WorldWideScience

Sample records for stimulus-responsive hydrogels based

  1. Stimulus-responsive hydrogels based on associative polymers

    DEFF Research Database (Denmark)

    Hietala, Sami; Hvilsted, Søren; Jankova Atanasova, Katja

    2008-01-01

    An important group of water soluble polymers are associative ones in which hydrophobic parts of the polymer molecules interact, self-assemble and enhance the viscosity of aqueous solutions even at low polymer concentrations. For many applications it would be beneficial to be able to combine the a......, in press. 3. S. Hietala, P. Mononen, S. Strandman, P. Jarvi, M. Torkkeli, K. Jankova, S. Hvilsted, H. Tenhu Polymer, 48 (2007) 4087-4096........ The resulting hydrogels were studied with respect to the polymer concentration, temperature and ionic strength.3 REFERENCES 1. Nuopponen M.; Kalliomaki K.; Laukkanen A.; Hietala S.; Tenhu H. 1. Polym. Sci. Polym. Chern. 2008, 46, 38-46. 2. Hietala S.; Nuopponen M.; Kalliomaki K.; Tenhu H. Macromolecules...

  2. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    Science.gov (United States)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  3. Stimulus responsive hydrogel-coated etched fiber Bragg grating for carcinogenic chromium (VI) sensing

    Science.gov (United States)

    Kishore, Pabbisetti Vayu Nandana; Madhuvarasu, Sai Shankar; Moru, Satyanarayana

    2018-01-01

    This paper proposes a chemo-mechanical-optical sensing approach for the detection of carcinogenic chromium (VI) metal ion using an etched fiber Bragg grating (FBG) coated with stimulus responsive hydrogel. Hydrogel synthesized from the blends of (3-acrylamidopropyl)-trimethylammonium chloride, which is highly responsive to chromium ions suffers a volume change when placed in Cr solution. When the proposed sensor system is exposed to various concentrations of Cr (VI) ion solution, FBG peak shifts due to the mechanical strain induced by the swelling of the hydrogel. The peak shift is correlated with the concentration of the Cr (VI) metal ion. Due to the reduction in the cladding diameter of FBG, wastage of swelling force due to hydrogel on FBG is lowered and utilized for more wavelength peak shift of FBG resulting in the increase in the sensitivity. The resolution of the sensor system is found to be 0.072 ppb. Trace amounts of chromium (VI) ion as low as 10 ppb can be sensed by this method. The sensor has shown good sensitivity, selectivity, and repeatability. The salient features of the sensors are its compact size, light weight, and adoptability for remote monitoring.

  4. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a

  5. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles.

    Science.gov (United States)

    Mohapatra, Ankita; Harris, Michael A; LeVine, David; Ghimire, Madhav; Jennings, Jessica A; Morshed, Bashir I; Haggard, Warren O; Bumgardner, Joel D; Mishra, Sanjay R; Fujiwara, Tomoko

    2017-10-20

    Local antibiotic delivery can overcome some of the shortcomings of systemic therapy, such as low local concentrations and delivery to avascular sites. A localized drug delivery system (DDS), ideally, could also use external stimuli to modulate the normal drug release profile from the DDS to provide efficacious drug administration and flexibility to healthcare providers. To achieve this objective, chitosan microbeads embedded with magnetic nanoparticles were loaded with the antibiotic vancomycin and stimulated by a high frequency alternating magnetic field. Three such stimulation sessions separated by 1.5 h were applied to each test sample. The chromatographic analysis of the supernatant from these stimulated samples showed more than approximately 200% higher release of vancomycin from the DDS after the stimulation periods compared to nonstimulated samples. A 16-day long term elution study was also conducted where the DDS was allowed to elute drug through normal diffusion over a period of 11 days and stimulated on day 12 and day 15, when vancomycin level had dropped below therapeutic levels. Magnetic stimulation boosted elution of test groups above minimum inhibitory concentration (MIC), as compared to control groups (with no stimulation) which remained below MIC. The drug release from test groups in the intervals where no stimulation was given showed similar elution behavior to control groups. These results indicate promising possibilities of controlled drug release using magnetic excitation from a biopolymer-based DDS. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  6. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  7. Reversible pH Stimulus-Response Material Based on Amphiphilic Block Polymer Self-Assembly and Its Electrochemical Application

    Directory of Open Access Journals (Sweden)

    Tianyi Wang

    2016-06-01

    Full Text Available Stimulus-responsive microporous solid thin films were successfully fabricated by simple molecular self-assembly via an amphiphilic block polymer, polystryene–b–polyacrylic acid (PS–b–PAA. The solid thin films exhibit different surface morphologies in response to external stimuli, such as environments with different pH values in aqueous solutions. The experiments have successfully applied atomic force microscope (AFM technology to observe in-situ surface morphological changes. There is a reversible evolution of the microstructures in buffer solutions over a pH range of 2.4–9.2. These observations have been explained by positing that there is no conventional PAA swelling but that the PAA chains in the micropores stretch and contract with changes in the pH of the solution environment. The hydrophobicity of the solid thin film surface was transformed into super-hydrophilicity, as captured by optical contact angle measurements. The stimulus-responsive dynamics of pore sizes was described by a two-stage mechanism. A promising electrochemical application of this film is suggested via combination with an electrochemical impedance technique. This study is aimed at strategies for the functionalization of stimulus-responsive microporous solid thin films with reversible tunable surface morphologies, and exploring new smart materials with switch-on/switch-off behavior.

  8. A unified framework for unraveling the functional interaction structure of a biomolecular network based on stimulus-response experimental data.

    Science.gov (United States)

    Cho, Kwang-Hyun; Choo, Sang-Mok; Wellstead, Peter; Wolkenhauer, Olaf

    2005-08-15

    We propose a unified framework for the identification of functional interaction structures of biomolecular networks in a way that leads to a new experimental design procedure. In developing our approach, we have built upon previous work. Thus we begin by pointing out some of the restrictions associated with existing structure identification methods and point out how these restrictions may be eased. In particular, existing methods use specific forms of experimental algebraic equations with which to identify the functional interaction structure of a biomolecular network. In our work, we employ an extended form of these experimental algebraic equations which, while retaining their merits, also overcome some of their disadvantages. Experimental data are required in order to estimate the coefficients of the experimental algebraic equation set associated with the structure identification task. However, experimentalists are rarely provided with guidance on which parameters to perturb, and to what extent, to perturb them. When a model of network dynamics is required then there is also the vexed question of sample rate and sample time selection to be resolved. Supplying some answers to these questions is the main motivation of this paper. The approach is based on stationary and/or temporal data obtained from parameter perturbations, and unifies the previous approaches of Kholodenko et al. (PNAS 99 (2002) 12841-12846) and Sontag et al. (Bioinformatics 20 (2004) 1877-1886). By way of demonstration, we apply our unified approach to a network model which cannot be properly identified by existing methods. Finally, we propose an experiment design methodology, which is not limited by the amount of parameter perturbations, and illustrate its use with an in numero example.

  9. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  10. Hydrogel based QCM aptasensor for detection of avian influenza virus.

    Science.gov (United States)

    Wang, Ronghui; Li, Yanbin

    2013-04-15

    The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Formulation and release of alaptide from cellulose-based hydrogels

    Directory of Open Access Journals (Sweden)

    Zbyněk Sklenář

    2012-01-01

    Full Text Available The modern drug alaptide, synthetic dipeptide, shows regenerative effects and effects on the epitelisation process. A commercial product consisting of 1% alaptide hydrophilic cream is authorised for use in veterinary practice. This study focuses on the formulation of alaptide into semi-synthetic polymer-based hydrogels. The aim of the present study is to prepare hydrogels and to evaluate the liberation of alaptide from hydrogels. The hydrogels were prepared on the basis of three gel-producing substances: methylcellulose, hydroxyethylcellulose and hydroxypropylcellulose. To enhance the drug release from hydrogel humectants, glycerol, propylene glycol and ethanol in various concentrations were evaluated. The permeation of the alaptide from gels into the acceptor solution was evaluated with the use of the permeable membrane neprophane. The amount of drug released from prepared hydrogels was determined spectrophotometrically. Hydrogels with optimal alaptide liberation properties were subjected to the study of rheological properties in the next phase. The optimal composition of hydrogel as established in this study was 1% alaptide + 3% hydroxyethylcellulose with the addition of 10% glycerol as humectant. Due to the advantageous properties of hydrogels in wounds, alaptide could be incorporated into a hydrogel base for use in veterinary medicine.

  12. Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels

    Science.gov (United States)

    Li, Linqing; Kiick, Kristi

    2014-04-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (engineering applications, of a range of RLP hydrogels.

  13. Hydrogel-based piezoresistive sensor for the detection of ethanol

    Directory of Open Access Journals (Sweden)

    J. Erfkamp

    2018-04-01

    Full Text Available This article describes a low-cost sensor for the detection of ethanol in alcoholic beverages, which combines alcohol-sensitive hydrogels based on acrylamide and bisacrylamide and piezoresistive sensors. For reproducible measurements, the reversible swelling and deswelling of the hydrogel were shown via microscopy. The response time of the sensor depends on the swelling kinetics of the hydrogel. The selectivity of the hydrogel was tested in different alcohols. In order to understand the influence of monomer and crosslinker content on the swelling degree and on the sensitivity of the hydrogels, gels with variable concentrations of acrylamide and bisacrylamide were synthesized and characterized in different aqueous solutions with alcohol contents. The first measurements of such hydrogel-based piezoresistive ethanol sensors demonstrated a high sensitivity and a short response time over several measuring cycles.

  14. Stimulus-response coupling in platelets

    International Nuclear Information System (INIS)

    Huang, E.M.

    1986-01-01

    To understand the mechanism of stimulus-response coupling in platelets, the potentiating effect of succinate and lithium on platelet activation was examined. The action of succinate was immediate; preincubation with succinate did not lead to desensitization. Succinate was comparable to ADP in lowering cAMP levels previously elevated by PGl 2 . Since inhibition of cAMP is not a prerequisite for platelet activation, the mechanism of potentiation of succinate remains undefined. Lithium has also been shown to inhibit adenylate cyclase in PGl 2 -pretreated platelets. Lithium, however, can also inhibit inositol phosphate (InsP) phosphatase and lead to an accumulation of InsP. In human platelets, lithium also enhanced the thrombin-induced accumulation of [ 3 H]inositol-labelled inositol trisphosphate (InsP 3 ), and inositol bisphosphate (InsP 2 ). One hour after thrombin addition, all 3 inositol phosphates returned to near basal levels. In the presence of lithium, while labelled InsP 2 and InsP 3 returned to their respective basal levels, the InsP level remained elevated, consistent with the known inhibitory effect of lithium on InsP phosphatase. In thrombin-stimulated platelets prelabeled with [ 32 P]phosphate, lithium led to a decrease in labelled phosphatidylinositol 4-phosphate (PtdIns4P) as well as an enhanced production of labelled lysophosphatidylinositol, suggesting multiple effects of lithium on platelet phosphoinositide metabolism. These observed effects, however, occurred too slowly to be the mechanism by which lithium potentiated agonist-induced platelet activation. To study the agonist-receptor interaction, the effect of the specific, high affinity thrombin inhibitor, hirudin, on thrombin-induced accumulation of [ 3 H]inositol-labelled inositol phosphates was studied

  15. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  16. Functionalized graphene hydrogel-based high-performance supercapacitors.

    Science.gov (United States)

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2013-10-25

    Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogel-based sensor for CO2 measurements

    NARCIS (Netherlands)

    Herber, S.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2004-01-01

    A hydrogel-based sensor is presented for CO2 measurements. The sensor consists of a pressure sensor and porous silicon cover. A pH-sensitive hydrogel is confined between the two parts. Furthermore the porous cover contains a bicarbonate solution and a gaspermeable membrane. CO2 reacts with the

  18. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    Science.gov (United States)

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nanoscale theranostics for physical stimulus-responsive cancer therapies.

    Science.gov (United States)

    Chen, Qian; Ke, Hengte; Dai, Zhifei; Liu, Zhuang

    2015-12-01

    Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Synthesis and characterization of superabsorbent hydrogel based ...

    African Journals Online (AJOL)

    The hydrogels structure was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The effect of grafting variables, that is, AA/AN weight ratio and concentration of MBA and APS, was systematically optimized to achieve a hydrogel with ...

  1. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernández, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  2. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor

    NARCIS (Netherlands)

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernandez, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  3. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, Susanne; Klumpers, Floris; Schroeder, Tobias Navarro; Oplaat, Krista T.; Krugers, Harm J.; Oitzl, Melly S.; Joels, Marian; Doeller, Christian F.; Fernandez, Guillen

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  4. Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers

    Science.gov (United States)

    Kurnia, Jundika C.; Birgersson, Erik; Mujumdar, Arun S.

    2011-01-01

    This computational study investigates the sensing and actuating behavior of a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow controller has inherent advantage in its unique stimuli-sensitive properties, removing the need for an external power supply. The predicted swelling behavior the hydrogel is validated with steady-state and transient experiments. We then demonstrate how the model is implemented to study the sensing and actuating behavior of hydrogels for different microfluidic flow channel/hydrogel configurations: e.g., for flow in a T-junction with single and multiple hydrogels. In short, the results suggest that the response of the hydrogel-based flow controller is slow. Therefore, two strategies to improve the response rate of the hydrogels are proposed and demonstrated. Finally, we highlight that the model can be extended to include other stimuli-responsive hydrogels such as thermo-, electric-, and glucose-sensitive hydrogels. PMID:24956303

  5. Biodegradable Cellulose-based Hydrogels: Design and Applications

    Science.gov (United States)

    Sannino, Alessandro; Demitri, Christian; Madaghiele, Marta

    2009-01-01

    Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  6. Biodegradable Cellulose-based Hydrogels: Design and Applications

    Directory of Open Access Journals (Sweden)

    Marta Madaghiele

    2009-04-01

    Full Text Available Hydrogels are macromolecular networks able to absorb and release water solutions in a reversible manner, in response to specific environmental stimuli. Such stimuli-sensitive behaviour makes hydrogels appealing for the design of ‘smart’ devices, applicable in a variety of technological fields. In particular, in cases where either ecological or biocompatibility issues are concerned, the biodegradability of the hydrogel network, together with the control of the degradation rate, may provide additional value to the developed device. This review surveys the design and the applications of cellulose-based hydrogels, which are extensively investigated due to the large availability of cellulose in nature, the intrinsic degradability of cellulose and the smart behaviour displayed by some cellulose derivatives.

  7. Ionic and Polyampholyte N-Isopropylacrylamide-Based Hydrogels Prepared in the Presence of Imprinting Ligands: Stimuli-Responsiveness and Adsorption/Release Properties

    Directory of Open Access Journals (Sweden)

    Carmen Alvarez-Lorenzo

    2011-12-01

    Full Text Available The conformation of the imprinted pockets in stimulus-responsive networks can be notably altered when the stimulus causes a volume phase transition. Such a tunable affinity for the template molecule finds interesting applications in the biomedical and drug delivery fields. Nevertheless, the effect that the binding of the template causes on the stimuli-responsiveness of the network has barely been evaluated. In this work, the effect of two ionic drugs used as templates, namely propranolol hydrochloride and ibuprofen sodium, on the responsiveness of N-isopropylacrylamide-based hydrogels copolymerized with acrylic acid (AAc and N-(3-aminopropyl methacrylamide (APMA and on their ability to rebind and to control the release of the template was evaluated. The degree of swelling and, in some cases, energetics (HS-DSC of the transitions were monitored as a function of temperature, pH, and concentration of drug. Marked decrease in the transition temperature of the hydrogels, accompanied by notable changes in the transition width, was observed in physiological NaCl solutions and after the binding of the drug molecules, which reveals relevant changes in the domain structure of the hydrogels as the charged groups are shielded. The ability of the hydrogels to rebind propranolol or ibuprofen was quantified at both 4 and 37 °C and at two different drug concentrations, in the range of those that cause major changes in the network structure. Noticeable differences between hydrogels bearing AAc or APMA and between imprinted and non-imprinted networks were also observed during the release tests in NaCl solutions of various concentrations. Overall, the results obtained evidence the remarkable effect of the template molecules on the responsiveness of intelligent imprinted hydrogels.

  8. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    International Nuclear Information System (INIS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-01-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  9. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Science.gov (United States)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  10. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Energy Technology Data Exchange (ETDEWEB)

    Raafat, Amany I., E-mail: ismaelraafat_a@hotmail.com [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Eid, Mona; El-Arnaouty, Magda B. [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2012-07-15

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  11. Improved Concrete Materials with Hydrogel-Based Internal Curing Agents

    Directory of Open Access Journals (Sweden)

    Matthew J. Krafcik

    2017-11-01

    Full Text Available This research article will describe the design and use of polyelectrolyte hydrogel particles as internal curing agents in concrete and present new results on relevant hydrogel-ion interactions. When incorporated into concrete, hydrogel particles release their stored water to fuel the curing reaction, resulting in reduced volumetric shrinkage and cracking and thus increasing concrete service life. The hydrogel’s swelling performance and mechanical properties are strongly sensitive to multivalent cations that are naturally present in concrete mixtures, including calcium and aluminum. Model poly(acrylic acid(AA-acrylamide(AM-based hydrogel particles with different chemical compositions (AA:AM monomer ratio were synthesized and immersed in sodium, calcium, and aluminum salt solutions. The presence of multivalent cations resulted in decreased swelling capacity and altered swelling kinetics to the point where some hydrogel compositions displayed rapid deswelling behavior and the formation of a mechanically stiff shell. Interestingly, when incorporated into mortar, hydrogel particles reduced mixture shrinkage while encouraging the formation of specific inorganic phases (calcium hydroxide and calcium silicate hydrate within the void space previously occupied by the swollen particle.

  12. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    Science.gov (United States)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  13. Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Ram V. Devireddy

    2013-06-01

    Full Text Available The thermoresponsive behavior of a Methylcellulose (MC polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000 in water with 0.5× PBS (~150mOsm. This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs. The results indicated that the addition (evenly spread of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5 over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell–cell and cell–extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C within minutes.

  14. Methylcellulose based thermally reversible hydrogel system for tissue engineering applications.

    Science.gov (United States)

    Thirumala, Sreedhar; Gimble, Jeffrey M; Devireddy, Ram V

    2013-06-25

    The thermoresponsive behavior of a Methylcellulose (MC) polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000) in water with 0.5× PBS (~150mOsm). This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs). The results indicated that the addition (evenly spread) of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5) over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell-cell and cell-extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C) within minutes.

  15. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    Science.gov (United States)

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  16. Hydrogel-based reinforcement of 3D bioprinted constructs

    NARCIS (Netherlands)

    Melchels, FPW; Blokzijl, M M; Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, Wim E.; Vermonden, T.; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support

  17. Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth.

    Science.gov (United States)

    Tavakol, Moslem; Dehshiri, Saeedeh; Vasheghani-Farahani, Ebrahim

    2016-11-05

    In the present study, electron beam irradiation was applied to prepare a chemically crosslinked hydrogel based on tyramine conjugated gum tragacanth. Then, the gel content, swelling behavior and cytotoxicity of the hydrogels were evaluated. The gel content of the hydrogels was in the range of 75-85%. Equilibrium swelling degree of the hydrogels decreased from 51 to 14 with increasing polymer concentration and irradiation dose. Moisture retention capability of the hydrogels after 5h incubation at 37°C was in the range of 45-52 that is comparable with of commercial hydrogels. The cytotoxicity analysis showed the good biocompatibility of hydrogels. These results indicated that electron beam irradiation is a promising method to prepare chemically crosslinked tyramine conjugated gum tragacanth hydrogels for biomedical applications. Also, the versatility of electron beam irradiation for crosslinking of a variety of polymers possessing tyramine groups was demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mira [Department of Organic Materials & Fiber Engineering, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Shin, Hye Kyoung [Department of Chemistry, Inha University, 100 Inharo, Incheon 402–751 (Korea, Republic of); Kim, Byoung-Suhk [Department of BIN fusion technology, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Kim, Myung Jin; Kim, In-Shik [Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Park, Byung-Yong, E-mail: parkb@jbnu.ac.kr [Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Kim, Hak-Yong, E-mail: khy@jbnu.ac.kr [Department of BIN fusion technology, Chonbuk National University, Jeonju 561–756 (Korea, Republic of)

    2015-10-01

    Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm{sup 2} at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland. - Highlights: • Biocompatible keratin-based hydrogels were examined for wound healing process. • Human hair-based hydrogel is superior to wool-based hydrogel in wound healing. • Discarded keratin-based hydrogels are expected more eco-friendly therapeutic agents.

  19. Glycerin-Based Hydrogel for Infection Control.

    Science.gov (United States)

    Stout, Edward I; McKessor, Angie

    2012-02-01

    area upon dressing removal. Because of the thickness, the product provides excellent cushion and padding support. It has been also proven to be bacteriostatic/fungistatic. (Bacteriostatic is the ability to restrain the development or reproduction of bacteria. 3 ). Glycerin is a huamectant by definition and has been recognized by the U.S. Food and Drug Administration (FDA). Humectants attract, bind, and hold moisture to the site of application. The actual concentration of glycerin in a wound dressing is indicative of the ability to absorb excess moisture. Exudate management is an important function of topical treatment. The ability to absorb drainage and prevent pooling of exudate in the wound or on the surrounding skin are attributes specific to high glycerin content. Perhaps, the most significant advantage of the glycerin-based hydrogel sheet is its impact on wound bioburden and pathogenic organisms. 4 Glycerin is a simple three-carbon tri-alcohol and is a natural humectant. It is used as a carrier in many medicines and as plasticizer in gelatin gel capsules. Glycerin is a component of cosmetics, conditioners, soaps, foods, and other common products. It is a component of mono-, di-, and triglycerides naturally occurring in the body. These glycerides and glycerin are constantly reacted with each other by the natural enzymes and reversed with the natural metabolic processes already present in the body. Any glycerin that may be absorbed into the body fluid is rapidly diluted in these fluids and is no longer toxic but is metabolized as another component of the food chain. It is well known that glycerin in high concentration will exhibit dehydrating effect on many systems including living cells by the commonly known process of osmosis. (Osmosis: the flow or diffusion that takes place through a semipermable membrane, as of living cell, typically separating a solvent such as water, thus bringing about equilibrium conditions. 5 ) It has been shown that glycerin at high

  20. Pseudopeptide-Based Hydrogels Trapping Methylene Blue and Eosin Y.

    Science.gov (United States)

    Milli, Lorenzo; Zanna, Nicola; Merlettini, Andrea; Di Giosia, Matteo; Calvaresi, Matteo; Focarete, Maria Letizia; Tomasini, Claudia

    2016-08-16

    We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc-l-Phe-d-Oxd-OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO-loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO-loaded hydrogel through π-π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and Characterization of Super absorbent Hydrogels Based on Natural Polymers Using Ionizing Radiations

    International Nuclear Information System (INIS)

    Deghiedy, N.M.A.

    2010-01-01

    Radiation processing technology is a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, novel super absorbent hydrogels was prepared with biodegradable and eco-friendly properties by graft copolymerization of chitosan and different synthetic monomers (AAc, DEAEMA, HEMA, HPMA and HEA) using gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The different chitosan hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy and thermal analysis techniques. The effects of the preparation conditions on the gelation process of the synthesized copolymer were investigated. The influence of variables such as feed concentration, irradiation dose, composition ratio, ph and temperature on the swelling of the prepared hydrogels was also examined. The water absorbency of these hydrogels in various ph and salt solutions was studied. The swelling kinetics of the prepared hydrogels and in vitro release dynamics of model drug (Chlortetracycline hydrochloride) from these hydrogels has been studied for the evaluation of swelling mechanism and drug release mechanism from the hydrogels. The adsorption and in vitro release profiles of Chlortetracycline HCl from the prepared gels were also estimated in different ph buffers. The amount of drug released from CS/ (AAc-DEAEMA) hydrogels was higher than that released from other modified CS/AAc hydrogels. This preliminary investigation of chitosan based hydrogels showed that they may be exploited to expand the utilization of these systems in drug delivery applications

  2. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  3. Gelatin-Based Hydrogels for Organ 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-08-01

    Full Text Available Three-dimensional (3D bioprinting is a family of enabling technologies that can be used to manufacture human organs with predefined hierarchical structures, material constituents and physiological functions. The main objective of these technologies is to produce high-throughput and/or customized organ substitutes (or bioartificial organs with heterogeneous cell types or stem cells along with other biomaterials that are able to repair, replace or restore the defect/failure counterparts. Gelatin-based hydrogels, such as gelatin/fibrinogen, gelatin/hyaluronan and gelatin/alginate/fibrinogen, have unique features in organ 3D bioprinting technologies. This article is an overview of the intrinsic/extrinsic properties of the gelatin-based hydrogels in organ 3D bioprinting areas with advanced technologies, theories and principles. The state of the art of the physical/chemical crosslinking methods of the gelatin-based hydrogels being used to overcome the weak mechanical properties is highlighted. A multicellular model made from adipose-derived stem cell proliferation and differentiation in the predefined 3D constructs is emphasized. Multi-nozzle extrusion-based organ 3D bioprinting technologies have the distinguished potential to eventually manufacture implantable bioartificial organs for purposes such as customized organ restoration, high-throughput drug screening and metabolic syndrome model establishment.

  4. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  5. From the Stimulus-Response to the Person-Context Model

    Directory of Open Access Journals (Sweden)

    Arturo Barraza Macías

    2007-07-01

    Full Text Available In this manuscript, an alternative reading of the field of study of the stress is made that leads to raise the existence of two models: the Stimulus-Response and the Person-Context Models about Stress. Each one of them is presented with base in four indicators: historical antecedents, postulates, development and characteristics. In the end a critical valuation is made that the author leads to recognize in the Person-Surroundings Research Program of Stress, and in its tendency to the modeling, the route of development of the field of study of stress.

  6. Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways

    Directory of Open Access Journals (Sweden)

    Young Daniel L

    2006-08-01

    Full Text Available Abstract Nonassociative learning is a basic neuroadaptive behavior exhibited across animal phyla and sensory modalities but its role in brain intelligence is unclear. Current literature on habituation and sensitization, the classic "dual process" of nonassociative learning, gives highly incongruous accounts between varying experimental paradigms. Here we propose a general theory of nonassociative learning featuring four base modes: habituation/primary sensitization in primary stimulus-response pathways, and desensitization/secondary sensitization in secondary stimulus-response pathways. Primary and secondary modes of nonassociative learning are distinguished by corresponding activity-dependent recall, or nonassociative gating, of neurotransmission memory. From the perspective of brain computation, nonassociative learning is a form of integral-differential calculus whereas nonassociative gating is a form of Boolean logic operator – both dynamically transforming the stimulus-response relationship. From the perspective of sensory integration, nonassociative gating provides temporal filtering whereas nonassociative learning affords low-pass, high-pass or band-pass/band-stop frequency filtering – effectively creating an intelligent sensory firewall that screens all stimuli for attention and resultant internal model adaptation and reaction. This unified framework ties together many salient characteristics of nonassociative learning and nonassociative gating and suggests a common kernel that correlates with a wide variety of sensorimotor integration behaviors such as central resetting and self-organization of sensory inputs, fail-safe sensorimotor compensation, integral-differential and gated modulation of sensorimotor feedbacks, alarm reaction, novelty detection and selective attention, as well as a variety of mental and neurological disorders such as sensorimotor instability, attention deficit hyperactivity, sensory defensiveness, autism

  7. Impaired Expected Value Computations Coupled With Overreliance on Stimulus-Response Learning in Schizophrenia.

    Science.gov (United States)

    Hernaus, Dennis; Gold, James M; Waltz, James A; Frank, Michael J

    2018-04-03

    While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems together with a compromised ability to represent expected value. Guided by computational frameworks, we formulated and tested two scenarios in which maladaptive representations of expected value should be most evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia. In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations of choice options were presented in a subsequent transfer phase. Computational modeling was employed to elucidate contributions from stimulus-response systems (actor-critic) and expected value (Q-learning). People with schizophrenia showed robust performance impairments with increasing value difference between two competing options, which strongly correlated with decreased contributions from expected value-based learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction error in the actor-critic. We provide evidence that decision-making impairments in schizophrenia increase monotonically with demands placed on expected value computations. A contextual choice bias is consistent with overreliance on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of expected value. These results shed new light on conditions under which decision-making impairments may arise. Copyright © 2018 Society of Biological Psychiatry. Published by

  8. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    Science.gov (United States)

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  9. Investigation of the surface morphology of biocompatible chitosan-based hydrogels and xerogels

    Science.gov (United States)

    Zhuravleva, Yulia Yu.; Malinkina, Olga N.; Shipovskaya, Anna B.

    2018-04-01

    Our biocompatible hydrogel systems obtained by the sol-gel technqiue and based on chitosan and silicon polyolates are promising for medical and biological applications. The surface microrelief of these sol-gel materials (hydrogels and xerogels) based on chitosan and silicon tetraglycerolate was explored by AFM and SEM. A significant influence of the component ratio in the mixed system on the morphology and surface profile of the hydrogels and xerogels prepared therefrom was established. An increased content of the structure-forming component (chitosan) in the system was shown to increase the roughness scale of the hydrogel surface and to promote the porosity of the xerogel structure.

  10. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  11. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  12. The rational design of a peptide-based hydrogel responsive to H2S.

    Science.gov (United States)

    Peltier, Raoul; Chen, Ganchao; Lei, Haipeng; Zhang, Mei; Gao, Liqian; Lee, Su Seong; Wang, Zuankai; Sun, Hongyan

    2015-12-18

    The development of hydrogels that are responsive to external stimuli in a well-controlled manner is important for numerous biomedical applications. Herein we reported the first example of a hydrogel responsive to hydrogen sulphide (H2S). H2S is an important gasotransmitter whose deregulation has been associated with a number of pathological conditions. Our hydrogel design is based on the functionalization of an ultrashort hydrogelating peptide sequence with an azidobenzyl moiety, which was reported to react with H2S selectively under physiological conditions. The resulting peptide was able to produce hydrogels at a concentration as low as 0.1 wt%. It could then be fully degraded in the presence of excess H2S. We envision that the novel hydrogel developed in this study may provide useful tools for biomedical research.

  13. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  14. Effects of stimulus response compatibility on covert imitation of vowels.

    Science.gov (United States)

    Adank, Patti; Nuttall, Helen; Bekkering, Harold; Maegherman, Gwijde

    2018-03-13

    When we observe someone else speaking, we tend to automatically activate the corresponding speech motor patterns. When listening, we therefore covertly imitate the observed speech. Simulation theories of speech perception propose that covert imitation of speech motor patterns supports speech perception. Covert imitation of speech has been studied with interference paradigms, including the stimulus-response compatibility paradigm (SRC). The SRC paradigm measures covert imitation by comparing articulation of a prompt following exposure to a distracter. Responses tend to be faster for congruent than for incongruent distracters; thus, showing evidence of covert imitation. Simulation accounts propose a key role for covert imitation in speech perception. However, covert imitation has thus far only been demonstrated for a select class of speech sounds, namely consonants, and it is unclear whether covert imitation extends to vowels. We aimed to demonstrate that covert imitation effects as measured with the SRC paradigm extend to vowels, in two experiments. We examined whether covert imitation occurs for vowels in a consonant-vowel-consonant context in visual, audio, and audiovisual modalities. We presented the prompt at four time points to examine how covert imitation varied over the distracter's duration. The results of both experiments clearly demonstrated covert imitation effects for vowels, thus supporting simulation theories of speech perception. Covert imitation was not affected by stimulus modality and was maximal for later time points.

  15. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  16. Dissecting stimulus-response binding effects: Grouping by color separately impacts integration and retrieval processes.

    Science.gov (United States)

    Laub, Ruth; Frings, Christian; Moeller, Birte

    2018-04-23

    In selection tasks, target and distractor features can be encoded together with the response into the same short-lived memory trace, or event file (see Hommel, 2004), leading to bindings between stimulus and response features. The repetition of a stored target or distractor feature can lead to the retrieval of the entire episode, including the response-so-called "binding effects." Binding effects due to distractor repetition are stronger for grouped than for nongrouped target and distractor stimulus configurations. Modulation of either of two mechanisms that lead to the observed binding effects might be responsible here: Grouping may influence either stimulus-response integration or stimulus-response retrieval. In the present study we investigated the influences of grouping on both mechanisms independently. In two experiments, target and distractor letters were grouped (or nongrouped) via color (dis)similarity separately during integration and retrieval. Grouping by color similarity affected integration and retrieval mechanisms independently and in different ways. Color dissimilarity enhanced distractor-based retrieval, whereas color similarity enhanced distractor integration. We concluded that stimulus grouping is relevant for binding effects, but that the mechanisms that contribute to binding effects should be carefully separated.

  17. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N{sub 3}) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400–800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. - Highlights: • IPN hydrogel nanocomposites were prepared by a one-pot strategy. • The maximum compressive and tensile strengths reached 24.8 and 1.98 MPa. • IPN hydrogels displayed excellent antibacterial activity and cytocompatibility. • This study provided a facile method for preparing IPN hydrogel nanocomposites.

  18. Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paulo A.G. [Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Laboratório de Imunopatologia Keizo Asami-LIKA, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE (Brazil); Bourbon, Ana I.; Vicente, António A. [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho (UMINHO), Campus de Gualtar, 4710-057 Braga (Portugal); Andrade, Cesar A.S. [Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Barros, Wilson [Departamento de Física, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Correia, Maria T.S. [Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Pessoa, Adalberto [Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), Av. Lineu Prestes, 580, Butantã, 05508-000 São Paulo, SP (Brazil); and others

    2014-09-01

    The development of hydrogels based on natural polysaccharides was investigated by preparing mixtures of policaju/chitosan at weight ratios of 1:4 and 2:3. Utilizing dynamic light scattering (DLS) techniques for these mixtures, an increase on the hydrodynamic particle radius was observed varying their pH from 3.0 to 12.0. Furthermore, a reduction of ζ-potential was also observed for the same pH interval. Following rounds of drying/hydration cycles at a specific pH value, hydrogel matrices were formed. The pore size distribution of these formed hydrogels was examined using scanning electron microscopy. Further FT-IR analyses confirmed a physical interaction between the polysaccharides policaju and chitosan. Swelling experiments revealed water uptake values, after 24 h of immersion in water, close to 270% for 1:4, and 320% for 2:3 hydrogels. Finally, rheological measurements were then conducted in order to confirm hydrogel viscoelastic features. These results indicate a promising road to biomaterials fabrication and biomedical applications. - Highlights: • POLI–CHI hydrogels were obtained by direct injection and extrusion. • POLI–CHI hydrated hydrogels have 4.2 times their dry weight. • Due to the high water absorption POLI–CHI hydrogels are extremely soft. • POLI–CHI hydrogels can be used in cosmetic and medical industry.

  19. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    Science.gov (United States)

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  20. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  1. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    Science.gov (United States)

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  3. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    Science.gov (United States)

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  4. Structural and permeability characterization of biosynthetic PVA hydrogels designed for cell-based therapy.

    Science.gov (United States)

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2014-01-01

    Incorporation of extracellular matrix (ECM) components to synthetic hydrogels has been shown to be the key for successful cell encapsulation devices, by providing a biofunctional microenvironment for the encapsulated cells. However, the influence of adding ECM components into synthetic hydrogels on the permeability as well as the physical and mechanical properties of the hydrogel has had little attention. Therefore, the aim of this study was to investigate the effect of incorporated ECM analogues on the permeability performance of permselective synthetic poly(vinyl alcohol) (PVA) hydrogels in addition to examining the physico-mechanical characteristics. PVA was functionalized with a systematically increased number of methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogel network. Heparin and gelatin were successfully incorporated into PVA network at low percentage (1%), and co-hydrogels were characterized for network properties and permeability to bovine serum albumin (BSA) and immunoglobulin G (IgG) proteins. Incorporation of these ECM analogues did not interfere with the base PVA network characteristics, as the controlled hydrogel mesh sizes, swelling and compressive modulii remained unchanged. While the permeation profiles of both BSA and IgG were not affected by the addition of heparin and gelatin as compared with pure PVA, increasing the FG/c from 7 to 20 significantly limited the diffusion of the larger IgG. Consequently, biosynthetic hydrogels composed of PVA with high FG/c and low percent ECM analogues show promise in their ability to be permselective for various biomedical applications.

