-01-01
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.
Hybrid framework for the simulation of stochastic chemical kinetics
Duncan, Andrew; Erban, Radek; Zygalakis, Konstantinos
2016-12-01
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the "fast" reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.
Hybrid framework for the simulation of stochastic chemical kinetics
Energy Technology Data Exchange (ETDEWEB)
Duncan, Andrew, E-mail: a.duncan@imperial.ac.uk [Department of Mathematics, Imperial College, South Kensington Campus, London, SW7 2AZ (United Kingdom); Erban, Radek, E-mail: erban@maths.ox.ac.uk [Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Zygalakis, Konstantinos, E-mail: k.zygalakis@ed.ac.uk [School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD (United Kingdom)
2016-12-01
Stochasticity plays a fundamental role in various biochemical processes, such as cell regulatory networks and enzyme cascades. Isothermal, well-mixed systems can be modelled as Markov processes, typically simulated using the Gillespie Stochastic Simulation Algorithm (SSA) [25]. While easy to implement and exact, the computational cost of using the Gillespie SSA to simulate such systems can become prohibitive as the frequency of reaction events increases. This has motivated numerous coarse-grained schemes, where the “fast” reactions are approximated either using Langevin dynamics or deterministically. While such approaches provide a good approximation when all reactants are abundant, the approximation breaks down when one or more species exist only in small concentrations and the fluctuations arising from the discrete nature of the reactions become significant. This is particularly problematic when using such methods to compute statistics of extinction times for chemical species, as well as simulating non-equilibrium systems such as cell-cycle models in which a single species can cycle between abundance and scarcity. In this paper, a hybrid jump-diffusion model for simulating well-mixed stochastic kinetics is derived. It acts as a bridge between the Gillespie SSA and the chemical Langevin equation. For low reactant reactions the underlying behaviour is purely discrete, while purely diffusive when the concentrations of all species are large, with the two different behaviours coexisting in the intermediate region. A bound on the weak error in the classical large volume scaling limit is obtained, and three different numerical discretisations of the jump-diffusion model are described. The benefits of such a formalism are illustrated using computational examples.
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Xinyang [University of Colorado; Liu, Zhiyuan [University of Colorado; Chen, Lijun [University of Colorado
2017-10-03
This paper considers distribution networks with distributed energy resources and discrete-rate loads, and designs an incentive-based algorithm that allows the network operator and the customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Four major challenges include: (1) the non-convexity from discrete decision variables, (2) the non-convexity due to a Stackelberg game structure, (3) unavailable private information from customers, and (4) different update frequency from two types of devices. In this paper, we first make convex relaxation for discrete variables, then reformulate the non-convex structure into a convex optimization problem together with pricing/reward signal design, and propose a distributed stochastic dual algorithm for solving the reformulated problem while restoring feasible power rates for discrete devices. By doing so, we are able to statistically achieve the solution of the reformulated problem without exposure of any private information from customers. Stability of the proposed schemes is analytically established and numerically corroborated.
Directory of Open Access Journals (Sweden)
Shen-yan Chen
2015-01-01
Full Text Available This paper presents an Improved Genetic Algorithm with Two-Level Approximation (IGATA to minimize truss weight by simultaneously optimizing size, shape, and topology variables. On the basis of a previously presented truss sizing/topology optimization method based on two-level approximation and genetic algorithm (GA, a new method for adding shape variables is presented, in which the nodal positions are corresponding to a set of coordinate lists. A uniform optimization model including size/shape/topology variables is established. First, a first-level approximate problem is constructed to transform the original implicit problem to an explicit problem. To solve this explicit problem which involves size/shape/topology variables, GA is used to optimize individuals which include discrete topology variables and shape variables. When calculating the fitness value of each member in the current generation, a second-level approximation method is used to optimize the continuous size variables. With the introduction of shape variables, the original optimization algorithm was improved in individual coding strategy as well as GA execution techniques. Meanwhile, the update strategy of the first-level approximation problem was also improved. The results of numerical examples show that the proposed method is effective in dealing with the three kinds of design variables simultaneously, and the required computational cost for structural analysis is quite small.
The interpolation method of stochastic functions and the stochastic variational principle
International Nuclear Information System (INIS)
Liu Xianbin; Chen Qiu
1993-01-01
Uncertainties have been attaching more importance to increasingly in modern engineering structural design. Viewed on an appropriate scale, the inherent physical attributes (material properties) of many structural systems always exhibit some patterns of random variation in space and time, generally the random variation shows a small parameter fluctuation. For a linear mechanical system, the random variation is modeled as a random one of a linear partial differential operator and, in stochastic finite element method, a random variation of a stiffness matrix. Besides the stochasticity of the structural physical properties, the influences of random loads which always represent themselves as the random boundary conditions bring about much more complexities in structural analysis. Now the stochastic finite element method or the probabilistic finite element method is used to study the structural systems with random physical parameters, whether or not the loads are random. Differing from the general finite element theory, the main difficulty which the stochastic finite element method faces is the inverse operation of stochastic operators and stochastic matrices, since the inverse operators and the inverse matrices are statistically correlated to the random parameters and random loads. So far, many efforts have been made to obtain the reasonably approximate expressions of the inverse operators and inverse matrices, such as Perturbation Method, Neumann Expansion Method, Galerkin Method (in appropriate Hilbert Spaces defined for random functions), Orthogonal Expansion Method. Among these methods, Perturbation Method appear to be the most available. The advantage of these methods is that the fairly accurate response statistics can be obtained under the condition of the finite information of the input. However, the second-order statistics obtained by use of Perturbation Method and Neumann Expansion Method are not always the appropriate ones, because the relevant second
Multivariate moment closure techniques for stochastic kinetic models
International Nuclear Information System (INIS)
Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.
2015-01-01
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs
Multivariate moment closure techniques for stochastic kinetic models
Energy Technology Data Exchange (ETDEWEB)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB.
Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K
2011-04-15
The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information. klingbeil@maths.ox.ac.uk Supplementary data are available at Bioinformatics online.
A stochastic multiscale method for the elastodynamic wave equation arising from fiber composites
Babuška, Ivo; Motamed, Mohammad; Tempone, Raul
2014-01-01
We present a stochastic multilevel global–local algorithm for computing elastic waves propagating in fiber-reinforced composite materials. Here, the materials properties and the size and location of fibers may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems (macro, meso, micro) corresponding to the three natural scales, namely the sizes of laminate, ply, and fiber. The algorithm uses the homogenized global solution to construct a good local approximation that captures the microscale features of the real solution. We perform numerical experiments to show the applicability and efficiency of the method.
A stochastic multiscale method for the elastodynamic wave equation arising from fiber composites
Babuška, Ivo
2014-03-21
We present a stochastic multilevel global–local algorithm for computing elastic waves propagating in fiber-reinforced composite materials. Here, the materials properties and the size and location of fibers may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems (macro, meso, micro) corresponding to the three natural scales, namely the sizes of laminate, ply, and fiber. The algorithm uses the homogenized global solution to construct a good local approximation that captures the microscale features of the real solution. We perform numerical experiments to show the applicability and efficiency of the method.
Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges
2012-05-01
A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Harman, Radoslav; Filová , Lenka; Richtarik, Peter
2018-01-01
We propose a class of subspace ascent methods for computing optimal approximate designs that covers both existing as well as new and more efficient algorithms. Within this class of methods, we construct a simple, randomized exchange algorithm (REX). Numerical comparisons suggest that the performance of REX is comparable or superior to the performance of state-of-the-art methods across a broad range of problem structures and sizes. We focus on the most commonly used criterion of D-optimality that also has applications beyond experimental design, such as the construction of the minimum volume ellipsoid containing a given set of data-points. For D-optimality, we prove that the proposed algorithm converges to the optimum. We also provide formulas for the optimal exchange of weights in the case of the criterion of A-optimality. These formulas enable one to use REX for computing A-optimal and I-optimal designs.
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Harman, Radoslav
2018-01-17
We propose a class of subspace ascent methods for computing optimal approximate designs that covers both existing as well as new and more efficient algorithms. Within this class of methods, we construct a simple, randomized exchange algorithm (REX). Numerical comparisons suggest that the performance of REX is comparable or superior to the performance of state-of-the-art methods across a broad range of problem structures and sizes. We focus on the most commonly used criterion of D-optimality that also has applications beyond experimental design, such as the construction of the minimum volume ellipsoid containing a given set of data-points. For D-optimality, we prove that the proposed algorithm converges to the optimum. We also provide formulas for the optimal exchange of weights in the case of the criterion of A-optimality. These formulas enable one to use REX for computing A-optimal and I-optimal designs.
Stochastic differential equation model to Prendiville processes
International Nuclear Information System (INIS)
Granita; Bahar, Arifah
2015-01-01
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution
Stochastic differential equation model to Prendiville processes
Energy Technology Data Exchange (ETDEWEB)
Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)
2015-10-22
The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.
Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo
2016-01-01
In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
A Stochastic Multiobjective Optimization Framework for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Shibo He
2010-01-01
Full Text Available In wireless sensor networks (WSNs, there generally exist many different objective functions to be optimized. In this paper, we propose a stochastic multiobjective optimization approach to solve such kind of problem. We first formulate a general multiobjective optimization problem. We then decompose the optimization formulation through Lagrange dual decomposition and adopt the stochastic quasigradient algorithm to solve the primal-dual problem in a distributed way. We show theoretically that our algorithm converges to the optimal solution of the primal problem by using the knowledge of stochastic programming. Furthermore, the formulation provides a general stochastic multiobjective optimization framework for WSNs. We illustrate how the general framework works by considering an example of the optimal rate allocation problem in multipath WSNs with time-varying channel. Extensive simulation results are given to demonstrate the effectiveness of our algorithm.
Quantum approximate optimization algorithm for MaxCut: A fermionic view
Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.
2018-02-01
Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028; arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2 p times for which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the "ring of disagrees," or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of the QAOA for any p . It also greatly simplifies the numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
International Nuclear Information System (INIS)
Desai, Ajit; Pettit, Chris; Poirel, Dominique; Sarkar, Abhijit
2017-01-01
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolution in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.