  5. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi [Department of Chemistry, Indonesia University of Education, Setiabudi 229 Bandung, West Java, Indonesia 40154 (Indonesia)

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  6. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    International Nuclear Information System (INIS)

    Khoerunnisa, Fitri; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi

    2016-01-01

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp"3, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  7. Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation

    Science.gov (United States)

    Khansari, Maziyar M.; Sorokina, Lioudmila V.; Mukherjee, Prithviraj; Mukhtar, Farrukh; Shirdar, Mostafa Rezazadeh; Shahidi, Mahnaz; Shokuhfar, Tolou

    2017-08-01

    Stem cells are recognized by their self-renewal ability and can give rise to specialized progeny. Hydrogels are an established class of biomaterials with the ability to control stem cell fate via mechanotransduction. They can mimic various physiological conditions to influence the fate of stem cells and are an ideal platform to support stem cell regulation. This review article provides a summary of recent advances in the application of different classes of hydrogels based on their source (e.g., natural, synthetic, or hybrid). This classification is important because the chemistry of substrate affects stem cell differentiation and proliferation. Natural and synthetic hydrogels have been widely used in stem cell regulation. Nevertheless, they have limitations that necessitate a new class of material. Hybrid hydrogels obtained by manipulation of the natural and synthetic ones can potentially overcome these limitations and shape the future of research in application of hydrogels in stem cell regulation.

  8. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  9. Lima Bean Starch-Based Hydrogels | Oladebeye | Nigerian Journal ...

    African Journals Online (AJOL)

    Hydrogels were prepared by crosslinking native lima bean starch and polyvinyl alcohol (PVA) with glutaraldehyde (GA) at varying proportions in an acidic medium. The native starch (N-LBS) and hydrogels (L-GA (low glutaraldehyde) and H-GA (high glutaraldehyde)) were examined for their water absorption capacity (WAC) ...

  10. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  11. A Hydrogel-Based Epirubicin Delivery System for Intravesical Chemotherapy

    Directory of Open Access Journals (Sweden)

    Ching-Wen Liu

    2016-06-01

    Full Text Available This study aimed to examine the efficacy of epirubicin-loaded gelatin hydrogel (EPI-H in the treatment of superficial urothelium carcinoma. Hydrogel was prepared by Schiff base-crosslinking of gelatin with glutaraldehyde. EPI-H exhibited high entrapment efficiency (59.87% ± 0.51%. EPI-H also increased epirubicin accumulation in AY-27 cells when compared with the effect of aqueous solutions of epirubicin (EPI-AQ; respective epirubicin-positive cell counts were 69.0% ± 7.6% and 38.3% ± 5.8%. EPI-H also exhibited greater cytotoxicity against AY-27 cells than that of EPI-AQ; IC50 values were 13.1 ± 1.1 and 7.5 ± 0.3 μg/mL, respectively. Cystometrograms showed that EPI-H reduced peak micturition, threshold pressures, and micturition duration, and that it increased bladder compliance more so than EPI-AQ. EPI-H enhanced epirubicin penetration into basal cells of urothelium in vivo, whereas EPI-AQ did so only to the umbrella cells. EPI-H inhibited tumor growth upon intravesical instillation to tumor-bearing bladder of F344 rats, inducing higher levels of caspase-3 expression than that observed with EPI-AQ treatment; the number of caspase-3 positive cells in treated urothelium carcinoma was 13.9% ± 4.0% (EPI-AQ and 34.1% ± 1.0%, (EPI-H. EPI-H has value as an improved means to administer epirubicin in intravesical instillation treatments for bladder cancer.

  12. Economic benefit of a polyacrylate-based hydrogel compared to an amorphous hydrogel in wound bed preparation of venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Kaspar D

    2015-04-01

    Full Text Available Daniela Kaspar,1 Jörg Linder,1 Petra Zöllner,1 Ulrich Simon,2 Hans Smola1,31Medical Competence Centre, Paul Hartmann AG, Heidenheim, Germany; 2Scientific Computing Centre, Ulm University, Ulm, Germany; 3Department of Dermatology, University of Cologne, Cologne, GermanyObjective: To assess the cost-effectiveness of a polyacrylate (PA-based hydrogel compared to an amorphous hydrogel in wound bed preparation for venous leg ulcers.Method: A cost-effectiveness analysis was undertaken alongside a multicenter, randomized controlled trial performed in France. A total of 75 patients with venous leg ulcers extensively covered with fibrin and necrotic tissue were randomized to a PA-containing hydrogel or an amorphous hydrogel. Wounds were treated for 14 days and costs were estimated from the German payer's perspective. Medical costs included study treatment, wound treatment supply, and labor time. The clinical benefit was expressed as the number of patients with wounds >50% covered with granulation tissue within 14 days. The incremental cost-effectiveness ratio (ICER was expressed as the additional cost spent with >50% granulation tissue per day per patient within 14 days of leg ulcer care.Results: Because of individual pricing of wound dressings in hospitals, cost data were derived from the outpatient sector. A total of 33 patients were treated using the PA-based hydrogel and 37 patients using the amorphous hydrogel. The estimated total direct costs per patient and per 14 days of therapy were €306 for both treatment groups. However, with the PA-based hydrogel, 2.5 additional days with wounds covered >50% with granulation tissues were gained within 14 days of leg ulcer care compared to the comparator. The ICER was €0 per additional day spent with >50% granulation tissue.Conclusion: Although there were a greater number of dressing changes in the PA-based hydrogel treatment, the total treatment cost for 14 days of leg ulcer care was the same for both

  13. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    Science.gov (United States)

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  14. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    Directory of Open Access Journals (Sweden)

    C. Demitri

    2013-01-01

    Full Text Available The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary evaluation of the hydrogel potential as water reservoir in agriculture was performed by using the hydrogel in experimental greenhouses, for the cultivation of tomatoes. The soil-water retention curve, in the presence of different hydrogel amounts, was also analysed. The preliminary results showed that the material allowed an efficient storage and sustained release of water to the soil and the plant roots. Although further investigations should be performed to completely characterize the interaction between the hydrogel and the soil, such findings suggest that the envisaged use of the hydrogel on a large scale might have a revolutionary impact on the optimization of water resources management in agriculture.

  15. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  16. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

    Energy Technology Data Exchange (ETDEWEB)

    Vuković, Jovana S.; Babić, Marija M.; Antić, Katarina M.; Miljković, Miona G.; Perić-Grujić, Aleksandra A.; Filipović, Jovanka M.; Tomić, Simonida Lj., E-mail: simonida@tmf.bg.ac.rs

    2015-08-15

    In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12–50 °C. Swelling study was conducted in wide range of pHs at 37 °C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed. - Graphical abstract: Display Omitted - Highlights: • Design and evaluation of novel pH responsive hydrogel series. • Structural, morphological, thermal characterization and controlled copper release. • Antibacterial activity against Escherichia coli and Staphylococcus aureus over 99%. • Antifungal activity against Candida albicans over 99%. • In vitro evaluation studies revealed great potential for wound healing application.

  17. A genetically modified protein-based hydrogel for 3D culture of AD293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao Du

    Full Text Available Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1 by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol having their arm ends capped with maleimide residues (4-armed-PEG-Mal to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence 'GRGDSP' to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery.

  18. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    Science.gov (United States)

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S.; Dehghani, Fariba

    2015-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2 to 15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40 to 145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from

  19. Evaluation of Hydrogels Based on Poloxamer 407 and Polyacrylic ...

    African Journals Online (AJOL)

    HP

    Keywords: Hydrogels, Gentamicin, Polyacrylic acid, Viscosity, Bioactivity, Poloxamer 407. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ... among others, have been made to determine its.

  20. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels.

    Science.gov (United States)

    Raucci, Maria Grazia; Alvarez-Perez, Marco Antonio; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2012-01-01

    The aim of this project was to study the proliferation and differentiation of human Mesenchymal Stem Cells (hMSCs) onto a cellulose-based hydrogel for bone tissue engineering. Modified-cellulose hydrogel was prepared via double esterification crosslinking using citric acid. The response of human Mesenchymal Stem Cells (hMSCs) in terms of cell proliferation and differentiation into osteoblastic phenotype was evaluated by using Alamar blue assay and Alkaline phosphatase activity. The results showed that CMCNa and CMCNa_CA have no negative effect on hMSC, adhesion and proliferation. Moreover, the increase of the ALP expression for CMCNa_CA confirms the ability of the hydrogels to support the osteoblastic differentiation. The cellulose-based hydrogels have a potential application as filler in bone tissue regeneration.

  1. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    Science.gov (United States)

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  2. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 40085 (India); Lawrence, Mathias B. [Department of Physics, St. Xavier’s College, Mapusa, Goa 403507 (India); Desa, J. A. E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India)

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  3. Formulation and evaluation of microemulsion-based hydrogel for topical delivery.

    Science.gov (United States)

    Sabale, Vidya; Vora, Sejal

    2012-07-01

    The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 3(2) factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.

  4. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies.

    Science.gov (United States)

    Demitri, Christian; Sannino, Alessandro; Conversano, Francesco; Casciaro, Sergio; Distante, Alessandro; Maffezzoli, Alfonso

    2008-11-01

    Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).

  5. Hydrogel Based on Crosslinked Methylcellulose Prepared by Electron Beam Irradiation for Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Ambyah Suliwarno

    2014-10-01

    Full Text Available The aim of this research is to explore the possibility of methylcellulose polymer to be used as wound dressing material prepared using electron beam technique. The methylcellulose paste solution with various of molecular weight (SM-4, SM-100, SM-400, SM-4000 and SM-8000 at different concentration (15-30% w/v were irradiated by using electron beam on the dose range of 10 kGy up to 40 kGy. Gel fraction and swelling ratio of hydrogels were determined gravimetrically. Tensile strength and elasticity of hydrogels were measured using a universal testing machine. It was found that with the increasing of irradiation dose from 10 up to 40 kGy, gel fraction and tensile strength were increased for all of hydrogels with various of molecular weight. On contrary, the swelling ratio of hydrogels decreased with increasing of irradiation dose. The optimum hydrogels elasticity were obtained from methylcellulose solution with the concentration range of 15-20% with irradiation dose of 20 kGy and showed excellent performance. The hydrogels based on methylcellulose prepared by electron beam irradiation can be considered for wound dressing material.

  6. A composite hydrogels-based photonic crystal multi-sensor

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-01-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye. (paper)

  7. Analysis and Design of Stimulus Response Curves of E. coli

    Directory of Open Access Journals (Sweden)

    Andreas Kremling

    2012-11-01

    Full Text Available Metabolism and signalling are tightly coupled in bacteria. Combining several theoretical approaches, a core model is presented that describes transcriptional and allosteric control of glycolysis in Escherichia coli. Experimental data based on microarrays, signalling components and extracellular metabolites are used to estimate kinetic parameters. A newly designed strain was used that adjusts the incoming glucose flux into the system and allows a kinetic analysis. Based on the results, prediction for intracelluar metabolite concentrations over a broad range of the growth rate could be performed and compared with data from literature.

  8. Development of Carrageenan Hydrogel as a Sustained Release Matrix Containing Tocotrienol-Rich Palm-Based Vitamin E

    International Nuclear Information System (INIS)

    Yee, C.M.; Zafarizal Aldrin Azizul Hasan; Norashikin Ahmad; Hazimah, A.H.

    2016-01-01

    Topically applied hydrogel system as a general therapeutic mask for transdermal delivery of hydrophobic actives is not efficient due to the differences in polarity between the actives and the polymer network. This work presents a study on developing hydrogels based on carrageenan as a matrix for the delivery of a hydrophobic type of active, i.e. tocotrienol-rich palm-based vitamin E (TRPE) into the skin. The strength and flexibility of the hydrogel were increased by the inclusion of guar gum, potassium citrate and glycerine. The thermogravimetric analysis (TGA) results indicated a higher quantity of water in the hydrogel with glycerine while differential scanning calorimetry (DSC) showed three types of water molecules existed in the hydrogel. The hydrogel was non-irritating according to OECD Test Guideline No. 439 for in vitro skin irritation test. The hydrogel with TRPE fluids was able to permeate the polysulfone membrane and bioavailability of TRPE improved with the inclusion of PEG-40 hydrogenated castor oil mixture. Therefore, a carrageenan-based hydrogel with locust bean, guar gum, glycerine, potassium citrate and TRPE was successfully developed with good strength and flexibility and without any potential irritancy. The good bioavailability of TRPE-loaded in the hydrogel can be used for skin care application. (author)

  9. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.

    Science.gov (United States)

    Jiang, Qiao; Liu, Qing; Shi, Yuefeng; Wang, Zhen-Gang; Zhan, Pengfei; Liu, Jianbing; Liu, Chao; Wang, Hui; Shi, Xinghua; Zhang, Li; Sun, Jiashu; Ding, Baoquan; Liu, Minghua

    2017-11-08

    In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.

  10. Dissociable brain systems mediate vicarious learning of stimulus-response and action-outcome contingencies.

    Science.gov (United States)

    Liljeholm, Mimi; Molloy, Ciara J; O'Doherty, John P

    2012-07-18

    Two distinct strategies have been suggested to support action selection in humans and other animals on the basis of experiential learning: a goal-directed strategy that generates decisions based on the value and causal antecedents of action outcomes, and a habitual strategy that relies on the automatic elicitation of actions by environmental stimuli. In the present study, we investigated whether a similar dichotomy exists for actions that are acquired vicariously, through observation of other individuals rather than through direct experience, and assessed whether these strategies are mediated by distinct brain regions. We scanned participants with functional magnetic resonance imaging while they performed an observational learning task designed to encourage either goal-directed encoding of the consequences of observed actions, or a mapping of observed actions to conditional discriminative cues. Activity in different parts of the action observation network discriminated between the two conditions during observational learning and correlated with the degree of insensitivity to outcome devaluation in subsequent performance. Our findings suggest that, in striking parallel to experiential learning, neural systems mediating the observational acquisition of actions may be dissociated into distinct components: a goal-directed, outcome-sensitive component and a less flexible stimulus-response component.

  11. Induction of neurite outgrowth in 3D hydrogel-based environments

    International Nuclear Information System (INIS)

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Gomes, Eduardo D; Sousa, Nuno; Silva, Nuno A; Salgado, António J; Ziv-Polat, Ofra; Sahar, Abraham

    2015-01-01

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine. (note)

  12. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Sijie; Zhao, Rui; Liu, Jie; Gu, Junjie

    2014-01-01

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  13. Polyphenol oxidase-based luminescent enzyme hydrogel: an ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... ranging from educational domain to industrial research. [3–8]. ... All chemicals and related consumables were purchased from Sigma-Aldrich and used as ... The non-toxic nature of the supramolecular hydrogel [9] is an added ...

  14. Drug release into hydrogel-based subcutaneous surrogates studied by UV imaging

    DEFF Research Database (Denmark)

    Ye, Fengbin; Larsen, Susan Weng; Yaghmur, Anan

    2012-01-01

    of the performance of drug delivery systems based on in vitro experiments. The objective of this study was to evaluate a UV imaging-based method for real-time characterization of the release and transport of piroxicam in hydrogel-based subcutaneous tissue mimics/surrogates. Piroxicam partitioning from medium chain...... upon the injection of aqueous or MCT solutions into an agarose-based hydrogel were investigated by UV imaging. The spatial distribution of piroxicam around the injection site in the gel matrix was monitored in real-time. The disappearance profiles of piroxicam from the injected aqueous solution were...... obtained. This study shows that the UV imaging methodology has considerable potential for characterizing transport properties in hydrogels, including monitoring the real-time spatial concentration distribution in vitro after administration by injection....

  15. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers.

    Science.gov (United States)

    Ali, Akbar; Ahmed, Shakeel

    2018-06-26

    The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.

  16. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    Science.gov (United States)

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. In Vivo Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel.

    Science.gov (United States)

    Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven

    2017-03-13

    Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH 2 , which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.

  18. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  19. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications.

    Science.gov (United States)

    García-Astrain, Clara; Avérous, Luc

    2018-06-15

    Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    Science.gov (United States)

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  1. Low Lifetime Stress Exposure Is Associated with Reduced Stimulus-Response Memory

    Science.gov (United States)

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus-response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme,…

  2. The influence of attention and reward on the learning of stimulus-response associations

    NARCIS (Netherlands)

    Vartak, Devavrat; Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2017-01-01

    We can learn new tasks by listening to a teacher, but we can also learn by trial-and-error. Here, we investigate the factors that determine how participants learn new stimulus-response mappings by trial-and-error. Does learning in human observers comply with reinforcement learning theories, which

  3. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

    Directory of Open Access Journals (Sweden)

    Satu Strandman

    2016-04-01

    Full Text Available Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of physical gels has long been a topic of interest in soft materials physics and various supramolecular interactions can induce this kind of recovery. This review highlights the non-covalent strategies of building self-repairing hydrogels and the characterization of their mechanical properties. Potential applications and future prospects of these materials are also discussed.

  4. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    Science.gov (United States)

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  5. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  6. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  7. DNA hydrogel-based supercapacitors operating in physiological fluids

    OpenAIRE

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact ...

  8. Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures

    Science.gov (United States)

    Leichsenring, Peter; Wallmersperger, Thomas

    2018-03-01

    Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.

  9. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase

    International Nuclear Information System (INIS)

    Ruiz-Palomero, Celia; Benítez-Martínez, Sandra; Soriano, M. Laura; Valcárcel, Miguel

    2017-01-01

    A novel low-cost fluorimetric platform based on sulfur, nitrogen-codoped graphene quantum dots immersed into nanocellulosic hydrogels is designed and applied in detecting the laccase enzyme. Although most of methods for detecting laccase are based on their catalytic activity, which is strongly dependent on environmental parameters, we report a sensitive and selective method based on the fluorescence response of hydrogels containing graphene quantum dots (GQDs) acting as luminophore towards laccase. The easily-prepared gel matrix not only improves the fluorescence signal of GQDs by avoiding their self-quenching but also stabilizes their fluorescence signal and improves their sensitivity towards laccase. Noncovalent interactions between the sensor and the analyte are believed to be causing this significant quenching without peak-shifts of GQD fluorescence via energy transfer. The selective extraction of laccase was proved in different shampoos as complex matrices achieving a detection limit of 0.048 U mL −1 and recoveries of 86.2–94.1%. As the unusual properties of nanocellulose and GQDs, the fluorescent sensor is simple, eco-friendly and cost-efficient. This straightforward strategy is able to detect and stabilize laccase, being an added-value for storage and recycling enzymes. - Highlights: • Fluorescent hydrogels were constructed by combining nanocellulose and graphene quantum dots. • The resulting hydrogels exhibited fluorescence quenching in presence of laccase. • Equilibrium in the optical signal of S,N-graphene quantum dots in presence of laccase was achieved faster within hydrogels. • The proposed method to determine laccase using fluorescent hydrogels was successfully applied in shampoo.

  10. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  11. UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-06-01

    Full Text Available Hydrogels are a unique class of macromolecular networks that can hold a large fraction of an aqueous solvent within their structure. They are suitable for biomedical area including controlled drug delivery and for technical applications as self-adhesive materials for bonding of wet surfaces. This paper describes photoreactive self-adhesive hydrogels based on acrylics crosslinked using UV radiation. They are prepared in ethyl acetate through radical polymerization of monomers mixture containing 2-ethylhexyl acrylate (2-EHA, butyl acrylate (BA, acrylic acid (AA and copolymerizable photoinitiator 4-acryloyloxy benzophenone (ABP at presence of radical starter 2.2’-azobis-diisobutyronitrile AIBN. The synthesized acrylic copolymers were determined by viscosity and GPC analysis and later modified using ethoxylated amines. 4-acryloyloxy benzophenone (ABP was used as crosslinking monomer. After UV crosslinking the properties of these novel synthesized hydrogels, such as tack, peel adhesion, shears strength, elongation and water adsorption were also studied.

  12. Development of Novel N-isopropylacrylamide (NIPAAm Based Hydrogels with Varying Content of Chrysin Multiacrylate

    Directory of Open Access Journals (Sweden)

    Shuo Tang

    2017-10-01

    Full Text Available A series of novel temperature responsive hydrogels were synthesized by free radical polymerization with varying content of chrysin multiacrylate (ChryMA. The goal was to study the impact of this novel polyphenolic-based multiacrylate on the properties of N-isopropylacrylamide (NIPAAm hydrogels. The temperature responsive behavior of the copolymerized gels was characterized by swelling studies, and their lower critical solution temperature (LCST was characterized through differential scanning calorimetry (DSC. It was shown that the incorporation of ChryMA decreased the swelling ratios of the hydrogels and shifted their LCSTs to a lower temperature. Gels with different ChryMA content showed different levels of response to temperature change. Higher content gels had a broader phase transition and smaller temperature response, which could be attributed to the increased hydrophobicity being introduced by the ChryMA.

  13. Controlled Pesticide Release from Porous Composite Hydrogels Based on Lignin and Polyacrylic Acid

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2016-01-01

    Full Text Available For the controlled release of pesticides, a novel composite porous hydrogel (LBPAA was prepared based on lignin and polyacrylic acid for use as the support frame of a pore structure for water delivery. The LBPAA was analyzed to determine its water-swelling and slow release properties. The controlled release properties of LBPAA were evaluated through experiments in relation to the cumulative release of pesticides, with particular emphasis on environmental effects and release models. The porous LBPAA hydrogel showed improved properties compared to polyacrylic acid, and could therefore be considered an efficient material for application in controlled release systems in agriculture.

  14. Artificial phototropism based on a photo-thermo-responsive hydrogel

    Science.gov (United States)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon

  15. Biomedical hydrogels biochemistry, manufacture and medical applications

    CERN Document Server

    Rimmer, Steve

    2011-01-01

    Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses. Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imag...

  16. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Magdy M., E-mail: magdysenna@hotmail.com [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Mostafa, Abo El-Khair B. [Chemistry Department, College for Girls, Ain Shams University, Cairo (Egypt); Mahdy, Sanna R.; El-Naggar, Abdel Wahab M. [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2016-11-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  17. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    International Nuclear Information System (INIS)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-01-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  18. Three-Dimensional Calcium Alginate Hydrogel Assembly via TiOPc-Based Light-Induced Controllable Electrodeposition

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-06-01

    Full Text Available Artificial reconstruction of three-dimensional (3D hydrogel microstructures would greatly contribute to tissue assembly in vitro, and has been widely applied in tissue engineering and drug screening. Recent technological advances in the assembly of functional hydrogel microstructures such as microfluidic, 3D bioprinting, and micromold-based 3D hydrogel fabrication methods have enabled the formation of 3D tissue constructs. However, they still lack flexibility and high efficiency, which restrict their application in 3D tissue constructs. Alternatively, we report a feasible method for the fabrication and reconstruction of customized 3D hydrogel blocks. Arbitrary hydrogel microstructures were fabricated in situ via flexible and rapid light-addressable electrodeposition. To demonstrate the versatility of this method, the higher-order assembly of 3D hydrogel blocks was investigated using a constant direct current (DC voltage (6 V applied between two electrodes for 20–120 s. In addition to the plane-based two-dimensional (2D assembly, hierarchical structures—including multi-layer 3D hydrogel structures and vessel-shaped structures—could be assembled using the proposed method. Overall, we developed a platform that enables researchers to construct complex 3D hydrogel microstructures efficiently and simply, which has the potential to facilitate research on drug screening and 3D tissue constructs.

  19. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy.

    Science.gov (United States)

    Qu, Jin; Zhao, Xin; Ma, Peter X; Guo, Baolin

    2017-08-01

    Injectable hydrogels with pH-responsiveness and self-healing ability have great potential for anti-cancer drug delivery. Herein, we developed a series of polysaccharide-based self-healing hydrogels with pH-sensitivity as drug delivery vehicles for hepatocellular carcinoma therapy. The hydrogels were prepared by using N-carboxyethyl chitosan (CEC) synthesized via Michael reaction in aqueous solution and dibenzaldehyde-terminated poly(ethylene glycol) (PEGDA). Doxorubicin (Dox), as a model of water-soluble small molecule anti-cancer drug was encapsulated into the hydrogel in situ. Self-healing behavior of the hydrogels was investigated at microscopic and macroscopic levels, and the hydrogels showed rapid self-healing performance without any external stimulus owing to the dynamic covalent Schiff-base linkage between amine groups from CEC and benzaldehyde groups from PEGDA. The chemical structures, rheological property, in vitro gel degradation, morphology, gelation time and in vitro Dox release behavior from the hydrogels were characterized. Injectability was verified by in vitro injection and in vivo subcutaneous injection in a rat. pH-responsive behavior was verified by in vitro Dox release from hydrogels in PBS solutions with different pH values. Furthermore, the activity of Dox released from hydrogel matrix was evaluated by employing human hepatocellular liver carcinoma (HepG2). Cytotoxicity test of the hydrogels using L929 cells confirmed their good cytocompatibility. Together, these pH-responsive self-healing injectable hydrogels are excellent candidates as drug delivery vehicles for liver cancer treatment. STATEMENT OF SIGNIFICANCE: pH-responsive drug delivery system could release drug efficiently in targeted acid environment and minimalize the amount of drug release in normal physiological environment. pH-sensitive injectable hydrogels as smart anti-cancer drug delivery carriers show great potential application for cancer therapy. The hydrogels with self

  20. Flexible goal imitation: Vicarious feedback influences stimulus-response binding by observation.

    Science.gov (United States)

    Giesen, Carina; Scherdin, Kerstin; Rothermund, Klaus

    2017-06-01

    This study investigated whether vicarious feedback influences binding processes between stimuli and observed responses. Two participants worked together in a shared color categorization task, taking the roles of actor and observer in turns. During a prime trial, participants saw a word while observing the other person executing a specific response. Automatic binding of words and observed responses into stimulus-response (S-R) episodes was assessed via word repetition effects in a subsequent probe trial in which either the same (compatible) or a different (incompatible) response had to be executed by the participants in response to the same or a different word. Results showed that vicarious prime feedback (i.e., the feedback that the other participant received for her or his response in the prime) modulated S-R retrieval effects: After positive vicarious prime feedback, typical S-R retrieval effects emerged (i.e., performance benefits for stimulus repetition probes with compatible responses, but performance costs for stimulus repetition probes with incompatible responses emerged). Notably, however, S-R-retrieval effects were reversed after vicarious negative prime feedback (meaning that stimulus repetition in the probe resulted in performance costs if prime and probe responses were compatible, and in performance benefits for incompatible responses). Findings are consistent with a flexible goal imitation account, according to which imitation is based on an interpretative and therefore feedback-sensitive reconstruction of action goals from observed movements. In concert with earlier findings, this data support the conclusion that transient S-R binding and retrieval processes are involved in social learning phenomena.

  1. Synthesis and flocculation properties of gum ghatti andpoly(acrylamide-co-acrylonitrile) based biodegradable hydrogels

    CSIR Research Space (South Africa)

    Mittal, H

    2014-12-01

    Full Text Available This article reports the development of biodegradable flocculants based on graft co-polymers of gum ghatti (Gg) and a mixture of acrylamide and acrylonitrile co-monomers (AAm-co-AN). The hydrogel polymer exhibited an excellent swelling capacity...

  2. Biofabrication of implants for articular joint repair : Cartilage regeneration in reinforced gelatin-based hydrogels

    NARCIS (Netherlands)

    Visser, J.

    2015-01-01

    Implants were biofabricated for the repair of chondral and osteochondral articular joint defects. The implants were based on gelatin methacrylamide (GelMA) hydrogels combined with printed fibers from polycaprolactone (PCL) for mechanical reinforcement. In Part I of the thesis, biological

  3. In vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-07-01

    Full Text Available The purpose of this study is to evaluate the in vivo retention capabilities of poloxamer-based in situ hydrogels for vaginal application with nonoxinol-9 as the model drug. Two in situ hydrogel formulations, which contained 18% poloxamer 407 plus 1% poloxamer 188 (GEL1, relative hydrophobic or 6% poloxamer 188 (GEL2, relative hydrophilic, were compared with respect to the rheological properties, in vitro hydrogel erosion and drug release. The vaginal retention capabilities of these hydrogel formulations were further determined in two small animal models, including drug quantitation of vaginal rinsing fluid in mice and isotope tracing with 99mTc in rats. The two formulations exhibited similar phase transition temperatures ranging from 27 to 32 °C. Increasing the content of poloxamer 188 resulted in higher rheological moduli under body temperature, but slightly accelerated hydrogel erosion and drug release. When compared in vivo, GEL1 was eliminated significantly slower in rat vagina than GEL2, while the vaginal retention of these two hydrogel formulations behaved similarly in mice. In conclusion, increases in the hydrophilic content of formulations led to faster hydrogel erosion, drug release and intravaginal elimination. Rats appear to be a better animal model than mice to evaluate the in situ hydrogel for vaginal application.

  4. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  5. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    Science.gov (United States)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  6. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  7. Stimulus-response time to alarms of the intra-aortic balloon pump: safe care practices

    Directory of Open Access Journals (Sweden)

    Andrezza Serpa Franco

    Full Text Available ABSTRACT Objective: To characterize the sound alarms of the Intra-Aortic Balloon Pump (IABP during aortic counterpulsation therapy; to measure the stimulus-response time of the team to these; and to discuss the implications of increasing this time for patient safety from the alarm fatigue perspective. Method: This is an observational and descriptive study with quantitative and qualitative approach, case study type, carried out in a Cardiac Surgical Intensive Care Unit. Results: The most audible IABP alarm was the one of high priority increased-reduced diastolic blood pressure. The stimulus-response time was 33.9 seconds on average. Conclusion: Managing the alarms of these equipment is essential to minimize the occurrence of the alarm fatigue phenomenon and to offer a safer assistance to patients who rely on this technology.

  8. Computation-Guided Design of a Stimulus-Responsive Multienzyme Supramolecular Assembly.

    Science.gov (United States)

    Yang, Lu; Dolan, Elliott M; Tan, Sophia K; Lin, Tianyun; Sontag, Eduardo D; Khare, Sagar D

    2017-10-18

    The construction of stimulus-responsive supramolecular complexes of metabolic pathway enzymes, inspired by natural multienzyme assemblies (metabolons), provides an attractive avenue for efficient and spatiotemporally controllable one-pot biotransformations. We have constructed a phosphorylation- and optically responsive metabolon for the biodegradation of the environmental pollutant 1,2,3-trichloropropane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metabolic cost of neuronal information in an empirical stimulus-response model

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr; McDonnell, M.D.

    2013-01-01

    Roč. 107, č. 3 (2013), s. 355-365 ISSN 0340-1200 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GPP103/12/P558 Institutional support: RVO:67985823 Keywords : information capacity * metabolic cost * stimulus-response curve Subject RIV: FH - Neurology Impact factor: 1.933, year: 2013

  10. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    Directory of Open Access Journals (Sweden)

    Thomas Lawyer

    2012-01-01

    Full Text Available To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA- based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S, modified gelatin (Gtn-S, and a crosslinker (PEGda. By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs. In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  12. Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing.

    Science.gov (United States)

    da Silva, Lucília Pereira; Santos, Tírcia Carlos; Rodrigues, Daniel Barreira; Pirraco, Rogério Pedro; Cerqueira, Mariana Teixeira; Reis, Rui Luís; Correlo, Vitor Manuel; Marques, Alexandra Pinto

    2017-07-01

    The detailed pathophysiology of diabetic foot ulcers is yet to be established and improved treatments are still required. We propose a strategy that directs inflammation, neovascularization, and neoinnervation of diabetic wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were precultured in hyaluronic acid-based spongy hydrogels under neurogenic/standard media before transplantation into diabetic mice full-thickness wounds. Acellular spongy hydrogels and empty wounds were used as controls. Re-epithelialization was attained 4 weeks after transplantation independently of the test groups, whereas a thicker and more differentiated epidermis was observed for the cellular spongy hydrogels. A switch from the inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks after injury, but a significantly higher M2(CD163 + )/M1(CD86 + ) subtype ratio was observed in the neurogenic preconditioned group that also failed to promote neoinnervation. A higher number of intraepidermal nerve fibers were observed for the unconditioned group probably due to a more controlled transition from the inflammatory to the proliferative phase. Overall, stem cell-containing spongy hydrogels represent a promising approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating the inflammatory response to promote a successful neoinnervation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A protein-based hydrogel for in vitro expansion of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Jingyu Wang

    Full Text Available Hydrogels are widely used as scaffolds in tissue engineering because they can provide excellent environments for bioactive components including growth factors and cells. We reported in this study on a physical hydrogel formed by a specific protein-peptide interaction, which could be used for the three dimensional (3D cell culture of murine mesenchymal stem cells (mMSC. The mMSC kept dividing during the 7-day culture period and the metabolic-active cell number at day 7 was 359% more than that at day 1. This kind of physical hydrogel could be converted to a homogeneous solution by firstly adding an equal volume of culture medium and then pipeting for several times. Therefore, mMSC post culture could be easily separated from cell-gel constructs. We believed that the protein-based hydrogel system in this study could be developed into a promising scaffold for in vitro expansion of stem cells and cell therapy. This work would be in the general interests of researchers in the fields of biomaterials and supramolecular chemistry.

  14. DNA hydrogel-based supercapacitors operating in physiological fluids

    Science.gov (United States)

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432

  15. Preparation of various hydrogels based on poly (Vinyl pyrrolidone) and poly ethylene glycol using gamma and electron irradiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2006-11-01

    Different hydrogels have been prepared using gamma and electron irradiation; the hydrogels are composed of poly(vinyl pyrolidone) (PVP), poly(ethylene glycol) (PEG). The influence of some process parameters on the properties of the hydrogels has been investigated as: the gel fraction, maximum swelling, swelling kinetics, and mechanical properties. In the first part of this study, hydrogel dressings have been prepared using electron irradiation, and the dressings are composed of poly(vinyl pyrrolidone) (PVP), poly(ethylene glycol) (PEG) and agar. The gel fraction increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. The prepared hydrogels dressings could be considered as a good barrier against microbes. In the second part, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. In the third part of the study, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and poly(ethylene glycol) (PEG) with various molecular weights, and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. The data show that PEG with low molecular weight needs a high dose for the gelation, and the presence of PVP lowers the needed gelation dose. The maximum swelling decreases with increasing irradiation dose and the PVP concentration, which is due to higher crosslinks between the polymer chains. (author)

  16. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    Science.gov (United States)

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  17. Drug release from enzyme-mediated in situ-forming hydrogel based on gum tragacanth-tyramine conjugate.

    Science.gov (United States)

    Dehghan-Niri, Maryam; Tavakol, Moslem; Vasheghani-Farahani, Ebrahim; Ganji, Fariba

    2015-05-01

    In the present study, injectable hydrogels based on gum tragacanth-tyramine conjugate were prepared by enzymatic oxidation of tyramine radicals in the presence of hydrogen peroxide. Then, in vitro release of bovine serum albumin and insulin as model protein drugs from this polymeric network was investigated. Also, to improve the properties of this hydrogel, a blended hydrogel composed of tyramine-conjugated gelatin and tyramine-conjugated tragacanth was prepared. Experimental results showed that the gelation time ranged from 3 to 28 s depending on the polymer and enzyme concentrations. Results of morphological investigation of hydrogels indicated that the average pore size of hydrogels varied from 120 to 160 µm. Swelling degree of hydrogels and the rate of drug release decreased by increasing of hydrogen peroxide and polymer concentrations. The release profile of drug from hydrogels followed Higuchi and Fickian diffusion mechanism. Finally, it was shown that the swelling characteristics and drug release behavior of this polymeric network could be improved by blending it with tyramine-conjugated gelatin. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    Science.gov (United States)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  19. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  20. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Science.gov (United States)

    Salamon, Achim; van Vlierberghe, Sandra; van Nieuwenhove, Ine; Baudisch, Frank; Graulus, Geert-Jan; Benecke, Verena; Alberti, Kristin; Neumann, Hans-Georg; Rychly, Joachim; Martins, José C.; Dubruel, Peter; Peters, Kirsten

    2014-01-01

    Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies. PMID:28788517

  1. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshaei, Rasul [Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz (Iran, Islamic Republic of); Namazi, Hassan, E-mail: namazi@tabrizu.ac.ir [Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz (Iran, Islamic Republic of); Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz (Iran, Islamic Republic of)

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV–vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. - Highlights: • CMC nanocomposite hydrogel incorporated with TC loaded ZnO-MCM-41 nanoparticles have been prepared as active wound dressing. • Citric acid was used as cross linker to avoid conventional toxic crosslinkers. • CMC/ZnO-MCM-41

  2. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  3. Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection.