Nonlinear control of fixed-wing UAVs in presence of stochastic winds
Rubio Hervas, Jaime; Reyhanoglu, Mahmut; Tang, Hui; Kayacan, Erdal
2016-04-01
This paper studies the control of fixed-wing unmanned aerial vehicles (UAVs) in the presence of stochastic winds. A nonlinear controller is designed based on a full nonlinear mathematical model that includes the stochastic wind effects. The air velocity is controlled exclusively using the position of the throttle, and the rest of the dynamics are controlled with the aileron, elevator, and rudder deflections. The nonlinear control design is based on a smooth approximation of a sliding mode controller. An extended Kalman filter (EKF) is proposed for the state estimation and filtering. A case study is presented: landing control of a UAV on a ship deck in the presence of wind based exclusively on LADAR measurements. The effectiveness of the nonlinear control algorithm is illustrated through a simulation example.
Sochi, Taha
2016-09-01
Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.
Directory of Open Access Journals (Sweden)
Junlong Zhu
2017-01-01
Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
Didari, Azadeh; Pinar Mengüç, M.
2017-08-01
Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).
Stochastic beam dynamics in storage rings
International Nuclear Information System (INIS)
Pauluhn, A.
1993-12-01
In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)
Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.
2015-04-01
Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from
2–stage stochastic Runge–Kutta for stochastic delay differential equations
Energy Technology Data Exchange (ETDEWEB)
Rosli, Norhayati; Jusoh Awang, Rahimah [Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang, Pahang (Malaysia); Bahar, Arifah; Yeak, S. H. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-05-15
This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.
Stochastic processes in cell biology
Bressloff, Paul C
2014-01-01
This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods. This text is primarily...
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis
2007-07-01
This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence.
A continuous stochastic model for non-equilibrium dense gases
Sadr, M.; Gorji, M. H.
2017-12-01
While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are
Remarks on stochastic acceleration
International Nuclear Information System (INIS)
Graeff, P.
1982-12-01
Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)
Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora
2017-11-01
In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.
Energy Technology Data Exchange (ETDEWEB)
Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Sinyavin, D N; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)
2014-11-30
A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)
Stochastic Spectral Descent for Discrete Graphical Models
International Nuclear Information System (INIS)
Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan
2015-01-01
Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.
International Nuclear Information System (INIS)
Jakeman, J.D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation
Stochastic optimization-based study of dimerization kinetics
Indian Academy of Sciences (India)
To this end, we study dimerization kinetics of protein as a model system. We follow the dimerization kinetics using a stochastic simulation algorithm and ... optimization; dimerization kinetics; sensitivity analysis; stochastic simulation ... tion in large molecules and clusters, or the design ..... An unbiased strategy of allocating.
A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid
Energy Technology Data Exchange (ETDEWEB)
Donev, A; Alder, B J; Garcia, A L
2009-08-03
A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902 (2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown to be thermodynamically identical to a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well-described by the hypernetted chain (HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.
Scalable inference for stochastic block models
Peng, Chengbin
2017-12-08
Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.
Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants
Jin, Ick Hoon
2014-03-01
Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.
Stochastic Power Control for Time-Varying Long-Term Fading Wireless Networks
Directory of Open Access Journals (Sweden)
Charalambous Charalambos D
2006-01-01
Full Text Available A new time-varying (TV long-term fading (LTF channel model which captures both the space and time variations of wireless systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a dynamical system, thus enabling well-developed tools of adaptive and nonadaptive estimation and identification techniques to be applied to this class of problems. In contrast with the traditional models, the statistics of the proposed model are shown to be TV, but converge in steady state to their static counterparts. Moreover, optimal power control algorithms (PCAs based on the new model are proposed. A centralized PCA is shown to reduce to a simple linear programming problem if predictable power control strategies (PPCS are used. In addition, an iterative distributed stochastic PCA is used to solve for the optimization problem using stochastic approximations. The latter solely requires each mobile to know its received signal-to-interference ratio. Generalizations of the power control problem based on convex optimization techniques are provided if PPCS are not assumed. Numerical results show that there are potentially large gains to be achieved by using TV stochastic models, and the distributed stochastic PCA provides better power stability and consumption than the distributed deterministic PCA.
Asymptotic problems for stochastic partial differential equations
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
A Stochastic Multiscale Method for the Elastic Wave Equations Arising from Fiber Composites
Babuska, Ivo
2016-01-06
We present a stochastic multilevel global-local algorithm [1] for computing elastic waves propagating in fiber-reinforced polymer composites, where the material properties and the size and distribution of fibers in the polymer matrix may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems: 1) macro; 2) meso; and 3) micro problems, corresponding to the three natural length scales: 1) the sizes of plate; 2) the tickles of plies; and 3) and the diameter of fibers. The algorithm uses a homogenized global solution to construct a local approximation that captures the microscale features of the problem. We perform numerical experiments to show the applicability and efficiency of the method.
International Nuclear Information System (INIS)
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-01-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Energy Technology Data Exchange (ETDEWEB)
Marchetti, Luca, E-mail: marchetti@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); University of Trento, Department of Mathematics (Italy); Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy)
2016-07-15
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2006-02-01
Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users
Scalable Hierarchical Algorithms for stochastic PDEs and UQ
Litvinenko, Alexander
2015-01-07
H-matrices and Fast Multipole (FMM) are powerful methods to approximate linear operators coming from partial differential and integral equations as well as speed up computational cost from quadratic or cubic to log-linear (O(n log n)), where n number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by Kriemann [1,2]. Since 2005, the area of parallel architectures and software is developing very fast. Progress in GPUs and Many-Core Systems (e.g. XeonPhi with 64 cores) motivated us to extend work started in [1,2,7,8].
Memristors Empower Spiking Neurons With Stochasticity
Al-Shedivat, Maruan
2015-06-01
Recent theoretical studies have shown that probabilistic spiking can be interpreted as learning and inference in cortical microcircuits. This interpretation creates new opportunities for building neuromorphic systems driven by probabilistic learning algorithms. However, such systems must have two crucial features: 1) the neurons should follow a specific behavioral model, and 2) stochastic spiking should be implemented efficiently for it to be scalable. This paper proposes a memristor-based stochastically spiking neuron that fulfills these requirements. First, the analytical model of the memristor is enhanced so it can capture the behavioral stochasticity consistent with experimentally observed phenomena. The switching behavior of the memristor model is demonstrated to be akin to the firing of the stochastic spike response neuron model, the primary building block for probabilistic algorithms in spiking neural networks. Furthermore, the paper proposes a neural soma circuit that utilizes the intrinsic nondeterminism of memristive switching for efficient spike generation. The simulations and analysis of the behavior of a single stochastic neuron and a winner-take-all network built of such neurons and trained on handwritten digits confirm that the circuit can be used for building probabilistic sampling and pattern adaptation machinery in spiking networks. The findings constitute an important step towards scalable and efficient probabilistic neuromorphic platforms. © 2011 IEEE.
Approximation algorithms for a genetic diagnostics problem.
Kosaraju, S R; Schäffer, A A; Biesecker, L G
1998-01-01
We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.
Stochastic global optimization as a filtering problem
International Nuclear Information System (INIS)
Stinis, Panos
2012-01-01
We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.
Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment
Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel
2014-02-01
Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.
Numerical studies of the stochastic Korteweg-de Vries equation
International Nuclear Information System (INIS)
Lin Guang; Grinberg, Leopold; Karniadakis, George Em
2006-01-01
We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space. The accuracy of the stochastic solutions is investigated by comparing the first two moments against analytical and Monte Carlo simulation results. Of particular interest is the interplay of spatial discretization error with the stochastic approximation error, which is examined for different orders of spatial and stochastic approximation
Loizou, Nicolas
2017-12-27
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.
Loizou, Nicolas; Richtarik, Peter
2017-01-01
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.
A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles
International Nuclear Information System (INIS)
Schaller, S.; Flohr, T.; Steffen, P.
1996-01-01
This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results
International Nuclear Information System (INIS)
Braumann, Andreas; Kraft, Markus; Wagner, Wolfgang
2010-01-01
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determines the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.
Adaptive weak approximation of reflected and stopped diffusions
Bayer, Christian
2010-01-01
We study the weak approximation problem of diffusions, which are reflected at a subset of the boundary of a domain and stopped at the remaining boundary. First, we derive an error representation for the projected Euler method of Costantini, Pacchiarotti and Sartoretto [Costantini et al., SIAM J. Appl. Math., 58(1):73-102, 1998], based on which we introduce two new algorithms. The first one uses a correction term from the representation in order to obtain a higher order of convergence, but the computation of the correction term is, in general, not feasible in dimensions d > 1. The second algorithm is adaptive in the sense of Moon, Szepessy, Tempone and Zouraris [Moon et al., Stoch. Anal. Appl., 23:511-558, 2005], using stochastic refinement of the time grid based on a computable error expansion derived from the representation. Regarding the stopped diffusion, it is based in the adaptive algorithm for purely stopped diffusions presented in Dzougoutov, Moon, von Schwerin, Szepessy and Tempone [Dzougoutov et al., Lect. Notes Comput. Sci. Eng., 44, 59-88, 2005]. We give numerical examples underlining the theoretical results. © de Gruyter 2010.
Mauri, Francesco
Anharmonic effects can generally be treated within perturbation theory. Such an approach breaks down when the harmonic solution is dynamically unstable or when the anharmonic corrections of the phonon energies are larger than the harmonic frequencies themselves. This situation occurs near lattice-related second-order phase-transitions such as charge-density-wave (CDW) or ferroelectric instabilities or in H-containing materials, where the large zero-point motion of the protons results in a violation of the harmonic approximation. Interestingly, even in these cases, phonons can be observed, measured, and used to model transport properties. In order to treat such cases, we developed a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity in the nonperturbative regime and to obtain, from first-principles, the structural, thermodynamic and vibrational properties of strongly anharmonic systems. I will present applications to the ferroelectric transitions in SnTe, to the CWD transitions in NbS2 and NbSe2 (in bulk and monolayer) and to the hydrogen-bond symmetrization transition in the superconducting hydrogen sulfide system, that exhibits the highest Tc reported for any superconductor so far. In all cases we are able to predict the transition temperature (pressure) and the evolution of phonons with temperature (pressure). This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore1.
Chen, Liwen; Xu, Qiang
2018-02-01
This paper proposes new iterative algorithms for the unknown input and state recovery from the system outputs using an approximate inverse of the strictly proper linear time-invariant (LTI) multivariable system. One of the unique advantages from previous system inverse algorithms is that the output differentiation is not required. The approximate system inverse is stable due to the systematic optimal design of a dummy feedthrough D matrix in the state-space model via the feedback stabilization. The optimal design procedure avoids trial and error to identify such a D matrix which saves tremendous amount of efforts. From the derived and proved convergence criteria, such an optimal D matrix also guarantees the convergence of algorithms. Illustrative examples show significant improvement of the reference input signal tracking by the algorithms and optimal D design over non-iterative counterparts on controllable or stabilizable LTI systems, respectively. Case studies of two Boeing-767 aircraft aerodynamic models further demonstrate the capability of the proposed methods.
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
International Nuclear Information System (INIS)
Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.
2015-01-01
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method
DEFF Research Database (Denmark)
Sadegh, Payman; Spall, J. C.
1998-01-01
simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...
Pettersson, Per
2013-05-01
The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.
Pettersson, Per; Doostan, Alireza; Nordströ m, Jan
2013-01-01
The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.
Aralis, Hilary; Brookmeyer, Ron
2017-01-01
Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.
Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment
Directory of Open Access Journals (Sweden)
Gianluca Valentino
2014-02-01
Full Text Available Collimators with embedded beam position monitor (BPM button electrodes will be installed in the Large Hadron Collider (LHC during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.
Fsheikh, Ahmed H.
2013-01-01
A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.
Stochastic linear dynamical programming in order to apply it in energy modelling
Energy Technology Data Exchange (ETDEWEB)
El Hachem, S
1995-11-01
This thesis contributes to the development of new algorithms for the computation of stochastic dynamic problem and its mini-maxi variant for the case of imperfect knowledge on random data. The proposed algorithms are scenarios aggregation type. It also contributes to integrate these algorithms in a decision support approach and to discuss the stochastic modeling of two energy problems: the refining and the portfolio gas contracts. (author). 112 refs., 5 tabs.
International Nuclear Information System (INIS)
Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang; Kraft, Markus
2015-01-01
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. The weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.
Energy Technology Data Exchange (ETDEWEB)
Lee, Kok Foong [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Patterson, Robert I.A.; Wagner, Wolfgang [Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin (Germany); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 (Singapore)
2015-12-15
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. The weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.
Directory of Open Access Journals (Sweden)
Jarosław Rudy
2015-01-01
Full Text Available In this paper the job shop scheduling problem (JSP with minimizing two criteria simultaneously is considered. JSP is frequently used model in real world applications of combinatorial optimization. Multi-objective job shop problems (MOJSP were rarely studied. We implement and compare two multi-agent nature-based methods, namely ant colony optimization (ACO and genetic algorithm (GA for MOJSP. Both of those methods employ certain technique, taken from the multi-criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method of keeping information about previously found solutions and their quality, which affects the course of the search. In result, new features of Pareto approximations provided by said algorithms are observed: aside from the slight superiority of the ACO method the Pareto frontier approximations provided by both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of the Pareto frontier.
DEFF Research Database (Denmark)
Picchini, Umberto; Forman, Julie Lyng
2016-01-01
a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm......In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...
Simulation of quantum dynamics based on the quantum stochastic differential equation.
Li, Ming
2013-01-01
The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.
Variance decomposition in stochastic simulators.
Le Maître, O P; Knio, O M; Moraes, A
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Variance decomposition in stochastic simulators
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Variance decomposition in stochastic simulators
Energy Technology Data Exchange (ETDEWEB)
Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Variance decomposition in stochastic simulators
Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro
2015-01-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Thomas, Philipp; Matuschek, Hannes; Grima, Ramon
2012-01-01
The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen's system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA's performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with
Directory of Open Access Journals (Sweden)
Philipp Thomas
Full Text Available The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA, which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen's system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA's performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network
Grima, Ramon
2012-01-01
The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen’s system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA’s performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with
Approximate maximum likelihood estimation for population genetic inference.
Bertl, Johanna; Ewing, Gregory; Kosiol, Carolin; Futschik, Andreas
2017-11-27
In many population genetic problems, parameter estimation is obstructed by an intractable likelihood function. Therefore, approximate estimation methods have been developed, and with growing computational power, sampling-based methods became popular. However, these methods such as Approximate Bayesian Computation (ABC) can be inefficient in high-dimensional problems. This led to the development of more sophisticated iterative estimation methods like particle filters. Here, we propose an alternative approach that is based on stochastic approximation. By moving along a simulated gradient or ascent direction, the algorithm produces a sequence of estimates that eventually converges to the maximum likelihood estimate, given a set of observed summary statistics. This strategy does not sample much from low-likelihood regions of the parameter space, and is fast, even when many summary statistics are involved. We put considerable efforts into providing tuning guidelines that improve the robustness and lead to good performance on problems with high-dimensional summary statistics and a low signal-to-noise ratio. We then investigate the performance of our resulting approach and study its properties in simulations. Finally, we re-estimate parameters describing the demographic history of Bornean and Sumatran orang-utans.
A cluster algorithm for graphs
S. van Dongen
2000-01-01
textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)
Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-01-01
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions. PMID:25615734
Directory of Open Access Journals (Sweden)
Ramviyas Parasuraman
2014-12-01
Full Text Available The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS. When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities, there is a possibility that some electronic components may fail randomly (due to radiation effects, which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.
Smolyak's algorithm: A powerful black box for the acceleration of scientific computations
Tempone, Raul; Wolfers, Soeren
2017-01-01
We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner.
Smolyak's algorithm: A powerful black box for the acceleration of scientific computations
Tempone, Raul
2017-03-26
We provide a general discussion of Smolyak\\'s algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak\\'s work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak\\'s algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner.
Computational singular perturbation analysis of stochastic chemical systems with stiffness
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.
2017-04-01
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.
Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li
2017-03-01
The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.
Solving simple stochastic games with few coin toss positions
DEFF Research Database (Denmark)
Ibsen-Jensen, Rasmus; Miltersen, Peter Bro
2011-01-01
Gimbert and Horn gave an algorithm for solving simple stochastic games with running time O(r! n) where n is the number of positions of the simple stochastic game and r is the number of its coin toss positions. Chatterjee et al. pointed out that a variant of strategy iteration can be implemented...... to solve this problem in time 4^r r^{O(1)} n^{O(1)}. In this paper, we show that an algorithm combining value iteration with retrograde analysis achieves a time bound of O(r 2^r (r log r + n)), thus improving both time bounds. While the algorithm is simple, the analysis leading to this time bound...
Directory of Open Access Journals (Sweden)
Huanqing Wang
2014-01-01
Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.
Approximation of itô integrals arising in stochastic time-delayed systems
Bagchi, Arunabha
1984-01-01
Likelihood functional for stochastic linear time-delayed systems involve Itô integrals with respect to the observed data. Since the Wiener process appearing in the standard observation process model for such systems is not realizable and the physically observed process is smooth, one needs to study
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stochastic Simulation of Process Calculi for Biology
Directory of Open Access Journals (Sweden)
Andrew Phillips
2010-10-01
Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.
A stochastic model for immunological feedback in carcinogenesis analysis and approximations
Dubin, Neil
1976-01-01
Stochastic processes often pose the difficulty that, as soon as a model devi ates from the simplest kinds of assumptions, the differential equations obtained for the density and the generating functions become mathematically formidable. Worse still, one is very often led to equations which have no known solution and don't yield to standard analytical methods for differential equations. In the model considered here, one for tumor growth with an immunological re sponse from the normal tissue, a nonlinear term in the transition probability for the death of a tumor cell leads to the above-mentioned complications. Despite the mathematical disadvantages of this nonlinearity, we are able to consider a more sophisticated model biologically. Ultimately, in order to achieve a more realistic representation of a complicated phenomenon, it is necessary to examine mechanisms which allow the model to deviate from the more mathematically tractable linear format. Thus far, stochastic models for tumor growth have almost ex...
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time
Dhar, Amrit
2017-01-01
Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780
Directory of Open Access Journals (Sweden)
Viet Tra
2017-12-01
Full Text Available This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs trained via the stochastic diagonal Levenberg-Marquardt (S-DLM algorithm. The CNNs utilize the spectral energy maps (SEMs of the acoustic emission (AE signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.
Haji Ali, Abdul Lateef
2016-01-08
I discuss using single level and multilevel Monte Carlo methods to compute quantities of interests of a stochastic particle system in the mean-field. In this context, the stochastic particles follow a coupled system of Ito stochastic differential equations (SDEs). Moreover, this stochastic particle system converges to a stochastic mean-field limit as the number of particles tends to infinity. I start by recalling the results of applying different versions of Multilevel Monte Carlo (MLMC) for particle systems, both with respect to time steps and the number of particles and using a partitioning estimator. Next, I expand on these results by proposing the use of our recent Multi-index Monte Carlo method to obtain improved convergence rates.
Haji Ali, Abdul Lateef
2016-01-01
I discuss using single level and multilevel Monte Carlo methods to compute quantities of interests of a stochastic particle system in the mean-field. In this context, the stochastic particles follow a coupled system of Ito stochastic differential equations (SDEs). Moreover, this stochastic particle system converges to a stochastic mean-field limit as the number of particles tends to infinity. I start by recalling the results of applying different versions of Multilevel Monte Carlo (MLMC) for particle systems, both with respect to time steps and the number of particles and using a partitioning estimator. Next, I expand on these results by proposing the use of our recent Multi-index Monte Carlo method to obtain improved convergence rates.
Azad, Mohammad
2016-10-20
The paper is devoted to the study of a greedy algorithm for construction of approximate decision rules. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. We consider bounds on the precision of this algorithm relative to the length of rules. To illustrate proposed approach we study a problem of recognition of labels of points in the plain. This paper contains also results of experiments with modified decision tables from UCI Machine Learning Repository.
Azad, Mohammad; Moshkov, Mikhail; Zielosko, Beata
2016-01-01
The paper is devoted to the study of a greedy algorithm for construction of approximate decision rules. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. We consider bounds on the precision of this algorithm relative to the length of rules. To illustrate proposed approach we study a problem of recognition of labels of points in the plain. This paper contains also results of experiments with modified decision tables from UCI Machine Learning Repository.