    Science.gov (United States)

    Haddad, Peter A; Servati, Amir; Soltanian, Saeid; Ko, Frank; Servati, Peyman

    2017-12-01

    The focus of this research is to evaluate the effects of design parameters including surface area, distance between and geometry of dry flexible electrodes on electrodermal activity (EDA) stimulus response detection. EDA is a result of the autonomic nervous system being stimulated, which causes sweat and changes the electrical characteristics of the skin. Standard silver/silver chloride (Ag/AgCl) EDA electrodes are rigid and lack conformability in contact with skin. In this study, flexible dry Ag/AgCl EDA electrodes were fabricated on a compliant substrate, used to monitor EDA stimulus responses and compared to results simultaneously collected by rigid dry Ag/AgCl electrodes. A repeatable fabrication process for flexible Ag/AgCl electrodes has been established. Surface area, distance between and geometry of electrodes are shown to affect the detectability of the EDA response and the minimum number of sweat glands to be covered by the electrodes has been estimated at 140, or more, in order to maintain functionality. The optimal flexible EDA electrode is a serpentine design with a 0.15 cm 2 surface area and a 0.20 cm distance with an average Pearson correlation coefficient of . Fabrication of flexible electrodes is described and an understanding of the effects of electrode designs on the EDA stimulus response detection has been established and is potentially related to the coverage of sweat glands. This work presents a novel systematic approach to understand the effects of electrode designs on monitoring EDA which is of importance for the design of wearable EDA monitoring devices.

  4. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  5. Discrepancy between stimulus response and tolerance of pain in Alzheimer disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Werner, Mads U; Jensen, Troels Staehelin

    2015-01-01

    BACKGROUND: Affective-motivational and sensory-discriminative aspects of pain were investigated in patients with mild to moderate Alzheimer disease (AD) and healthy elderly controls using the cold pressor test tolerance and repetitive stimuli of warmth and heat stimuli, evaluating the stimulus....... The results further suggest that the attenuated cold pressor pain tolerance may relate to impairment of coping abilities. Paradoxically, we found an attenuated stimulus-response function, compared to controls, suggesting that AD dementia interferes with pain ratings over time, most likely due to memory...

  6. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  7. Effect of Sodium Salicylate on the Viscoelastic Properties and Stability of Polyacrylate-Based Hydrogels for Medical Applications

    Directory of Open Access Journals (Sweden)

    Zuzana Kolarova Raskova

    2016-01-01

    Full Text Available Investigation was made into the effect exerted by the presence of sodium salicylate (0–2 wt.%, in Carbomer-based hydrogel systems, on processing conditions, rheological and antimicrobial properties in tests against Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacterial strains, and examples of yeast (Candida albicans and mould (Aspergillus niger. In addition, the work presents an examination of long-term stability by means of aging over one year the given hydrogels at 8°C and 25°C. The results show that 0.5 wt.% NaSal demonstrated a noticeable effect on the hydrogel neutralization process, viscosity, and antimicrobial properties against all of the tested microorganisms. The long-term stability studies revealed that hydrogels can maintain antimicrobial activity as well as viscosity to a degree that would be sufficient for practical use.

  8. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    Science.gov (United States)

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison of Hydrogels Based on Commercial Chitosan and Beetosan® Containing Nanosilver

    Directory of Open Access Journals (Sweden)

    Bożena Tyliszczak

    2016-12-01

    Full Text Available Two series of hydrogels on the basis of commercial chitosan and chitosan derived from naturally expired honeybees are presented in this article. Sorption capacity and behavior of both kind of materials in simulated body fluids such as Ringer’s liquid or artificial saliva have been determined and compared. Presence of functional groups in synthesized materials have been determined by means of FT-IR spectroscopy. Structure and homogeneity of their surface have been defined using Scanning Electron Microscopy. Based on the conducted research, it can be stated that both chitosan and Beetosan® hydrogels have very similar characteristics. It is worth noting that synthesis of such materials is environmentally friendly and leads to obtaining polymers that can be used for biomedical applications. Tested materials are characterized by low sorption capacity and do not have a negative impact on simulated body fluids. Moreover, based on the cell lines studies, it can be stated that Beetosan® hydrogels have a negative influence on cells of cancerous origin and, what is important, significantly less adverse effects on fibroblasts.

  10. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte

    Science.gov (United States)

    Tang, Qianqiu; Chen, Mingming; Wang, Gengchao; Bao, Hua; Saha, Petr

    2015-06-01

    A facile prestrain-stick-release assembly strategy for the stretchable supercapacitor device is developed based on a novel Na2SO4-aPUA/PAAM hydrogel electrolyte, saving the stretchable rubber base conventionally used. The Na2SO4-aPUA/PAAM hydrogel electrolyte exhibits high stretchability (>1000%), electrical conductivity (0.036 S cm-1) and stickiness. Due to the unique features of the hydrogel electrolyte, the carbon nanotube@MnO2 film electrodes can be firmly stuck to two sides of the prestrained hydrogel electrolyte. Then, by releasing the hydrogel electrolyte, homogenous buckles are formed for the film electrodes to get a full stretchable supercapacitor device. Besides, the high stickiness of the hydrogel electrolyte ensures its strong adhesion with the film electrodes, facilitating ion and electronic transfer of the supercapacitor. As a result, excellent electrochemical performance is achieved with the specific capacitance of 478.6 mF cm-2 at 0.5 mA cm-2 (corresponding to 201.1 F g-1) and capacitance retention of 91.5% after 3000 charging-discharging cycles under 150% strain, which is the best for the stretchable supercapacitors.

  11. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    Science.gov (United States)

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  12. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    Science.gov (United States)

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.

    Science.gov (United States)

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2013-05-28

    Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.

  14. Evaluation of CO2-based cold sterilization of a model hydrogel.

    Science.gov (United States)

    Jiménez, A; Zhang, J; Matthews, M A

    2008-12-15

    The purpose of the present work is to evaluate a novel CO(2)-based cold sterilization process in terms of both its killing efficiency and its effects on the physical properties of a model hydrogel, poly(acrylic acid-co-acrylamide) potassium salt. Suspensions of Staphylococcus aureus and Escherichia coli were prepared for hydration and inoculation of the gel. The hydrogels were treated with supercritical CO(2) (40 degrees C, 27.6 MPa). The amount of bacteria was quantified before and after treatment. With pure CO(2), complete killing of S. aureus and E. coli was achieved for treatment times as low as 60 min. After treatment with CO(2) plus trace amounts of H(2)O(2) at the same experimental conditions, complete bacteria kill was also achieved. For times less than 30 min, incomplete kill was noted. Several physical properties of the gel were evaluated before and after SC-CO(2) treatment. These were largely unaffected by the CO(2) process. Drying curves showed no significant change between treated (pure CO(2) and CO(2) plus 30% H(2)O(2)) and untreated samples. The average equilibrium swelling ratios were also very similar. No changes in the dry hydrogel particle structure were evident from SEM micrographs.

  15. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    Science.gov (United States)

    You, Fu; Eames, B. Frank; Chen, Xiongbiao

    2017-01-01

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed. PMID:28737701

  16. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Fu You

    2017-07-01

    Full Text Available Extrusion-based bioprinting (EBB is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  17. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.

    Science.gov (United States)

    You, Fu; Eames, B Frank; Chen, Xiongbiao

    2017-07-23

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  18. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  19. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    KAUST Repository

    Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.

    2014-01-01

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  20. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    Science.gov (United States)

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. pH-Responsive Hydrogel With an Anti-Glycation Agent for Modulating Experimental Periodontitis.

    Science.gov (United States)

    Yu, Min-Chen; Chang, Chih-Yeun; Chao, Yi-Chi; Jheng, Yi-Han; Yang, Connie; Lee, Ning; Yu, Shan-Huey; Yu, Xin-Hong; Liu, Dean-Mo; Chang, Po-Chun

    2016-06-01

    Stimulus-responsive devices have emerged as a novel approach for local drug delivery. This study investigates the feasibility of a novel chitosan-based, pH-responsive hydrogel loaded with N-phenacylthiazolium bromide (PTB), which cleaves the crosslinks of advanced glycation end products on the extracellular matrix. A chitosan-based hydrogel loaded with PTB was fabricated, and the in vitro release profile was evaluated within pH 5.5 to 7.4. BALB/cJ mice and Sprague-Dawley rats were used to evaluate the effects during the induction and recovery phases of periodontitis, respectively, and animals in each phase were divided into four groups: 1) no periodontitis induction; 2) ligature-induced experimental periodontitis (group PR); 3) experimental periodontitis plus hydrogel without PTB (group PH); and 4) experimental periodontitis plus hydrogel with PTB (group PP). The therapeutic effects were evaluated by microcomputed tomographic imaging of periodontal bone level (PBL) loss and histomorphometry for inflammatory cell infiltration and collagen density. PTB was released faster at pH 5.5 to 6.5 and consistently slower at pH 7.4. In the induction phase, PBL and inflammatory cell infiltration were significantly reduced in group PP relative to group PR, and the loss of collagen matrix was significantly reduced relative to that observed in group PH. In the recovery phase, PBL and inflammatory cell infiltration were significantly reduced, and significantly greater collagen deposition was noted in group PP relative to groups PR and PH at 4 and 14 days after silk removal. Chitosan-based, pH-responsive hydrogels loaded with PTB can retard the initiation of and facilitate the recovery from experimental periodontitis.

  2. Radiation preparation of drug carriers based on poly(N-isopropylacrylamide) hydrogels, their loading capacities and controlled release rates for dexamethasone and tegafur

    International Nuclear Information System (INIS)

    Hoang Dang Sang; Nguyen Van Binh; Tran Bang Diep; Nguyen Thi Thom; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh

    2015-01-01

    Thermo-sensitive hydrogels have great potential in some applications. In order to use as the drug delivery systems, the hydrogels should be biocompatibility. New polymers with more biocompatibility and better biodegradability, and environmental friendly crosslinking agents would be necessary for the successful drug carriers. Poly (N-isopropylacrylamide-co-dimethylacrylamide) based hydrogels have been prepared from the admixture solutions of N-isopropylacrylamide (NIPA) and N,N’-dimethyl acrylamide (DMA) by radiation copolymerization and crosslinking at radiation dose of 20 kGy as reported in our previous study. Water swelling behaviour of the resulting hydrogels were much depended on their nature such as initial ratio of NIPA and DMA. The drug-loaded hydrogels were prepared by merging hydrogel in the solutions containing corresponding drugs. Loading capacity of the hydrogels were about 48.6 and 95.7 mg per g dried hydrogel for dexamethasone and tegafur. The release studies showed that the presence of ions in simulated body fluid and temperature of the solution much affecting to in vitro release behaviors of hydrogels for dexamethasone and tegafur. The release rates were fast for both drug models. The result also revealed that these drug carriers were biocompatibility without skin irritation, suggested the drug-loaded hydrogels may be used as controlled release drug delivery systems. (author)

  3. Hydrogel-based bioflocculants for the removal of organic pollutants from biodiesel wastewater

    CSIR Research Space (South Africa)

    Fosso-Kankeu, E

    2017-09-01

    Full Text Available hydrogels were characterized using X-Ray diffraction, Fourier transformed infra-red spectroscopy and scanning electron microscope. It was found that the synthesis provided the composite with the functional groups of the individual components. The hydrogels...

  4. APPLICATION OF STIMULUS & RESPONSE MODEL TO IMPULSE BUYING BEHAVIOR OF ALGERIAN CONSUMERS

    Directory of Open Access Journals (Sweden)

    Amel Graa

    2012-02-01

    Full Text Available This paper investigates the influence of situational factors on the impulse buying behavior usinga Mehrabian and Russell's (1974 framework (Stimulus & response model. The results suggest thata consumer's emotions can be a mediating factor in the impulse purchase process. In this study, weidentify and explore how situational factors and emotional states may influence various dimensionsof impulse purchase behavior of Algerian shoppers. By tapping the responses of 687 consumers inthe area of Algeria’ west, we obtain that there is a positive relationship between independent anddependent variables.According to the results, pleasure was associated with design, whereas arousal was associatedwith perception of crowding, but dominance was linked to time spent in the store. Retailers can takethese findings to maintain trained their employees and provide adequate signs and best environmentwhenever some relocation of products took place.

  5. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Directory of Open Access Journals (Sweden)

    Bae Hoon Lee

    Full Text Available Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol-diacrylate (PEG-DA based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates.

  6. Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.

    Science.gov (United States)

    Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun

    2014-04-01

    The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, M., E-mail: msakthi81986@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 046, Tamilnadu (India); Department of Chemistry, Ganadipathy Tulsi' s Jain Engineering College, Kaniyambadi, Vellore 632 102, Tamilnadu (India); Franklin, D.S., E-mail: loyolafrank@yahoo.co.in [Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam 632509, Tamilnadu (India); Sudarsan, S., E-mail: srsudarsan29@gmail.com [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Chitra, G., E-mail: chitramuralikrishnan@gmail.com [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Guhanathan, S., E-mail: sai_gugan@yahoo.com [PG & Research Department of Chemistry, Muthurangam Government Arts College, Vellore 632 002, Tamilnadu (India)

    2017-06-01

    The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.

  8. Investigation on Au-nano incorporated pH-sensitive (itaconic acid/acrylic acid/triethylene glycol) based polymeric biocompatible hydrogels

    International Nuclear Information System (INIS)

    Sakthivel, M.; Franklin, D.S.; Sudarsan, S.; Chitra, G.; Guhanathan, S.

    2017-01-01

    The pH-sensitive gold nano hydrogel based on itaconic acid, acrylic acid and triethylene glycol (GIAT) has been prepared by free radical polymerization viz. organic solventless approach with different monomer ratios. The nature of bonding and structural identification of GIAT hydrogels were characterized by FT-IR spectroscopy. The surface morphology of gold gel was examined using scanning electron microscopy (SEM). In addition, transmission electron microscopy (TEM) was used to identify the size of gold nano particles. The in vitro biocompatibility of GIAT hydrogel has been evaluated in 3T3 fibroblast cell lines. The obtained results show that gold nano particle incorporated hydrogel possess ~ 99% of cell proliferation. Followed by, the impact of gold nano particles on swelling, surface morphology was studied. The consecutive preparation of hydrogel, effect of different pH conditions, and stoichiometry of monomeric units have also been discussed. The degree of swelling was measured in carbonate buffer solutions for 24 h period with varying pH such as 1.2, 6.0, 7.4 and 10.0. The obtained results showed that the stoichiometry of itaconic acid and gold nano particles plays an essential role in modifying the nature of GIAT polymeric hydrogels. In conclusion, promising Au-nano incorporated pH-sensitive bio polymeric hydrogels were prepared and characterized. The unique properties of these Au-nano hydrogel make them attractive use in biomedical applications. - Highlights: • Itaconic acid based hydrogels were developed viz. greener organic solvent less approach. • The enhanced equilibrium swelling at acidic and basic medium was observed for nano-Au-incorporated nano composite hydrogels. • The prepared GIAT hydrogel showed ~ 99% of cell proliferation. • This kind of pH-sensitive polymeric hydrogels may be useful for controlled drug delivery system.

  9. Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization.

    Science.gov (United States)

    Moreno, Miguel; Pow, Poh Yih; Tabitha, Tan Su Teng; Nirmal, Sonali; Larsson, Andreas; Radhakrishnan, Krishna; Nirmal, Jayabalan; Quah, Soo Tng; Geifman Shochat, Susana; Agrawal, Rupesh; Venkatraman, Subbu

    2017-08-01

    This paper describes the synthesis of thiolated chitosan-based hydrogels with varying degrees of crosslinking that has been utilized to modulate release kinetics of two clinically relevant FDA-approved anti-VEGF protein drugs, ranibizumab and aflibercept. These hydrogels have been fabricated into disc shaped structures for potential use as patches on ocular surface. Protein conformational changes and aggregation after loading and release was evaluated by circular dichroism (CD), steady-state tryptophan fluorescence spectroscopy, electrophoresis and size-exclusion chromatography (SEC). Finally, the capacity of both released proteins to bind to VEGF was tested by ELISA and surface plasmon resonance (SPR) technology. The study demonstrates the versatility of thiolated chitosan-based hydrogels for delivering proteins. The effect of various parameters of the hydrogel on protein release kinetics and mechanism of protein release was studied using the Korsmeyer-Peppas release model. Furthermore, we have studied the stability of released proteins in detail while comparing it with non-entrapped proteins under physiological conditions to understand the effect of formulation conditions on protein stability. The disc-shaped thiolated chitosan-based hydrogels provide a potentially useful platform to deliver ranibizumab and aflibercept for the treatments of ocular diseases such as wet AMD, DME and corneal neovascularization.

  10. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization.

    Science.gov (United States)

    Liu, Ji; Soo Yun Tan, Cindy; Lan, Yang; Scherman, Oren A

    2017-09-15

    The success of exploiting cucurbit[ n ]uril (CB[ n ])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3105-3109.

  11. Hydrogels based on polysaccharide-calcium phosphate with antibacterial / antitumor activity for 3D printing

    Science.gov (United States)

    Teterina, A. Yu; Fedotov, A. Yu; Zobkov, Yu V.; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Karalkin, P. A.; Komlev, V. S.

    2018-04-01

    The purpose of this study was to develop hydrogels for 3D printing of sodium alginate/gelatin/octacalcium phosphate-based constructs with antibacterial and antitumor activity intended for bone defects replacement in patients with malignant diseases. In this work, we evaluated the drug release kinetic and physico-chemical characteristics of constructs, as well as their specific activity, biocompatibility and osteoplastic properties by means of in vitro and in vivo tests. The principal possibility of creating the biocompatible bone substitutes with antibacterial/antitumor activity and osteoconductive-retaining properties of 3D printing method was demonstrated.

  12. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    Science.gov (United States)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  13. Effect of ono and di-protic Acid on the Characterization of 2-hydroxyethyl-methacrylate based hydrogels Prepared by gamma-radiation and its Application for Delivery

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.

    2010-01-01

    New co polymeric hydrogels based on 2-hydroxyethyl methacrylate P(HEMA), 2-hydroxyethyl methacrylate/acrylic acid P(HEMA/AAc) and 2-hydroxyethyl methacrylate /maleic acid P(HEMA/MA) copolymers were prepared by using 60 Co gamma-rays, in order to examine the potential use of these hydrogels in controlled drug release systems. The characterization of network structure of these hydrogels was studied by FTIR, SEM and the gel fraction yield. The thermal stability by DSC and TGA, kinetic swelling, and drug release behavior were also studied. It was shown that as increasing irradiation dose, the gel fraction yield was increase and the swelling percent was decrease. The parameters of equilibrium swelling, maximum swelling, initial swelling rate, swelling exponent (n), diffusion constant (K), diffusion coefficient (D) and penetration velocity (V) of the hydrogels were determined by studying the swelling behavior of the prepared hydrogels. Also, the swelling behavior of copolymer hydrogels in response to ph value of the external media was studied, it is noted that the highest swelling values were obtained at ph 6.8. The in vitro drug release behavior of these hydrogels was examined by quantification analysis using UV/VIS spectrophotometers. Colchicine is the drug which used in treatment of gout; it was loaded into dried hydrogels to investigate the stimuli-sensitive property at the specific ph. The release studies showed that the highest value of release was found to be at ph 6.8, such hydrogels could be used as drug delivery system

  14. Hydrogel-based ultra-moisturizing cream formulation for skin hydration and enhanced dermal drug delivery.

    Science.gov (United States)

    Lee, Sang Gon; Kim, Sung Rae; Cho, Hye In; Kang, Mean Hyung; Yeom, Dong Woo; Lee, Seo Hyun; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    To develop an external vehicle for skin hydration and enhanced dermal drug delivery, a hydrogel-based ultra-moisturizing cream (HUMC) was successfully formulated with carbopol 934P, urea, Tinocare GL, grape seed oil, and other excipients. The HUMC showed plastic flow behavior due to a gel structure with a cream base. Different types of drug-free vehicles such as a hydrogel, conventional cream (CC), and three HUMCs were prepared and subjected to an in vivo skin hydration test on a hairless mouse using a corneometer. Hydration effect (∆AU) was in the order of HUMC2>HUMC1 ≥ CC>HUMC3>hydrogel. Using nile red (NR) and 5-carboxyfluorescein (5-CF) as lipophilic and hydrophilic fluorescent probes, respectively, in vitro skin permeation and accumulation studies were conducted using Franz diffusion cells. The values of steady-state flux (Jss, ng/h/cm(2)) were obtained: 74.8 (CC), 145.6 (HUMC1), and 161.9 (HUMC2) for NR delivery; 6.8 (CC), 8.3 (HUMC1), and 10.9 (HUMC2) for 5-CF delivery. The amounts retained in the skin at 12 h (Qr, ng/cm(2)) were determined: 86.4 (CC) and 102.0 (HUMC2) for NR; and 70.1 (CC) and 195.6 (HUMC2) for 5-CF. Confocal microscopy was used to visualize the distribution of the fluorescent probes. NR tended to be localized into the deeper part of the skin with adipose tissue whereas 5-CF localized in the upper layer of the skin. Thus we propose that HUMC2 is an efficacious vehicle for skin hydration and enhances dermal delivery of lipophilic and hydrophilic drugs.

  15. A dissociation of dorso-lateral striatum and amygdala function on the same stimulus-response habit task.

    Science.gov (United States)

    McDonald, R J; Hong, N S

    2004-01-01

    This experiment tested the idea that the amygdala-based learning and memory system covertly acquires a stimulus-reward (stimulus-outcome) association during acquisition of a stimulus-response (S-R) habit task developed for the eight-arm radial maze. Groups of rats were given dorso-lateral striatal or amygdala lesions and then trained on the S-R habit task on the eight-arm radial maze. Rats with neurotoxic damage to the dorso-lateral striatum were severely impaired on the acquisition of the S-R habit task but showed a conditioned-cue preference for the stimulus reinforced during S-R habit training. Rats with neurotoxic damage to the amygdala were able to acquire the S-R habit task but did not show a conditioned-cue preference for the stimulus reinforced during S-R habit training. This pattern of results represents a dissociation of learning and memory functions of the dorsal striatum and amygdala on the same task.

  16. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Sokker, H.H., E-mail: hesham_sokkre@yahoo.com [Jazan University, Faculty of Science (Saudi Arabia); National Center for Radiation Research and Technology, Polymer Chemistry Department, P.O. Box 29, Cairo (Egypt); El-Sawy, Naeem M. [National Center for Radiation Research and Technology, Polymer Chemistry Department, P.O. Box 29, Cairo (Egypt); Hassan, M.A. [Scib Company of Paints, Cairo (Egypt); El-Anadouli, Bahgat E. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2011-06-15

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3 g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model.

  17. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    Science.gov (United States)

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Poly(N-isopropylacrylamide) hydrogel-based shape-adjustable polyimide films triggered by near-human-body temperature.

    Science.gov (United States)

    Huanqing Cui; Xuemin Du; Juan Wang; Tianhong Tang; Tianzhun Wu

    2016-08-01

    Hydrogel-based shape-adjustable films were successfully fabricated via grafting poly(N-isopropylacrylamide) (PNIPAM) onto one side of polyimide (PI) films. The prepared PI-g-PNIPAM films exhibited rapid, reversible, and repeatable bending/unbending property by heating to near-human-body temperature (37 °C) or cooling to 25 °C. The excellent property of PI-g-PNIPAM films resulted from a lower critical solution temperature (LCST) of PNIPAM at about 32 °C. Varying the thickness of PNIPAM hydrogel layer regulated the thermo-responsive shape bending degree and response speed of PI-g-PNIPAM films. The thermo-induced shrinkage of hydrogel layers can tune the curvature of PI films, which have potential applications in the field of wearable and implantable devices.

  19. Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review

    Directory of Open Access Journals (Sweden)

    Jem-Kun Chen

    2014-01-01

    Full Text Available In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles, switchable wettability, sensors (optical sensors, biosensors, chemical sensors, and actuators.

  20. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria.

    Science.gov (United States)

    Xu, Yueshuang; Wang, Huan; Luan, Chengxin; Liu, Yuxiao; Chen, Baoan; Zhao, Yuanjin

    2018-02-15

    Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL -1 ) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    KAUST Repository

    Tai, Yanlong

    2015-01-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4). © 2015 The Royal Society of Chemistry.

  2. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel.

    Science.gov (United States)

    Wei, Yubo; Zeng, Qiang; Hu, Qiong; Wang, Min; Tao, Jia; Wang, Lishi

    2018-01-15

    Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN) 6 ] 3-/4- . The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL -1 to 10μmolL -1 with a detection limit of 0.012 μmolL -1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications. Copyright © 2017. Published by Elsevier B.V.

  3. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    Science.gov (United States)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  4. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide

    International Nuclear Information System (INIS)

    Wang, Bo; Jeon, Young Sil; Park, Ho Seok; Kim, Ji-Heung

    2016-01-01

    Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)–containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.4-dihydroxyphenethylamine (DOPA), and ethanolamine (EA), termed PolyAspAm(GABA/DOPA/EA). Here both GO nanosheets and boric acid (H 3 BO 3 ) act as cross-linkers, interacting with polar functional groups of the PolyAspAm(GABA/DOPA/EA). Compared to PolyAspAm(GABA/DOPA/EA)/B 3+ gel without GO, the same containing 5 wt% of GO yielded a 10-fold increase in both the storage and loss moduli, as well as 134% and 104% increases in the tensile and compressive strengths, respectively. In addition, the GO-containing polyaspartamide hydrogel exhibited rapid and autonomous self-healing property. Two types of bonding, boron–catechol coordination and strong hydrogen bonding interactions between PolyAspAm side chains and GO nanosheets, would impart the enhanced mechanical strength and good reversible gelation behavior upon pH stimulation to the hydrogel, making this biocompatible hydrogel a promising soft matter for biomedical applications. - Highlights: • Novel GO-containing nanocomposite hydrogels based on dopamine-conjugated polyaspartamide derivative was prepared. • Improvement in the mechanical property of composite gel by GO incorporation was elucidated. • The “smart” characteristics of pH-responsive gelation and rapid self-healing were demonstrated.

  5. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Jeon, Young Sil; Park, Ho Seok; Kim, Ji-Heung, E-mail: kimjh@skku.edu

    2016-12-01

    Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)–containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.4-dihydroxyphenethylamine (DOPA), and ethanolamine (EA), termed PolyAspAm(GABA/DOPA/EA). Here both GO nanosheets and boric acid (H{sub 3}BO{sub 3}) act as cross-linkers, interacting with polar functional groups of the PolyAspAm(GABA/DOPA/EA). Compared to PolyAspAm(GABA/DOPA/EA)/B{sup 3+} gel without GO, the same containing 5 wt% of GO yielded a 10-fold increase in both the storage and loss moduli, as well as 134% and 104% increases in the tensile and compressive strengths, respectively. In addition, the GO-containing polyaspartamide hydrogel exhibited rapid and autonomous self-healing property. Two types of bonding, boron–catechol coordination and strong hydrogen bonding interactions between PolyAspAm side chains and GO nanosheets, would impart the enhanced mechanical strength and good reversible gelation behavior upon pH stimulation to the hydrogel, making this biocompatible hydrogel a promising soft matter for biomedical applications. - Highlights: • Novel GO-containing nanocomposite hydrogels based on dopamine-conjugated polyaspartamide derivative was prepared. • Improvement in the mechanical property of composite gel by GO incorporation was elucidated. • The “smart” characteristics of pH-responsive gelation and rapid self-healing were demonstrated.

  6. Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Qing-Qing Dai

    2016-08-01

    Full Text Available Acylated xylan-based magnetic Fe3O4 nanocomposite hydrogels (ACX-MNP-gels were prepared by fabricating Fe3O4 nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe3O4 fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C. The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt % presented excellent catalytic activity and provided a sensitive response to H2O2 detection even at a concentration level of 5 × 10−6 mol·L−1. This approach to preparing magnetic hydrogels loaded with Fe3O4 nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry.

  7. Stimulus-Response Compatibility effect in the near-far dimension: A developmental study

    Directory of Open Access Journals (Sweden)

    Aurélien Richez

    2016-08-01

    Full Text Available The present study investigates the developmental aspect of stimulus-response compatibility effect in 8 to 11-years-old children. The task consisted in manually responding to the colour of a pawn presented on a chessboard at different distances. Manual responses were provided by reaching a proximal or distal location depending on the colour of the stimulus. We found that reaction time was affected by the conflict generated by the response suggested by the location of the stimulus and the response required according to its colour. This was not the case for movement time despite we found a higher rate of long duration movements in the incongruent than in the congruent spatial condition. The SRC effect was however observed in children older than 10 years old. These findings provide additional evidence for a reorganization of the perceptual system during the period of 8 to 10 years, integrating progressively multimodal information and preparing more efficiently the body to act in the environment.

  8. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.

    Science.gov (United States)

    Zangabad, Parham Sahandi; Mirkiani, Soroush; Shahsavari, Shayan; Masoudi, Behrad; Masroor, Maryam; Hamed, Hamid; Jafari, Zahra; Taghipour, Yasamin Davatgaran; Hashemi, Hura; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active targeting can be attached that are recognized by cognate receptors over-expressed on the target cells of tissues. Secondly, modification can be used to impart a stimulus-responsive or "smart" character to the liposomes, whereby the cargo is released on demand only when certain internal stimuli (pH, reducing agents, specific enzymes) or external stimuli (light, magnetic field or ultrasound) are present. Here, we review the field of smart liposomes for drug delivery applications.

  9. Incorporating vehicle mix in stimulus-response car-following models

    Directory of Open Access Journals (Sweden)

    Saidi Siuhi

    2016-06-01

    Full Text Available The objective of this paper is to incorporate vehicle mix in stimulus-response car-following models. Separate models were estimated for acceleration and deceleration responses to account for vehicle mix via both movement state and vehicle type. For each model, three sub-models were developed for different pairs of following vehicles including “automobile following automobile,” “automobile following truck,” and “truck following automobile.” The estimated model parameters were then validated against other data from a similar region and roadway. The results indicated that drivers' behaviors were significantly different among the different pairs of following vehicles. Also the magnitude of the estimated parameters depends on the type of vehicle being driven and/or followed. These results demonstrated the need to use separate models depending on movement state and vehicle type. The differences in parameter estimates confirmed in this paper highlight traffic safety and operational issues of mixed traffic operation on a single lane. The findings of this paper can assist transportation professionals to improve traffic simulation models used to evaluate the impact of different strategies on ameliorate safety and performance of highways. In addition, driver response time lag estimates can be used in roadway design to calculate important design parameters such as stopping sight distance on horizontal and vertical curves for both automobiles and trucks.

  10. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  11. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds

    International Nuclear Information System (INIS)

    Fiejdasz, Sylwia; Szczubiałka, Krzysztof; Lewandowska-Łańcucka, Joanna; Nowakowska, Maria; Osyczka, Anna M

    2013-01-01

    The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen–chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen–chitosan hydrogels showed the best biocompatibility. (paper)

  12. Hydrogels Based on Dynamic Covalent and Non Covalent Bonds: A Chemistry Perspective

    Directory of Open Access Journals (Sweden)

    Francesco Picchioni

    2018-03-01

    Full Text Available Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing. These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.

  13. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    Science.gov (United States)

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    International Nuclear Information System (INIS)

    Torres, Cecilia C.; Urbano, Bruno F.; Campos, Cristian H.; Rivas, Bernabé L.; Reyes, Patricio

    2015-01-01

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, 29 Si and 13 C solid state NMR, and N 2 adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point

  15. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Cecilia C. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Urbano, Bruno F., E-mail: burbano@udec.cl [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Campos, Cristian H. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Rivas, Bernabé L. [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Reyes, Patricio [Department of Physical Chemistry, Faculty of Chemical Science, University of Concepción (Chile)

    2015-02-15

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, {sup 29}Si and {sup 13}C solid state NMR, and N{sub 2} adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point.

  16. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Frimpong, Reynolds A; Hilt, J Zach [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: hilt@engr.uky.edu

    2008-04-30

    Core magnetite (Fe{sub 3}O{sub 4}) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe{sub 3}O{sub 4} nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles.

  17. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Frimpong, Reynolds A; Hilt, J Zach

    2008-01-01

    Core magnetite (Fe 3 O 4 ) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe 3 O 4 nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles

  18. Carving Executive Control at Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, but Not Stimulus-Response, Conflict

    Science.gov (United States)

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…

  19. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    Science.gov (United States)

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  20. Synthesis of Collagen-Based Hydrogel Nanocomposites Using Montmorillonite and Study of Adsorption Behavior of Cd from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Gholam Bagheri Marandi

    2013-04-01

    Full Text Available Novel collagen-based hydrogel nanocomposites were synthesized by graft copolymerization of acrylamide and maleic anhydrid in the presence of different amounts of montmorillonite, using methylenebisacrylamide (MBAand ammonium persulfate (APS as crosslinker and initiator, respectively. The optimum amount of clay on the swelling properties of the samples was studied. It was found that the hydrogel nanocomposites exhibited improved swelling capacity compared with the clay-free hydrogel. Gel content was also studied and the resultsindicated that the inclusion of montmorillonite causes an increase in gel content. The sorption behavior of heavy metal ion from aqueous solutions was investigated by its relationship with pH, contact time, initial concentration of metal ion and also, montmorillonite content of the nanocomposites. The experimental data showed thatCd2+ ion adsorption increases with increasing initial concentration of Cd2+ ion in solution and the clay content. Also, the results indicated that more than 88% of the maximum adsorption capacities toward Cd2+ ion were achieved within the initial 10 minute. Functional groups of the prepared hydrogels have shown complexation abilitywith metal ions and improving hydrogels' adsorption properties. It was concluded that the nanocomposites could be used as fast-responsive, and high capacity sorbent materials in Cd2+ ion removing processes. The prepared hydrogel nanocomposites were characerized by means of XRD patterns, TGA thermal methods and FTIRspectroscopy. The XRD patterns of nanocomposites showed that the interlayer distance of montmorillonite was changed and the clay sheets were exfoliated. Furthermore, the results showed that by increasing the montmorillonite content, thermal stability of the nanocomposites was clearly improved.

  1. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.

    Science.gov (United States)

    Belay, A; Collins, A; Ruzgas, T; Kissinger, P T; Gorton, L; Csöregi, E

    1999-02-01

    Amperometric bienzyme electrodes based on coupled L-glutamate oxidase (GlOx) and horseradish peroxidase (HRP) were constructed for the direct monitoring of L-glutamate in a flow injection (FI)-system. The bienzyme electrodes were constructed by coating solid graphite rods with a premixed solution containing GlOx and HRP crosslinked with a redox polymer formed of poly(1-vinylimidazole) complexed with (osmium (4-4'-dimethylbpy)2 Cl)II/III. Poly(ethylene glycol) diglycidyl ether (PEGDGE) was used as the crosslinker and the modified electrodes were inserted as the working electrode in a conventional three electrode flow through amperometric cell operated at -0.05 V versus Ag¿AgCl (0.1 M KCl). The bienzyme electrode was optimized with regard to wire composition, Os-loading of the wires, enzyme ratios, coating procedure, flow rate, effect of poly(ethyleneimine) addition, etc. The optimized electrodes were characterized by a sensitivity of 88.36 +/- 0.14 microA mM(-1) cm(-2), a detection limit of 0.3 microM (calculated as three times the signal-to-noise ratio), a response time of less than 10 s and responded linearly between 0.3 and 250 microM (linear regression coefficient = 0.999) with an operational stability of only 3% sensitivity loss during 8 h of continuous FI operation at a sample throughput of 30 injections h(-1).