A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.
Directory of Open Access Journals (Sweden)
Alessandro Vato
Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2017-01-01
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Scalable Hierarchical Algorithms for stochastic PDEs and Uncertainty Quantification
Litvinenko, Alexander
2015-01-05
H-matrices and Fast Multipole (FMM) are powerful methods to approximate linear operators coming from partial differential and integral equations as well as speed up computational cost from quadratic or cubic to log-linear (O(n log n)), where n number of degrees of freedom in the discretization. The storage is reduced to the log-linear as well. This hierarchical structure is a good starting point for parallel algorithms. Parallelization on shared and distributed memory systems was pioneered by R. Kriemann, 2005. Since 2005, the area of parallel architectures and software is developing very fast. Progress in GPUs and Many-Core Systems (e.g. XeonPhi with 64 cores) motivated us to extend work started in [1,2,7,8].
A stochastic programming approach to manufacturing flow control
Haurie, Alain; Moresino, Francesco
2012-01-01
This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing flow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for the finite horizon continuous time stochastic control problem are discretized over a set of sample...
Weinberg, Seth H.; Smith, Gregory D.
2012-01-01
Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597
Chekroun, Mickaël D; Wang, Shouhong
2015-01-01
In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.
Solving Simple Stochastic Games with Few Coin Toss Positions
DEFF Research Database (Denmark)
Ibsen-Jensen, Rasmus; Miltersen, Peter Bro
2012-01-01
Gimbert and Horn gave an algorithm for solving simple stochastic games with running time O(r! n) where n is the number of positions of the simple stochastic game and r is the number of its coin toss positions. Chatterjee et al. pointed out that a variant of strategy iteration can be implemented...... to solve this problem in time 4 r n O(1). In this paper, we show that an algorithm combining value iteration with retrograde analysis achieves a time bound of O(r 2 r (r logr + n)), thus improving both time bounds. We also improve the analysis of Chatterjee et al. and show that their algorithm in fact has...
All-Norm Approximation Algorithms
Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik
2002-01-01
A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation
Energy Technology Data Exchange (ETDEWEB)
Cotter, Simon L., E-mail: simon.cotter@manchester.ac.uk
2016-10-15
Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is an ongoing area for research, and is the source of many theoretical and computational challenges. In this paper, we present a significant improvement to the constrained approach, which is a method for computing effective dynamics of slowly changing quantities in these systems, but which does not rely on the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems where the difference in timescales between the “fast” and “slow” variables is not so pronounced. This new application of the constrained approach allows us to compute the effective generator of the slow variables, without the need for expensive stochastic simulations. This is achieved by finding the null space of the generator of the constrained system. For complex systems where this is not possible, or where the constrained subsystem is itself multiscale, the constrained approach can then be applied iteratively. This results in breaking the problem down into finding the solutions to many small eigenvalue problems, which can be efficiently solved using standard methods. Since this methodology does not rely on the quasi steady-state assumption, the effective dynamics that are approximated are highly accurate, and in the case of systems with only monomolecular reactions, are exact. We will demonstrate this with some numerics, and also use the effective generators to sample paths of the slow variables which are conditioned on their endpoints, a task which would be computationally intractable for the generator of the full system.
Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto
2016-12-01
It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low
Reliability-oriented multi-resource allocation in a stochastic-flow network
International Nuclear Information System (INIS)
Hsieh, C.-C.; Lin, M.-H.
2003-01-01
A stochastic-flow network consists of a set of nodes, including source nodes which supply various resources and sink nodes at which resource demands take place, and a collection of arcs whose capacities have multiple operational states. The network reliability of such a stochastic-flow network is the probability that resources can be successfully transmitted from source nodes through multi-capacitated arcs to sink nodes. Although the evaluation schemes of network reliability in stochastic-flow networks have been extensively studied in the literature, how to allocate various resources at source nodes in a reliable means remains unanswered. In this study, a resource allocation problem in a stochastic-flow network is formulated that aims to determine the optimal resource allocation policy at source nodes subject to given resource demands at sink nodes such that the network reliability of the stochastic-flow network is maximized, and an algorithm for computing the optimal resource allocation is proposed that incorporates the principle of minimal path vectors. A numerical example is given to illustrate the proposed algorithm
Energy Technology Data Exchange (ETDEWEB)
Dulikravich, George S.; Sikka, Vinod K.; Muralidharan, G.
2006-06-01
The goal of this project was to adapt and use an advanced semi-stochastic algorithm for constrained multiobjective optimization and combine it with experimental testing and verification to determine optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-series stainless steel alloys that will simultaneously maximize a number of alloy's mechanical and corrosion properties.
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2016-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we descr...
D'Onofrio, Giuseppe; Pirozzi, Enrica
2017-05-01
We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.
Improved Approximation Algorithms for Item Pricing with Bounded Degree and Valuation
Hamane, Ryoso; Itoh, Toshiya
When a store sells items to customers, the store wishes to decide the prices of the items to maximize its profit. If the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. It would be hard for the store to decide the prices of items. Assume that a store has a set V of n items and there is a set C of m customers who wish to buy those items. The goal of the store is to decide the price of each item to maximize its profit. We refer to this maximization problem as an item pricing problem. We classify the item pricing problems according to how many items the store can sell or how the customers valuate the items. If the store can sell every item i with unlimited (resp. limited) amount, we refer to this as unlimited supply (resp. limited supply). We say that the item pricing problem is single-minded if each customer j∈C wishes to buy a set ej⊆V of items and assigns valuation w(ej)≥0. For the single-minded item pricing problems (in unlimited supply), Balcan and Blum regarded them as weighted k-hypergraphs and gave several approximation algorithms. In this paper, we focus on the (pseudo) degree of k-hypergraphs and the valuation ratio, i. e., the ratio between the smallest and the largest valuations. Then for the single-minded item pricing problems (in unlimited supply), we show improved approximation algorithms (for k-hypergraphs, general graphs, bipartite graphs, etc.) with respect to the maximum (pseudo) degree and the valuation ratio.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
Multi-compartment linear noise approximation
International Nuclear Information System (INIS)
Challenger, Joseph D; McKane, Alan J; Pahle, Jürgen
2012-01-01
The ability to quantify the stochastic fluctuations present in biochemical and other systems is becoming increasing important. Analytical descriptions of these fluctuations are attractive, as stochastic simulations are computationally expensive. Building on previous work, a linear noise approximation is developed for biochemical models with many compartments, for example cells. The procedure is then implemented in the software package COPASI. This technique is illustrated with two simple examples and is then applied to a more realistic biochemical model. Expressions for the noise, given in the form of covariance matrices, are presented. (paper)
A continuation multilevel Monte Carlo algorithm
Collier, Nathan
2014-09-05
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.
A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases.
Jain, Chirag; Dilthey, Alexander; Koren, Sergey; Aluru, Srinivas; Phillippy, Adam M
2018-04-30
Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-and-extend methods demonstrate good accuracy, but face limited scalability, while faster alignment-free methods typically trade decreased precision for efficiency. In this article, we combine a fast approximate read mapping algorithm based on minimizers with a novel MinHash identity estimation technique to achieve both scalability and precision. In contrast to prior methods, we develop a mathematical framework that defines the types of mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity, and demonstrate tolerance for alignment error rates up to 20%. With this framework, our algorithm automatically adapts to different minimum length and identity requirements and provides both positional and identity estimates for each mapping reported. For mapping human PacBio reads to the hg38 reference, our method is 290 × faster than Burrows-Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96%. We further demonstrate the scalability of our method by mapping noisy PacBio reads (each ≥5 kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of sequence and >60,000 genomes.
Verification of Stochastic Process Calculi
DEFF Research Database (Denmark)
Skrypnyuk, Nataliya
algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...
Robustness of Populations in Stochastic Environments
DEFF Research Database (Denmark)
Gießen, Christian; Kötzing, Timo
2016-01-01
We consider stochastic versions of OneMax and LeadingOnes and analyze the performance of evolutionary algorithms with and without populations on these problems. It is known that the (1+1) EA on OneMax performs well in the presence of very small noise, but poorly for higher noise levels. We extend...... the abilities of the (1+1) EA. Larger population sizes are even more beneficial; we consider both parent and offspring populations. In this sense, populations are robust in these stochastic settings....
Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows
Srivastav, R. K.; Srinivasan, K.; Sudheer, K.
2009-05-01
bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.
Solving stochastic multiobjective vehicle routing problem using probabilistic metaheuristic
Directory of Open Access Journals (Sweden)
Gannouni Asmae
2017-01-01
closed form expression. This novel approach is based on combinatorial probability and can be incorporated in a multiobjective evolutionary algorithm. (iiProvide probabilistic approaches to elitism and diversification in multiobjective evolutionary algorithms. Finally, The behavior of the resulting Probabilistic Multi-objective Evolutionary Algorithms (PrMOEAs is empirically investigated on the multi-objective stochastic VRP problem.
Kemper, A; Nishino, T; Schadschneider, A; Zittartz, J
2003-01-01
We develop a new variant of the recently introduced stochastic transfer matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG, adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process are studied and compared with exact data and Monte Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10 sup 5 shows a considerable improvement on the old stochastic TMRG algorithm.
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available We define a special case for the vehicle routing problem with stochastic demands (SC-VRPSD where customer demands are normally distributed. We propose a new linear model for computing the expected length of a tour in SC-VRPSD. The proposed model is based on the integration of the “Traveling Salesman Problem” (TSP and the Assignment Problem. For large-scale problems, we also use an Iterated Local Search (ILS algorithm in order to reach an effective solution.
THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM
International Nuclear Information System (INIS)
Carter, Joshua A.; Agol, Eric
2013-01-01
We present a new algorithm for detecting transiting extrasolar planets in time-series photometry. The Quasiperiodic Automated Transit Search (QATS) algorithm relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits. We show that this method is capable of detecting transiting planets with significant transit timing variations without any loss of significance— s mearing — as would be incurred with traditional algorithms; however, this is at the cost of a slightly increased stochastic background. The approximate times of transit are standard products of the QATS search. Despite the increased flexibility, we show that QATS has a run-time complexity that is comparable to traditional search codes and is comparably easy to implement. QATS is applicable to data having a nearly uninterrupted, uniform cadence and is therefore well suited to the modern class of space-based transit searches (e.g., Kepler, CoRoT). Applications of QATS include transiting planets in dynamically active multi-planet systems and transiting planets in stellar binary systems.
Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series
Zhang, Zhihua
2014-01-01
Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842
Two approximations of the present value distribution of a disability annuity
Spreeuw, Jaap
2006-02-01
The distribution function of the present value of a cash flow can be approximated by means of a distribution function of a random variable, which is also the present value of a sequence of payments, but with a simpler structure. The corresponding random variable has the same expectation as the random variable corresponding to the original distribution function and is a stochastic upper bound of convex order. A sharper upper bound can be obtained if more information about the risk is available. In this paper, it will be shown that such an approach can be adopted for disability annuities (also known as income protection policies) in a three state model under Markov assumptions. Benefits are payable during any spell of disability whilst premiums are only due whenever the insured is healthy. The quality of the two approximations is investigated by comparing the distributions obtained with the one derived from the algorithm presented in the paper by Hesselager and Norberg [Insurance Math. Econom. 18 (1996) 35-42].
Stochastic weighted particle methods for population balance equations
International Nuclear Information System (INIS)
Patterson, Robert I.A.; Wagner, Wolfgang; Kraft, Markus
2011-01-01
Highlights: → Weight transfer functions for Monte Carlo simulation of coagulation. → Efficient support for single-particle growth processes. → Comparisons to analytic solutions and soot formation problems. → Better numerical accuracy for less common particles. - Abstract: A class of coagulation weight transfer functions is constructed, each member of which leads to a stochastic particle algorithm for the numerical treatment of population balance equations. These algorithms are based on systems of weighted computational particles and the weight transfer functions are constructed such that the number of computational particles does not change during coagulation events. The algorithms also facilitate the simulation of physical processes that change single particles, such as growth, or other surface reactions. Four members of the algorithm family have been numerically validated by comparison to analytic solutions to simple problems. Numerical experiments have been performed for complex laminar premixed flame systems in which members of the class of stochastic weighted particle methods were compared to each other and to a direct simulation algorithm. Two of the weighted algorithms have been shown to offer performance advantages over the direct simulation algorithm in situations where interest is focused on the larger particles in a system. The extent of this advantage depends on the particular system and on the quantities of interest.
Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"
Energy Technology Data Exchange (ETDEWEB)
Petzold, Linda R.
2012-10-25
Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.
Phenomenology of stochastic exponential growth
Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya
2017-06-01
Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.
Tilton, James C.; Plaza, Antonio J. (Editor); Chang, Chein-I. (Editor)
2008-01-01
The hierarchical image segmentation algorithm (referred to as HSEG) is a hybrid of hierarchical step-wise optimization (HSWO) and constrained spectral clustering that produces a hierarchical set of image segmentations. HSWO is an iterative approach to region grooving segmentation in which the optimal image segmentation is found at N(sub R) regions, given a segmentation at N(sub R+1) regions. HSEG's addition of constrained spectral clustering makes it a computationally intensive algorithm, for all but, the smallest of images. To counteract this, a computationally efficient recursive approximation of HSEG (called RHSEG) has been devised. Further improvements in processing speed are obtained through a parallel implementation of RHSEG. This chapter describes this parallel implementation and demonstrates its computational efficiency on a Landsat Thematic Mapper test scene.
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
A moment-convergence method for stochastic analysis of biochemical reaction networks.
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
A moment-convergence method for stochastic analysis of biochemical reaction networks
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jiajun [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Nie, Qing [Department of Mathematics, University of California at Irvine, Irvine, California 92697 (United States); Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Province Key Laboratory of Computational Science and School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)
2016-05-21
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Performance in population models for count data, part II: a new SAEM algorithm
Savic, Radojka; Lavielle, Marc
2009-01-01
Analysis of count data from clinical trials using mixed effect analysis has recently become widely used. However, algorithms available for the parameter estimation, including LAPLACE and Gaussian quadrature (GQ), are associated with certain limitations, including bias in parameter estimates and the long analysis runtime. The stochastic approximation expectation maximization (SAEM) algorithm has proven to be a very efficient and powerful tool in the analysis of continuous data. The aim of this study was to implement and investigate the performance of a new SAEM algorithm for application to count data. A new SAEM algorithm was implemented in MATLAB for estimation of both, parameters and the Fisher information matrix. Stochastic Monte Carlo simulations followed by re-estimation were performed according to scenarios used in previous studies (part I) to investigate properties of alternative algorithms (1). A single scenario was used to explore six probability distribution models. For parameter estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random effects, for all models studied including ones accounting for over- or under-dispersion. Empirical and estimated relative standard errors were similar, with distance between them being <1.7 % for all explored scenarios. The longest CPU time was 95s for parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for analysis of count data. It provides accurate estimates of both, parameters and standard errors. The estimation is significantly faster compared to LAPLACE and GQ. The algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). PMID:19680795
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains
Directory of Open Access Journals (Sweden)
Goran Martinović
2015-03-01
Full Text Available In the 1.5D terrain guarding problem, an x-monotone polygonal line is dened by k vertices and a G set of terrain points, i.e. guards, and a N set of terrain points which guards are to observe (guard. This involves a weighted version of the guarding problem where guards G have weights. The goal is to determine a minimum weight subset of G to cover all the points in N, including a version where points from N have demands. Furthermore, another goal is to determine the smallest subset of G, such that every point in N is observed by the required number of guards. Both problems are NP-hard and have a factor 5 approximation [3, 4]. This paper will show that if the (1+ϵ-approximate solver for the corresponding linear program is a computer, for any ϵ > 0, an extra 1+ϵ factor will appear in the final approximation factor for both problems. A comparison will be carried out the parallel implementation based on GPU and CPU threads with the Gurobi solver, leading to the conclusion that the respective algorithm outperforms the Gurobi solver on large and dense inputs typically by one order of magnitude.
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays
Directory of Open Access Journals (Sweden)
Laurenzi Ian J
2009-12-01
Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
Stochastic reactive power market with volatility of wind power considering voltage security
International Nuclear Information System (INIS)
Kargarian, A.; Raoofat, M.
2011-01-01
While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved. -- Highlights: →The paper proposes a new algorithm for stochastic reactive power market clearing. →The stochastic nature of the wind which impacts the system operation and market clearing process, is taken into account. →The paper suggests an expected voltage stability margin and optimizes it in conjunction with expected total market payment. →To clear the market with two mentioned objective functions, a three-stage multiobjective nonlinear programming is implemented. →Also, a simple method is suggested to determine a suitable priority coefficient between two individual objective functions.
Analysis and reconstruction of stochastic coupled map lattice models
International Nuclear Information System (INIS)
Coca, Daniel; Billings, Stephen A.
2003-01-01
The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived
Dynamic Stochastic Superresolution of sparsely observed turbulent systems
International Nuclear Information System (INIS)
Branicki, M.; Majda, A.J.
2013-01-01
Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Nobile, Fabio; Tempone, Raul
2009-01-01
We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.
Nobile, Fabio
2009-11-05
We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.
Planning under uncertainty solving large-scale stochastic linear programs
Energy Technology Data Exchange (ETDEWEB)
Infanger, G. [Stanford Univ., CA (United States). Dept. of Operations Research]|[Technische Univ., Vienna (Austria). Inst. fuer Energiewirtschaft
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm
Energy Technology Data Exchange (ETDEWEB)
Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)
2015-08-07
We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.
Stochastic volatility and stochastic leverage
DEFF Research Database (Denmark)
Veraart, Almut; Veraart, Luitgard A. M.
This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...
Applied probability and stochastic processes
Sumita, Ushio
1999-01-01
Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...
QB1 - Stochastic Gene Regulation
Energy Technology Data Exchange (ETDEWEB)
Munsky, Brian [Los Alamos National Laboratory
2012-07-23
Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.
A New Approximate Chimera Donor Cell Search Algorithm
Holst, Terry L.; Nixon, David (Technical Monitor)
1998-01-01
The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.
Stochastic methods for the fermion determinant in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Finkenrath, Jacob Friedrich
2015-02-17
In this thesis, algorithms in lattice quantum chromodynamics are presented by developing and using stochastic methods for fermion determinant ratios. For that an integral representation is proved which can be used also for non hermitian matrices. The stochastic estimation or the Monte Carlo integration of this integral representation introduces stochastic fluctuations which are controlled by using Domain Decomposition of the Dirac operator and introducing interpolation techniques. Determinant ratios of the lattice fermion operator, here the Wilson Dirac operator, are needed for corrections of the Boltzmann weight. These corrections have interesting applications e.g. in the mass by using mass reweighting. It will be shown that mass reweighting can be used e.g. to improve extrapolation in the light quark mass towards the chiral or physical point or to introduce an isospin breaking by splitting up the mass of the light quark. Furthermore the extraction of the light quark masses will be shown by using dynamical 2 flavor CLS ensembles. Stochastic estimation of determinant ratios can be used in Monte Carlo algorithms, e.g. in the Partial Stochastic Multi Step algorithm which can sample two mass-degenerate quarks. The idea is to propose a new configuration weighted by the pure gauge weight and including afterwards the fermion weight by using Metropolis accept-reject steps. It is shown by using an adequate interpolation with relative gauge fixing and a hierarchical filter structure that it is possible to simulate moderate lattices up to (2.1 fm){sup 4}. Furthermore the iteration of the pure gauge update can be increased which can decouple long autocorrelation times from the weighting with the fermions. Moreover a novel Hybrid Monte Carlo algorithm based on Domain Decomposition and combined with mass reweighting is presented. By using Domain Decomposition it is possible to split up the mass term in the Schur complement and the block operators. By introducing a higher mass
Stochastic Optimal Prediction with Application to Averaged Euler Equations
Energy Technology Data Exchange (ETDEWEB)
Bell, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chorin, Alexandre J. [Univ. of California, Berkeley, CA (United States); Crutchfield, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-04-24
Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
Wang, Jun-Sheng; Yang, Guang-Hong
2017-07-25
This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.
International Nuclear Information System (INIS)
Barth, Andrea; Lang, Annika
2012-01-01
In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.