  2. Catechol-Based Hydrogel for Chemical Information Processing

    Directory of Open Access Journals (Sweden)

    Eunkyoung Kim

    2017-07-01

    Full Text Available Catechols offer diverse properties and are used in biology to perform various functions that range from adhesion (e.g., mussel proteins to neurotransmission (e.g., dopamine, and mimicking the capabilities of biological catechols have yielded important new materials (e.g., polydopamine. It is well known that catechols are also redox-active and we have observed that biomimetic catechol-modified chitosan films are redox-active and possess interesting molecular electronic properties. In particular, these films can accept, store and donate electrons, and thus offer redox-capacitor capabilities. We are enlisting these capabilities to bridge communication between biology and electronics. Specifically, we are investigating an interactive redox-probing approach to access redox-based chemical information and convert this information into an electrical modality that facilitates analysis by methods from signal processing. In this review, we describe the broad vision and then cite recent examples in which the catechol–chitosan redox-capacitor can assist in accessing and understanding chemical information. Further, this redox-capacitor can be coupled with synthetic biology to enhance the power of chemical information processing. Potentially, the progress with this biomimetic catechol–chitosan film may even help in understanding how biology uses the redox properties of catechols for redox signaling.

  3. Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels : mechanical swelling and controlled drug release properties

    Science.gov (United States)

    Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2010-01-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...

  4. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2016-08-01

    Full Text Available This research paper reports the utilization of gum xanthan-grafted-polyacrylic acid and Fe(sub3)O(sub4) magnetic nanoparticles based nanocomposite hydrogel (NCH) for the highly effective adsorption of methyl violet (MV) from aqueous solution...

  5. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A.; Blokzijl, M. M.; Mouser, V. H. M.; Marica, P.; Malda, J.; Hennink, W. E.; Vermonden, T.

    2016-01-01

    The aim ofthis study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  6. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A|info:eu-repo/dai/nl/369480376; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J|info:eu-repo/dai/nl/412461099; Hennink, W E|info:eu-repo/dai/nl/070880409; Vermonden, T|info:eu-repo/dai/nl/275124517

    2016-01-01

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  7. Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2.

    Science.gov (United States)

    Wang, Xiaohong; Wang, Yingying; He, Shufu; Hou, Haiqian; Hao, Chen

    2018-01-01

    Nowadays, the attention of both academic and industrial research is paid to the novel materials based on renewable organic resources. Sodium lignosulphonate (SLS) is selected in this study to synthesize novel superabsorbent hydrogels by ultrasonic polymerization. The structure, morphology and stability of SLS-based hydrogel were confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Under the optimal condition, SLS-based hydrogel possesses the water absorbency of 1328g·g -1 in distilled water and 110g·g -1 in 0.9wt% NaCl solution. In addition, the prepared SLS-hydrogel as an adsorbent was applied to remove Ni 2+ from an aqueous solution in virtue of its low cost and favorable adsorption capacity. The various experimental conditions that influence the adsorption capacity were investigated such as temperature (20-60°C), pH (2.0-7.0), contact time (0-360min) and initial concentration of the Ni 2+ solution (100-600mg·L -1 ). Then the adsorption capability could reach 293mg·g -1 under optimal conditions. The results revealed that the adsorption behavior is spontaneous and endothermic. Furthermore, it was observed that the adsorption mechanism and adsorption equilibrium data obeyed pseudo-second-order kinetic and Freundlich models. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of elasticity and hydration of composite hydrogel based on collagen-iota carrageenan as a corneal tissue engineering

    Science.gov (United States)

    Rinawati, M.; Triastuti, J.; Pursetyo, K. T.

    2018-04-01

    The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.

  9. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.

    Science.gov (United States)

    Pescador, David; Ibáñez-Fonseca, Arturo; Sánchez-Guijo, Fermín; Briñón, Jesús G; Arias, Francisco Javier; Muntión, Sandra; Hernández, Cristina; Girotti, Alessandra; Alonso, Matilde; Del Cañizo, María Consuelo; Rodríguez-Cabello, José Carlos; Blanco, Juan Francisco

    2017-08-01

    Over the last decades, novel therapeutic tools for osteochondral regeneration have arisen from the combination of mesenchymal stromal cells (MSCs) and highly specialized smart biomaterials, such as hydrogel-forming elastin-like recombinamers (ELRs), which could serve as cell-carriers. Herein, we evaluate the delivery of xenogeneic human MSCs (hMSCs) within an injectable ELR-based hydrogel carrier for osteochondral regeneration in rabbits. First, a critical-size osteochondral defect was created in the femora of the animals and subsequently filled with the ELR-based hydrogel alone or with embedded hMSCs. Regeneration outcomes were evaluated after three months by gross assessment, magnetic resonance imaging and computed tomography, showing complete filling of the defect and the de novo formation of hyaline-like cartilage and subchondral bone in the hMSC-treated knees. Furthermore, histological sectioning and staining of every sample confirmed regeneration of the full cartilage thickness and early subchondral bone repair, which was more similar to the native cartilage in the case of the cell-loaded ELR-based hydrogel. Overall histological differences between the two groups were assessed semi-quantitatively using the Wakitani scale and found to be statistically significant (p hyaline cartilage in osteochondral lesions.

  10. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel.

    Science.gov (United States)

    Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook

    2017-12-01

    Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D

  11. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    Science.gov (United States)

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

  12. Comparison of Swelling and Mechanical Analysis for the Determination of Crosslink Density of Acrylamide Based Hydrogels Prepared by Ionizing Radiation

    International Nuclear Information System (INIS)

    Sen, M.

    2006-01-01

    One of the basic parameters that describes the structure of a hydrogel network is the molecular weight between cross-links or cross-link density of highly swollen network. Several theories have been proposed to calculate the average molecular weight between cross-links. In the highly swollen state, the constrained junction theory indicates that a real network exhibits properties closer to those of the phantom network model and molecular weight between cross-links can be calculated easily by using swelling and polymer-solvent based parameters such as molar volume of the swelling agent, polymer-solvent interaction parameter, functionality, specific volume of the polymer and polymer volume fraction in the relaxed state. Molecular weight between cross-links (M c a ver.) and effective cross-linking density (V e ) of a hydrogel can also be determined from shear modulus data obtained from compression tests. Our previous studies indicated that simple compression analyses and equations derived from Phantom network theory can be used for the determination of effective cross-link density of hydrogels without needing some polymer-solvent based parameters as in the case of swelling based determinations. The M c a ver. and V e values calculated from mechanical tests were found to be very close to the values obtained from swelling experiments. Slight differences observed were attributed to the uncertainty on the value of the χ parameter used in the expression related to swelling data. In this study the uncertainty in the polymer based parameter χ on the M c a ver. was discussed. Poly(acrylamide/methacrylamide) P(AAm/MAAm) and Poly(acrylamide/hydroxyethylmeth acrylate) P(AAm/HEMA) hydrogels were prepared by gamma rays and used as model hydrogel systems. The uniaxial compression was applied to cylindrical samples using the Universal Testing Instrument in the swollen form at pH 7. Stress-strain curves of hydrogels were evaluated to calculate the shear modulus values. The M c a ver

  13. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    Science.gov (United States)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  14. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2015-08-01

    Full Text Available Biodegradable hydrogels of gum ghatti (Gg) with a co-polymer mixture of acrylamide (AAm) and methacrylic acid (MAA) (termed as Gg-cl-P(AAm-co-MAA)) were synthesised by microwave-assisted free radical graft co-polymerisation technique. The hydrogel...

  16. Preparation and characterization of oil palm frond based cellulose hydrogel and its swelling properties

    Science.gov (United States)

    Selvakumaran, Nesha; Lazim, Mohd Azwani Shah bin Mat

    2016-11-01

    Malaysia is one of the largest producer of palm oil thus the quantity of biomass each year from this industry is very large. The oil palm frond from palm oil industry can be used as a source of cellulose which can be incorporated into hydrogel to be used as adsorbent. This research reported how to disperse 2 % cellulose in a `green-solution' prepared by using urea and sodium hydroxide. Polymerization is carried out between the monomers polyacrylamide and cellulose using microwave to form hydrogel. Hydrogel with 2 % cellulose have a swelling index of 1814 %. Meanwhile, zero hydrogel which is made with only polyacrylamide has swelling index of 15 %. Scanning electron microscope shows that cellulose hydrogel have a rough surface compared with zero hydrogel. This might attribute to the high swelling index for cellulose hydrogel compared with zero hydrogel. Meanwhile, FTIR shows that successful polymerization has occurred between polyacrylamide and cellulose with the characteristic band at 1657.99 cm-1 which is for N-H bond.

  17. Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery.

    Science.gov (United States)

    Peng, Yifeng; Tellier, Liane E; Temenoff, Johnna S

    2016-08-16

    Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep(-N)) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.

  18. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing

    Science.gov (United States)

    Mohd Zohdi, Rozaini; Abu Bakar Zakaria, Zuki; Yusof, Norimah; Mohamed Mustapha, Noordin; Abdullah, Muhammad Nazrul Hakim

    2012-01-01

    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing. PMID:21941590

  19. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Wennink, J.W.H.; Ganguly, Anindita; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and

  20. Radiation Synthesis of Super absorbent CMC Based Hydrogels For Agriculture Applications

    International Nuclear Information System (INIS)

    Raafat, A.I.; Eid, M.; El-Arnaouty, M.B.

    2010-01-01

    A good hydrogels of carboxy methyl cellulose (CMC) and poly vinyl pyrrolidone (PVP) were synthesized by gamma radiation at different doses and compositions. The prepared hydrogels were characterized by (FTIR) and (SEM). The hydrogels properties such as gelation (%), swelling and water retention capability were investigated. As the content of PVP in PVP/CMC hydrogels increased the gelation (%) increased. The swelling ratio of prepared hydrogel decreased with increasing of irradiation doses and the temperature. The (PVP/CMC) hydrogen of composition (40:60) prepared at 20 kGy showed the highest swelling ratio. The addition of sodium bicarbonate (NaHCO 3 ) to the PVP/CMC hydrogels during the irradiation process decreases the swelling ratio. The water retention reveals a similar behavior for the different compositions. The swelling characteristics in the presence of different cations and anions in a swelling medium were studied. The hydrogels were also loaded with urea solutions as a model agrochemical and their potential application for controlled release has been investigated. The improve properties of the prepared materials suggested that, the (PVP/CMC) hydrogels can be use in agriculture applications

  1. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    Science.gov (United States)

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modified maltodextrin-based hydrogel as a potential device for magnetic bio material

    International Nuclear Information System (INIS)

    Paulino, Alexandre T.; Guilherme, Marcos R.; Tambourgi, Elias B.; Muniz, Edvani C.

    2009-01-01

    A magnetic hydrogel was synthesized by a cross-linking/co-polymerization reaction of modified malto-dextrin and acrylamide in the presence of magnetite nanoparticles and persulfate as an initiator. The characterization of the formed hydrogel was accomplished by means of Fourier transform infrared spectroscopy (FT-IR), Moessbauer spectroscopy (MS), X-ray diffraction (XRD), and swelling rate (WR). The FT-IR analysis revealed that the malto-dextrin modification and the gelling process were efficient. From the MS and XRD analyses, it was concluded that the magnetite nanoparticles were efficiently embedded into the hydrogel structure and that the crystalline planes were different from those of the start material. WR decreased with the use of increasing amounts of magnetite in the hydrogel synthesis. In this sense, the electrostatic interactions decreased for increasing amounts of magnetite because the Fe 3+ ions neutralized the negative charges of the hydrogel structure. (author)

  3. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  4. NOVEL SUPERABSORBENT HYDROGEL COMPOSITE BASED ON POLY(ACRYLAMIDE-CO-ACRYLATE/NONTRONITE: CHARACTERIZATION AND SWELLING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Renan C. F. Leitão

    2015-03-01

    Full Text Available A novel superabsorbent hydrogel (SH composite based on a poly(acrylamide-co-acrylate matrix filled with nontronite (NONT, a Fe(III-rich member of the smectite group of clay minerals, is described in this manuscript. A variety of techniques, including FTIR, XRD, TGA, and SEM/EDX, were utilized to characterize this original composite. Experimental data confirmed the SH composite formation and suggested NONT was completely dispersed in the polymeric matrix. Additionally, NONT improved the water uptake capacity of the final material, which exhibited fast absorption, low sensitivity to the presence of salt, high water retention and a pH sensitive properties. These preliminary data showed that the original SH composite prepared here possesses highly attractive properties for applications in areas such as the agriculture field, particularly as a soil conditioner.

  5. Facile construction of terpridine-based metallo-polymers in hydrogels, crystals and solutions directed by metal ions.

    Science.gov (United States)

    Li, Yajuan; Guo, Jiangbo; Dai, Bo; Geng, Lijun; Shen, Fengjuan; Zhang, Yajun; Yu, Xudong

    2018-07-01

    Driven by tunable metal-ligand interactions, a polydentate ligand TC containing terpyridine and carboxylic acid units was developed to construct metallo-polymers that showed multiple aggregation modes with controlled macroscopic properties. In the presence of different kind of Zn 2+ ions or NaOH, TC could form metallo-polymers via π-π stacking and metal-ligand interaction that further trapped water molecules, resulting in hydrogels and crystals. Moreover, these TC/Zn 2+ hydrogels could transform to soluble and fluorescent aggregates in the presence of NaOH due to the formation of binuclear metallo-polymers with enhanced ICT emission. The metal-ligand interactions tuned by different metal salts in gels, crystals, and sols were also studied and illustrated in detail, it was also proved that water was an essential linker for constructing Na + -based metallo-polymers from the TC/NaOH crystal data. This work demonstrated the engineered coordination pathways in generating controllable hydrogels and metallo-polymers for the first time, which led to novel approach for facilely constructing a number of hydrogels with tailorable macroscopic properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids.

    Science.gov (United States)

    Liu, Ting; Liu, Mengmeng; Dou, Su; Sun, Jiangman; Cong, Zifeng; Jiang, Chunyan; Du, Chunhua; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2018-03-27

    A major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs. Furthermore, the dehydration of this toughly bonded hydrogel-elastomer hybrid is significantly inhibited (the average dehydration decreases by over 73%). With PDMS as the electrification layer and hydrogel as the electrode, a stretchable, transparent (90% transmittance), and ultrathin (380 μm) single-electrode TENG was fabricated to conformally attach on human skin and deform as the body moves. The two-electrode mode TENG is capable of harvesting energy from arbitrary human motions (press, stretch, bend, and twist) to drive the self-powered electronics. This work provides a feasible technology to design soft power sources, which could potentially solve the energy issues of soft electronics.

  7. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2014-01-30

    The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  10. Synthesis, characterization and application in biomedicine of a novel chondroitin sulfate based hydrogel and bioadhesive

    Science.gov (United States)

    Strehin, Iossif

    Clinically, there exists a need for adhesive biomaterials. There is room to improve upon what is currently on the market as it is either too toxic, lacks the required adhesive strength and/or lacks the desired degradation properties. The general goals of this thesis all focused on designing a biomaterial which would improve upon these shortcomings while at the same time allow for modifications to meet the needs for the specific application of interest. To accomplish this task, it was important to choose the appropriate composition and crosslinking chemistry which will allow the most flexibility. Chondroitin sulfate (CS) was chosen as the principle component of the hydrogel because it is a ubiquitous glycosaminoglycan (GAG) found in almost all tissues in the body. Many variants of CS exist with each one possessing unique biological activity allowing for tight control over these properties of the material. To modulate cell migration through the adhesive, polyethylene glycol (PEG) or blood was used as the second constituent. The former made the scaffold act as a cell barrier while the ladder could be used in varying concentrations to modulate cell adhesion and migration into the biomaterial. Also, the CS and blood components are both biodegradable and degradation can be controlled using various methods. While the constituents were chosen to allow flexibility in the biological activity and cell migration into the scaffold, the crosslinking chemistry was chosen to allow control over the mechanical properties as well as to increase tissue adhesion. By functionalizing the carboxyl groups of the GAG with N-hydroxysuccinimide (NHS), the resulting chondroitin sulfate succinimidyl succinate (CS-NHS) molecule could react with primary amines on polymers to form a hydrogel as well as the primary amines on proteins comprising tissue to anchor the hydrogel to the tissue. The material has been characterized and optimized for several applications. The applications described here

  11. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  12. Controlled Release of Indomethacin from Smart Starch-Based Hydrogels Prepared Acrylic Acid and b-Cyclodextrin as a Nanocarrier

    Directory of Open Access Journals (Sweden)

    Hossein Ghasemzadeh Mohammadi

    2017-01-01

    Full Text Available Controlled release of drugs can reduce the undesired effects of drug level fluctuations, and diminish the side effects as well as improve the therapeutic outcome of the drugs. In recent year, the scope of the drug delivery systems has been greatly expanded by the development of various hydrogels. The present work has focused on the design of a pH sensitive drug delivery system (DDS based on starch, acrylic acid (AA and β-cyclodextrins for controlled delivery of indomethacin. The hydrogels were prepared via graft polymerization of acrylic acid (AA onto starch and β-cyclodextrins backbones by a free radical polymerization technique. Cyclodextrins are able to form water-soluble complexes with many lipophilic water-insoluble drugs. In aqueous solutions, the drug molecules located in the central cavity of the cyclodextrin are in a dynamic equilibrium with free drug molecules. The interaction of drug with the polymer was evidenced by FTIR spectroscopy and thermal gravimetric analysis (TGA. The morphology of the samples was examined by scanning electron microscopy (SEM. The results showed that the hydrogels have good porosity and provided high surface area for the loading and release of drugs. Drug release behavior was carried out at physiological conditions of phosphate buffer, pH 8. In basic pH (like the intestine medium the hydrogels released the indomethacin, but in acidic pH (like the stomach medium there was no tendency to drug release. By increasing the amount of cyclodextrin, the rate of drug loading and release increased due to the dynamic equilibrium and interaction between the loaded drug and the cyclodextrin. This study has demonstrated that the hydrogel matrices are potentially suitable for controlled-release systems.

  13. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.

    Science.gov (United States)

    Mishra, Satyendra K; Gupta, Banshi D

    2013-05-07

    The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.

  14. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid

    International Nuclear Information System (INIS)

    Milosavljevic, Nedeljko B.; Ristic, Mirjana D.; Peric-Grujic, Aleksandra A.; Filipovic, Jovanka M.; Strbac, Svetlana B.; Rakocevic, Zlatko Lj.; Kalagasidis Krusic, Melina T.

    2011-01-01

    Highlights: → A removal of Zn 2+ ions by pH-sensitive Ch/IA/MAA hydrogel from aqueous solutions was studied. → SEM/EDX analysis and AFM surface topography indicate that sorption takes place on the surface of the hydrogel and in the bulk. → FTIR spectra of the Ch/IA/MAA hydrogel, free and Zn-loaded, indicate that -NH 2 , -OH and -COOH groups are involved in the sorption process. → The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. → The adsorption capacities did not show any significant decrease after the third reuse cycle. - Abstract: Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn 2+ ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.

  15. Comparison of Residence Time Distributions of Liquid for Different Types of Input Signal Using a Stimulus-Response Technique

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Siyakatshana, N.; Šilar, F.; Kudrna, V.; Jahoda, M.; Machoň, V.

    2003-01-01

    Roč. 57, č. 6 (2003), s. 427-431 ISSN 0366-6352. [International Conference of Slovak Society of Chemical Engineering /30./. Tatranské Matliare, 26.05.2003-30.05.2003] Institutional research plan: CEZ:AV0Z4072921 Keywords : stirred tank * stimulus-response technique * residence time distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.226, year: 2003

  16. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    Science.gov (United States)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  17. Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on α-Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Mario Casolaro

    2018-05-01

    Full Text Available Polyelectrolyte hydrogels bearing l-phenylalanine (PHE, l-valine (AVA, and l-histidine (Hist residues were used as scaffolds for the formation of silver nanoparticles by reduction of Ag+ ions with NaBH4. The interaction with the metal ion allowed a prompt collapse of the swollen hydrogel, due to the neutralization reaction of basic groups present on the polymer. The imidazole nitrogen of the hydrogel with Hist demonstrated greater complexing capacity with the Ag+ ion compared to the hydrogels with carboxyl groups. The subsequent reduction to metallic silver allowed for the restoration of the hydrogel’s degree of swelling to the starting value. Transmission electron microscopy (TEM and spectroscopic analyses showed, respectively, a uniform distribution of the 15 nm spherical silver nanoparticles embedded on the hydrogel and peak optical properties around a wavelength of 400 nm due to the surface plasmonic effect. Unlike native hydrogels, the composite hydrogels containing silver nanoparticles showed good antibacterial activity as gram+/gram− bactericides, and higher antifungal activity against S. cerevisiae.

  18. A Thixotropic Polyglycerol Sebacate-Based Supramolecular Hydrogel as an Injectable Drug Delivery Matrix

    Directory of Open Access Journals (Sweden)

    Hongye Ye

    2016-04-01

    Full Text Available We have developed a “self-healing” polyglycerol sebacate—polyethylene glycol methyl ether methacrylate (PGS-PEGMEMA/α-Cyclodextrin (αCD hydrogel which could be sheared into a liquid during injection and has the potential to quickly “heal” itself back into gel post-injection. This hydrogel was shown to be biocompatible and biodegradable and therefore appropriate for use in vivo. Furthermore, the storage and loss moduli of the hydrogels could be tuned (by varying the concentration of αCD between a fraction of a kPa to a few 100 kPa, a range that coincides with the moduli of cells and human soft tissues. This property would allow for this hydrogel to be used in vivo with maximal mechanical compatibility with human soft tissues. In vitro experiments showed that the hydrogel demonstrated a linear mass erosion profile and a biphasic drug (doxorubicin release profile: Phase I was primarily driven by diffusion and Phase II was driven by hydrogel erosion. The diffusion mechanism was modeled with the First Order equation and the erosion mechanism with the Hopfenberg equation. This established fitting model could be used to predict releases with other drugs and estimate the composition of the hydrogel required to achieve a desired release rate.

  19. Synthesis and characterization of a novel cationic hydrogel base on salecan-g-PMAPTAC.

    Science.gov (United States)

    Wei, Wei; Qi, Xiaoliang; Li, Junjian; Zhong, Yin; Zuo, Gancheng; Pan, Xihao; Su, Ting; Zhang, Jianfa; Dong, Wei

    2017-08-01

    Salecan is a biological macromolecular and biocompatible polysaccharide that has been investigated for recent years. Herein, we report a novel cationic hydrogel fabricated by graft-polymerizing 3-(methacryloylamino)propyl-trimethylammonium chloride (MAPTAC) onto salecan chains. The obtained hydrogels were transparent, solid-elastic, macro-porous, ion-sensitive, and non-cytotoxic. The swelling ratios increased with salecan content, while mechanical strength does the opposite. Moreover, drug delivery test was studied as a potential application. Diclofenac sodium (DS) and insulin were selected as model drugs. Interestingly, in drug loading process, DS molecules exhibited highly affinity to these cationic hydrogels. Almost all the DS molecules in loading solution were absorbed and spread into the hydrogel. For drug release profiles, insulin-loaded hydrogel showed an initial rapid release and a sustained release. As a comparison, DS-loaded hydrogel exhibited a more sustained release profile. Results suggested salecan-g-PMAPTAC hydrogel could be a good candidate for anionic drug loading and delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis, Characterization, and Acute Oral Toxicity Evaluation of pH-Sensitive Hydrogel Based on MPEG, Poly(ε-caprolactone, and Itaconic Acid

    Directory of Open Access Journals (Sweden)

    Liwei Tan

    2013-01-01

    Full Text Available A kind of chemically cross-linked pH-sensitive hydrogels based on methoxyl poly(ethylene glycol-poly(caprolactone-acryloyl chloride (MPEG-PCL-AC, PECA, poly(ethylene glycol methyl ether methacrylate (MPEGMA, MEG, N,N-methylenebisacrylamide (BIS, and itaconic acid (IA were prepared without using any organic solvent by heat-initiated free radical method. The obtained macromonomers and hydrogels were characterized by 1H NMR and FT-IR, respectively. Morphology study of hydrogels was also investigated in this paper, and it showed that the hydrogels had good pH-sensitivity. The acute toxicity test and histopathological study were conducted in BALB/c mice. The results indicated that the maximum tolerance dose of the hydrogel was higher than 10000 mg/kg body weight. No morality or signs of toxicity were observed during the whole 7-day observation period. Compared to the control groups, there were no important adverse effects in the variables of hematology routine test and serum chemistry analysis both in male or female treatment group. Histopathological study also did not show any significant lesions, including heart, liver, lung, spleen, kidney, stomach, intestine, and testis. All the results demonstrated that this hydrogel was nontoxic after gavage. Thus, the hydrogel might be the biocompatible potential candidate for oral drug delivery system.

  1. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation

    International Nuclear Information System (INIS)

    Nho, Young-Chang; Park, Sung-Eun; Kim, Hyung-Il; Hwang, Taek-Sung

    2005-01-01

    The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose

  2. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young-Chang [Radiation Application Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of)]. E-mail: ycnho@kaeri.re.kr; Park, Sung-Eun [Radiation Application Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of); Kim, Hyung-Il [College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hwang, Taek-Sung [College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2005-07-01

    The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose.

  3. Hydrogels based on chemically modified poly(vinyl alcohol (PVA-GMA and PVA-GMA/chondroitin sulfate: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    E. C. Muniz

    2012-05-01

    Full Text Available This work reports the preparation of hydrogels based on PVA-GMA, PVA-GMA is poly(vinyl alcohol (PVA functionalized with vinyl groups from glycidyl methacrylate (GMA, and on PVA-GMA with different content of chondroitin sulfate (CS. The degrees of swelling of PVA-GMA and PVA-GMA/CS hydrogels were evaluated in distilled water and the swelling kinetics was performed in simulated gastric and intestinal fluids (SGF and SIF. PVA-GMA and PVAGMA/CS hydrogels demonstrated to be resistant on SGF and SIF fluids. The elastic modulus, E, of swollen-hydrogels were determined through compressive tests and, according to the obtained results, the hydrogels presented good mechanical properties. At last, the presence of CS enhances the hydrogel cell compatibility as gathered by cytotoxicity assays. It was concluded that the hydrogels prepared through this work presented characteristics that allow them to be used as biomaterial, as a carrier in drug delivery system or to act as scaffolds in tissue engineering as well.

  4. Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Eltjani-Eltahir Hago

    2013-01-01

    Full Text Available In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.

  5. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    Science.gov (United States)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  6. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the

  7. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    Science.gov (United States)

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  8. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    Science.gov (United States)

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  9. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications.

    Science.gov (United States)

    Thombare, Nandkishore; Mishra, Sumit; Siddiqui, M Z; Jha, Usha; Singh, Deodhari; Mahajan, Gopal R

    2018-04-01

    The novel hydrogels were synthesized by grafting guar gum with acrylic acid and cross-linking with ethylene glycol di methacrylic acid (EGDMA). The synthesis of hydrogel was confirmed by characterization through 13 C NMR, FTIR spectroscopy, SEM micrography, thermo-gravimetric analysis and water absorption studies under different solutions. Synthesized hydrogel (GG-AA-EGDMA) was confirmed to be biodegradable with half-life period of 77 days through soil burial biodegradation studies. The effects of hydrogel treatment on soil were evaluated by studying various physico-chemical properties of soil like bulk density, porosity, water absorption and retention capacity etc. The hydrogel which could absorb up to 800 ml water per gram, after addition to soil, improved its porosity, moisture absorption and retention capacity significantly. Water holding capacity of water increased up to 54% of its original and porosity also increased up to 9% of its original. The synthesized hydrogel revealed tremendous potential as soil conditioning material for agricultural applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. DESIGN AND CHARACTERIZATION OF A BIOCOMPATIBLE PHYSICAL HYDROGEL BASED ON SCLEROGLUCAN FOR TOPICAL DRUG DELIVERY.

    Science.gov (United States)

    Paolicelli, Patrizia; Varani, Gabriele; Pacelli, Settimio; Ogliani, Elisa; Nardoni, Martina; Petralito, Stefania; Adrover, Alessandra; Casadei, Maria Antonietta

    2017-10-15

    Physical hydrogels of a high-carboxymethylated derivative of scleroglucan (Scl-CM 300 ) were investigated as potential systems for topical drug delivery using three different therapeutic molecules (fluconazole, diclofenac and betamethasone). Rheological tests were carried out on drug-loaded hydrogels along with in-vitro release studies in a vertical Franz cell, in order to investigate if and how different drugs may influence the rheological and release properties of Scl-CM 300 hydrogels. Experimental results and theoretical modeling highlighted that, in the absence of drug/polymer interactions (as for fluconazole and betamethasone) Scl-CM 300 matrices offer negligible resistance to drug diffusion and a Fickian transport model can be adopted to estimate the effective diffusion coefficient in the swollen hydrogel. The presence of weak drug/hydrogel chemical bonds (as for diclofenac), confirmed by frequency sweep tests, slow down the drug release kinetics and a non-Fickian two-phase transport model has to be adopted. In-vivo experiments on rabbits evidenced optimal skin tolerability of Scl-CM 300 hydrogels after topical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    Science.gov (United States)

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    Science.gov (United States)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  13. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  14. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.

    Science.gov (United States)

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T

    2016-09-20

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50°C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and GMA feed. Unlike polymer solutions composed of CSMA alone (20% w/w), mixtures based on 2% w/w of CSMA and 18% of M15P10 showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on M15P10 alone. Additionally, they displayed a yield stress of 19.2±7.0Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Rabinarayan parhi

    2017-12-01

    Full Text Available Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed.

  16. Synthesis of PVA Hydrogel for Prosthetic Discus Nucleus Pulposus: Formation of Interpenetrating Polymer Network (IPN) PVA Hydrogel by Gamma Rays

    International Nuclear Information System (INIS)

    Darwis, Darmawan; Erizal; Lely Hardiningsih; Razzak, Mirzan T.

    2004-01-01

    Research on synthesis of IPN PVA hydrogel for using as prosthetic discus nucleus has been carried out. Base hydrogel network (network I) was made by reacting the solution of polyvinyl alcohol (PVA) 10 - 15 % w/w with formaldehyde at 80 o C for several hours. Hydrogel network II (as IPN network) was then made by immersion of base hydrogel into polymer solution (PVP or PVA) until hydrogel swell to equilibrium volume. The hydrogel then irradiated using gamma rays at various doses. The results show that IPN PVA-PVP and IPN PVA-PVP hydrogels have higher compression strength compared to base hydrogel. IPN PVA-PVA hydrogel made by irradiating base hydrogel (immersed into polymer solution) with 25, 50 and 100 kGy have compression strength at 5 mm displacement 2.72; 2.83; and 3.25 kg/cm 2 respectively, While base hydrogel has compression strength of 1.75 kg/cm 2 . IPN PVA-PVP and PVA-PVA hydrogels made by irradiating base hydrogel with 100 kGy still retain high water content i.e. 72 and 74 % respectively. Beside that they show good re-absorption property after compression treatment that is hydrogel can return to the original shape after compressed to 12 mm displacement (80% of initial height on hydrogel) at relatively short time, less than 15 minutes. (author)

  17. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    Science.gov (United States)

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  18. The Formation Mechanism of Hydrogels.

    Science.gov (United States)

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    Science.gov (United States)

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  20. Transparent Low Molecular Weight Poly(Ethylene Glycol Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

    Directory of Open Access Journals (Sweden)

    Théophile Pelras

    2017-11-01

    Full Text Available Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs.

  1. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease.

    Science.gov (United States)

    Li, Zhengzheng; Shim, Hyeeun; Cho, Myeong Ok; Cho, Ik Sung; Lee, Jin Hyun; Kang, Sun-Woong; Kwon, Bosun; Huh, Kang Moo

    2018-03-15

    The use of injectable hydrogel formulations have been suggested as a promising strategy for the treatment of degenerative disc disease to both restore the biomechanical function and reduce low back pain. In this work, a new thermo-sensitive injectable hydrogels with tunable thermo-sensitivity and enhanced stability were developed with N-hexanoylation of glycol chitosan (GC) for treatment of degenerative disc disease, and their physico-chemical and biological properties were evaluated. The sol-gel transition temperature of the hydrogels was controlled in a range of 23-56 °С, depending on the degree of hexanoylation and the polymer concentration. In vitro and in vivo tests showed no cytotoxicity and no adverse effects in a rat model. The hydrogel filling of the defective IVD site in an ex vivo porcine model maintained its stability for longer than 28 days. These results suggest that the hydrogel can be used as an alternative material for treatment of disc herniation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.

    Science.gov (United States)

    Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-05-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel

    Directory of Open Access Journals (Sweden)

    Wen-Yi Wang

    2016-11-01

    Full Text Available A major concern for transdermal drug delivery systems is the low bioavailability of targeted drugs primarily caused by the skin’s barrier function. The resistance to the carrier matrix for the diffusion and transport of drugs, however, is routinely ignored. This study reports a promising and attractive approach to reducing the resistance to drug transport in the carrier matrix, to enhance drug permeability and bioavailability via enhanced concentration-gradient of the driving force for transdermal purposes. This approach simply optimizes and reconstructs the porous channel structure of the carrier matrix, namely, poloxamer 407 (P407-based hydrogel matrix blended with carboxymethyl cellulose sodium (CMCs. Addition of CMCs was found to distinctly improve the porous structure of the P407 matrix. The pore size approximated to normal distribution as CMCs were added and the fraction of pore number was increased by over tenfold. Transdermal studies showed that P407/CMCs saw a significant increase in drug permeability across the skin. This suggests that P407/CMC with improved porous structure exhibits a feasible and promising way for the development of transdermal therapy with high permeability and bioavailability, thereby avoiding or reducing use of any chemical enhancers.

  4. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.

    Science.gov (United States)

    Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua

    2018-02-12

    Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.

  5. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery.

    Science.gov (United States)

    Sajeesh, S; Bouchemal, K; Sharma, C P; Vauthier, C

    2010-02-01

    Aim of the present work was to develop novel thiol-functionalized hydrogel microparticles based on poly(methacrylic acid)-chitosan-poly(ethylene glycol) (PCP) for oral drug delivery applications. PCP microparticles were prepared by a modified ionic gelation process in aqueous medium. Thiol modification of surface carboxylic acid groups of PCP micro particles was carried out by coupling l-cysteine with a water-soluble carbodiimide. Ellman's method was adopted to quantify the sulfhydryl groups, and dynamic light-scattering technique was used to measure the average particle size. Cytotoxicity of the modified particles was evaluated on Caco 2 cells by MTT assay. Effect of thiol modification on permeability of paracellular marker fluorescence dextran (FD4) was evaluated on Caco 2 cell monolayers and freshly excised rat intestinal tissue with an Ussing chamber set-up. Mucoadhesion experiments were carried out by an ex vivo bioadhesion method with excised rat intestinal tissue. The average size of the PCP microparticles was increased after thiol modification. Thiolated microparticles significantly improved the paracellular permeability of FD4 across Caco 2 cell monolayers, with no sign of toxicity. However, the efficacy of thiolated system remained low when permeation experiments were carried out across excised intestinal membrane. This was attributed to the high adhesion of the thiolated particles on the gut mucosa. Nevertheless, it can be concluded that surface thiolation is an interesting strategy to improve paracellular permeability of hydrophilic macromolecules. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    Directory of Open Access Journals (Sweden)

    Song Bao

    Full Text Available Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1. The hydrogel also exhibited higher separation selectivity to Pb(2+ than Cu(2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  7. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models.

    Science.gov (United States)

    Zhang, Yong-Tai; Li, Zhe; Zhang, Kai; Zhang, Hong-Yu; He, Ze-Hui; Xia, Qing; Zhao, Ji-Hui; Feng, Nian-Ping

    2017-08-07

    The aim of this study was to improve the analgesic effect of evodiamine and rutaecarpine, using a microemulsion-based hydrogel (ME-Gel) as the transdermal co-delivery vehicle, and to assess hyaluronic acid as a hydrogel matrix for microemulsion entrapment. A microemulsion was formulated with ethyl oleate as the oil core to improve the solubility of the alkaloids and was loaded into a hyaluronic acid-structured hydrogel. Permeation-enhancing effects of the microemulsion enabled evodiamine and rutaecarpine in ME-Gel to achieve 2.60- and 2.59-fold higher transdermal fluxes compared with hydrogel control (pmicroemulsion exhibited good skin biocompatibility, whereas effective ME-Gel co-delivery of evodiamine and rutaecarpine through the skin enhanced the analgesic effect in mouse pain models compared with hydrogel. Notably, evodiamine and rutaecarpine administered using ME-Gel effectively down-regulated serum levels of prostaglandin E 2 , interleukin 6, and tumor necrosis factor α in formaldehyde-induced mouse pain models, possibly reflecting the improved transdermal permeability of ME-Gel co-delivered evodiamine and rutaecarpine, particularly with hyaluronic acid as the hydrogel matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    Science.gov (United States)

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    Directory of Open Access Journals (Sweden)

    Gama Miguel

    2008-10-01

    Full Text Available Abstract Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD. The RGD sequence, present in several proteins from the extra-cellular matrix (ECM, is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications.

  10. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S [Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CCSR Building Room 3115A, 269 Campus Drive, Stanford, CA 94305 (United States); Lee, Wonjae [Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Chiao, Eric; Baker, Julie [Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 (United States); Frank, Curtis W, E-mail: jeffrey.glenn@stanford.ed, E-mail: curt.frank@stanford.ed [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2009-02-15

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from {approx}50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 +- 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  11. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    International Nuclear Information System (INIS)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S; Lee, Wonjae; Chiao, Eric; Baker, Julie; Frank, Curtis W

    2009-01-01

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from ∼50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 ± 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  12. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.

    Science.gov (United States)

    Song, Hyun Seok; Kwon, Oh Seok; Kim, Jae-Hong; Conde, João; Artzi, Natalie

    2017-03-15

    Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A hydrogel-based versatile screening platform for specific biomolecular recognition in a well plate format.

    Science.gov (United States)

    Beer, Meike V; Rech, Claudia; Diederichs, Sylvia; Hahn, Kathrin; Bruellhoff, Kristina; Möller, Martin; Elling, Lothar; Groll, Jürgen

    2012-04-01

    Precise determination of biomolecular interactions in high throughput crucially depends on a surface coating technique that allows immobilization of a variety of interaction partners in a non-interacting environment. We present a one-step hydrogel coating system based on isocyanate functional six-arm poly(ethylene oxide)-based star polymers for commercially available 96-well microtiter plates that combines a straightforward and robust coating application with versatile bio-functionalization. This system generates resistance to unspecific protein adsorption and cell adhesion, as demonstrated with fluorescently labeled bovine serum albumin and primary human dermal fibroblasts (HDF), and high specificity for the assessment of biomolecular recognition processes when ligands are immobilized on this surface. One particular advantage is the wide range of biomolecules that can be immobilized and convert the per se inert coating into a specifically interacting surface. We here demonstrate the immobilization and quantification of a broad range of biochemically important ligands, such as peptide sequences GRGDS and GRGDSK-biotin, the broadly applicable coupler molecule biocytin, the protein fibronectin, and the carbohydrates N-acetylglucosamine and N-acetyllactosamine. A simplified protocol for an enzyme-linked immunosorbent assay was established for the detection and quantification of ligands on the coating surface. Cell adhesion on the peptide and protein-modified surfaces was assessed using HDF. All coatings were applied using a one-step preparation technique, including bioactivation, which makes the system suitable for high-throughput screening in a format that is compatible with the most routinely used testing systems.

  14. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    Science.gov (United States)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  15. Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels

    Directory of Open Access Journals (Sweden)

    Liam P. Andrus

    2015-07-01

    Full Text Available An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate (pHEMA and two copolymers of pHEMA and poly(acrylamide (pAam. Diffusion analysis demonstrated the ability to control lactate transport by varying the hydrogel composition, while having a minimal effect on oxygen diffusion. Sensors displayed the desired dose-variable response to lactate challenges, highlighting the tunable, diffusion-controlled nature of the sensing platform. Short-term repeated exposure tests revealed enhanced stability for sensors comprising hydrogels with acrylamide additives; after an initial “break-in” period, signal retention was 100% for 15 repeated cycles. Finally, because this study describes the modification of a previously developed glucose sensor for lactate analysis, it demonstrates the potential for mix-and-match enzyme-phosphor-hydrogel sensing for use in future multi-analyte sensors.

  16. Ice-templated hydrogels based on chitosan with tailored porous morphology

    Czech Academy of Sciences Publication Activity Database

    Dinu, M. V.; Přádný, Martin; Dragan, E. S.; Michálek, Jiří

    2013-01-01

    Roč. 94, č. 1 (2013), s. 170-178 ISSN 0144-8617 R&D Projects: GA ČR GAP108/12/1538 Institutional support: RVO:61389013 Keywords : chitosan * ice-templated hydrogels * morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.916, year: 2013

  17. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  18. Immunocompatibility of gelatin-based hydrogels supporting ex vivo gene therapy

    Czech Academy of Sciences Publication Activity Database

    Šírová, Milada; Pakanová, Veronika; Rossmann, Pavel; Kovář, Lubomír; van Vlierberghe, S.; Dubruel, P.; Schacht, E. H.; Říhová, Blanka

    2009-01-01

    Roč. 39, - (2009), s. 545-545 ISSN 0014-2980. [European Congress of Immunology /2./. 13.09.2009-16.09.2009, Berlin] Institutional research plan: CEZ:AV0Z50200510 Keywords : gelatin B hydrogel * gene therapy Subject RIV: EC - Immunology

  19. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy.

    Science.gov (United States)

    Ailincai, Daniela; Tartau Mititelu, Liliana; Marin, Luminita

    2018-11-01

    A series of drug delivery systems were prepared by chitosan hydrogelation with citral in the presence of an antineoplastic drug: 5-fluorouracil. The dynamic covalent chemistry of the imine linkage allowed the obtaining of supramolecular tridimensional architectures in which the drug has been homogenously dispersed. Fourier-transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXRD) and polarized light microscopy (POM) measurements were used in order to follow the hydrogelation and drug encapsulation processes. The ability of the prepared systems to release the drug has been investigated by UV-Vis spectroscopy using a calibration curve and by fitting the results with different mathematic models. To mimic the behavior of the hydrogel matrix in bio-environmental conditions in view of applications, their enzymatic degradability was monitored in the presence of lysozyme. The in vivo side effects of the systems, in terms of their influence on the blood elements, biochemical and immune parameters were monitored on white Swiss mice by intraperitoneal administration of the injectable obtained hydrogels. All the characteristics of the obtained systems, such as micro-porous morphology, uniform drug encapsulation, enzymatic degradability, lack of side effects, other than the one of the drug itself, along with their ability to release the drug in a sustained manner proved that these material meet the requirements for the development of drug delivery systems, making them suitable for being applied in intraperitoneal chemotherapy.

  20. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    Science.gov (United States)

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm

  1. An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds.

    Science.gov (United States)

    Zhang, Shaohua; Jiang, Zhongyi; Shi, Jiafu; Wang, Xueyan; Han, Pingping; Qian, Weilun

    2016-09-28

    Design and preparation of high-performance immobilized biocatalysts with exquisite structures and elucidation of their profound structure-performance relationship are highly desired for green and sustainable biotransformation processes. Learning from nature has been recognized as a shortcut to achieve such an impressive goal. Loose connective tissue, which is composed of hierarchically organized cells by extracellular matrix (ECM) and is recognized as an efficient catalytic system to ensure the ordered proceeding of metabolism, may offer an ideal prototype for preparing immobilized biocatalysts with high catalytic activity, recyclability, and stability. Inspired by the hierarchical structure of loose connective tissue, we prepared an immobilized biocatalyst enabled by microcapsules-in-hydrogel (MCH) scaffolds via biomimetic mineralization in agarose hydrogel. In brief, the in situ synthesized hybrid microcapsules encapsulated with glucose oxidase (GOD) are hierarchically organized by the fibrous framework of agarose hydrogel, where the fibers are intercalated into the capsule wall. The as-prepared immobilized biocatalyst shows structure-dependent catalytic performance. The porous hydrogel permits free diffusion of glucose molecules (diffusion coefficient: ∼6 × 10(-6) cm(2) s(-1), close to that in water) and retains the enzyme activity as much as possible after immobilization (initial reaction rate: 1.5 × 10(-2) mM min(-1)). The monolithic macroscale of agarose hydrogel facilitates the easy recycling of the immobilized biocatalyst (only by using tweezers), which contributes to the nonactivity decline during the recycling test. The fiber-intercalating structure elevates the mechanical stability of the in situ synthesized hybrid microcapsules, which inhibits the leaching and enhances the stability of the encapsulated GOD, achieving immobilization efficiency of ∼95%. This study will, therefore, provide a generic method for the hierarchical organization of (bio

  2. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    International Nuclear Information System (INIS)

    Meng, Liang; Meng, Pinjia; Zhang, Qingqing; Wang, Yanji

    2013-01-01

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  3. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Meng, Pinjia, E-mail: mengpinjia@163.com [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Zhang, Qingqing; Wang, Yanji [Department of Forensic Science, People' s Public Security University of China, Beijing (China)

    2013-04-10

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  4. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil.

    Science.gov (United States)

    Rajinikanth, Paruvathanahalli Siddalingam; Chellian, Jestin

    The aim of this study was to develop a nanostructured lipid carrier (NLC)-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU). Precirol ® ATO 5 (glyceryl palmitostearate) and Labrasol ® were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol ® HS15 (polyoxyl-15-hydroxystearate) were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol ® 934 (poly[acrylic acid]) gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 μg/cm 2 /h) as compared with plain 5-FU gel (2.85±1.12 μg/cm 2 /h). Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 μg/cm 2 ) as compared with that from the 5-FU plain gel (12.23±3.86 μg/cm 2 ) in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations.

  5. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration.

    Science.gov (United States)

    Ferreira, Natália Noronha; Perez, Taciane Alvarenga; Pedreiro, Liliane Neves; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cardoso, Valéria Maria de Oliveira; Venâncio, Tiago; Gremião, Maria Palmira Daflon

    2017-10-01

    This work aimed to develop a calcium alginate hydrogel as a pH responsive delivery system for polymyxin B (PMX) sustained-release through the vaginal route. Two samples of sodium alginate from different suppliers were characterized. The molecular weight and M/G ratio determined were, approximately, 107 KDa and 1.93 for alginate_S and 32 KDa and 1.36 for alginate_V. Polymer rheological investigations were further performed through the preparation of hydrogels. Alginate_V was selected for subsequent incorporation of PMX due to the acquisition of pseudoplastic viscous system able to acquiring a differential structure in simulated vaginal microenvironment (pH 4.5). The PMX-loaded hydrogel (hydrogel_PMX) was engineered based on polyelectrolyte complexes (PECs) formation between alginate and PMX followed by crosslinking with calcium chloride. This system exhibited a morphology with variable pore sizes, ranging from 100 to 200 μm and adequate syringeability. The hydrogel liquid uptake ability in an acid environment was minimized by the previous PECs formation. In vitro tests evidenced the hydrogels mucoadhesiveness. PMX release was pH-dependent and the system was able to sustain the release up to 6 days. A burst release was observed at pH 7.4 and drug release was driven by an anomalous transport, as determined by the Korsmeyer-Peppas model. At pH 4.5, drug release correlated with Weibull model and drug transport was driven by Fickian diffusion. The calcium alginate hydrogels engineered by the previous formation of PECs showed to be a promising platform for sustained release of cationic drugs through vaginal administration.

  6. Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.

    Directory of Open Access Journals (Sweden)

    Christina F Lavallee

    Full Text Available Humans are rarely faced with one simple task, but are typically confronted with complex stimulus constellations and varying stimulus-relevance in a given situation. Through modifying the prototypical stop-signal task and by combined recording and analysis of electroencephalography (EEG and functional magnetic resonance imaging (fMRI, we studied the effects of stimulus relevance for the generation of a response or its inhibition. Stimulus response mappings were modified by contextual cues, indicating which of two different stimuli following a go stimulus was relevant for stopping. Overall, response inhibition, that is comparing successful stopping to a stop-signal against go-signal related processes, was associated with increased activity in right inferior and left midfrontal regions, as well as increased EEG delta and theta power; however, stimulus-response conditions in which the most infrequent stop-signal was relevant for inhibition, were associated with decreased activity in regions typically involved in response inhibition, as well as decreased activity in the delta and theta bands as compared to conditions wherein the relevant stop-signal frequency was higher. Behaviorally, this (aforementioned condition, which demanded inhibition only from the most infrequent stimulus, was also associated with reduced reaction times and lower error rates. This pattern of results does not align with typical stimulus frequency-driven findings and suggests interplay between task relevance and stimulus frequency of the stop-signal. Moreover, with a multimodal EEG-fMRI analysis, we demonstrated significant parameterization for response inhibition with delta, theta and beta time-frequency values, which may be interpreted as reflecting conflict monitoring, evaluative and/or motor processes as suggested by previous work (Huster et al., 2013; Aron, 2011. Further multimodal results suggest a possible neurophysiological and behavioral benefit under conditions

  7. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  8. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Sahiner, Nurettin [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Malci, Savas [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Celikbicak, Oemuer [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Kantoglu, Oemer [Ankara Nuclear Research Center, Turkish Atomic Energy Authority, 06983 Ankara (Turkey); Salih, Bekir [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey)]. E-mail: bekir@hacettepe.edu.tr

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using {sup 60}Co {gamma} source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis. sis.

  9. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cell-specific and pH-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy.

    Science.gov (United States)

    Belali, Simin; Karimi, Ali Reza; Hadizadeh, Mahnaz

    2018-04-15

    The major problems of porphyrins as promising materials for photodynamic therapy (PDT) are their low solubility, subsequently aggregation in biological environments, and a lack of tumor selectivity. With this in mind, a chitosan-based hydrogel conjugated with tetrakis(4-aminophenyl)porphyrin (NH 2 -TPP) and 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine (TRIPOD) via Schiff base linkage, functionalized with folate was designed and synthesized as a pH-sensitive, self-healable and injectable targeted PS delivery system. This new hydrogel was characterized by FT-IR, 1 H NMR, SEM, UV-vis, fluorescence spectroscopy and zeta potential. Formation of imine bonds with the aldehyde group of TRIPOD and amine group of NH 2 -TPP and chitosan, as a dynamic connection, was approved by rheological analysis. Spectroscopic characterizations revealed that aggregation of porphyrin in aqueous media was eliminated due to diminished π stacking interaction of porphyrin in 3D cross-linked hydrogel structure. Hydrogel 3D microporous structure efficiently transfers the excitation energy to the porphyrin unit, yielding improvement singlet oxygen releases. Cytotoxicity and phototoxicity analysis of the CS/NH 2 -TPP/FA hydrogels indicating an excellent capability to kill cancer cells selectively and prevent damage to normal cells. This work presents a new and efficient model for the preparation of highly efficient and targeting photosensitizer delivery system. Copyright © 2018. Published by Elsevier B.V.

  11. Stimulus-response correspondence effect as a function of temporal overlap between relevant and irrelevant information processing.

    Science.gov (United States)

    Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany

    2016-01-01

    The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.

  12. Influence of the ionic character of a drug on its release rate from hydrogels based on 2-hydroxyethylmethacrylate and acrylamide synthesized by photopolymerization

    Directory of Open Access Journals (Sweden)

    M. L. Gomez

    2012-03-01

    Full Text Available The influence of the ionic character of a specific drug on its release rate from a hydrogel based on 2-hydroxyethylmethacrylate (HEMA and acrylamide (AAm is analyzed. The hydrogel was synthesized by photopolymerization employing visible light, safranine O (Saf, as sensitizer, and a silsesquioxane functionalized with amine and methacrylate groups (SFMA, as co-initiator and crosslinker. Safranine O (Saf was employed as a model of a cationic drug and the anionic form of resorufin (Rf as a model of an anionic drug. Saf exhibited a larger affinity with functional groups of the hydrogel than that of Rf. This produced a lower loading and a faster release rate of Rf with respect to Saf. Besides, the release rate of Rf followed a Fickian behavior, while that of Saf exhibited a non-Fickian behavior. By hydrolyzing the hydrogel at pH = 13, amide groups supplied by AAm were irreversibly converted into carboxylic acid groups. Higher loadings and slower release rates of Saf from the hydrolyzed hydrogels were observed, making them particularly suitable for the slow drug-delivery of cationic drugs.

  13. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates.

    Science.gov (United States)

    Ye, Mingming; Jiang, Rui; Zhao, Jin; Zhang, Juntao; Yuan, Xubo; Yuan, Xiaoyan

    2015-12-01

    Adhesives with catechol moieties have been widely investigated in recent years. However, actually how much catechol groups for these mussel bio-inspired adhesives, especially in their natural form under physiological condition, is appropriate to bond with organic substrates has not been studied intensively. This study blends ε-polylysine (PL), featuring laterally grafted catechols under physiological conditions (pH 7.4), with oxidized dextran to form a hydrogel in situ via the Schiff base without introducing small cytotoxic molecules as crosslinking agents. It finds that the amount of catechol groups imposes an obvious influence on gelation time, swelling behavior, and hydrogel morphology. Both the storage modulus and adhesion strength are found to increase first and decrease afterwards with an increase of pendent catechol content. Furthermore, catechol hydrogen interactions and the decrease in the crosslink density derived from the decrease of amino groups on PL are simultaneously found to affect the storage modulus. Meanwhile, multiple hydrogen-bonding interactions of catechol with amino, hydroxyl, and carboxyl groups, which are in abundance on the surface of tissue, are mainly found to provide an adhesive force. The study finds that with more catechol, there is a greater chance that the cohesive force will weaken, making the entire adhesion strength of the hydrogel decrease. Using a cytotoxicity test, the nontoxicity of the hydrogel towards the growth of L929 cells is proven, indicating that hydrogels have potential applications in soft tissue repair under natural physiological conditions.

  14. Removal of Fluoride Ion from Aqueous Solution by Nanocomposite Hydrogel Based on Starch/Sodium Acrylate/Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Aboulfazl Barati

    2014-01-01

    Full Text Available Determination of fluoride in drinking water has received increasing interest, due to its beneficial and detrimental effects on health. Contamination of drinking water by fluoride can cause potential hazards to human health. In recent years, considerable attention has been given to different methods for the removal of fluoride from drinking and waste waters. The aim of this research was to investigate the effect of nano composite hydrogel based on starch/sodium acrylate/aluminum oxide in reduction of fluoride concentration in drinking water and industrial waste water. In a batch system, the dynamic and equilibrium adsorption of fluoride ions were studied with respect to changes in determining parameters such as pH, contact time, initial fluoride concentration, starch/acrylic acid weight ratio and weight percent of nano aluminum oxide. The obtained equilibrium adsorption data were fitted with Langmuir and Freundlich models, as well as the kinetic data with pseudo-first order and pseudo- second order models. The results showed that optimum pH was found to be in the range of 5 to 7. Removal efficiency of fluoride was increased with decreases in initial concentration of fluoride. Sixty percent of initial value of fluoride solution was removed by nano composite hydrogel (4 wt% of nano aluminum oxide at 240 min (initial fluoride concentration = 5 ppm, pH 6.8 and temperature = 25ºC. Under the same condition, the equilibrium adsorption of fluoride ions was 85% and 68% for initial solution concentration of 5 and 10 ppm, respectively. Adsorption isotherm data showed that the fluoride sorption followed the Langmuir model. Kinetics of sorption of fluoride onto nano composite hydrogel was described by pseudo-first order model.

  15. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation.

    Science.gov (United States)

    Raucci, M G; Alvarez-Perez, M A; Demitri, C; Giugliano, D; De Benedictis, V; Sannino, A; Ambrosio, L

    2015-06-01

    Understanding the relationships between material surface properties and cellular responses is essential to designing optimal material surfaces for implantation and tissue engineering. In this study, cellulose hydrogels were crosslinked using a non-toxic and natural component namely citric acid. The chemical treatment induces COOH functional groups that improve the hydrophilicity, roughness, and materials rheological properties. The physiochemical, morphological, and mechanical analyses were performed to analyze the material surface before and after crosslinking. This approach would help determine if the effect of chemical treatment on cellulose hydrogel improves the hydrophilicity, roughness, and rheological properties of the scaffold. In this study, it was demonstrated that the biological responses of human mesenchymal stem cell with regard to cell adhesion, proliferation, and differentiation were influenced in vitro by changing the surface chemistry and roughness. © 2014 Wiley Periodicals, Inc.

  16. Hydrogels Based on Ag+ -Modulated Assembly of 5'-Adenosine Monophosphate for Enriching Biomolecules.

    Science.gov (United States)

    Hu, Yuanyuan; Xie, Dong; Wu, Yang; Lin, Nangui; Song, Aixin; Hao, Jingcheng

    2017-11-07

    Supramolecular hydrogels obtained by combining 5'-adenosine monophosphate (AMP) with Ag + were fabricated in this work. Their gelation capability was enhanced by increasing the concentration of Ag + or decreasing the pH. The gels are very sensitive to light, which endows them with potential applications as visible-light photosensitive materials. Coordination between the nucleobase of AMP and Ag + , as well as π-π stacking of nucleobases, are considered to be the main driving forces for self-assembly. The hydrogels successfully achieved the encapsulation and enrichment of biomolecules. Hydrogen bonding between the amino group of guest molecules and silver nanoparticles along the nanofibers drives the enrichment and is considered to be a crucial interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermally reversible hydrogels based on 2-methoxyethylacrylate (MOEA) as drug delivery systems

    International Nuclear Information System (INIS)

    Martellini, Flavia; Mei, Lucia Helena; Balino, Jorge Luis; Carenza, Mario

    2000-01-01

    Hydrogels of poly(N,N-dimethylacrylamide-co-2-methoxy ethylacrylate) and poly(acrylamide-co-2-methoxy ethylacrylate) have been synthesised by radiation polymerization in dimethylformamide solution with trimethylolpropane trimethacrylate as a cross linker. In this work, it is reported the investigations about the release in vitro of gentamicin sulphate, an antibiotic entrapped in the hydrogels, in aqueous solutions. The result indicate that the release occurs practically in the first 24 h, the release rate is constant over a period of 35 hours and without displaying any significant burst effect. The evidence observed also indicates that the solute transport in the beginning of release is controlled by Fickian diffusion and fractional release of gentamicin is initially linear when plotted against the square root of time, as expected for a Fickian process. (author)

  18. Thermally reversible hydrogels based on 2-methoxyethylacrylate (MOEA) as drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Martellini, Flavia; Mei, Lucia Helena [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica. Dept. de Polimeros; Moraes, Daniel T.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo (Brazil); Balino, Jorge Luis [Centro Atomico Bariloche, RN (Argentina). Inst. Balseiro; Carenza, Mario [Consiglio Nazionale delle Ricerche (CNR), Padova (Italy). Sezione di Lenaro. Ist. di Fotochimica e Radiazioni d' Alta Energia

    2000-07-01

    Hydrogels of poly(N,N-dimethylacrylamide-co-2-methoxy ethylacrylate) and poly(acrylamide-co-2-methoxy ethylacrylate) have been synthesised by radiation polymerization in dimethylformamide solution with trimethylolpropane trimethacrylate as a cross linker. In this work, it is reported the investigations about the release in vitro of gentamicin sulphate, an antibiotic entrapped in the hydrogels, in aqueous solutions. The result indicate that the release occurs practically in the first 24 h, the release rate is constant over a period of 35 hours and without displaying any significant burst effect. The evidence observed also indicates that the solute transport in the beginning of release is controlled by Fickian diffusion and fractional release of gentamicin is initially linear when plotted against the square root of time, as expected for a Fickian process. (author)

  19. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.

    Science.gov (United States)

    Clemente, María J; Fitremann, Juliette; Mauzac, Monique; Serrano, José L; Oriol, Luis

    2011-12-20

    Low molecular mass amphiphilic glycolipids have been prepared by linking a maltose polar head and a hydrophobic linear chain either by amidation or copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. The liquid crystalline properties of these amphiphilic materials have been characterized. The influence of the chemical structure of these glycolipids on the gelation properties in water has also been studied. Glycolipids obtained by the click coupling of the two components give rise to stable hydrogels at room temperature. The fibrillar structure of supramolecular hydrogels obtained by the self-assembly of these gelators have been characterized by electron microscopy. Fibers showed some torsion, which could be related with a chiral supramolecular arrangement of amphiphiles, as confirmed by circular dichroism (CD). The sol-gel transition temperature was also determined by differential scanning calorimetry (DSC) and NMR. © 2011 American Chemical Society

  20. Stress Modulates the Use of Spatial versus Stimulus-Response Learning Strategies in Humans

    Science.gov (United States)

    Philippsen, Christine; Richter, Steffen; Bohringer, Andreas; Wippich, Werner; Schachinger, Hartmut; Schwabe, Lars; Oitzl, Melly S.

    2007-01-01

    Animal studies provided evidence that stress modulates multiple memory systems, favoring caudate nucleus-based "habit" memory over hippocampus-based "cognitive" memory. However, effects of stress on learning strategy and memory consolidation were not differentiated. We specifically address the effects of psychosocial stress on the applied learning…

  1. Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch

    Science.gov (United States)

    Johnson, Elizabeth Edna

    Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.

  2. Hydrogel tissue expanders for stomatology. Part I. methacrylate-based polymers

    Czech Academy of Sciences Publication Activity Database

    Hrib, Jakub; Širc, Jakub; Lesný, P.; Hobzová, Radka; Dušková-Smrčková, Miroslava; Michálek, Jiří; Šmucler, R.

    2017-01-01

    Roč. 28, č. 1 (2017), s. 1-8, č. článku 12. ISSN 0957-4530 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : hydrogel * tissue expander * methacrylates Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.325, year: 2016

  3. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    Science.gov (United States)

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  4. Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

    Science.gov (United States)

    Chwalek, Karolina; Tsurkan, Mikhail V.; Freudenberg, Uwe; Werner, Carsten

    2014-03-01

    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.

  5. Mussel-inspired histidine-based transient network metal coordination hydrogels

    Science.gov (United States)

    Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.

    2013-01-01

    Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102

  6. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels.

    Science.gov (United States)

    Othman, Muhammad Bisyrul Hafi; Khan, Abbas; Ahmad, Zulkifli; Zakaria, Muhammad Razlan; Ullah, Faheem; Akil, Hazizan Md

    2016-01-20

    This study attempted to clarify the influence of a cross-linker, N,N-methylenebisacrylamide (MBA), and N-isopropylacrylamide (NIPAM) on the non-isothermal kinetic degradation, solid state and lifetime of hydrogels using the Flynn-Wall-Ozawa (F-W-O), Kissinger, and Coats-Redfern (C-Red) methods. The series of dual-responsive Cs-PNIPAM-MBA microgels were synthesized by soapless-emulsion free radical copolymerization in an aqueous medium at 70 °C. The thermal properties were investigated using thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under nitrogen atmosphere. The apparent activation energy using the chosen Flynn-Wall-Ozawa and Kissinger methods showed that they fitted each other. Meanwhile, the type of solid state mechanism was determined using the Coats-Redfern method proposed for F1 (pure Cs) and F2 (Cs-PNIPAM-MBA hydrogel series) types, which comprise random nucleation with one nucleus reacting on individual particles, and random nucleation with two nuclei reacting on individual particles, respectively. On average, a higher Ea was attributed to the greater cross-linking density of the Cs hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Kanhere, Elgar; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael S

    2017-07-28

    Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.

  8. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens.

    Science.gov (United States)

    Al-Enizi, Abdullah M; Ahamad, Tansir; Al-Hajji, Abdullah Baker; Ahmed, Jahangeer; Chaudhary, Anis Ahmad; Alshehri, Saad M

    2018-04-01

    In the present study, stable copper nanoparticles (CuNPs) were successfully prepared in the hydrogel matrix. The prepared nanocomposite (HCuNPs) was characterized via x-ray diffraction (XRD), electron microscopy (TEM), and energy-dispersive (EDX) and x-ray photoelectron spectroscopic (XPS) studies. The wide scan XPS spectra support the presence of C, N and O in neat hydrogel; while, the XPS spectra of HCuNPs demonstrate the presence of Cu along with C, N, and O elements. TEM studies show the formation of spherical shaped CuNPs in the size range from 7 to 12nm. The rheology results reveal that the storage modulus (G') of the HCuNPs was found to be higher than the loss modulus (G"). Additionally, the antibacterial activities and cytotoxic were carried out against urinary tract infection (UTI) microbes and HeLa (cervical) cells respectively. The antibacterial results reveal that HCuNPs composites show higher zone of inhibition against these pathogens then that of corresponding hydrogel matrix. The cytotoxic effects suggest that the prepared nanocomposite could be used as promising candidates for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    Science.gov (United States)

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Rajinikanth PS

    2016-10-01

    Full Text Available Paruvathanahalli Siddalingam Rajinikanth,1,2 Jestin Chellian2 1School of Pharmacy, Taylors University, 2School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia Abstract: The aim of this study was to develop a nanostructured lipid carrier (NLC-based hydrogel and study its potential for the topical delivery of 5-fluorouracil (5-FU. Precirol® ATO 5 (glyceryl palmitostearate and Labrasol® were selected as the solid and liquid lipid phases, respectively. Poloxamer 188 and Solutol® HS15 (polyoxyl-15-hydroxystearate were selected as surfactants. The developed lipid formulations were dispersed in 1% Carbopol® 934 (poly[acrylic acid] gel medium in order to maintain the topical application consistency. The average size, zeta potential, and polydispersity index for the 5-FU-NLC were found to be 208.32±8.21 nm, -21.82±0.40 mV, and 0.352±0.060, respectively. Transmission electron microscopy study revealed that 5-FU-NLC was <200 nm in size, with a spherical shape. In vitro drug permeation studies showed a release pattern with initial burst followed by sustained release, and the rate of 5-FU permeation was significantly improved for 5-FU-NLC gel (10.27±1.82 µg/cm2/h as compared with plain 5-FU gel (2.85±1.12 µg/cm2/h. Further, skin retention studies showed a significant retention of 5-FU from the NLC gel (91.256±4.56 µg/cm2 as compared with that from the 5-FU plain gel (12.23±3.86 µg/cm2 in the rat skin. Skin irritation was also significantly reduced with 5-FU-NLC gel as compared with 5-FU plain gel. These results show that the prepared 5-FU-loaded NLC has high potential to improve the penetration of 5-FU through the stratum corneum, with enormous retention and with minimal skin irritation, which is the prerequisite for topically applied formulations. Keywords: nanostructured lipid carrier, topical delivery, controlled release, 5-fluorouracil, skin penetration, skin infection

  11. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    Science.gov (United States)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  12. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution

    Science.gov (United States)

    Ma, Dongzhuo; Zhu, Baodong; Cao, Bo; Wang, Jian; Zhang, Jianwei

    2017-11-01

    The novel hydrogel based on waste corn stalk was synthetized by aqueous solution polymerization technique with functional monomers in the presence of organic montmorillonite (OMMT) under ultrasonic. In this study, batch adsorption experiments were carried out to research the effect of initial dye concentration, the dosage of hydrogel, stirring speed, contact time and temperature on the adsorption of methylene blue (MB) dye. The adsorption process was best described by the pseudo-second-order kinetic model, which confirmed that it should be a chemical process. Furthermore, we ascertained the rate controlling step by establishing the intraparticle diffusion model and the liquid film diffusion model. The adsorption and synthesis mechanisms were vividly depicted in our work as well. Structural and morphological characterizations by virtue of FTIR, FESEM, and Biomicroscope supported the relationship between the adsorption performance and material's microstructure. This research is a valuable contribution for the environmental protection, which not only converts waste corn stalks into functional materials, but improves the removal of organic dye from sewage water.

  13. Carrageenan-based semi-IPN nanocomposite hydrogels: Swelling kinetic and slow release of sequestrene Fe 138 fertilizer

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Bahrami

    2016-09-01

    Full Text Available Nanocomposite hydrogels based on kappa-carrageenan were synthesized by incorporating natural sodium montmorillonite (Cloisite nanoclay. Acrylamide (AAm and methylenebisacrylamide (MBA were used as a monomer and a crosslinker, respectively. Effects of reaction variables on the swelling kinetics were studied. The results revealed that the rate of swelling for nanocomposites with high content of MBA was higher than those of nanocomposites consisting of low content of MBA. Similar to the effect of MBA, the rate of swelling enhanced as the carrageenan content was decreased. The influence of clay content on swelling rate was not remarkable. The experimental swelling data were evaluated by pseudo-first-order and pseudo-second-order kinetic models. The swelling data described well by pseudo-second-order kinetic model. Sequestrene Fe 138 (Sq as an agrochemical was loaded into nanocomposites and releasing of this active agent from nanocomposites was studied. The clay-free hydrogel released the whole loaded Sq; whereas the presence of clay restricted the release of Sq.

  14. Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline - p-phenylenediamine) and polyacrylamide

    Science.gov (United States)

    Smirnov, Michael A.; Sokolova, Maria P.; Bobrova, Natalya V.; Kasatkin, Igor A.; Lahderanta, Erkki; Elyashevich, Galina K.

    2016-02-01

    Electroconducting hydrogels (EH) based on copoly(aniline - p-phenylenediamine) grafted to the polyacrylamide for the application as pseudo-supercapacitor's electrodes have been prepared. The influence of preparation conditions on the structure and capacitance properties of the systems were investigated: we determined the optimal amount of p-phenylenediamine to obtain the network of swollen interconnected nanofibrils inside the hydrogel which provides the formation of continuous conducting phase. Structure and morphology of the prepared samples were investigated with UV-VIS spectroscopy, scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The maximal value of capacitance was 364 F g-1 at 0.2 A g-1. It was shown that the EH samples demonstrate the retention of 50% of their capacity at high current density 16 A g-1. Cycle-life measurements show evidence that capacitance of EH electrodes after 1000 cycles is higher than its initial value for all prepared samples. Changes of the copolymer structure during swelling in water have been studied with WAXD.

  15. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    Science.gov (United States)

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  16. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening.

    Science.gov (United States)

    Fong, Eliza L S; Martinez, Mariane; Yang, Jun; Mikos, Antonios G; Navone, Nora M; Harrington, Daniel A; Farach-Carson, Mary C

    2014-07-07

    The lack of effective therapies for bone metastatic prostate cancer (PCa) underscores the need for accurate models of the disease to enable the discovery of new therapeutic targets and to test drug sensitivities of individual tumors. To this end, the patient-derived xenograft (PDX) PCa model using immunocompromised mice was established to model the disease with greater fidelity than is possible with currently employed cell lines grown on tissue culture plastic. However, poorly adherent PDX tumor cells exhibit low viability in standard culture, making it difficult to manipulate these cells for subsequent controlled mechanistic studies. To overcome this challenge, we encapsulated PDX tumor cells within a three-dimensional hyaluronan-based hydrogel and demonstrated that the hydrogel maintains PDX cell viability with continued native androgen receptor expression. Furthermore, a differential sensitivity to docetaxel, a chemotherapeutic drug, was observed as compared to a traditional PCa cell line. These findings underscore the potential impact of this novel 3D PDX PCa model as a diagnostic platform for rapid drug evaluation and ultimately push personalized medicine toward clinical reality.

  18. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Lenin, Nayagam; Sankarganesh, Murugesan; Dhaveethu Raja, Jeyaraj; Rajesh, Jegathalaprathaban

    2018-02-01

    Facile one-pot synthesis has been demonstrated for new biocompatible and dual responsive magnetic iron oxide nanoparticles cross-linked poly(vinyl alcohol) (PVA) blended natural polymer chitosan (CS) based hydrogel beads (mCS-PVA) as a controlled natural anticancer alkaloid Luotonin A (LuA) delivery system. The prepared magnetic hydrogel beads were characterized using powder X-ray diffraction measurement, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. The magnetic hydrogel beads are exhibited significant water retention and follow the second order kinetic model in swelling study. The swelling ratio of the magnetic gel beads increased by the addition of PVA and showed a maximum swelling ratio of 40.83 ± 1.01 g/g and follows non-Fickian water transport mechanism. Stimuli responsive mCS and mCS-PVA hydrogel beads functionalized with LuA is demonstrated for controlled release at physiological pH and under magnetic field. The magnetic hydrogel beads show highest LuA releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 73.33 ± 1.44%. This efficacy may also be tuned by altering the external magnetic field as well as the weight percentage (wt %) of polyethylene glycol. It is clearly that the newly produced magnetic hydrogel beads can be served as an effective intestinal LuA delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 543-551, 2018. © 2017 Wiley Periodicals, Inc.

  19. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.