International Nuclear Information System (INIS)
Tabatabaee, Sajad; Mortazavi, Seyed Saeedallah; Niknam, Taher
2016-01-01
This paper addresses the optimal stochastic scheduling of the distributed generation units in a micro-grid. In this way, it introduces a new sufficient stochastic framework to model the correlated uncertainties in the micro-grid that includes different types of RESs such as photovoltaics, wind turbines, micro-turbine, fuel cell as well as battery as the storage device. The proposed stochastic method makes use of unscented transforms to model correlated uncertain parameters. The ability of the unscented transform method to model correlated uncertain variables is particularly appealing in the context of power systems, wherein noticeable inherent correlation exists. Due to the highly complex nature of the problem, a new optimization method based on the harmony search algorithm along with an intelligent modification method is devised to solve the proposed optimization problem, efficiently. The proposed optimization algorithm is equipped with powerful search mechanisms that make it suitable for solving both discrete and continuous problems. In comparison with the original harmony search algorithm, the proposed modified optimization algorithm has few setting parameters. The new modified harmony search algorithm provides proper balance between the local and global searches. The feasibility and satisfactory performance of performance of the proposed method are examined on two typical grid-connected MGs. - Highlights: • Introducing a new artificial optimization algorithm based on HS evolutionary technique. • Introducing a new stochastic framework based on unscented transform to model the uncertainties of the problem. • Proposing a new modification method for HS to improve its total search ability.
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Directory of Open Access Journals (Sweden)
Danilo ePezo
2014-11-01
Full Text Available To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie’s method for Markov Chains (MC simulation is highly accurate, yet it becomes computationally intensive in the regime of high channel numbers. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties – such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Dangerfield et al., 2012; Linaro et al., 2011; Huang et al., 2013a; Orio and Soudry, 2012; Schmandt and Galán, 2012; Goldwyn et al., 2011; Güler, 2013, comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. We conclude that for low channel numbers (usually below 1000 per simulated compartment one should use MC – which is both the most accurate and fastest method. For higher channel numbers, we recommend using the method by Orio and Soudry (2012, possibly combined with the method by Schmandt and Galán (2012 for increased speed and slightly reduced accuracy. Consequently, MC modelling may be the best method for detailed multicompartment neuron models – in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels.
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Pezo, Danilo; Soudry, Daniel; Orio, Patricio
2014-01-01
To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914
Aspects if stochastic models for short-term hydropower scheduling and bidding
Energy Technology Data Exchange (ETDEWEB)
Belsnes, Michael Martin [Sintef Energy, Trondheim (Norway); Follestad, Turid [Sintef Energy, Trondheim (Norway); Wolfgang, Ove [Sintef Energy, Trondheim (Norway); Fosso, Olav B. [Dep. of electric power engineering NTNU, Trondheim (Norway)
2012-07-01
This report discusses challenges met when turning from deterministic to stochastic decision support models for short-term hydropower scheduling and bidding. The report describes characteristics of the short-term scheduling and bidding problem, different market and bidding strategies, and how a stochastic optimization model can be formulated. A review of approaches for stochastic short-term modelling and stochastic modelling for the input variables inflow and market prices is given. The report discusses methods for approximating the predictive distribution of uncertain variables by scenario trees. Benefits of using a stochastic over a deterministic model are illustrated by a case study, where increased profit is obtained to a varying degree depending on the reservoir filling and price structure. Finally, an approach for assessing the effect of using a size restricted scenario tree to approximate the predictive distribution for stochastic input variables is described. The report is a summary of the findings of Work package 1 of the research project #Left Double Quotation Mark#Optimal short-term scheduling of wind and hydro resources#Right Double Quotation Mark#. The project aims at developing a prototype for an operational stochastic short-term scheduling model. Based on the investigations summarized in the report, it is concluded that using a deterministic equivalent formulation of the stochastic optimization problem is convenient and sufficient for obtaining a working prototype. (author)
Erdal, Jørgen Sørgård
2017-01-01
This master thesis develops a stochastic optimisation software for household grid-connected batteries combined with PV-systems. The objective of the optimisation is to operate the battery system in order to minimise the costs of the consumer, and it was implemented in MATLAB using a self-written stochastic dynamic programming algorithm. Load was considered as a stochastic variable and modelled as a Markov Chain. Transition probabilities between time steps were calculated using historic load p...
International Conference Modern Stochastics: Theory and Applications III
Limnios, Nikolaos; Mishura, Yuliya; Sakhno, Lyudmyla; Shevchenko, Georgiy; Modern Stochastics and Applications
2014-01-01
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures, and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas, and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics, and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, st...
CAM Stochastic Volatility Model for Option Pricing
Directory of Open Access Journals (Sweden)
Wanwan Huang
2016-01-01
Full Text Available The coupled additive and multiplicative (CAM noises model is a stochastic volatility model for derivative pricing. Unlike the other stochastic volatility models in the literature, the CAM model uses two Brownian motions, one multiplicative and one additive, to model the volatility process. We provide empirical evidence that suggests a nontrivial relationship between the kurtosis and skewness of asset prices and that the CAM model is able to capture this relationship, whereas the traditional stochastic volatility models cannot. We introduce a control variate method and Monte Carlo estimators for some of the sensitivities (Greeks of the model. We also derive an approximation for the characteristic function of the model.
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
Stochastic linear programming models, theory, and computation
Kall, Peter
2011-01-01
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...
Approximate k-NN delta test minimization method using genetic algorithms: Application to time series
Mateo, F; Gadea, Rafael; Sovilj, Dusan
2010-01-01
In many real world problems, the existence of irrelevant input variables (features) hinders the predictive quality of the models used to estimate the output variables. In particular, time series prediction often involves building large regressors of artificial variables that can contain irrelevant or misleading information. Many techniques have arisen to confront the problem of accurate variable selection, including both local and global search strategies. This paper presents a method based on genetic algorithms that intends to find a global optimum set of input variables that minimize the Delta Test criterion. The execution speed has been enhanced by substituting the exact nearest neighbor computation by its approximate version. The problems of scaling and projection of variables have been addressed. The developed method works in conjunction with MATLAB's Genetic Algorithm and Direct Search Toolbox. The goodness of the proposed methodology has been evaluated on several popular time series examples, and also ...
Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods
Directory of Open Access Journals (Sweden)
Tetsuya Misawa
2010-01-01
Full Text Available “Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through “composition methods (or operator splitting methods” proposed by Misawa (2001. In the proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian vector fields. The global error orders of the numerical schemes derived from the stochastic composition methods are provided. To examine the superiority of the new schemes, some illustrative numerical simulations on the basis of the proposed schemes are carried out for a stochastic harmonic oscillator system.
Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when
Inherently stochastic spiking neurons for probabilistic neural computation
Al-Shedivat, Maruan
2015-04-01
Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.
A one-time truncate and encode multiresolution stochastic framework
Energy Technology Data Exchange (ETDEWEB)
Abgrall, R.; Congedo, P.M.; Geraci, G., E-mail: gianluca.geraci@inria.fr
2014-01-15
In this work a novel adaptive strategy for stochastic problems, inspired from the classical Harten's framework, is presented. The proposed algorithm allows building, in a very general manner, stochastic numerical schemes starting from a whatever type of deterministic schemes and handling a large class of problems, from unsteady to discontinuous solutions. Its formulations permits to recover the same results concerning the interpolation theory of the classical multiresolution approach, but with an extension to uncertainty quantification problems. The present strategy permits to build numerical scheme with a higher accuracy with respect to other classical uncertainty quantification techniques, but with a strong reduction of the numerical cost and memory requirements. Moreover, the flexibility of the proposed approach allows to employ any kind of probability density function, even discontinuous and time varying, without introducing further complications in the algorithm. The advantages of the present strategy are demonstrated by performing several numerical problems where different forms of uncertainty distributions are taken into account, such as discontinuous and unsteady custom-defined probability density functions. In addition to algebraic and ordinary differential equations, numerical results for the challenging 1D Kraichnan–Orszag are reported in terms of accuracy and convergence. Finally, a two degree-of-freedom aeroelastic model for a subsonic case is presented. Though quite simple, the model allows recovering some physical key aspect, on the fluid/structure interaction, thanks to the quasi-steady aerodynamic approximation employed. The injection of an uncertainty is chosen in order to obtain a complete parameterization of the mass matrix. All the numerical results are compared with respect to classical Monte Carlo solution and with a non-intrusive Polynomial Chaos method.
Stochastic cluster algorithms for discrete Gaussian (SOS) models
International Nuclear Information System (INIS)
Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.
1990-10-01
We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)
Kernel methods and flexible inference for complex stochastic dynamics
Capobianco, Enrico
2008-07-01
Approximation theory suggests that series expansions and projections represent standard tools for random process applications from both numerical and statistical standpoints. Such instruments emphasize the role of both sparsity and smoothness for compression purposes, the decorrelation power achieved in the expansion coefficients space compared to the signal space, and the reproducing kernel property when some special conditions are met. We consider these three aspects central to the discussion in this paper, and attempt to analyze the characteristics of some known approximation instruments employed in a complex application domain such as financial market time series. Volatility models are often built ad hoc, parametrically and through very sophisticated methodologies. But they can hardly deal with stochastic processes with regard to non-Gaussianity, covariance non-stationarity or complex dependence without paying a big price in terms of either model mis-specification or computational efficiency. It is thus a good idea to look at other more flexible inference tools; hence the strategy of combining greedy approximation and space dimensionality reduction techniques, which are less dependent on distributional assumptions and more targeted to achieve computationally efficient performances. Advantages and limitations of their use will be evaluated by looking at algorithmic and model building strategies, and by reporting statistical diagnostics.
Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2014-02-01
Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation
Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors
Mehanna Ismail, Mohammed Ali
The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the
Stochastic Predictive Control of Multi-Microgrid Systems
DEFF Research Database (Denmark)
Bazmohammadi, Najmeh; Tahsiri, Ahmadreza; Anvari-Moghaddam, Amjad
2018-01-01
This paper presents a stochastic predictive control algorithm for a number of microgrids connected to the same distribution system. Each microgrid includes a variety of distributed resources such as wind turbine, photo voltaic units, energy storage devices and loads. Considering the uncertainty...