  20. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Science.gov (United States)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  1. OpenSR: An Open-Source Stimulus-Response Testing Framework

    Directory of Open Access Journals (Sweden)

    Carolyn C. Matheus

    2015-01-01

    Full Text Available Stimulus–response (S–R tests provide a unique way to acquire information about human perception by capturing automatic responses to stimuli and attentional processes. This paper presents OpenSR, a user-centered S–R testing framework providing a graphical user interface that can be used by researchers to customize, administer, and manage one type of S–R test, the implicit association test. OpenSR provides an extensible open-source Web-based framework that is platform independent and can be implemented on most computers using any operating system. In addition, it provides capabilities for automatically generating and assigning participant identifications, assigning participants to different condition groups, tracking responses, and facilitating collecting and exporting of data. The Web technologies and languages used in creating the OpenSR framework are discussed, namely, HTML5, CSS3, JavaScript, jQuery, Twitter Bootstrap, Python, and Django. OpenSR is available for free download.

  2. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  3. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.

    Science.gov (United States)

    Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang

    2014-04-01

    Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Dual Affinity Heparin-Based Hydrogels Achieve Pro-Regenerative Immunomodulation and Microvascular Remodeling.

    Science.gov (United States)

    Ogle, Molly E; Krieger, Jack R; Tellier, Liane E; McFaline-Figueroa, Jennifer; Temenoff, Johnna S; Botchwey, Edward A

    2018-04-09

    The immune response to biomaterial implants critically regulates functional outcomes such as vascularization, transplant integration/survival, and fibrosis. To create "immunologically smart" materials, the host-material response may be engineered to optimize the recruitment of pro-regenerative leukocyte subsets which mature into corresponding wound-healing macrophages. We have recently identified a unique feature of pro-regenerative Ly6C low monocytes that is a higher expression of both the bioactive lipid receptor sphingosine-1-phosphate receptor 3 (S1PR3) and the stromal derived factor-1α (SDF-1α) receptor CXCR4. Therefore, we designed a bifunctional hydrogel to harnesses a mechanistic synergy between these signaling axes to enhance the recruitment of endogenous pro-regenerative monocytes. To overcome the challenge of codelivering two physiochemically distinct molecules-a large hydrophilic protein and hydrophobic small molecule-we engineered a dual affinity hydrogel that exploits the growth factor affinity of a heparin derivative (Hep -N ) and lipid chaperone activity of albumin. The sphingosine analog FTY720 and SDF-1α are successfully loaded and coreleased from the Hep -N -functionalized PEG-DA hydrogels while maintaining bioactivity. Placement of these hydrogels into a murine partial thickness skin wound demonstrates that corelease of FTY720 and SDF-1α yields superior recruitment of myeloid cells to the implant interface compared to either factor alone. Although in vivo delivery of FTY720 or SDF-1α individually promotes the enhanced recruitment of Ly-6C low anti-inflammatory monocytes, codelivery enhances the early accumulation and persistence of the differentiated wound healing CD206 + macrophages in the tissue surrounding the gel. Co-delivery similarly promoted the synergistic expansion of vasculature adjacent to the implant, a key step in tissue healing. Taken together, these findings suggest that the combination of chemotactic molecules may provide

  5. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    Science.gov (United States)

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  6. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair

    Czech Academy of Sciences Publication Activity Database

    Hejčl, Aleš; Lesný, Petr; Přádný, Martin; Šedý, Jiří; Zámečník, J.; Jendelová, Pavla; Michálek, Jiří; Syková, Eva

    2009-01-01

    Roč. 20, č. 7 (2009), s. 1571-1577 ISSN 0957-4530 R&D Projects: GA AV ČR IAA500390902 Grant - others:GA MŠk(CZ) 1M0538; GA MZd(CZ) 1A8697; EC FP6 project RESCUE(XE) LSHB-CT-2005-518233 Program:1M Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z40500505 Keywords : transplantation * biomaterials * macroporous hydrogels Subject RIV: FH - Neurology Impact factor: 1.955, year: 2009

  7. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.

    Science.gov (United States)

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung

    2010-11-01

    Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    Science.gov (United States)

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. New Approaches in the Engineering and Characterization of Macromolecular Interfaces Across the Length Scales: Applications to Hydrophobic and Stimulus Responsive Polymers

    NARCIS (Netherlands)

    Song, Jing

    2007-01-01

    The aim of the present Thesis is to enhance characterization and surface engineering approaches to test and control physico-chemical changes on modified hydrophobic (LDPE and PDMS) and stimulus-responsive (PFS) polymers across different length scales. [Here LDPE denotes low density polyethylene,

  10. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  11. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micro-nutrient based antimicrobial feed additive

    Directory of Open Access Journals (Sweden)

    Parthiban eRajasekaran

    2015-11-01

    Full Text Available Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that re-arranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml and zinc (800 μg/ml reduced the load of model gut-bacteria (target organisms of growth promoting antibiotics such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof of concept study, we show

  12. Poly(N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation

    Czech Academy of Sciences Publication Activity Database

    Strachota, Beata; Matějka, Libor; Zhigunov, Alexander; Konefal, Rafal; Spěváček, Jiří; Dybal, Jiří; Puffr, Rudolf

    2015-01-01

    Roč. 11, č. 48 (2015), s. 9291-9306 ISSN 1744-683X R&D Projects: GA ČR(CZ) GAP108/12/1459; GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : thermoresponsive hydrogel * hybrid nanocomposite * polymer clay hydrogel Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.798, year: 2015

  13. Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycols and itaconic acid

    Directory of Open Access Journals (Sweden)

    Mićić Maja M.

    2007-01-01

    Full Text Available New types of hydrogels were prepared by the radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid and four different poly(alkylene glycol (methacrylate components (Bisomers in a water/ethanol mixture as solvent. The polymers swell in water at 25°C to yield homogeneous transparent hydrogels. All the hydrogels displayed pH sensitive behavior in buffers of the pH range from 2.20 to 7.40, under conditions similar to those of biological fluids. The presence of these two comonomers, which were added to HEMA, increased the swelling degree of the hydrogels and gave gels with better elasticity. The hydrogels were thermally stable in the vicinity of the physiological temperature (37°C. The copolymer containing pure poly(ethylene glycol acrylate units generally had the best properties. The tests performed on the hydrogels confirmed that they were neither hemolytic nor cytotoxic. The copolymer samples showed better cell viability and less hemolytic activity than the PHEMA sample, confirming the assumption that poly(alkylene glycols improve the biocompatibility of hydrogels. Due to their swelling and mechanical characteristics, as well as the very good biocompatibility and bioadhesive properties, poly(Bisomer/HEMA/IA hydrogels are promising for utilization in the field of biomedicals, especially for the controlled release of drugs.

  14. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments

    DEFF Research Database (Denmark)

    Zhang, M.; Søndergaard, Rikke Vicki; Ek, Pramod Kumar

    2015-01-01

    Optical pH nanosensors have been applied for monitoring intracellular pH in real-time for about two decades. However, the pH sensitivity range of most nanosensors is too narrow, and measurements that are on the borderline of this range may not be correct. Furthermore, ratiometric measurements...... of acidic intracellular pH (pH sensor, a fluorophore based nanosensor, with an unprecedented broad measurement range from pH 1.4 to 7.0. In this nanosensor, three p......H-sensitive fluorophores (difluoro-Oregon Green, Oregon Green 488, and fluorescein) and one pH-insensitive fluorophore (Alexa 568) were covalently incorporated into a nanoparticle hydrogel matrix. With this broad range quadruple-labelled nanosensor all physiological relevant pH levels in living cells can be measured...

  15. Topical Anti-Nuclear Factor-Kappa B Small Interfering RNA with Functional Peptides Containing Sericin-Based Hydrogel for Atopic Dermatitis

    Directory of Open Access Journals (Sweden)

    Takanori Kanazawa

    2015-09-01

    Full Text Available The small interfering RNA (siRNA is suggested to offer a novel means of treating atopic dermatitis (AD because it allows the specific silencing of genes related to AD pathogenesis. In our previous study, we found that siRNA targeted against RelA, an important nuclear factor-kappa B (NF-κB subdomain, with functional peptides, showed therapeutic effects in a mouse model of AD. In the present study, to develop a topical skin application against AD, we prepared a hydrogel containing anti-RelA siRNA and functional peptides and determined the intradermal permeation and the anti-AD effects in an AD mouse model. We selected the silk protein, sericin (SC, which is a versatile biocompatible biomaterial to prepare hydrogel as an aqueous gel base. We found that the siRNA was more widely delivered to the site of application in AD-induced ear skin of mice after topical application via the hydrogel containing functional peptides than via the preparation without functional peptides. In addition, the ear thickness and clinical skin severity of the AD-induced mice treated with hydrogel containing anti-RelA siRNA with functional peptides improved more than that of mice treated with the preparation formulated with negative siRNA.

  16. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Fabiano A

    2017-01-01

    Full Text Available Angela Fabiano,1 Ranieri Bizzarri,2 Ylenia Zambito1 1Department of Pharmacy, University of Pisa, 2NEST, Istituto Nanoscienze CNR (CNR-NANO and Scuola Normale Superiore, Pisa, Italy Abstract: A thermosensitive ophthalmic hydrogel (TSOH – fluid at 4°C (instillation temperature, semisolid at 35°C (eye temperature, which coupled the dosing accuracy and administration ease of eyedrops with the increased ocular bioavailability of a hydrogel – was prepared by gelling a chitosan hydrochloride (ChHCl solution (27.8 mg/mL medicated with 1.25 mg/mL 5-fluorouracil (5-FU with β-glycerophosphate 0.8 mg/mL. Polymer mixtures, where Ch was partially (10%, 15%, or 20% replaced by quaternary ammonium–chitosan conjugates (QA-Ch or thiolated derivatives thereof, were also used to modulate 5-FU-release properties of TSOH. Also, Ch-based nanoparticles (NPs; size after lyophilization and redispersion 341.5±15.2 nm, polydispersity 0.315±0.45, ζ-potential 10.21 mV medicated with 1.25 mg/mL 5-FU prepared by ionotropic cross-linking of Ch with hyaluronan were introduced into TSOH. The 5-FU binding by TSOH polymers in the sol state was maximum with plain Ch (31.4% and tended to decrease with increasing QA presence in polymer mixture. 5-FU release from TSOH with or without NPs was diffusion-controlled and linear in √t. The different TSOH polymers were compared on a diffusivity basis by comparing the slopes of √t plots. These showed a general decrease with NP-containing TSOH, which was the most marked with the TSOH, where Ch was 20% replaced by the derivative QA-Ch50. This formulation and that not containing NP were instilled in rabbits and the 5-FU transcorneal penetration was measured by analyzing the aqueous humor. Both TSOH solutions increased the area under the curve (0–8 hours 3.5 times compared with the plain eyedrops, but maximum concentration for the NP-free TSOH was about 0.65 µg/mL, followed by a slow decline, while the NP-containing one showed a

  17. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels.

    Science.gov (United States)

    Singh, Baljit; Dhiman, Abhishek

    2017-01-01

    No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs

    International Nuclear Information System (INIS)

    Xiang, Jun; Sun, Jianguo; Hong, Jiaxu; Wang, Wentao; Wei, Anji; Le, Qihua; Xu, Jianjiang

    2015-01-01

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. - Highlights: • T-style keratoprosthesis was designed and prepared based on a PHEMA hydrogel. • Selective surface modifications effectively regulated cells' selective adhesion. • T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with host tissues

  19. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jun [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Sun, Jianguo [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University (China); Hong, Jiaxu [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Wang, Wentao [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Wei, Anji [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Le, Qihua [Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China); Xu, Jianjiang, E-mail: jianjiang-xu@163.com [Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University (China); Key Laboratory of Myopia, Ministry of Health, Fudan University (China); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University (China)

    2015-05-01

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. - Highlights: • T-style keratoprosthesis was designed and prepared based on a PHEMA hydrogel. • Selective surface modifications effectively regulated cells' selective adhesion. • T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with host tissues.

  20. Development of a Biosensor for Environmental Monitoring Based on Microalgae Immobilized in Silica Hydrogels

    Directory of Open Access Journals (Sweden)

    Claude Durrieu

    2012-12-01

    Full Text Available A new biosensor was designed for the assessment of aquatic environment quality. Three microalgae were used as toxicity bioindicators: Chlorella vulgaris, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. These microalgae were immobilized in alginate and silica hydrogels in a two step procedure. After studying the growth rate of entrapped cells, chlorophyll fluorescence was measured after exposure to (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and various concentrations of the common herbicide atrazine. Microalgae are very sensitive to herbicides and detection of fluorescence enhancement with very good efficiency was realized. The best detection limit was 0.1 µM, obtained with the strain C. reinhardtii after 40 minutes of exposure.

  1. Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite.

    Science.gov (United States)

    Mi Kyung Kim; Hyojung Kim; Jung, Yeon Su; Adem, Kenana M A; Bawazir, Sarah S; Stefanini, Cesare; Lee, Hyunjoo J

    2017-07-01

    An accurate bladder volume monitoring system is a critical component in diagnosis and treatment of urological disorders. Here, we report an implantable bladder volume sensor with a multi-level resistor ladder which estimates the bladder volume through discrete resistance values. Discretization allows the sensor output to be resilient to the long-term drift, hysteresis, and degradation of the sensor materials. Our sensor is composed of biocompatible polypyrrole/agarose hydrogel composite. Because Young's modulus of this composite is comparable to that of the bladder wall, the effect of mechanical loading of the sensor on the bladder movement is minimized which allows more accurate volume monitoring. We also demonstrate the patterning and molding capability of this material by fabrication various structures. Lastly, we successfully demonstrate the functionality of the multi-level resistor ladder sensor as a bladder volume sensor by attaching the sensor on the pig's bladder and observing the impedance change of the sensor.

  2. Development of Bioadhesive Chitosan Superporous Hydrogel Composite Particles Based Intestinal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Hitesh Chavda

    2013-01-01

    Full Text Available Bioadhesive superporous hydrogel composite (SPHC particles were developed for an intestinal delivery of metoprolol succinate and characterized for density, porosity, swelling, morphology, and bioadhesion studies. Chitosan and HPMC were used as bioadhesive and release retardant polymers, respectively. A 32 full factorial design was applied to optimize the concentration of chitosan and HPMC. The drug loaded bioadhesive SPHC particles were filled in capsule, and the capsule was coated with cellulose acetate phthalate and evaluated for drug content, in vitro drug release, and stability studies. To ascertain the drug release kinetics, the drug release profiles were fitted for mathematical models. The prepared system remains bioadhesive up to eight hours in intestine and showed Hixson-Crowell release with anomalous nonfickian type of drug transport. The application of SPHC polymer particles as a biomaterial carrier opens a new insight into bioadhesive drug delivery system and could be a future platform for other molecules for intestinal delivery.

  3. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  4. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.

    Science.gov (United States)

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Hong, Soyoung; Lee, Jung Joo; Ahn, Chi Bum; Choi, Hyuk; Sun, Kyung

    2011-11-01

    Bioprinting is a technology for constructing bioartificial tissue or organs of complex three-dimensional (3-D) structure with high-precision spatial shape forming ability in larger scale than conventional tissue engineering methods and simultaneous multiple components composition ability. It utilizes computer-controlled 3-D printer mechanism or solid free-form fabrication technologies. In this study, sodium alginate hydrogel that can be utilized for large-dimension tissue fabrication with its fast gelation property was studied regarding material-specific printing technique and printing parameters using a multinozzle bioprinting system developed by the authors. A sodium alginate solution was prepared with a concentration of 1% (wt/vol), and 1% CaCl(2) solution was used as cross-linker for the gelation. The two materials were loaded in each of two nozzles in the multinozzle bioprinting system that has a total of four nozzles of which the injection speed can be independently controlled. A 3-D alginate structure was fabricated through layer-by-layer printing. Each layer was formed through two phases of printing, the first phase with the sodium alginate solution and the second phase with the calcium chloride solution, in identical printing pattern and speed condition. The target patterns were lattice shaped with 2-mm spacing and two different line widths. The nozzle moving speed was 6.67 mm/s, and the injection head speed was 10 µm/s. For the two different line widths, two injection needles with inner diameters of 260 and 410 µm were used. The number of layers accumulated was five in this experiment. By varying the nozzle moving speed and the injection speed, various pattern widths could be achieved. The feasibility of sodium alginate hydrogel free-form formation by alternate printing of alginate solution and sodium chloride solution was confirmed in the developed multinozzle bioprinting system. © 2011, Copyright the Authors. Artificial Organs © 2011, International

  5. Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.

    Science.gov (United States)

    Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred

    2011-01-01

    It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Carving Executive Control At Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, But Not Stimulus-Response, Conflict

    Science.gov (United States)

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774

  7. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nieves Iglesias

    2018-04-01

    Full Text Available The present work deals with the synthesis of micro-structured biomaterials based on chitosan (CTS for their applications as biocompatible carriers of drugs and bioactive compounds. Twelve dispersions were prepared by means of functional cross-linking with tricarballylic acid (TCA; they were characterized by Fourier transform infrared spectroscopy (FT-IR, modulated temperature differential scanning calorimetry (MTDSC and scanning electron microscopy (SEM, and their rheological properties were studied. To the best of the authors’ knowledge, no study has been carried out on the influence of CTS concentration, degree of cross-linking and drug loading on chitosan hydrogels for drug delivery systems (DDS and is investigated herein for the first time. The influence of dispersion composition (polymer concentration and degree of cross-linking revealed to exert a marked impact on its rheological properties, going from liquid-like to viscoelastic gels. The release profiles of a model drug, diclofenac sodium (DCNa, as well as their relationships with polymer concentration, drug loading and degree of cross-linking were evaluated. Similar to the findings on rheological properties, a wide range of release profiles was encountered. These formulations were found to display a well-controlled drug release strongly dependent on the formulation composition. Cumulative drug release under physiological conditions for 96 h ranged from 8% to 67%. For comparative purpose, Voltaren emulgel® from Novartis Pharmaceuticals was also investigated and the latter was the formulation with the highest cumulative drug release (85%. Some formulations showed similar spreadability values to the commercial hydrogel. The comparative study of three batches confirmed the reproducibility of the method, leading to systems particularly suitable for their use as drug carriers.

  8. Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels.

    Science.gov (United States)

    Gurski, Lisa A; Xu, Xian; Labrada, Lyana N; Nguyen, Ngoc T; Xiao, Longxi; van Golen, Kenneth L; Jia, Xinqiao; Farach-Carson, Mary C

    2012-01-01

    To study the individual functions of hyaluronan interacting proteins in prostate cancer (PCa) motility through connective tissues, we developed a novel three-dimensional (3D) hyaluronic acid (HA) hydrogel assay that provides a flexible, quantifiable, and physiologically relevant alternative to current methods. Invasion in this system reflects the prevalence of HA in connective tissues and its role in the promotion of cancer cell motility and tissue invasion, making the system ideal to study invasion through bone marrow or other HA-rich connective tissues. The bio-compatible cross-linking process we used allows for direct encapsulation of cancer cells within the gel where they adopt a distinct, cluster-like morphology. Metastatic PCa cells in these hydrogels develop fingerlike structures, "invadopodia", consistent with their invasive properties. The number of invadopodia, as well as cluster size, shape, and convergence, can provide a quantifiable measure of invasive potential. Among candidate hyaluronan interacting proteins that could be responsible for the behavior we observed, we found that culture in the HA hydrogel triggers invasive PCa cells to differentially express and localize receptor for hyaluronan mediated motility (RHAMM)/CD168 which, in the absence of CD44, appears to contribute to PCa motility and invasion by interacting with the HA hydrogel components. PCa cell invasion through the HA hydrogel also was found to depend on the activity of hyaluronidases. Studies shown here reveal that while hyaluronidase activity is necessary for invadopodia and inter-connecting cluster formation, activity alone is not sufficient for acquisition of invasiveness to occur. We therefore suggest that development of invasive behavior in 3D HA-based systems requires development of additional cellular features, such as activation of motility associated pathways that regulate formation of invadopodia. Thus, we report development of a 3D system amenable to dissection of

  9. Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation Induced Crosslinking with Potential Application as Wound Dressing

    International Nuclear Information System (INIS)

    Abd EI-Mohdy, H.L.; Hegazy, E.A.

    2009-01-01

    Polyvinyl pyrrolidone l polyethylene glycol hydrogels (PVP/ PEG) and PVP/ PEG/ Starch were prepared by irradiating the mixtures of aqueous solutions of PVP, PEG and starch with electron beam at different doses. Its properties were evaluated to identify their usability in wound dressing applications. Hydrogel dressing can protect injured skin and keep it appropriately moist to speed the healing process. The physical properties of the prepared hydrogels, such as gel content, swelling, water content and degree of water evaporation with varying composition and irradiation dose were examined to evaluate the usefulness of the hydrogels for wound dressing. The gel content increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. Mechanical experiments were conducted for both of PVP/PEG and PVP/PEG/ Starch. The adding of PEG and starch to PVP significantly improve elongation and tensile strength of prepared hydrogels. The crystallinity of prepared hydrogels was investigated with varying their components. XRD studies indicated that the crystallinity in the gel was mainly due to PVP and decreased with enhanced starch content. The prepared hydrogels had sufficient strength to be used as wound dressing and could be considered as a good barrier against microbes

  10. Fluxgate magnetorelaxometry of superparamagnetic nanoparticles for hydrogel characterization

    International Nuclear Information System (INIS)

    Heim, Erik; Harling, Steffen; Poehlig, Kai; Ludwig, Frank; Menzel, Henning; Schilling, Meinhard

    2007-01-01

    A new characterization method for hydrogels based on the relaxation behavior of superparamagnetic nanoparticles (MNPs) is proposed. MNPs are incorporated in the hydrogel to examine its network properties. By analyzing their relaxation behavior, incorporated and mobile nanoparticles can be studied. In the case of mobile nanoparticles, the microviscosity of the hydrogel can be determined. Thus, this method allows the studying of gelation as well as the degradation process of hydrogels. Furthermore, the hydrogel can have any shape (e.g. microspheres or larger blocks) and no sample preparation is needed, avoiding artefacts

  11. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    International Nuclear Information System (INIS)

    Peng, Sydney; Lin, Ji-Yu; Cheng, Ming-Huei; Wu, Chih-Wei; Chu, I-Ming

    2016-01-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  12. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sydney; Lin, Ji-Yu [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Ming-Huei [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Wu, Chih-Wei, E-mail: drwu.jerry@gmail.com [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chu, I-Ming, E-mail: chuiming456@gmail.com [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-12-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  13. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  14. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.

    Science.gov (United States)

    Schver, Giovanna C R M; Lee, Ping I

    2018-05-07

    Under nonsink dissolution conditions, the kinetic-solubility profiles of amorphous solid dispersions (ASDs) based on soluble carriers typically exhibit so-called "spring-and-parachute" concentration-time behaviors. However, the kinetic-solubility profiles of ASDs based on insoluble carriers (including hydrogels) are known to show sustained supersaturation during nonsink dissolution through a matrix-regulated diffusion mechanism by which the supersaturation of the drug is built up gradually and sustained over an extended period without any dissolved polymers acting as crystallization inhibitors. Despite previous findings demonstrating the interplay between supersaturation rates and total doses on the kinetic-solubility profiles of soluble amorphous systems (including ASDs based on dissolution-regulated releases from soluble polymer carriers), the combined effects of supersaturation rates and doses on the kinetic-solubility profiles of ASDs based on diffusion-regulated releases from water-insoluble carriers have not been investigated previously. Thus, the objective of this study is to examine the impacts of total doses and supersaturation-generation rates on the resulting kinetic-solubility profiles of ASDs based on insoluble hydrogel carriers. We employed a previously established ASD-carrier system based on water-insoluble-cross-linked-poly(2-hydroxyethyl methacrylate) (PHEMA)-hydrogel beads and two poorly water soluble model drugs: the weakly acidic indomethacin (IND) and the weakly basic posaconazole (PCZ). Our results show clearly for the first time that by using the smallest-particle-size fraction and a high dose (i.e., above the critical dose), it is indeed possible to significantly shorten the duration of sustained supersaturation in the kinetic-solubility profile of an ASD based on a water-insoluble hydrogel carrier, such that it resembles the spring-and-parachute dissolution profiles normally associated with ASDs based on soluble carriers. This generates

  15. Novel Hydrogels from Renewable Resources

    Science.gov (United States)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  16. IPN hydrogels based on PNIPAAm and PVA-Ma networks: characterization through measure of LCST, swelling ratio and mechanical properties - doi: 10.4025/actascitechnol.v34i2.15019

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Wenceslau

    2012-03-01

    Full Text Available IPN hydrogels based on chemically modified poly(vinyl alcohol (or PVA-Ma, with different degrees of substitution (DS, and poly(N-isopropylacrylamide (or PNIPAAm were obtained and characterized through measures of LCST, swelling ratio and mechanical properties. Linear PVA-Ma with several DS were obtained through the chemical reaction of PVA with glycidyl methacrylate (GMA. The DS of various PVA-Ma were determined through 1H NMR spectroscopy. Two steps were used for preparation the PVA-Ma/PNIPAAm membrane hydrogels. In the first step the PVA-Ma hydrogels (using PVA-Ma with different DS were prepared by reaction of double bonds on PVA-Ma, using the persulfate/TEMED system. Using a photoreaction pathway in the second step, PNIPAAm network was prepared within the parent PVA-Ma network at different PVA-Ma/NIPAAm ratios. The studies show that degree of swelling ratio (SR of PVA-Ma/PNIPAAm IPN hydrogels is dependent of temperature. The LCST for each IPN-hydrogel was determined by measuring the intensity of light transmitted through the hydrogel. The LCST of the IPN hydrogels ranged from 34.6 to 38.1oC. The elastic modules of swollen IPN hydrogels increased from 25 to 35oC but decreased by further warming to 45oC. The LCST, swelling ratio and mechanical properties of PVA-Ma/PNIPAAm IPN hydrogels can be tailored by tuning the PVA-Ma/NIPAAm ratio.

  17. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    Science.gov (United States)

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  18. 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels.

    Science.gov (United States)

    Leppiniemi, Jenni; Lahtinen, Panu; Paajanen, Antti; Mahlberg, Riitta; Metsä-Kortelainen, Sini; Pinomaa, Tatu; Pajari, Heikki; Vikholm-Lundin, Inger; Pursula, Pekka; Hytönen, Vesa P

    2017-07-05

    We describe herein a nanocellulose-alginate hydrogel suitable for 3D printing. The composition of the hydrogel was optimized based on material characterization methods and 3D printing experiments, and its behavior during the printing process was studied using computational fluid dynamics simulations. The hydrogel was biofunctionalized by the covalent coupling of an enhanced avidin protein to the cellulose nanofibrils. Ionic cross-linking of the hydrogel using calcium ions improved the performance of the material. The resulting hydrogel is suitable for 3D printing, its mechanical properties indicate good tissue compatibility, and the hydrogel absorbs water in moist conditions, suggesting potential in applications such as wound dressings. The biofunctionalization potential was shown by attaching a biotinylated fluorescent protein and a biotinylated fluorescent small molecule via avidin and monitoring the material using confocal microscopy. The 3D-printable bioactivated nanocellulose-alginate hydrogel offers a platform for the development of biomedical devices, wearable sensors, and drug-releasing materials.

  19. Development of hydrogels composites for potential use as biomaterials

    International Nuclear Information System (INIS)

    Silva, Gabriela T. da; Alves, Natali O.; Schulz, Gracelie A.S.; Fajardo, Andre R.

    2015-01-01

    Hydrogels, three-dimensional polymer networks that can absorb and retain impressive amounts of liquid, have shown a remarkable evolution in the past years. Since their first description, the hydrogels have replaced their inert characteristic by smart properties, which help enlarging the range of applicability of such soft materials in different fields. Hydrogels had been prepared from various polymers (including synthetic or natural or both), which allows obtaining materials with unique and desirable properties. This work deals with the preparation of hydrogels and hydrogel composites based on a synthetic/natural hybrid polymer network filled with bovine bone powder, which is composed mainly by hydroxyapatite (as inorganic phase) and collagen (as organic phase). The resulting materials were characterized by DRX, FTIR and TGA analyses. Additionally, water uptake capacity was estimated for both hydrogels and hydrogels composites samples by swelling assays. (author)

  20. Integration of Self-Assembled Microvascular Networks with Microfabricated PEG-Based Hydrogels.

    Science.gov (United States)

    Cuchiara, Michael P; Gould, Daniel J; McHale, Melissa K; Dickinson, Mary E; West, Jennifer L

    2012-11-07

    Despite tremendous efforts, tissue engineered constructs are restricted to thin, simple tissues sustained only by diffusion. The most significant barrier in tissue engineering is insufficient vascularization to deliver nutrients and metabolites during development in vitro and to facilitate rapid vascular integration in vivo. Tissue engineered constructs can be greatly improved by developing perfusable microvascular networks in vitro in order to provide transport that mimics native vascular organization and function. Here a microfluidic hydrogel is integrated with a self-assembling pro-vasculogenic co-culture in a strategy to perfuse microvascular networks in vitro. This approach allows for control over microvascular network self-assembly and employs an anastomotic interface for integration of self-assembled micro-vascular networks with fabricated microchannels. As a result, transport within the system shifts from simple diffusion to vessel supported convective transport and extra-vessel diffusion, thus improving overall mass transport properties. This work impacts the development of perfusable prevascularized tissues in vitro and ultimately tissue engineering applications in vivo.

  1. Poly-γ-Glutamic Acid Nanoparticles Based Visible Light-Curable Hydrogel for Biomedical Application

    Directory of Open Access Journals (Sweden)

    József Bakó

    2016-01-01

    Full Text Available Nanoparticles and hydrogels have gained notable attention as promising potential for fabrication of scaffolds and delivering materials. Visible light-curable systems can allow for the possibility of in situ fabrication and have the advantage of optimal applicability. In this study nanogel was created from methacrylated poly-gamma-glutamic acid nanoparticles by visible (dental blue light photopolymerization. The average size of the particles was 80 nm by DLS, and the NMR spectra showed that the methacrylation rate was 10%. Polymerization time was 3 minutes, and a stable nanogel with a swelling rate of 110% was formed. The mechanical parameters of the prepared structure (compression stress 0.73 MPa, and Young’s modulus 0.93 MPa can be as strong as necessary in a real situation, for example, in the mouth. A retaining effect of the nanogel was found for ampicillin, and the biocompatibility of this system was tested by Alamar Blue proliferation assay, while the cell morphology was examined by fluorescence and laser scanning confocal microscopy. In conclusion, the nanogel can be used for drug delivery, or it can be suitable for a control factor in different systems.

  2. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.

    Science.gov (United States)

    Pacelli, Settimio; Paolicelli, Patrizia; Casadei, Maria Antonietta

    2015-08-01

    A new derivative of dextran grafted with polyethylene glycol methacrylate through a carbonate bond (DEX-PEG-MA) has been synthesized and characterized. The photo-crosslinking reaction of DEX-PEG-MA allowed the obtainment of biodegradable networks tested for their mechanical and release properties. The new hydrogels were compared with those made of dextran methacrylate (DEX-MA), often employed as drug delivery systems of small molecules. The inclusion of PEG as a spacer created additional interactions among the polymeric chains improving the extreme fragility and lack of hardness typical of gels made of DEX-MA. Moreover, the different behavior in terms of swelling and degradability of the networks was able to affect the release of a model macromolecule over time, making DEX-PEG-MA matrices suitable candidates for the delivery of high molecular weight peptides. Interestingly, the combination of the two dextran derivatives showed intermediate ability to modulate the release of high molecular weight macromolecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chondrocyte differentiation for auricular cartilage reconstruction using a chitosan based hydrogel.

    Science.gov (United States)

    García-López, J; Garciadiego-Cázares, D; Melgarejo-Ramírez, Y; Sánchez-Sánchez, R; Solís-Arrieta, L; García-Carvajal, Z; Sánchez-Betancourt, J I; Ibarra, C; Luna-Bárcenas, G; Velasquillo, C

    2015-12-01

    Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.

  4. A comparative study of graphene-hydrogel hybrid bionanocomposites for biosensing.

    Science.gov (United States)

    Burrs, S L; Vanegas, D C; Rong, Y; Bhargava, M; Mechulan, N; Hendershot, P; Yamaguchi, H; Gomes, C; McLamore, E S

    2015-03-07

    Hydrogels have become increasingly popular as immobilization materials for cells, enzymes and proteins for biosensing applications. Enzymatic biosensors that utilize hydrogel as an encapsulant have shown improvements over other immobilization techniques such as cross linking and covalent bonding. However, to date there are no studies which directly compare multiple hydrogel-graphene nanocomposites using the same enzyme and test conditions. This study compares the performance of four different hydrogels used as protein encapsulants in a mediator-free biosensor based on graphene-nanometal-enzyme composites. Alcohol oxidase (AOx) was encapsulated in chitosan poly-N-isopropylacrylamide (PNIPAAM), silk fibroin or cellulose nanocrystals (CNC) hydrogels, and then spin coated onto a nanoplatinum-graphene modified electrode. The transduction mechanism for the biosensor was based on AOx-catalyzed oxidation of methanol to produce hydrogen peroxide. To isolate the effect(s) of stimulus response on biosensor behavior, all experiments were conducted at 25 °C and pH 7.10. Electroactive surface area (ESA), electrochemical impedance spectroscopy (EIS), sensitivity to methanol, response time, limit of detection, and shelf life were measured for each bionanocomposite. Chitosan and PNIPAAM had the highest sensitivity (0.46 ± 0.2 and 0.3 ± 0.1 μA mM(-1), respectively) and electroactive surface area (0.2 ± 0.06 and 0.2 ± 0.02 cm(2), respectively), as well as the fastest response time (4.3 ± 0.8 and 4.8 ± 1.1 s, respectively). Silk and CNC demonstrated lower sensitivity (0.09 ± 0.02 and 0.15 ± 0.03 μA mM(-1), respectively), lower electroactive surface area (0.12 ± 0.02 and 0.09 ± 0.03 cm(2), respectively), and longer response time (8.9 ± 2.1 and 6.3 ± 0.8 s, respectively). The high porosity of chitosan, PNIPAAM, and silk gels led to excellent transport, which was significantly better than CNC bionanocomposites. Electrochemical performance of CNC bionanocomposites were

  5. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application

    International Nuclear Information System (INIS)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2017-01-01

    Keeping in view the inherent wound healing ability of tragacanth gum (TG), mucoadhesive and gel forming nature of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), in the present work, an attempt has been made to prepare the antibiotic drug ‘gentamicin’ and analgesic drug ‘lidocaine’ loaded sterile TG-PVA-PVP hydrogel dressings for care of wound infection and wound pain together. These polymers were characterized by cryo-SEM, AFM, FTIR, XRD, 13 C NMR, TGA, DSC and swelling studies. Drug release mechanism and kinetic models, network parameters and other properties like haemolysis, mucoadhesion, water vapor permeability, microbial penetration, antioxidant activities and oxygen permeability were also determined. The results showed wound fluid absorption and slow drug release ability of hydrogel films. These polymer films were found to be blood compatible, permeable to water vapor and O 2, and impermeable to microorganism. Further, the synergic effects of mucoadhesive, antimicrobial and antioxidant nature of hydrogel dressings will make them suitable candidate for wound management. - Highlights: • It is radiation formation of sterile Semi-IPN hydrogel wound dressings. • Release of lidocaine and gentamicin can take for care of wound infection and wound pain simultaneously. • Hydrogels were blood compatible and permeable to H 2 O vapor and O 2. • Release of drugs occurred through non-Fickian diffusion mechanism. • Hydrogels were mucoadhesive and antioxidant nature.

  6. One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial

    International Nuclear Information System (INIS)

    Paulino, Alexandre T.; Guilherme, Marcos R.; Almeida, Elisangela A.M.S. de; Pereira, Antonio G.B.; Muniz, Edvani C.; Tambourgi, Elias B.

    2009-01-01

    This describes the cross-linking/co-polymerization reaction of chitosan (CS), acrylic acid (AAc), and N, N'-methylenebisacrylamide (MBA) in the presence of citrate-covered-γ-Fe 2 O 3 nanoparticules. A gelling process was verified by means of spectroscopic methods; Fourier transform infrared (FT-IR) and solid-state 13 C-CP/MAS nuclear magnetic resonance (NMR). The corresponding signals of the gelling process, in the 13 C NMR spectra, for the magnetic hydrogel were shifted to lower values due to embedding of the citrate-covered-γ-Fe 2 O 3 nanoparticules. The X-ray diffraction (XRD) confirmed that the crystallinity of the magnetic hydrogel exhibited a different crystalline structure to that without magnetic properties. The Moessbauer and magnetization analysis revealed that the magnetic hydrogel displays a high lattice strain, due to bonded iron atom covalence and superparamagnetism. From scanning electronic microscope (SEM) micrographs, no separation phase coexists between the magnetic nanoparticules and cross-linked hydrogel, indicating an excellent dispersion throughout the hydrogel. The swelling rate was dependent on the cross-linking degree of the hydrogel and ionic strength of the aqueous solution.

  7. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    Science.gov (United States)

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  8. Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogel-Based Chemo-Electro Signal Transduction for Molecular Communication.

    Science.gov (United States)

    Liu, Yi; Tsao, Chen-Yu; Kim, Eunkyoung; Tschirhart, Tanya; Terrell, Jessica L; Bentley, William E; Payne, Gregory F

    2017-01-01

    A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design of a single-step immunoassay principle based on the combination of an enzyme-labeled antibody release coating and a hydrogel copolymerized with a fluorescent enzyme substrate in a microfluidic capillary device.

    Science.gov (United States)

    Wakayama, Hideki; Henares, Terence G; Jigawa, Kaede; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-11-21

    A combination of an enzyme-labeled antibody release coating and a novel fluorescent enzyme substrate-copolymerized hydrogel in a microchannel for a single-step, no-wash microfluidic immunoassay is demonstrated. This hydrogel discriminates the free enzyme-conjugated antibody from an antigen-enzyme-conjugated antibody immunocomplex based on the difference in molecular size. A selective and sensitive immunoassay, with 10-1000 ng mL(-1) linear range, is reported.

  10. A study on the effect of the concentration of N,N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel

    Science.gov (United States)

    Ashri, Airul; Lazim, Azwan

    2014-09-01

    The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.

  11. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis

    DEFF Research Database (Denmark)

    Cai, Yunpeng; López-Ruiz, Elena; Wengel, Jesper

    2017-01-01

    Hyaluronic acid (HA) is an attractive biomaterial for osteoarthritis (OA) treatment due to inherent functional and compatibility properties as an endogenous knee joint component. In this work, we describe a HA-based hydrogel with the dual functionality of increased CD44-dependent chondrocyte......:3) for identifying designs displaying optimal engagement of OA patient-derived CD44-expressing chondrocytes. Correlation was found between cell binding and CD44 expression, with maximal binding exhibited at a HA/chitosan ratio of 7:3, that was 181% higher than CD44-negative MCF-7 cell control cells. Transfection...... agent-free uptake into OA chondrocytes of fluorescent 13-mer DNA oligonucleotides with a flanked locked nucleic acid (LNA) gapmer design, in contrast to naked siRNA, was demonstrated by confocal and flow cytometric analysis. A sustained and complete release over 5days was found with the 7:3 hydrogel...

  12. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    Science.gov (United States)

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  13. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Ibáñez-Fonseca, Arturo; Ramos, Teresa L; González de Torre, Israel; Sánchez-Abarca, Luis Ignacio; Muntión, Sandra; Arias, Francisco Javier; Del Cañizo, María Consuelo; Alonso, Matilde; Sánchez-Guijo, Fermín; Rodríguez-Cabello, José Carlos

    2018-03-01

    Biocompatibility studies, especially innate immunity induction, in vitro and in vivo cytotoxicity, and fibrosis, are often lacking for many novel biomaterials including recombinant protein-based ones, such as elastin-like recombinamers (ELRs), and has not been extensively explored in the scientific literature, in contrast to traditional biomaterials. Herein, we present the results from a set of experiments designed to elucidate the preliminary biocompatibility of 2 types of ELRs that are able to form extracellular matrix-like hydrogels through either physical or chemical cross-linking both of which are intended for different applications in tissue engineering and regenerative medicine. Initially, we present in vitro cytocompatibility results obtained upon culturing human umbilical vein endothelial cells on ELR substrates, showing optimal proliferation up to 9 days. Regarding in vivo cytocompatibility, luciferase-expressing hMSCs were viable for at least 4 weeks in terms of bioluminescence emission when embedded in ELR hydrogels and injected subcutaneously into immunosuppressed mice. Furthermore, both types of ELR-based hydrogels were injected subcutaneously in immunocompetent mice and serum TNFα, IL-1β, IL-4, IL-6, and IL-10 concentrations were measured by enzyme-linked immunosorbent assay, confirming the lack of inflammatory response, as also observed upon macroscopic and histological evaluation. All these findings suggest that both types of ELRs possess broad biocompatibility, thus making them very promising for tissue engineering and regenerative medicine-related applications. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    Science.gov (United States)

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  15. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N

    2018-03-01

    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Prospective, double-blinded, randomised controlled trial assessing the effect of an Octenidine-based hydrogel on bacterial colonisation and epithelialization of skin graft wounds in burn patients.

    Science.gov (United States)

    W, Eisenbeiß; F, Siemers; G, Amtsberg; P, Hinz; B, Hartmann; T, Kohlmann; A, Ekkernkamp; U, Albrecht; O, Assadian; A, Kramer

    2012-01-01

    Moist wound treatment improves healing of skin graft donor site wounds. Microbial colonised wounds represent an increased risk of wound infection; while antimicrobially active, topical antiseptics may impair epithelialization. The aim of this prospective randomised controlled clinical trial was to examine the influence of an Octenidine-dihydrochloride (OCT) hydrogel on bacterial colonisation and epithelialization of skin graft donor sites. The study was designed as a randomised, double-blinded, controlled clinical trial. Skin graft donor sites from a total of 61 patients were covered either with 0.05% OCT (n=31) or an OCT-free placebo wound hydrogel (n=30). Potential interaction with wound healing was assessed by measuring the time until 100% re-epithelialization. In addition, microbial wound colonisation was quantitatively determined in all skin graft donor sites. There was no statistically significant difference in the time for complete epithelialization of skin graft donor sites in the OCT and the placebo group (7.3±0.2 vs. 6.9±0.2 days; p=0.236). Microbial wound colonisation was significantly lower in the OCT group than in the placebo group (p=0.014). The OCT-based hydrogel showed no delay in wound epithelialization and demonstrated a significantly lower bacterial colonisation of skin graft donor site wounds.

  17. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels.

    Science.gov (United States)

    Garnica-Palafox, I M; Sánchez-Arévalo, F M

    2016-10-20

    The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process.

    Science.gov (United States)

    Farhat, Wissam; Venditti, Richard; Mignard, Nathalie; Taha, Mohamed; Becquart, Frederic; Ayoub, Ali

    2017-11-01

    Currently, there is very strong interest to replace synthetic polymers with biological macromolecules of natural source for applications that interact with humans or the environment. This research describes the development of drug delivery hydrogels from natural polymers, starch, lignin and hemicelluloses by means of reactive extrusion. The hydrogels show a strong swelling ability dependent on pH which may be used to control diffusion rates of water and small molecules in and out of the gel. Also the hydrogels degradation rates were studied in a physiological solution (pH 7.4) for 15days. The results indicated that for all three macromolecules, lower molecular weight and higher level of plasticizer both increase the rate of weight loss of the hydrogels. The degradation was extremely reduced when the polymers were extruded in the presence of a catalyst. Finally the dynamic mechanical analysis revealed that the degradation of the hydrogels induce a significant reduction in the compressive modulus. This study demonstrates the characteristics and potential of natural polymers as a drug release system. Published by Elsevier B.V.

  19. Nanostructured 3D-porous graphene hydrogel based Ti/Sb-SnO2-Gr electrode with enhanced electrocatalytic activity.

    Science.gov (United States)

    Asim, Sumreen; Zhu, Yunqing; Rana, Masud; Yin, Jiao; Shah, Muhammad Wajid; Li, Yingxuan; Wang, Chuanyi

    2017-02-01

    Nanostructured highly porous 3D-Ti/Sb-SnO 2 -Gr electrode, based on 3D porous graphene hydrogel was fabricated via a fast-evaporation technique through layer by layer (LBL) deposition. The 3D pores are uniformly distributed on the high fidelity of substrate with pore sizes of 7-12 nm, as confirmed by SEM analysis. Compared to Ti/Sb-SnO 2 electrode, the fabricated 3D porous electrode possesses high oxygen evolution potential (2.40 V), smaller charge transfer resistance (29.40 Ω cm -2 ), higher porosity (0.90), enhanced roughness factor (181), and larger voltammetric charge value (57.4 mC cm -2 ). Electrocatalytic oxidation of Rhodamine B (RhB) was employed to evaluate the efficiency of the fabricated 3D-Ti/Sb-SnO 2 -Gr anode. The results show that the electrochemical reaction follows pseudo first order kinetics with rate constant (k) value of 4.93 × 10 -2 min -1 , which is about 3.91 times higher compared to flat Ti/Sb-SnO 2 . The fabricated electrode demonstrates better stability and low specific energy consumption signifying its potential usage in electrocatalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DOE Optimization of Nano-based Carrier of Pregabalin as Hydrogel: New Therapeutic & Chemometric Approaches for Controlled Drug Delivery Systems

    Science.gov (United States)

    Arafa, Mona G.; Ayoub, Bassam M.

    2017-01-01

    Niosomes entrapping pregabalin (PG) were prepared using span 60 and cholesterol in different molar ratios by hydration method, the remaining PG from the hydrating solution was separated from vesicles by freeze centrifugation. Optimization of nano-based carrier of pregabalin (PG) was achieved. Quality by Design strategy was successfully employed to obtain PG-loaded niosomes with the desired properties. The optimal particle size, drug release and entrapment efficiency were attained by Minitab® program using design of experiment (DOE) that predicted the best parameters by investigating the combined effect of different factors simultaneously. Pareto chart was used in the screening step to exclude the insignificant variables while response surface methodology (RSM) was used in the optimization step to study the significant factors. Best formula was selected to prepare topical hydrogels loaded with niosomal PG using HPMC and Carbopol 934. It was verified, by means of mechanical and rheological tests, that addition of the vesicles to the gel matrix affected significantly gel network. In vitro release and ex vivo permeation experiments were carried out. Delivery of PG molecules followed a Higuchi, non Fickian diffusion. The present work will be of interest for pharmaceutical industry as a controlled transdermal alternative to the conventional oral route.

  1. Synthesis and characterization of new methacrylate based hydrogels Síntese e caracterização de novos hidrogéis à base de metacrilato

    Directory of Open Access Journals (Sweden)

    Paula Ferreira

    2006-09-01

    Full Text Available Hydrogels have been used for several applications, including production of contact lenses, sanitary products and materials for wound dressing. The aim of this work was the development of new methacrylate based hydrogels. These materials present the advantage of being easily produced with different compositions and consequently different permeability and diffusion patterns. Therefore it becomes possible to synthesize hydrogels that can be used to immobilize a variety of compounds, such as drugs, proteins or even cells. During this work new polymers based on methacrylate monomers were prepared. Their characterization was accomplished by several techniques, e.g. Fourier Transform Infrared Spectroscopy (FTIR, swelling measurement, Differential Scanning Calorimetry (DSC and evaluation of mechanical properties. Their subacute subcutaneous toxicity was also evaluated by using Wistar rats.Hidrogéis têm sido utilizados para diversas aplicações, incluindo produção de lentes de contato, produtos sanitários e materiais para encerramento de ferimentos. O objetivo deste trabalho consistiu no desenvolvimento de novos hidrogéis a base de metacrilato. Estes materiais apresentam a vantagem de serem facilmente produzidos com diferentes composições e conseqüentemente com distintas permeabilidades e padrões de difusão. Por este motivo, torna-se possível sintetizar hidrogéis que possam ser usados para imobilizar uma grande variedade de compostos, tais como fármacos, proteínas ou mesmo células e tecidos. Neste trabalho foram preparados diferentes polímeros baseados em monômeros de metacrilato. A sua caracterização foi realizada através de diferentes técnicas, como Espectroscopia no Infravermelho com Transformada de Fourier (FTIR, avaliação da capacidade de intumescimento, Calorimetria Diferencial de Varredura (DSC e avaliação das propriedades mecânicas. A sua toxicidade subaguda subcutânea foi também determinada utilizando ratos Wistar.

  2. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel

    Directory of Open Access Journals (Sweden)

    Farzaneh Amiri

    2016-11-01

    Full Text Available In recent years, the main objective of developing new hydrogel systems has been to convert biomass into environmentally-friendly hydrogels. Hybrid hydrogels are usually prepared by graft copolymerization of acrylic monomers onto natural polymers or biomass. In this study, sugarcane bagasse was used to prepare semi-synthetic hybrid hydrogels without delignification, which is a costly and timeconsuming process. Sugarcane bagasse as a source of polysaccharide was modified using polymer microgels based on acrylic monomers such as acrylic acid, acrylamide and 2-acrylamido-2-methyl propane sulfonic acid which were prepared through inverse emulsion polymerization. By this process, biomass as a low-value by-product was converted into a valuable semi-synthetic hydrogel. In the following, the effect of latex type¸ the aqueous-to-organic phase ratio in the polymer latex, time and temperature of modification reaction on the swelling capacity of the hybrid hydrogel were evaluated. The chemical reaction between sugarcane bagasse and acrylic latex was carried out during heating of the modified bagasse which led to obtain a semisynthetic hydrogel with 60% natural components and 40% synthetic components. Among the latexes with different structures, poly(AA-NaAA-AM-AMPS was the most suitable polymer latex for the conversion of biomass into hydrogel. The bagasse modified with this latex had a water absorption capacity up to 112 g/g, while the water absorption capacity of primary sugarcane bagasse was only equal to 3.6 g/g. The prepared polymer hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR, dynamic-mechanical thermal analysis (DMTA, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and determination of the amount of swelling capacity.

  3. Progress in lignin hydrogels and nanocomposites for water purification

    DEFF Research Database (Denmark)

    Tamulevicius, Sigitas; Thakur, Sourbh; Govender, Penny P.

    2017-01-01

    -based hydrogels have shown excellent performance for removal of various pollutants from water. The adsorption properties of lignin based hydrogels can further be improved by using a combination of nanomaterials and lignin that results in promising hydrogel nanocomposites. In nature, the most abundant structures...... are formed by the combination of lignin, cellulose and hemicelluloses. In this article, we have attempted to comprehensively review the research work carried out in the direction of usage of lignin-based hydrogel for removal of toxic pollutants including metal ions and dyes....

  4. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application

    Science.gov (United States)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2017-06-01

    Keeping in view the inherent wound healing ability of tragacanth gum (TG), mucoadhesive and gel forming nature of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), in the present work, an attempt has been made to prepare the antibiotic drug 'gentamicin' and analgesic drug 'lidocaine' loaded sterile TG-PVA-PVP hydrogel dressings for care of wound infection and wound pain together. These polymers were characterized by cryo-SEM, AFM, FTIR, XRD, 13C NMR, TGA, DSC and swelling studies. Drug release mechanism and kinetic models, network parameters and other properties like haemolysis, mucoadhesion, water vapor permeability, microbial penetration, antioxidant activities and oxygen permeability were also determined. The results showed wound fluid absorption and slow drug release ability of hydrogel films. These polymer films were found to be blood compatible, permeable to water vapor and O2, and impermeable to microorganism. Further, the synergic effects of mucoadhesive, antimicrobial and antioxidant nature of hydrogel dressings will make them suitable candidate for wound management.

  5. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid hydrogel

    Directory of Open Access Journals (Sweden)

    Cho SH

    2017-03-01

    Full Text Available Sun-Hee Cho,1,* Ahreum Kim,1,* Woojung Shin,2 Min Beom Heo,1 Hyun Jong Noh,1 Kwan Soo Hong,3,4 Jee-Hyun Cho,3,4 Yong Taik Lim1,2 1SKKU Advanced Institute of Nanotechnology (SAINT, 2School of Chemical Engineering, Sungkyunkwan University, Suwon, 3Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 4Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid (γ-PGA. By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR fluorophore, indocyanine green (ICG, which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox and hydrophobic MnFe2O4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe2O4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe2O4 nanoparticles could be modulated. The experimental results suggest that

  6. Polyvinyl alcohol hydrogels for iontohporesis

    Science.gov (United States)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  7. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  8. Antifouling properties of hydrogels

    International Nuclear Information System (INIS)

    Murosaki, Takayuki; Gong, Jian Ping; Ahmed, Nafees

    2011-01-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris. (topical review)

  9. Antifouling properties of hydrogels

    Directory of Open Access Journals (Sweden)

    Takayuki Murosaki, Nafees Ahmed and Jian Ping Gong

    2011-01-01

    Full Text Available Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  10. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.

    Science.gov (United States)

    Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao

    2017-11-30

    Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.

  11. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses

    NARCIS (Netherlands)

    Douglas, T.E.; Piwowarczyk, W.; Pamula, E.; Liskova, J.; Schaubroeck, D.; Leeuwenburgh, S.C.; Brackman, G.; Balcaen, L.; Detsch, R.; Declercq, H.; Cholewa-Kowalska, K.; Dokupil, A.; Cuijpers, V.M.; Vanhaecke, F.; Cornelissen, R.; Coenye, T.; Boccaccini, A.R.; Dubruel, P.

    2014-01-01

    Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three

  12. Interpenetrating polymer network hydrogels based on poly(2-hydroxyethyl methacrylate): morphology effects on formation, swelling, optical, and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Dušková-Smrčková, Miroslava; Sadakbayeva, Zhansaya; Steinhart, Miloš; Šturcová, Adriana; Pfleger, Jiří; Dušek, Karel

    2017-01-01

    Roč. 254, 20 August (2017), s. 40 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : IPN * poly(2-hydroxyethyl methacrylate) * hydrogel Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  13. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    Science.gov (United States)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  14. A study on the adsorption of methylene blue onto gum ghatti/TiO2nanoparticles-based hydrogel nanocomposite

    CSIR Research Space (South Africa)

    Mittal, Hemant

    2016-07-01

    Full Text Available The objective of this work was to study the isotherm and kinetic models for the adsorption of methylene blue (MB) onto a TiO(sub2) nanoparticle (TiO(sub2)NP)-containing hydrogel nanocomposite (HNC) of polyacrylamide-grafted gum ghatti (PAAm...

  15. Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties

    CSIR Research Space (South Africa)

    Mittal, H

    2015-10-01

    Full Text Available removal of cationic dyes from the aqueous solutions and it was found to adsorb 96% of malachite green and 99% of methyl violet. Finally, the hydrogel polymer was subjected to biodegradation using the composting method and 91.77% degradation was achieved...

  16. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting

    NARCIS (Netherlands)

    Mouser, Vivian H M; Melchels, Ferry P W; Visser, Jetze; Dhert, Wouter J A; Gawlitta, Debby; Malda, Jos

    2016-01-01

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the

  17. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses

    Czech Academy of Sciences Publication Activity Database

    Douglas, T.E.L.; Piwowarczyk, W.; Pamula, E.; Lišková, Jana; Schaubroeck, D.; Leeuwenburgh, S. C. G.; Brackman, G.; Balcaen, L.; Detsch, R.; Declercq, H.; Cholewa-Kowalska, K.; Dokupil, A.; Cuijpers, V.M.J.I.; Vanhaecke, F.; Cornelissen, R.; Coenye, T.; Boccaccini, A. R.; Dubruel, P.

    2014-01-01

    Roč. 9, č. 4 (2014), 045014 ISSN 1748-6041 R&D Projects: GA MŠk(CZ) EE2.3.30.0025; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : hydrogel * bone tissue engineering * gellan gum * bioglass Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.697, year: 2014

  18. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications.

    Science.gov (United States)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2016-07-01

    Present article discusses synthesis and characterization of the sterile and pure hydrogel wound dressings which were prepared through radiation method by using polyvinyl alcohol (PVA), tragacanth gum (TG) and sodium alginate (SA). The polymer films were characterized by SEM, Cryo-SEM, FTIR, solid state C(13) NMR and XRD, TGA, and DSC. Some important biological properties such as O2 permeability, water vapor transmission rate, microbial permeability, haemolysis, thrombogenic behavior, antioxidant activity, bio-adhesion and mechanical properties were also studied. The hydrogel film showed thrombogenicity (82.43±1.54%), haemolysis (0.83±0.09%), oxygen permeability (6.433±0.058mg/L) and water vapor permeability (197.39±25.34g/m(2)/day). Hydrogel films were found biocompatible and impermeable to microbes. The release of antibiotic drug moxifloxacin occurred through non-Fickian mechanism and release profile was best fitted in Hixson-Crowell model for drug release. Overall, these results indicate the suitability of these hydrogels in wound dressing applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Miniaturized Carbon Dioxide Gas Sensor Based on Sensing of pH-Sensitive Hydrogel Swelling with a Pressure Sensor

    NARCIS (Netherlands)

    Herber, S.; Bomer, Johan G.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    A measurement concept has been realized for the detection of carbon dioxide, where the CO2 induced pressure generation by an enclosed pH-sensitive hydrogel is measured with a micro pressure sensor. The application of the sensor is the quantification of the partial pressure of CO2 (Pco2) in the

  20. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.

    Science.gov (United States)

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-08-28

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two "legs" for walking. The hydrogel walkers can reversibly bend and stretch via repeated "on/off" electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two "legs" to achieve one-directional walking motion on a rough surface via repeated "on/off" electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.

  1. Stimuli-responsive hydrogels in drug delivery and tissue engineering.

    Science.gov (United States)

    Sood, Nikhil; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2016-01-01

    Hydrogels are the three-dimensional network structures obtained from a class of synthetic or natural polymers which can absorb and retain a significant amount of water. Hydrogels are one of the most studied classes of polymer-based controlled drug release. These have attracted considerable attention in biochemical and biomedical fields because of their characteristics, such as swelling in aqueous medium, biocompatibility, pH and temperature sensitivity or sensitivity towards other stimuli, which can be utilized for their controlled zero-order release. The hydrogels are expected to explore new generation of self-regulated delivery system having a wide array of desirable properties. This review highlights the exciting opportunities and challenges in the area of hydrogels. Here, we review different literatures on stimuli-sensitive hydrogels, such as role of temperature, electric potential, pH and ionic strength to control the release of drug from hydrogels.

  2. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  3. Comparison of intraocular pressure measurement with Scheimpflug-based noncontact tonometer with and without hydrogel contact lenses.

    Science.gov (United States)

    Kumar, Mukesh; Shetty, Rohit; Jayadev, Chaitra; Dutta, Debarun; Nicolsan, Maneck D; Nagaraj, Sriharsha; Kumar, Rajesh S

    2015-04-01

    The objective was to determine the repeatability of intraocular pressure (IOP) measurements made through a soft contact lens (CL) using the Scheimpflug noncontact tonometry in healthy subjects. This prospective, randomized, single-center study included one eye of 88 subjects (40 male and 48 female). Only participants without glaucoma or any other ocular pathology were included in this study. Three consecutive IOP measurements by the Scheimpflug noncontact tonometry were performed with and without daily disposable hydrogel CLs (-0.50 DS) (Dailies-nelfilcon A, 69% water, 8.7 mm base curve, 14 mm diameter, center thickness 0.10 mm) by a single operator. To avoid any bias arising from diurnal variation, all measurements were made at a similar time of day (11 am ± 1 h). The repeatability of IOP measurements using the Scheimpflug noncontact tonometry with and without CLs was evaluated using Pearson's correlation analysis. Bland-Altman plotting was used to assess the limits of agreement between the measurements with and without CLs. The mean (± standard deviation) IOPs with and without CL were 13.80 ± 2.70 and 13.79 ± 2.54 mm of Hg respectively. The mean difference was 0.01 ± 0.16 (95% confidence interval, +1.97 to - 2.00) mm Hg. Statistical analysis via paired t-test showed no statistical difference between the two groups with (P = 0.15). A good correlation was found for IOP measurements with and without CL (r = 0.93, P < 0.001). Good test-retest reliability was found when IOP was measured with and without CL. There was no significant difference between IOP measured with and without CLs by Scheimpflug noncontact tonometry.

  4. Comparison of intraocular pressure measurement with Scheimpflug-based noncontact tonometer with and without hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2015-01-01

    Full Text Available Objectives: The objective was to determine the repeatability of intraocular pressure (IOP measurements made through a soft contact lens (CL using the Scheimpflug noncontact tonometry in healthy subjects. Methods: This prospective, randomized, single-center study included one eye of 88 subjects (40 male and 48 female. Only participants without glaucoma or any other ocular pathology were included in this study. Three consecutive IOP measurements by the Scheimpflug noncontact tonometry were performed with and without daily disposable hydrogel CLs (−0.50 DS (Dailies-nelfilcon A, 69% water, 8.7 mm base curve, 14 mm diameter, center thickness 0.10 mm by a single operator. To avoid any bias arising from diurnal variation, all measurements were made at a similar time of day (11 am ± 1 h. The repeatability of IOP measurements using the Scheimpflug noncontact tonometry with and without CLs was evaluated using Pearson′s correlation analysis. Bland-Altman plotting was used to assess the limits of agreement between the measurements with and without CLs. Results: The mean (± standard deviation IOPs with and without CL were 13.80 ± 2.70 and 13.79 ± 2.54 mm of Hg respectively. The mean difference was 0.01 ± 0.16 (95% confidence interval, +1.97 to − 2.00 mm Hg. Statistical analysis via paired t-test showed no statistical difference between the two groups with (P = 0.15. A good correlation was found for IOP measurements with and without CL (r = 0.93, P < 0.001. Good test-retest reliability was found when IOP was measured with and without CL. Conclusion: There was no significant difference between IOP measured with and without CLs by Scheimpflug noncontact tonometry.

  5. Free radical scavenging injectable hydrogels for regenerative therapy

    International Nuclear Information System (INIS)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-01-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07 kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. - Graphical abstract: Injectable hydrogel with inherent free radical scavenging property for regenerative tissue engineering application. - Highlights: • Novel injectable hydrogel (PEAX-P) is prepared using D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer

  6. Free radical scavenging injectable hydrogels for regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Komeri, Remya [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India); Thankam, Finosh Gnanaprakasam [Dept. of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha NE68178 (United States); Muthu, Jayabalan, E-mail: mjayabalan52@gmail.com [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Polymer Science Division, BMT Wing, Thiruvananthapuram 695 012, Kerala State (India)

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07 kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. - Graphical abstract: Injectable hydrogel with inherent free radical scavenging property for regenerative tissue engineering application. - Highlights: • Novel injectable hydrogel (PEAX-P) is prepared using D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer

  7. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  8. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding.

    Science.gov (United States)

    Li, Shubin; Wang, Lu; Yu, Xuemei; Wang, Chengli; Wang, Zhenyu

    2018-01-01

    Hydrogels, promising biological materials, need to have both strong mechanical properties and also inherent self-healing properties. In this work a double cross-linked network (DN) hydrogel was designed and prepared by combining a Diels-Alder click reaction and coordination effects. This DN hydrogel had good thermodynamic properties, anti-EDTA performance and self-healing properties. In addition, the mechanical properties, swelling properties and surface morphology of DN hydrogels can be controlled by adjusting the ratio of Fe 3+ -catechol. The adjustment of pH value can change the color, crosslinking mode and mechanical properties of the DN hydrogel. This smart hydrogel created from DA click chemistry and coordination effects has significance for guiding the design of new hydrogels with good mechanical properties, self-healing properties and controlled cross-link density. Copyright © 2017. Published by Elsevier B.V.

  9. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Elbarbary, Ahmed M.; Ghobashy, Mohamed Mohamady [Atomic Energy Authority, Nasr City (Egypt). National Center for Radiation Research and Technology (NCRTT)

    2017-07-01

    Superabsorbent hydrogels (PVP/CMC) based on polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose (CMC) of different copolymer compositions were prepared by gamma radiation. Factors affecting the gel content (%) and the swelling ratio (g/g) of hydrogel such as irradiation dose as well as copolymer composition were investigated. With increasing the CMC content in PVP/CMC hydrogels, increases the swelling and improves the water retention capability. The high swelling ratio was observed at copolymer composition of PVP/CMC (60/40). Fast swelling of the hydrogels was obtained after 20 min. The effect of different fertilizers and buffers of different pH's on equilibrium swelling of hydrogels was investigated. Fertilizers such as urea, monopotassium-phosphate (MPK), and nitrogen-phosphate-potassium (NPK) were loaded onto the hydrogel to supply nitrogen, potassium and phosphorous nutrients. PVP/CMC hydrogels retained 28-36% after 72 h and slow retention was noticed up to 9 days. The swelling of hydrogel in fertilizer solutions is lower than that in water. The hydrogels showed adsorption desorption of fertilizers which governs by slow release property. The release rate of urea is much higher 10 times than that of phosphate. After 3 days, urea released 60%, while phosphate released 10-12%. The applicability of PVP/CMC hydrogels in the agricultural fields shows greater growth effect on zea maize plants. The growth of zea maize plant in soil mixed with PVP/CMC hydrogels loaded fertilizers is greater than untreated soil. The slow release fertilize, the high swelling and the slow water retention behaviors of PVP/CMC hydrogels encourage their use as safer release systems for fertilizers and as soil conditioner in agricultural applications.

  10. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation

    International Nuclear Information System (INIS)

    Elbarbary, Ahmed M.; Ghobashy, Mohamed Mohamady

    2017-01-01

    Superabsorbent hydrogels (PVP/CMC) based on polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose (CMC) of different copolymer compositions were prepared by gamma radiation. Factors affecting the gel content (%) and the swelling ratio (g/g) of hydrogel such as irradiation dose as well as copolymer composition were investigated. With increasing the CMC content in PVP/CMC hydrogels, increases the swelling and improves the water retention capability. The high swelling ratio was observed at copolymer composition of PVP/CMC (60/40). Fast swelling of the hydrogels was obtained after 20 min. The effect of different fertilizers and buffers of different pH's on equilibrium swelling of hydrogels was investigated. Fertilizers such as urea, monopotassium-phosphate (MPK), and nitrogen-phosphate-potassium (NPK) were loaded onto the hydrogel to supply nitrogen, potassium and phosphorous nutrients. PVP/CMC hydrogels retained 28-36% after 72 h and slow retention was noticed up to 9 days. The swelling of hydrogel in fertilizer solutions is lower than that in water. The hydrogels showed adsorption desorption of fertilizers which governs by slow release property. The release rate of urea is much higher 10 times than that of phosphate. After 3 days, urea released 60%, while phosphate released 10-12%. The applicability of PVP/CMC hydrogels in the agricultural fields shows greater growth effect on zea maize plants. The growth of zea maize plant in soil mixed with PVP/CMC hydrogels loaded fertilizers is greater than untreated soil. The slow release fertilize, the high swelling and the slow water retention behaviors of PVP/CMC hydrogels encourage their use as safer release systems for fertilizers and as soil conditioner in agricultural applications.

  11. In situ observation of a hydrogel-glass interface during sliding friction

    OpenAIRE

    Yamamoto, Tetsurou; Kurokawa, Takayuki; Ahmed, Jamil; Kamita, Gen; Yashima, Shintaro; Furukawa, Yuichiro; Ota, Yuko; Furukawa, Hidemitsu; Gong, Jian Ping

    2014-01-01

    Direct observation of hydrogel contact with a solid surface in water is indispensable for understanding the friction, lubrication, and adhesion of hydrogels under water. However, this is a difficult task since the refractive index of hydrogels is very close to that of water. In this paper, we present a novel method to in situ observe the macroscopic contact of hydrogels with a solid surface based on the principle of critical refraction. This method was applied to investigate the sliding frict...

  12. Thermosensitive copolymeric hydrogels with the regulated temperature of a phase transition

    International Nuclear Information System (INIS)

    Samchenko, Yu.M.; Konovalova, V.V.; Korotich, E.I.; Poltoratskaya, T.P.; Pobegaj, A.A.; Burban, A.F.; Ul'berg, Z.R.; Samchenko, Yu.M.; Konovalova, V.V.; Korotich, E.I.; Poltoratskaya, T.P.; Pobegaj, A.A.; Burban, A.F.; Ul'berg, Z.R.

    2011-01-01

    The work is devoted to the methods of obtaining the thermosensitive copolymeric hydrogels based on the NIPAAm with acrylic acid and its derivatives such as acrylamide, acrylonitrile, and methylacrylate. The mechanisms of thermoinitiated phase transitions in hydrogel matrices and the regularities of the thermoinitiated release of model compounds and drugs (aniline, novocaine, and sodium diclofenac) from copolymeric hydrogel are investigated.

  13. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  14. Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica–hydrogel hybrid microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu (China); Mu, Zhongde; Shangguan, Fengqi [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu (China); Liu, Ran; Pu, Yuepu [Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu (China); Yin, Lihong, E-mail: lhyin@seu.edu.cn [Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu (China)

    2014-05-01

    Highlights: • Silica–hydrogel hybrid microbeads were used to develop suspension array. • The results in detecting pesticides agree well with those from LC–MS/MS. • The method showed the good capability for multiplex analysis of pesticides residues. - Abstract: A technique for multiplex detection of organophosphorus pesticides and carbamate pesticides has been developed using a suspension array based on silica–hydrogel hybrid microbeads (SHHMs). The main advantage of SHHMs, which consist of both silica and hydrogel materials, is that they not only could be distinguished by their characteristic reflection peak originating from the stop-band of the photonic crystal but also have low non-specific adsorption of proteins. Using fluorescent immunoassay, the LODs for fenitrothion, chlorpyrifos-methyl, fenthion, carbaryl and metolcarb were measured to be 0.02 ng/mL, 0.012 ng/mL, 0.04 ng/mL, 0.05 ng/mL and 0.1 ng/mL, respectively, all of which are much lower than the maximum residue limits, as reported in the European Union pesticides database. All the determination coefficients for these five pesticides were greater than 0.99, demonstrating excellent correlations. The suspension array was specific and had no significant cross-reactivity with other chemicals. The results for the detection of pesticide residues collected from agricultural samples using this method agree well with those from liquid chromatography–tandem mass spectrometry. Our results showed that this simple method is suitable for simultaneous detection of these five pesticides residues in fruits and vegetables.

  15. Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica–hydrogel hybrid microbeads

    International Nuclear Information System (INIS)

    Wang, Xuan; Mu, Zhongde; Shangguan, Fengqi; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2014-01-01

    Highlights: • Silica–hydrogel hybrid microbeads were used to develop suspension array. • The results in detecting pesticides agree well with those from LC–MS/MS. • The method showed the good capability for multiplex analysis of pesticides residues. - Abstract: A technique for multiplex detection of organophosphorus pesticides and carbamate pesticides has been developed using a suspension array based on silica–hydrogel hybrid microbeads (SHHMs). The main advantage of SHHMs, which consist of both silica and hydrogel materials, is that they not only could be distinguished by their characteristic reflection peak originating from the stop-band of the photonic crystal but also have low non-specific adsorption of proteins. Using fluorescent immunoassay, the LODs for fenitrothion, chlorpyrifos-methyl, fenthion, carbaryl and metolcarb were measured to be 0.02 ng/mL, 0.012 ng/mL, 0.04 ng/mL, 0.05 ng/mL and 0.1 ng/mL, respectively, all of which are much lower than the maximum residue limits, as reported in the European Union pesticides database. All the determination coefficients for these five pesticides were greater than 0.99, demonstrating excellent correlations. The suspension array was specific and had no significant cross-reactivity with other chemicals. The results for the detection of pesticide residues collected from agricultural samples using this method agree well with those from liquid chromatography–tandem mass spectrometry. Our results showed that this simple method is suitable for simultaneous detection of these five pesticides residues in fruits and vegetables

  16. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes.

    Science.gov (United States)

    Kulinowski, Piotr; Dorozyński, Przemysław; Jachowicz, Renata; Weglarz, Władysław P

    2008-11-04

    Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.