An Analysis of Stochastic Game Theory for Multiagent Reinforcement Learning
National Research Council Canada - National Science Library
Bowling, Michael
2000-01-01
.... In this paper we contribute a comprehensive presentation of the relevant techniques for solving stochastic games from both the game theory community and reinforcement learning communities. We examine the assumptions and limitations of these algorithms, and identify similarities between these algorithms, single agent reinforcement learners, and basic game theory techniques.
Some remarks on stochastic collective oscillations in ECRIS plasmas
International Nuclear Information System (INIS)
Golovanivsky, K.S.
1993-08-01
It is proposed that the thermal fluctuations in plasmas in general and in ECRIS plasmas in particular create rather strong stochastic electrical fields affecting both confinement and heating of an ECRIS plasma. The amplitude, range and characteristic frequency of the stochastic fields as well as the perpendicular diffusion coefficient and the upper density limit for the mirror confinement are determined on the level of the approximate evaluations. Some aspects of the ECRIS plasma's peculiarities due to the stochastic electrical fields are discussed. (author) 7 refs., 5 figs
Some considerations on stochastic neutron populations (u)
International Nuclear Information System (INIS)
Souto, Francisco J.; Prinja, Anil K.
2010-01-01
The neutron population in a multiplying body containing a weak random source may depart considerably from its average or expected value. The resulting behavior of the system is then unpredictable and a fully stochastic description of the neutron population becomes necessary. Stochastic considerations are especially important when dealing with pulsed reactors or in the case of criticality excursions in the presence of a weak source. Using the theory of discrete-state continuous-time Markov processes, and subject to some physical approximations, Bell (I) obtained approximate solutions for the neutron number probability distributions (pdf), with and without an intrinsic rapdom neutron source, that were valid at late times and/ large neutron populations. In recent work (4), we obtained exact solutions for Bell's model problem, and in this paper we use these exact probability distributions to: (I) assess the accuracy of Bell's asymptotic solutions and show how the latter follow from the exact solutions, (2) rigorously examine the probability of obtaining a divergent chain reaction, and (3) demonstrate the existence of an abrupt transition from a stochastic to a deterministic phase with increasing source strength.
Portfolios of quantum algorithms.
Maurer, S M; Hogg, T; Huberman, B A
2001-12-17
Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
New "Tau-Leap" Strategy for Accelerated Stochastic Simulation.
Ramkrishna, Doraiswami; Shu, Che-Chi; Tran, Vu
2014-12-10
The "Tau-Leap" strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev's inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev's inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. ( J. Chem. Phys. 2006 , 124 , 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys. 2004 , 121 , 10356; Chatterjee et al. J. Chem. Phys. 2005 , 122 , 024112; Peng et al. J. Chem. Phys. 2007 , 126 , 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys. 2001 , 115 , 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.
Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel
2014-01-01
The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...
Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration
Directory of Open Access Journals (Sweden)
Alberto Policriti
2009-10-01
Full Text Available We begin by reviewing a technique to approximate the dynamics of stochastic programs --written in a stochastic process algebra-- by a hybrid system, suitable to capture a mixed discrete/continuous evolution. In a nutshell, the discrete dynamics is kept stochastic while the continuous evolution is given in terms of ODEs, and the overall technique, therefore, naturally associates a Piecewise Deterministic Markov Process with a stochastic program. The speciﬁc contribution in this work consists in an increase of the ﬂexibility of the translation scheme, obtained by allowing a dynamic reconﬁguration of the degree of discreteness/continuity of the semantics. We also discuss the relationships of this approach with other hybrid simulation strategies for biochemical systems.
A Newton-Based Extremum Seeking MPPT Method for Photovoltaic Systems with Stochastic Perturbations
Directory of Open Access Journals (Sweden)
Heng Li
2014-01-01
Full Text Available Microcontroller based maximum power point tracking (MPPT has been the most popular MPPT approach in photovoltaic systems due to its high flexibility and efficiency in different photovoltaic systems. It is well known that PV systems typically operate under a range of uncertain environmental parameters and disturbances, which implies that MPPT controllers generally suffer from some unknown stochastic perturbations. To address this issue, a novel Newton-based stochastic extremum seeking MPPT method is proposed. Treating stochastic perturbations as excitation signals, the proposed MPPT controller has a good tolerance of stochastic perturbations in nature. Different from conventional gradient-based extremum seeking MPPT algorithm, the convergence rate of the proposed controller can be totally user-assignable rather than determined by unknown power map. The stability and convergence of the proposed controller are rigorously proved. We further discuss the effects of partial shading and PV module ageing on the proposed controller. Numerical simulations and experiments are conducted to show the effectiveness of the proposed MPPT algorithm.
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
Indirect Inference for Stochastic Differential Equations Based on Moment Expansions
Ballesio, Marco
2016-01-06
We provide an indirect inference method to estimate the parameters of timehomogeneous scalar diffusion and jump diffusion processes. We obtain a system of ODEs that approximate the time evolution of the first two moments of the process by the approximation of the stochastic model applying a second order Taylor expansion of the SDE s infinitesimal generator in the Dynkin s formula. This method allows a simple and efficient procedure to infer the parameters of such stochastic processes given the data by the maximization of the likelihood of an approximating Gaussian process described by the two moments equations. Finally, we perform numerical experiments for two datasets arising from organic and inorganic fouling deposition phenomena.
Approximate anlysis of an unreliable $M/M/c$ retrial queue with phase merging algorithm.
Directory of Open Access Journals (Sweden)
faiza BELARBI
2016-06-01
Full Text Available In this paper, we investigate an approximate analysis of unreliable $M/M/c$ retrial queue with $c\\geq 3$ in which all servers are subject to breakdowns and repairs. Arriving customers that are unable to access a server due to congestion or failure can choose to enter a retrial orbit for an exponentially distributed amount of time and persistently attempt to gain access to a server, or abandon their request and depart the system. Once a customer is admitted to a service station, they remain there for a random duration until service is complete and then depart the system. However, if the server fails during service, i.e., an active breakdown, the customer may choose to abandon the system or proceed directly to the retrial orbit while the server begins repair immediately. In the unreliable model, there are no exact solutions when the number of servers exceeds one. Therefore, we seek to approximate the steady-state joint distribution of the number of customers in orbit and the status of the $c$ servers for the case of Markovian arrival and service times. Our approach to deriving the approximate steady-state probabilities employs a phase-merging algorithm.
Backward stochastic differential equations from linear to fully nonlinear theory
Zhang, Jianfeng
2017-01-01
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Susceptibility of optimal train schedules to stochastic disturbances of process times
DEFF Research Database (Denmark)
Larsen, Rune; Pranzo, Marco; D’Ariano, Andrea
2013-01-01
study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact...... and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced...
Simulation of the stochastic wave loads using a physical modeling approach
DEFF Research Database (Denmark)
Liu, W.F.; Sichani, Mahdi Teimouri; Nielsen, Søren R.K.
2013-01-01
In analyzing stochastic dynamic systems, analysis of the system uncertainty due to randomness in the loads plays a crucial role. Typically time series of the stochastic loads are simulated using traditional random phase method. This approach combined with fast Fourier transform algorithm makes...... reliability or its uncertainty. Moreover applicability of the probability density evolution method on engineering problems faces critical difficulties when the system embeds too many random variables. Hence it is useful to devise a method which can make realization of the stochastic load processes with low...
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M
2016-12-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.
From stochastic completion fields to tensor voting
Almsick, van M.A.; Duits, R.; Franken, E.M.; Haar Romenij, ter B.M.; Olsen, O.F.; Florack, L.M.J.; Kuijper, A.
2005-01-01
Several image processing algorithms imitate the lateral interaction of neurons in the visual striate cortex V1 to account for the correlations along contours and lines. Here we focus on two methodologies: tensor voting by Guy and Medioni, and stochastic completion fields by Mumford, Williams and
Approximating centrality in evolving graphs: toward sublinearity
Priest, Benjamin W.; Cybenko, George
2017-05-01
The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.
DEFF Research Database (Denmark)
Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode
2009-01-01
are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...
Stochastic fractional differential equations: Modeling, method and analysis
International Nuclear Information System (INIS)
Pedjeu, Jean-C.; Ladde, Gangaram S.
2012-01-01
By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.
Stochastic bounded consensus of second-order multi-agent systems in noisy environment
International Nuclear Information System (INIS)
Ren Hong-Wei; Deng Fei-Qi
2017-01-01
This paper investigates the stochastic bounded consensus of leader-following second-order multi-agent systems in a noisy environment. It is assumed that each agent received the information of its neighbors corrupted by noises and time delays. Based on the graph theory, stochastic tools, and the Lyapunov function method, we derive the sufficient conditions under which the systems would reach stochastic bounded consensus in mean square with the protocol we designed. Finally, a numerical simulation is illustrated to check the effectiveness of the proposed algorithms. (paper)
Analysis and development of stochastic multigrid methods in lattice field theory
International Nuclear Information System (INIS)
Grabenstein, M.
1994-01-01
We study the relation between the dynamical critical behavior and the kinematics of stochastic multigrid algorithms. The scale dependence of acceptance rates for nonlocal Metropolis updates is analyzed with the help of an approximation formula. A quantitative study of the kinematics of multigrid algorithms in several interacting models is performed. We find that for a critical model with Hamiltonian H(Φ) absence of critical slowing down can only be expected if the expansion of (H(Φ+ψ)) in terms of the shift ψ contains no relevant term (mass term). The predictions of this rule was verified in a multigrid Monte Carlo simulation of the Sine Gordon model in two dimensions. Our analysis can serve as a guideline for the development of new algorithms: We propose a new multigrid method for nonabelian lattice gauge theory, the time slice blocking. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method, in accordance with the theoretical prediction. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems. (orig.)
SELANSI: a toolbox for simulation of stochastic gene regulatory networks.
Pájaro, Manuel; Otero-Muras, Irene; Vázquez, Carlos; Alonso, Antonio A
2018-03-01
Gene regulation is inherently stochastic. In many applications concerning Systems and Synthetic Biology such as the reverse engineering and the de novo design of genetic circuits, stochastic effects (yet potentially crucial) are often neglected due to the high computational cost of stochastic simulations. With advances in these fields there is an increasing need of tools providing accurate approximations of the stochastic dynamics of gene regulatory networks (GRNs) with reduced computational effort. This work presents SELANSI (SEmi-LAgrangian SImulation of GRNs), a software toolbox for the simulation of stochastic multidimensional gene regulatory networks. SELANSI exploits intrinsic structural properties of gene regulatory networks to accurately approximate the corresponding Chemical Master Equation with a partial integral differential equation that is solved by a semi-lagrangian method with high efficiency. Networks under consideration might involve multiple genes with self and cross regulations, in which genes can be regulated by different transcription factors. Moreover, the validity of the method is not restricted to a particular type of kinetics. The tool offers total flexibility regarding network topology, kinetics and parameterization, as well as simulation options. SELANSI runs under the MATLAB environment, and is available under GPLv3 license at https://sites.google.com/view/selansi. antonio@iim.csic.es. © The Author(s) 2017. Published by Oxford University Press.
Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models
Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.
2018-02-01
In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.
A New Algorithm for the Approximation of the Schrödinger Equation
Directory of Open Access Journals (Sweden)
LIN Rong-an
2016-01-01
Full Text Available In this paper a four stages twelfth algebraic order symmetric two-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives is developed for the first time in the literature. For the new proposed method: (1 we will study the phase-lag analysis, (2 we will present the development of the new method, (3 the local truncation error (LTE analysis will be studied. The analysis is based on a test problem which is the radial time independent Schrödinger equation, (4 the stability and the interval of periodicity analysis will be presented, (5 stepsize control technique will also be presented, (6 the examination of the accuracy and computational cost of the proposed algorithm which is based on the approximation of the Schrödinger equation.
Project Evaluation and Cash Flow Forecasting by Stochastic Simulation
Directory of Open Access Journals (Sweden)
Odd A. Asbjørnsen
1983-10-01
Full Text Available The net present value of a discounted cash flow is used to evaluate projects. It is shown that the LaPlace transform of the cash flow time function is particularly useful when the cash flow profiles may be approximately described by ordinary linear differential equations in time. However, real cash flows are stochastic variables due to the stochastic nature of the disturbances during production.
Particle in a standing wave field; beyond the oscillation center approximation
International Nuclear Information System (INIS)
Schmidt, G.
1982-01-01
The ponderomotive force arises in plasma physics as a weak field approximation on particle dynamics. Recent advances in stochasticity theory lead to the conclusion that for sufficiently strong fields, the ponderomotive potential well disappears, and significant portions of phase space are filled with stochastic trajectories. This is illustrated by numerically studying the phase space behavior of the oscillation center. (author)
Recursive B-spline approximation using the Kalman filter
Directory of Open Access Journals (Sweden)
Jens Jauch
2017-02-01
Full Text Available This paper proposes a novel recursive B-spline approximation (RBA algorithm which approximates an unbounded number of data points with a B-spline function and achieves lower computational effort compared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to adapt the interval in which the B-spline function can approximate data points during run-time.
Phase stability analysis of liquid-liquid equilibrium with stochastic methods
Directory of Open Access Journals (Sweden)
G. Nagatani
2008-09-01
Full Text Available Minimization of Gibbs free energy using activity coefficient models and nonlinear equation solution techniques is commonly applied to phase stability problems. However, when conventional techniques, such as the Newton-Raphson method, are employed, serious convergence problems may arise. Due to the existence of multiple solutions, several problems can be found in modeling liquid-liquid equilibrium of multicomponent systems, which are highly dependent on the initial guess. In this work phase stability analysis of liquid-liquid equilibrium is investigated using the NRTL model. For this purpose, two distinct stochastic numerical algorithms are employed to minimize the tangent plane distance of Gibbs free energy: a subdivision algorithm that can find all roots of nonlinear equations for liquid-liquid stability analysis and the Simulated Annealing method. Results obtained in this work for the two stochastic algorithms are compared with those of the Interval Newton method from the literature. Several different binary and multicomponent systems from the literature were successfully investigated.
International Nuclear Information System (INIS)
Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.
2014-01-01
The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy
Stochastic chaos in a Duffing oscillator and its control
International Nuclear Information System (INIS)
Wu Cunli; Lei Youming; Fang Tong
2006-01-01
Stochastic chaos discussed here means a kind of chaotic responses in a Duffing oscillator with bounded random parameters under harmonic excitations. A system with random parameters is usually called a stochastic system. The modifier 'stochastic' here implies dependent on some random parameter. As the system itself is stochastic, so is the response, even under harmonic excitations alone. In this paper stochastic chaos and its control are verified by the top Lyapunov exponent of the system. A non-feedback control strategy is adopted here by adding an adjustable noisy phase to the harmonic excitation, so that the control can be realized by adjusting the noise level. It is found that by this control strategy stochastic chaos can be tamed down to the small neighborhood of a periodic trajectory or an equilibrium state. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation, so that the problem of controlling stochastic chaos can be reduced into the problem of controlling deterministic chaos in the equivalent system. Then the top Lyapunov exponent of the equivalent system is obtained by Wolf's method to examine the chaotic behavior of the response. Numerical simulations show that the random phase control strategy is an effective way to control stochastic chaos
A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion
Directory of Open Access Journals (Sweden)
O. H. Galal
2013-01-01
Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.
Coupling Algorithms for Calculating Sensitivities of Population Balances
International Nuclear Information System (INIS)
Man, P. L. W.; Kraft, M.; Norris, J. R.
2008-01-01
We introduce a new class of stochastic algorithms for calculating parametric derivatives of the solution of the space-homogeneous Smoluchowski's coagulation equation. Currently, it is very difficult to produce low variance estimates of these derivatives in reasonable amounts of computational time through the use of stochastic methods. These new algorithms consider a central difference estimator of the parametric derivative which is calculated by evaluating the coagulation equation at two different parameter values simultaneously, and causing variance reduction by maximising the covariance between these. The two different coupling strategies ('Single' and 'Double') have been compared to the case when there is no coupling ('Independent'). Both coupling algorithms converge and the Double coupling is the most 'efficient' algorithm. For the numerical example chosen we obtain a factor of about 100 in efficiency in the best case (small system evolution time and small parameter perturbation).
A note on "Multicriteria adaptive paths in stochastic, time-varying networks"
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
In a recent paper, Opasanon and Miller-Hooks study multicriteria adaptive paths in stochastic time-varying networks. They propose a label correcting algorithm for finding the full set of efficient strategies. In this note we show that their algorithm is not correct, since it is based on a property...... that does not hold in general. Opasanon and Miller-Hooks also propose an algorithm for solving a parametric problem. We give a simplified algorithm which is linear in the input size....
Empirical method to measure stochasticity and multifractality in nonlinear time series
Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping
2013-12-01
An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.
Stochastic local search foundations and applications
Hoos, Holger H; Stutzle, Thomas
2004-01-01
Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems in many areas of computer science and operations research, including propositional satisfiability, constraint satisfaction, routing, and scheduling. SLS algorithms have also become increasingly popular for solving challenging combinatorial problems in many application areas, such as e-commerce and bioinformatics. Hoos and Stützle offer the first systematic and unified treatment of SLS algorithms. In this groundbreaking new book, they examine the general concepts and specific instances of SLS algorithms and carefully consider their development, analysis and application. The discussion focuses on the most successful SLS methods and explores their underlying principles, properties, and features. This book gives hands-on experience with some of the most widely used search techniques, and provides readers with the necessary understanding and skills to use this powerful too...
HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks
Directory of Open Access Journals (Sweden)
Luca Marchetti
2017-01-01
Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.
Robustness of Populations in Stochastic Environments
DEFF Research Database (Denmark)
Gießen, Christian; Kötzing, Timo
2014-01-01
these results to LeadingOnes and to many different noise models, showing how the application of drift theory can significantly simplify and generalize previous analyses. Most surprisingly, even small populations (of size _(log n)) can make evolutionary algorithms perform well for high noise levels, well outside......We consider stochastic versions of OneMax and Leading-Ones and analyze the performance of evolutionary algorithms with and without populations on these problems. It is known that the (1+1) EA on OneMax performs well in the presence of very small noise, but poorly for higher noise levels. We extend...
Approximation Algorithms for Model-Based Diagnosis
Feldman, A.B.
2010-01-01
Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
Directory of Open Access Journals (Sweden)
Varghese Mathew Vaidyan
2015-09-01
Full Text Available Present self-tuning regulator architectures based on recursive least-square estimation are computationally expensive and require large amount of resources and time in generating the first control signal due to computational bottlenecks imposed by the calculations involved in estimation stage, different stages of matrix multiplications and the number of intermediate variables at each iteration and precludes its use in applications that have fast required response times and those which run on embedded computing platforms with low-power or low-cost requirements with constraints on resource usage. A salient feature of this study is that a new modular parallel pipelined stochastic approximation-based self-tuning regulator architecture which reduces the time required to generate the first control signal, reduces resource usage and reduces the number of intermediate variables is proposed. Fast matrix multiplication, pipelining and high-speed arithmetic function implementations were used for improving the performance. Results of implementation demonstrate that the proposed architecture has an improvement in control signal generation time by 38% and reduction in resource usage by 41% in terms of multipliers and 44.4% in terms of adders compared with the best existing related work, opening up new possibilities for the application of online embedded self-tuning regulators.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.
Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J
2008-10-01
Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.
Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal
International Nuclear Information System (INIS)
Yong-Feng, Guo; Wei, Xu; Liang, Wang
2010-01-01
This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker–Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears. (general)
Optimization algorithms and applications
Arora, Rajesh Kumar
2015-01-01
Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc
Efficient Estimating Functions for Stochastic Differential Equations
DEFF Research Database (Denmark)
Jakobsen, Nina Munkholt
The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...
Group-SMA Algorithm Based Joint Estimation of Train Parameter and State
Directory of Open Access Journals (Sweden)
Wei Zheng
2015-03-01
Full Text Available The braking rate and train arresting operation is important in the train braking performance. It is difficult to obtain the states of the train on time because of the measurement noise and a long calculation time. A type of Group Stochastic M-algorithm (GSMA based on Rao-Blackwellization Particle Filter (RBPF algorithm and Stochastic M-algorithm (SMA is proposed in this paper. Compared with RBPF, GSMA based estimation precisions for the train braking rate and the control accelerations were improved by 78% and 62%, respectively. The calculation time of the GSMA was decreased by 70% compared with SMA.