  17. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 7: Methods of preparation and comparison of resulting physical properties

    Czech Academy of Sciences Publication Activity Database

    Přádný, Martin; Šlouf, Miroslav; Martinová, L.; Michálek, Jiří

    -, 043 (2010), s. 1-12 ISSN 1618-7229 R&D Projects: GA ČR GA304/07/1129; GA ČR GA106/09/1000 Institutional research plan: CEZ:AV0Z40500505 Keywords : porous hydrogels * 2-hydroxyethyl methacrylate * porosity Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.574, year: 2010 http://www.e-polymers.org/journal/papers/mpradny_130410.pdf

  18. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    KAUST Repository

    Tai, Yanlong; Mulle, Matthieu; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube

  19. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles

    Science.gov (United States)

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  20. Hydrogel Based 3-Dimensional (3D System for Toxicity and High-Throughput (HTP Analysis for Cultured Murine Ovarian Follicles.

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    Full Text Available Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN, preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR. The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased

  1. A smart hydrogel-based time bomb triggers drug release mediated by pH-jump reaction

    Directory of Open Access Journals (Sweden)

    Prapatsorn Techawanitchai, Naokazu Idota, Koichiro Uto, Mitsuhiro Ebara and Takao Aoyagi

    2012-01-01

    Full Text Available We demonstrate a timed explosive drug release from smart pH-responsive hydrogels by utilizing a phototriggered spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA was integrated into poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (P(NIPAAm-co-CIPAAm hydrogels. o-NBA-hydrogels demonstrated the rapid release of protons upon UV irradiation, allowing the pH inside the gel to decrease to below the pKa value of P(NIPAAm-co-CIPAAm. The generated protons diffused gradually toward the non-illuminated area, and the diffusion kinetics could be controlled by adjusting the UV irradiation time and intensity. After irradiation, we observed the enhanced release of entrapped L-3,4-dihydroxyphenylalanine (DOPA from the gels, which was driven by the dissociation of DOPA from CIPAAm. Local UV irradiation also triggered the release of DOPA from the non-illuminated area in the gel via the diffusion of protons. Conventional systems can activate only the illuminated region, and their response is discontinuous when the light is turned off. The ability of the proposed pH-jump system to permit gradual activation via proton diffusion may be beneficial for the design of predictive and programmable devices for drug delivery.

  2. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate.

    Science.gov (United States)

    Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein

    2018-05-14

    A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.

  3. NIR and MR imaging supported hydrogel based delivery system for anti-TNF alpha probiotic therapy of IBD

    Science.gov (United States)

    Janjic, Jelena M.; Berlec, Ales; Bagia, Christina; Liu, Lu S.; Jeric, Irenej; Gach, Michael; Janjic, Bratislav M.; Strukelj, Borut

    2016-03-01

    Current treatment of inflammatory bowel disease (IBD) is largely symptomatic and consists of anti-inflammatory agents, immune-suppressives or antibiotics, whereby local luminal action is preferred to minimize systemic side-effects. Recently, anti-TNFα therapy has shown considerable success and is now being routinely used. Here we present a novel approach of using perfluorocarbon (PFC) nanoemulsion containing hydrogels (nanoemulgels) as imaging supported delivery systems for anti-TNF alpha probiotic delivery in IBD. To further facilitate image-guided therapy a food-grade lactic acid bacterium Lactococcus lactis capable of TNFα-binding was engineered to incorporate infrared fluorescent protein (IRFP). This modified bacteria was then incorporated into novel PFC nanoemulgels. The nanoemulgels presented here are designed to deliver locally anti-TNFα probiotic in the lower colon and rectum and provide dual imaging signature of gel delivery (MRI) across the rectum and lower colon and bacteria release (NIR). NIR imaging data in vitro demonstrates high IRFP expressing and TNFα-binding bacteria loading in the hydrogel and complete release in 3 hours. Stability tests indicate that gels remain stable for at least 14 days showing no significant change in droplet size, zeta potential and pH. Flow cytometry analyses demonstrate the NIRF expressing bacteria L. lactis binds TNFα in vitro upon release from the gels. Magnetic resonance and near-infrared imaging in vitro demonstrates homogeneity of hydrogels and the imaging capacity of the overall formulation.

  4. initiated small intestinal sub-mucosal wound-healing hydrogel

    African Journals Online (AJOL)

    In vitro cell culture was carried out on the hydrogels, and cell count was obtained on ... a crucial role in stem cell differentiation. ... biodegradable material, especially in tissue engineering [10,11]. .... The test procedures used were based on the method of ..... responsive hydrogels for controlled drug release. Polymer. 2009 ...

  5. Volume changes in hydrogels subjected to finite deformations

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville

    2013-01-01

    Constitutive equations are derived for the elastic response of hydrogels under an arbitrary deformationwith finite strains. An expression is proposed for the free energy density of a hydrogel based on the Floryconcept of a network of flexible chains with constrained junctions whose reference conf...

  6. Study of hydrogels based on polyacrilamide as new controlled release dosage forms produced by frontal polymerization

    OpenAIRE

    Sechi, Rossana; Gavini, Elisabetta; Mariani, Alberto; Bidali, Simone; Bonferoni, Maria Cristina; Sanna, Vanna Annunziata; Rassu, Giovanna; Pirisino, Gerolamo Antonio; Giunchedi, Paolo

    2006-01-01

    The work purpose was the evaluation of the potential application of the Frontal Polymerization (FP) technique as a new method for the preparation of controlled release dosage forms based on polyacrilamide, in which the drug loading and the polymer preparation occur at the same time.

  7. Enzymatic polymerization of bio-based monomers for applications in hydrogels and coatings

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Nguyen, Hiep Dinh; Storgaard, Thomas

    of the enzymatic catalysts that can provide control over polymer structure in functional polymers. Lipase catalyzed polymerizations (specifically CALB) has been applied to prepare functional polyesters and to evaluate the possibilities of using less stable bio-based monomers such as itaconic acid or its...

  8. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel.

    Science.gov (United States)

    Haeri, Seyed Mohammad Jafar; Sadeghi, Yousef; Salehi, Mohammad; Farahani, Reza Masteri; Mohsen, Nourozian

    2016-05-01

    Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications. Copyright © 2016. Published by Elsevier Ltd.

  9. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    Science.gov (United States)

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  10. Engineering three-dimensional cell mechanical microenvironment with hydrogels

    International Nuclear Information System (INIS)

    Huang Guoyou; Wang Lin; Han Yulong; Zhang Qiancheng; Xu Feng; Lu Tianjian; Wang Shuqi; Wu Jinhui

    2012-01-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed. (topical review)

  11. Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

    Science.gov (United States)

    Shikha, Swati; Zheng, Xiang; Zhang, Yong

    2018-06-01

    Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.

  12. Magnetic hyaluronate hydrogels: preparation and characterization

    International Nuclear Information System (INIS)

    Tóth, Ildikó Y.; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka

    2015-01-01

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection

  13. Magnetic hyaluronate hydrogels: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Veress, Gábor; Szekeres, Márta; Illés, Erzsébet; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    A novel soft way of hyaluronate (HyA) based magnetic hydrogel preparation was revealed. Magnetite nanoparticles (MNPs) were prepared by co-precipitation. Since the naked MNPs cannot be dispersed homogenously in HyA-gel, their surface was modified with natural and biocompatible chondroitin-sulfate-A (CSA) to obtain CSA-coated MNPs (CSA@MNPs). The aggregation state of MNPs and that loaded with increasing amount of CSA up to 1 mmol/g was measured by dynamic light scattering at pH~6. Only CSA@MNP with ≥0.2 mmol/g CSA content was suitable for magnetic HyA-gel preparation. Rheological studies showed that the presence of CSA@MNP with up to 2 g/L did not affect the hydrogel's rheological behavior significantly. The results suggest that the HyA-based magnetic hydrogels may be promising formulations for future biomedical applications, e.g. as intra-articular injections in the treatment of osteoarthritis. - Highlights: • Novel hyaluronate(HyA)-based biocompatible magnetic hydrogels were prepared. • Chondroitin-sulfate-A coating is needed to disperse magnetite particles in HyA-gel. • Rheological behavior of hydrogels was independent of the magnetite content (<2 g/L). • Gels remained in stable and homogeneously dispersed state even after 90 days storage. • Magnetic HyA-gels are promising candidates for use as intra-articular injection.

  14. FEA Based on 3D Micro-CT Images of Mesoporous Engineered Hydrogels

    Directory of Open Access Journals (Sweden)

    L. Siad

    2015-12-01

    Full Text Available The objective of this computational study was to propose a rapid procedure in obtaining an estimation of elastic moduli of solid phases of porous natural-polymeric biomaterials used for bone tissue engineering. This procedure was based on the comparison of experimental results to finite element (FE responses of parallelepiped so-called representative volume elements (rev of the material at hand. To address this issue a series of quasi-static unconfined compression tests were designed and performed on three prepared cylindrical biopolymer samples. Subsequently, a computed tomography scan was performed on fabricated specimens and two 3D images were reconstructed. Various parallelepiped revs of different sizes and located at distinct places within both constructs were isolated and then analyzed under unconfined compressive loads using FE modelling. In this preliminary study, for the sake of simplicity, the dried biopolymer solid is assumed to be linear elastic.

  15. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering.

    Science.gov (United States)

    Walimbe, Tanaya; Panitch, Alyssa; Sivasankar, Preeti M

    2017-07-01

    Vocal fold scarring is a common cause of dysphonia. Current treatments involving vocal fold augmentation do not yield satisfactory outcomes in the long term. Tissue engineering and regenerative medicine offer an attractive treatment option for vocal fold scarring, with the aim to restore the native extracellular matrix microenvironment and biomechanical properties of the vocal folds by inhibiting progression of scarring and thus leading to restoration of normal vocal function. Hyaluronic acid is a bioactive glycosaminoglycan responsible for maintaining optimum viscoelastic properties of the vocal folds and hence is widely targeted in tissue engineering applications. This review covers advances in hyaluronic acid-based vocal fold tissue engineering and regeneration strategies. Copyright © 2017. Published by Elsevier Inc.

  16. Microemulsion-Based Topical Hydrogels of Tenoxicam for Treatment of Arthritis.

    Science.gov (United States)

    Goindi, Shishu; Narula, Manleen; Kalra, Atin

    2016-06-01

    Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, backache and pain. However, prolonged oral use of this drug is associated with gastrointestinal adverse events like peptic ulceration, thus necessitating its development as topical formulation that could obviate the adverse effects and improve patient compliance. The present study was aimed at development of microemulsion-based formulations of TNX for topical delivery at the affected site. The pseudoternary phase diagrams were developed and microemulsion formulations were prepared using Captex 300/oleic acid as oil, Tween 80 as surfactant and n-butanol/ethanol as co-surfactant. Optimized microemulsions were characterized for drug content, droplet size, viscosity, pH and zeta potential. The ex vivo permeation studies through Laca mice skin were performed using Franz diffusion cell assembly, and the permeation profile of the microemulsion formulation was compared with aqueous suspension of drug and drug incorporated in conventional cream. Microemulsion formulations of TNX showed significantly higher (p Microemulsion formulations were found to be superior in controlling inflammation as compared to conventional topical dosage forms and showed efficacy equivalent to oral formulation. Results suggest that the developed microemulsion formulations may be used for effective topical delivery of TNX to treat various inflammatory conditions.

  17. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.

    Science.gov (United States)

    Liu, I-Hsin; Chang, Shih-Hsin; Lin, Hsin-Yi

    2015-05-13

    A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances.

  18. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing

    International Nuclear Information System (INIS)

    Ribeiro, M.P.; Morgado, P.I.; Miguel, S.P.; Coutinho, P.; Correia, I.J.

    2013-01-01

    Skin injuries are traumatic events, which are seldom accompanied by complete structural and functional restoration of the original tissue. Different strategies have been developed in order to make the wound healing process faster and less painful. In the present study in vitro and in vivo assays were carried out to evaluate the applicability of a dextran hydrogel loaded with chitosan microparticles containing epidermal and vascular endothelial growth factors, for the improvement of the wound healing process. The carriers' morphology was characterized by scanning electron microscopy. Their cytotoxicity profile and degradation by-products were evaluated through in vitro assays. In vivo experiments were also performed to evaluate their applicability for the treatment of skin burns. The wound healing process was monitored through macroscopic and histological analysis. The macroscopic analysis showed that the period for wound healing occurs in animals treated with microparticle loaded hydrogels containing growth factors that were considerably smaller than that of control groups. Moreover, the histological analysis revealed the absence of reactive or granulomatous inflammatory reaction in skin lesions. The results obtained both in vitro and in vivo disclosed that these systems and its degradation by-products are biocompatible, contributed to the re-establishment of skin architecture and can be used in a near future for the controlled delivery of other bioactive agents used in regenerative medicine. - Highlights: • Evaluation of a hydrogel loaded with microparticles containing growth factors for wound healing • In vitro and in vivo assays were performed to characterize the properties of the skin substitute. • The monitoring of the wound healing process was done by macroscopic and histological analysis

  19. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M.P. [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal); UDI-IPG, Research Unit for Inland Development, Polytechnic Institute of Guarda, Guarda (Portugal); Morgado, P.I.; Miguel, S.P. [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal); Coutinho, P. [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal); UDI-IPG, Research Unit for Inland Development, Polytechnic Institute of Guarda, Guarda (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã (Portugal)

    2013-07-01

    Skin injuries are traumatic events, which are seldom accompanied by complete structural and functional restoration of the original tissue. Different strategies have been developed in order to make the wound healing process faster and less painful. In the present study in vitro and in vivo assays were carried out to evaluate the applicability of a dextran hydrogel loaded with chitosan microparticles containing epidermal and vascular endothelial growth factors, for the improvement of the wound healing process. The carriers' morphology was characterized by scanning electron microscopy. Their cytotoxicity profile and degradation by-products were evaluated through in vitro assays. In vivo experiments were also performed to evaluate their applicability for the treatment of skin burns. The wound healing process was monitored through macroscopic and histological analysis. The macroscopic analysis showed that the period for wound healing occurs in animals treated with microparticle loaded hydrogels containing growth factors that were considerably smaller than that of control groups. Moreover, the histological analysis revealed the absence of reactive or granulomatous inflammatory reaction in skin lesions. The results obtained both in vitro and in vivo disclosed that these systems and its degradation by-products are biocompatible, contributed to the re-establishment of skin architecture and can be used in a near future for the controlled delivery of other bioactive agents used in regenerative medicine. - Highlights: • Evaluation of a hydrogel loaded with microparticles containing growth factors for wound healing • In vitro and in vivo assays were performed to characterize the properties of the skin substitute. • The monitoring of the wound healing process was done by macroscopic and histological analysis.

  20. Radiation syntheses of Pectin/acrylamide (PEC/PAM) and Pectin/Diethylaminoethylmethacrylate (PEC/DEAMA) hydrogels as drug delivery systems

    International Nuclear Information System (INIS)

    Abou El Fadl, F.I.; Maziad, N.A.

    2015-01-01

    Different pH responsive copolymer hydrogels based on pectin were prepared by the effect of radiation. The physical and chemical properties of prepared hydrogels were studied by FTIR, and TGA. Also, the prepared hydrogels were evaluated for the possible use as drug delivery system for chlortetracycline HCL as model drug. The results revealed that the swelling ratios and the release behavior of hydrogels depend mainly on the pH of the medium and the hydrogel composition. (author)

  1. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel

    Science.gov (United States)

    Lee, Jung Min; Sultan, Md. Tipu; Kim, Soon Hee; Kumar, Vijay; Yeon, Yeung Kyu; Lee, Ok Joo; Park, Chan Hum

    2017-01-01

    Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. PMID:28777314

  2. Processing Techniques and Applications of Silk Hydrogels in Bioengineering

    Directory of Open Access Journals (Sweden)

    Michael Floren

    2016-09-01

    Full Text Available Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels. Tremendous effort has been made to control the structural and functional characteristic of silk hydrogels, integrating novel biological features with advanced processing techniques, to develop the next generation of functional SF hydrogels. Here, we review the several processing methods developed to prepare advanced SF hydrogel formats, emphasizing a bottom-up approach beginning with critical structural characteristics of silk proteins and their behavior under specific gelation environments. Additionally, the preparation of SF hydrogel blends and other advanced formats will also be discussed. We conclude with a brief description of the attractive utility of SF hydrogels in relevant bioengineering applications.

  3. Multi-scale Multi-mechanism Toughening of Hydrogels

    Science.gov (United States)

    Zhao, Xuanhe

    Hydrogels are widely used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical properties. Inspired by the mechanics and hierarchical structures of tough biological tissues, we propose that a general principle for the design of tough hydrogels is to implement two mechanisms for dissipating mechanical energy and maintaining high elasticity in hydrogels. A particularly promising strategy for the design is to integrate multiple pairs of mechanisms across multiple length scales into a hydrogel. We develop a multiscale theoretical framework to quantitatively guide the design of tough hydrogels. On the network level, we have developed micro-physical models to characterize the evolution of polymer networks under deformation. On the continuum level, we have implemented constitutive laws formulated from the network-level models into a coupled cohesive-zone and Mullins-effect model to quantitatively predict crack propagation and fracture toughness of hydrogels. Guided by the design principle and quantitative model, we will demonstrate a set of new hydrogels, based on diverse types of polymers, yet can achieve extremely high toughness superior to their natural counterparts such as cartilages. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).

  4. Modeling for analysis of the effect of Young's modulus on soft active hydrogels subject to pH stimulus

    International Nuclear Information System (INIS)

    Li Hua; Ng, Teng Yong; Yew, Yong Kin

    2009-01-01

    Modeling is conducted in this paper for analysis of the influence of Young's modulus on the response of soft active hydrogels to environmental solution pH changes. A chemo–electro–mechanical formulation termed the multi-effect-coupling pH-stimulus (MECpH) model, which was developed previously according to linear elastic theory for small deformation description, is improved in this paper through incorporation of the finite deformation formulation into the mechanical equilibrium equation. The model is expressed by coupled nonlinear partial differential equations and solved via the meshless Hermite-cloud method with the modified Newton iteration technique. The improved MECpH model is examined by comparison between the computational and published experimental results. Numerical studies are then done on the influence of Young's modulus on the distributive variations of the diffusive ion concentrations and electric potential, and on the deformation variations of the pH-stimulus-responsive hydrogels within different buffered solutions

  5. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  6. Classification, processing and application of hydrogels: A review.

    Science.gov (United States)

    Ullah, Faheem; Othman, Muhammad Bisyrul Hafi; Javed, Fatima; Ahmad, Zulkifli; Md Akil, Hazizan

    2015-12-01

    This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Preparation and characterization of smart magnetic hydrogels and its use for drug release

    International Nuclear Information System (INIS)

    Liu, T.-Y.; Hu, S.-H.; Liu, K.-H.; Liu, D.-M.; Chen, S.-Y.

    2006-01-01

    The magnetic hydrogels were successfully fabricated by chemically cross-linking of gelatin hydrogels and Fe 3 O 4 nanoparticles (ca. 40-60 nm) through genipin (GP) as cross-linking agent. The cross-sectional SEM observation demonstrates that the Fe 3 O 4 nanoparticles were fairly uniformly distributed in the gelatin matrix. Moreover, in vitro release data reveal that drug release profile of the resulting hydrogels is controllable by switching on or off mode of a given magnetic field. While applying magnetic fields to the magnetic hydrogels, the release rate of vitamin B 12 of the hydrogels was considerably decreased as compared with those when the field was turned off, suggesting a close configuration of the hydrogels as a result of the aggregation of Fe 3 O 4 nanoparticles. Based on this on- and -off mechanism, the smart magnetic hydrogels based on the gelatin-ferrite hybrid composites can be potentially developed for application in novel drug delivery systems

  8. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    Directory of Open Access Journals (Sweden)

    Dau M

    2017-10-01

    Full Text Available Michael Dau,1 Cornelia Ganz,2 Franziska Zaage,2 Bernhard Frerich,1 Thomas Gerber2 1Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany; 2Institute of Physics, Rostock University, Rostock, Germany Purpose: The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block for the use in surgery. Materials and methods: Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18 or a cross-linked hydrogel carrier (elastic block [EB], n=18 based on polyvinylpyrrolidone (PVP and silica sol, respectively. The animals were killed after 12 (n=12, 21 (n=12 and 63 days (n=12. The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP], antibody-based examinations (CD68 and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results: A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher

  9. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    International Nuclear Information System (INIS)

    Kirf, Dominik; Devery, Sinead M; Higginbotham, Clement L; Rowan, Neil J

    2010-01-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  10. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirf, Dominik; Devery, Sinead M [Department of Life and Physical Science, Athlone Institute of Technology (Ireland); Higginbotham, Clement L [Materials Research Institute, Athlone Institute of Technology (Ireland); Rowan, Neil J, E-mail: sdevery@ait.i, E-mail: dkirf@ait.i, E-mail: chigginbotham@ait.i, E-mail: nrowan@ait.i [Department of Nursing and Health Science, Athlone Institute of Technology (Ireland)

    2010-06-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  11. Poly (Ethylene Glycol)-Based Hydrogels as Self-Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties.

    Science.gov (United States)

    Jamadi, Mahsa; Shokrollahi, Parvin; Houshmand, Behzad; Joupari, Mortaza Daliri; Mashhadiabbas, Fatemeh; Khademhosseini, Ali; Annabi, Nasim

    2017-08-01

    Tissue expansion is used by plastic/reconstructive surgeons to grow additional skin/tissue for replacing or repairing lost or damaged soft tissues. Recently, hydrogels have been widely used for tissue expansion applications. Herein, a self-inflating tissue expander blend composition from three different molecular weights (2, 6, and 10 kDa) of poly (ethylene glycol) diacrylate (PEGDA) hydrogel with tunable mechanical and swelling properties is presented. The in vitro results demonstrate that, of the eight studied compositions, P6 (PEGDA 6 kDa:10 kDa (50:50)) and P8 (PEGDA 6 kDa:10 kDa (35:65)) formulations provide a balance of mechanical property and swelling capability suitable for tissue expansion. Furthermore, these expanders can be compressed up to 60% of their original height and can be loaded and unloaded cyclically at least ten times with no permanent deformation. The in vivo results indicate that these two engineered blend compositions are capable to generate a swelling pressure sufficient to dilate the surrounding tissue while retaining their original shape. The histological analyses reveal the formation of fibrous capsule at the interface between the implant and the subcutaneous tissue with no signs of inflammation. Ultimately, controlling the PEGDA chain length shows potential for the development of self-inflating tissue expanders with tunable mechanical and swelling properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting

    Science.gov (United States)

    Mouser, Vivian H. M.; Melchels, Ferry P.W.; Visser, Jetze; Dhert, Wouter J.A.; Gawlitta, Debby; Malda, Jos

    2016-01-01

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape for e.g. articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3-25% gelMA with 0-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15-37°C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. Addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness, and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as dominant factor for bioprintability. PMID:27431733

  13. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting.

    Science.gov (United States)

    Mouser, Vivian H M; Melchels, Ferry P W; Visser, Jetze; Dhert, Wouter J A; Gawlitta, Debby; Malda, Jos

    2016-07-19

    Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 °C-37 °C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.

  14. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

    Science.gov (United States)

    Martins, Ana M; Pham, Quynh P; Malafaya, Patrícia B; Raphael, Robert M; Kasper, F Kurtis; Reis, Rui L; Mikos, Antonios G

    2009-08-01

    This work proposes the use of nonporous, smart, and stimulus responsive chitosan-based scaffolds for bone tissue engineering applications. The overall vision is to use biodegradable scaffolds based on chitosan and starch that present properties that will be regulated by bone regeneration, with the capability of gradual in situ pore formation. Biomimetic calcium phosphate (CaP) coatings were used as a strategy to incorporate lysozyme at the surface of chitosan-based materials with the main objective of controlling and tailoring their degradation profile as a function of immersion time. To confirm the concept, degradation tests with a lysozyme concentration similar to that incorporated into CaP chitosan-based scaffolds were used to study the degradation of the scaffolds and the formation of pores as a function of immersion time. Degradation studies with lysozyme (1.5 g/L) showed the formation of pores, indicating an increase of porosity ( approximately 5-55% up to 21 days) resulting in porous three-dimensional structures with interconnected pores. Additional studies investigated the influence of a CaP biomimetic coating on osteogenic differentiation of rat marrow stromal cells (MSCs) and showed enhanced differentiation of rat MSCs seeded on the CaP-coated chitosan-based scaffolds with lysozyme incorporated. At all culture times, CaP-coated chitosan-based scaffolds with incorporated lysozyme demonstrated greater osteogenic differentiation of MSCs, bone matrix production, and mineralization as demonstrated by calcium deposition measurements, compared with controls (uncoated scaffolds). The ability of these CaP-coated chitosan-based scaffolds with incorporated lysozyme to create an interconnected pore network in situ coupled with the demonstrated positive effect of these scaffolds upon osteogenic differentiation of MSCs and mineralized matrix production illustrates the strong potential of these scaffolds for application in bone tissue engineering strategies.

  15. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Science.gov (United States)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  16. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid Reinforced with Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lim Sze Lim

    2017-11-01

    Full Text Available pH-sensitive poly(acrylic acid (PAA hydrogel reinforced with cellulose nanocrystals (CNC was prepared. Acrylic acid (AA was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.

  17. PIXE investigation of in-vitro release of chloramphenicol across polyvinyl alcohol/ acrylamide hydrogel

    International Nuclear Information System (INIS)

    Rihawi, M.; Al-Zeer, A.; Allaf, A.

    2012-01-01

    Hydrogels based on polyvinyl alcohol (PVA) and different amounts of acrylamide monomer (AAm) were prepared by thermal crosslinking process in solid state. The PVA/AAm hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behaviour across the prepared hydrogels. Particle induced X-ray emission (PIXE) analytical technique was utilized to study the drug release behaviour across the hydrogels. A comparison study between PIXE and UV measurements was performed. FTIR measurements were carried out to perform the molecular characterization. The releasing behaviour of the drug across the hydrogels demonstrates a decrease and a subsequent increase in the drug release rate, as the AAm amount increases. The FTIR characterization of the prepared hydrogels has shown a competitive behaviour between the crosslinking of PVA with AAm monomer or oligomerized AAm, depending on the amount of AAm added to prepare the PVA/AAm hydrogels. (author)

  18. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    International Nuclear Information System (INIS)

    Lan, Shih-Feng; Starly, Binil

    2011-01-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10 5 -10 8 cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT 50 ) using commercially available drugs which further correlated well with published in vivo LD 50 values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: → A porous support disc design to support the culture of desired cells in 3D hydrogels. → Demonstrated the co-culture of two cell types within standard cell-culture plates. → A scalable, low cost approach to toxicity screening involving multiple cell

  19. Free radical scavenging injectable hydrogels for regenerative therapy.

    Science.gov (United States)

    Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2017-02-01

    Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Double-Stimuli-Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices.

    Science.gov (United States)

    Xu, Xiao-Yu; Lian, Xiao; Hao, Ji-Na; Zhang, Chi; Yan, Bing

    2017-10-01

    Unsafe food is a huge threat to human health and the economy, and detecting food spoilage early is an ongoing and imperative need. Herein, a simple and effective strategy combining a fluorescence sensor and one-to-two logic operation is designed for monitoring biogenic amines, indicators of food spoilage. Sensors (methyl red@lanthanide metal-organic frameworks (MR@EuMOFs)) are created by covalently modifying MR into NH 2 -rich EuMOFs, which have a high quantum yield (48%). A double-stimuli-responsive fluorescence center is produced via energy transfer from the ligands to Eu 3+ and MR. Portable sensory hydrogels are obtained by dispersing and solidifying MR@EuMOFs in water-phase sodium salt of carboxy methyl cellulose (CMC-Na). The hydrogels exhibit a color transition upon "smelling" histamine (HI) vapor. This transition and shift in the MR-based emission peak are closely related to the HI concentration. Using the HI concentration as the input signal and the two fluorescence emissions as output signals, an advanced analytical device based on a one-to-two logic gate is constructed. The four output combinations, NOT (0, 1), YES (1, 0), PASS 1 (1, 1), and PASS 0 (0, 0), allow the direct analysis of HI levels, which can be used for real-time food-freshness evaluation. The novel strategy suggested here may be a new application for a molecular logic system in the sensing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microscale Strategies for Generating Cell-Encapsulating Hydrogels

    Directory of Open Access Journals (Sweden)

    Ali Khademhosseini

    2012-09-01

    Full Text Available Hydrogels in which cells are encapsulated are of great potential interest for tissue engineering applications. These gels provide a structure inside which cells can spread and proliferate. Such structures benefit from controlled microarchitectures that can affect the behavior of the enclosed cells. Microfabrication-based techniques are emerging as powerful approaches to generate such cell-encapsulating hydrogel structures. In this paper we introduce common hydrogels and their crosslinking methods and review the latest microscale approaches for generation of cell containing gel particles. We specifically focus on microfluidics-based methods and on techniques such as micromolding and electrospinning.

  2. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    Science.gov (United States)

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  4. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    Science.gov (United States)

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  5. Role of electrostatic interactions on the transport of druglike molecules in hydrogel-based articular cartilage mimics

    DEFF Research Database (Denmark)

    Ye, Fengbin; Baldursdottir, Stefania G.; Hvidt, Søren

    2016-01-01

    In the field of drug delivery to the articular cartilage, it is advantageous to apply artificial tissue models as surrogates of cartilage for investigating drug transport and release properties. In this study, artificial cartilage models consisting of 0.5% (w/v) agarose gel containing 0.5% (w...... to the pure agarose gel. The decrease in apparent diffusivity of the cationic compounds was not caused by a change in the gel structure since a similar reduction in apparent diffusivity was not observed for the net negatively charged protein α-lactalbumin. The apparent diffusivity of the cationic compounds...... the electrostatic nature of their interactions. The results obtained from the UV imaging diffusion studies are important for understanding the effect of drug physicochemical properties on the transport in articular cartilage. The extracted information may be useful in the development of hydrogels for in vitro...

  6. Facilitated stimulus-response associative learning and long-term memory in mice lacking the NTAN1 amidase of the N-end rule pathway.

    Science.gov (United States)

    Balogh, S A; McDowell, C S; Tae Kwon, Y; Denenberg, V H

    2001-02-23

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Inactivation of the NTAN1 gene encoding the asparagine-specific N-terminal amidase in mice results in impaired spatial memory [26]. The studies described here were designed to further characterize the effects upon learning and memory of inactivating the NTAN1 gene. NTAN1-deficient mice were found to be better than wild-type mice on black-white and horizontal-vertical discrimination learning. They were also better at 8-week Morris maze retention testing when a reversal trial was not included in the testing procedures. In all three tasks NTAN1-deficient mice appeared to use a strong win-stay strategy. It is concluded that inactivating the asparagine-specific branch of the N-end rule pathway in mice results in impaired spatial learning with concomitant compensatory restructuring of the nervous system in favor of non-spatial (stimulus-response) learning.

  7. Correlating Coating Characteristics with the Performance of Drug-Coated Balloons – A Comparative In Vitro Investigation of Own Established Hydrogel- and Ionic Liquid-Based Coating Matrices

    Science.gov (United States)

    Kaule, Sebastian; Minrath, Ingo; Stein, Florian; Kragl, Udo; Schmidt, Wolfram; Schmitz, Klaus-Peter; Sternberg, Katrin; Petersen, Svea

    2015-01-01

    Drug-coated balloons (DCB), which have emerged as a therapeutic alternative to drug-eluting stents in percutaneous cardiovascular intervention, are well described with regard to clinical efficacy and safety within a number of clinical studies. In vitro studies elucidating the correlation between coating additive and DCB performance are however rare but considered important for the understanding of DCB requirements and the improvement of established DCB. In this regard, we examined three different DCB-systems, which were developed in former studies based on the ionic liquid cetylpyridinium salicylate, the body-own hydrogel hyaluronic acid and the pharmaceutically well-established hydrogel polyvinylpyrrolidone, considering coating morphology, coating thickness, drug-loss, drug-transfer to the vessel wall, residual drug-concentration on the balloon surface and entire drug-load during simulated use in an in vitro vessel model. Moreover, we investigated particle release of the different DCB during simulated use and determined the influence of the three coatings on the mechanical behavior of the balloon catheter. We could show that coating characteristics can be indeed correlated with the performance of DCB. For instance, paclitaxel incorporation in the matrix can reduce the drug wash-off and benefit a high drug transfer. Additionally, a thin coating with a smooth surface and high but delayed solubility can reduce drug wash-off and decrease particle burden. As a result, we suggest that it is very important to characterize DCB in terms of mentioned properties in vitro in addition to their clinical efficacy in order to better understand their function and provide more data for the clinicians to improve the tool of DCB in coronary angioplasty. PMID:25734818

  8. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    Science.gov (United States)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  9. Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eid, M. [National Center For Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo 11731 (Egypt)], E-mail: mona_eid2000@yahoo.com; Abdel-Ghaffar, M.A. [National Research Center, Dokki, Cairo (Egypt); Dessouki, A.M. [National Center For Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo 11731 (Egypt)

    2009-01-15

    The highly swelling Poly (acrylamide/maleic acid/gelatin) P(AAm/MA/G) hydrogels were prepared by gamma-irradiation at low dose rate (0.94 kGy/h) and moderate dose rate (3.84 kGy/h). The hydrogels were confirmed by FTIR. The effect of copolymer composition, dose and dose rate on the swelling behaviour was discussed. Increasing of MA content and G in the initial mixture leads to an increase in the amount of MA and G in the gel system and decrease in the gelation %. The swelling behaviours of the hydrogel prepared at moderate dose rate increased with increasing MA mole content in the gel system but, there is no systematic dependence of swelling on MA content was observed for the hydrogels obtained at low dose rate. Pore structure of the hydrogels was monitored by using scanning electron microscopy. Thermogravimetric analysis (TGA) and the rate of the thermal decomposition of P(AAm/MA/G) hydrogels has been evaluated to give a better understanding of the thermal stability of polymers, The X-ray data of P(AAm/MA/G) hydrogels was discussed to investigate some features namely the degree of ordering and crystallite size.

  10. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  11. Potential Application of Gamma Irradiated Polyvinyl Pyrrolidone (PVP) - Starch Hydrogel As Fever Cooling Plaster

    International Nuclear Information System (INIS)

    Darmawan Darwis; Lely Hardiningsih

    2010-01-01

    Research on the development of hydrogel for cooling fever by using gamma irradiation technique has been done. The hydrogel was prepared by irradiating the mixture of PVP with concentration of 7% (w/v) and starch with various concentrations using gamma ray at irradiation dose of 20 to 40 kGy. The results showed that optimum starch concentration to make solid constituent of PVP-starch prior to irradiation were 10-15%. Gel fraction of PVP-starch hydrogel showed an increase by increasing of irradiation dose up to 35 kGy, and acceleration of irradiation dose did not have any effect on gel fraction. At the same irradiation dose, there was no influence of starch concentration on gel fraction. Maximum gel fraction was achieved at 35 kGy irradiation dose. Water content of PVP-Starch hydrogel with starch concentration of 10 to 15% was in the range of 73 - 76%. Water content of hydrogel depends on starch concentration, while irradiation dose does not give any effect on water content of hydrogel. Hydrogel with high water content is potential to be used for fever cooling. Hydrogel PVP-Starch with starch concentration of 10% irradiated by gamma irradiation at the dose of 35 kGy had the ability to reduce water temperature from 40°C to 36°C in 21 minutes, while it took 24 minutes for the hydrogel with starch concentration of 12.5 and 15%. Commercial cooling pad hydrogel need 24 minutes to reduce temperature of water from 40°C to 36°C. Based on these results, it can be concluded that PVP hydrogel with 10% starch content showed faster cooling effect compared to hydrogel with 12.5 and 15 % starch content as well as the commercial hydrogel. Beside these advantages, the hydrogel obtained has some disadvantages such as low stickiness, brittle and opaque. (author)

  12. Effect of Maleic Acid Content on the Thermal Stability, Swelling Behaviour and Network Structure of Gelatin -Based Hydrogels Prepared by Gamma Irradiation

    International Nuclear Information System (INIS)

    Eid, M.; Dessouki, A.M.; Abdel-Ghaffar, M.A.

    2005-01-01

    The preparation of highly swelling hydrogels containing diprotic acid and gelatin carried out by gamma-irradiation of acrylamide/maleic acid/gelatine/water mixture at ambient temperature. Poly (acrylamide/maleic acid/gelatin) p(AAm/MA/G) hydrogels were prepared in different MA and G contents at low dose rate (0.94 kGy/h), and moderate dose rate (3.84 kGy/h). The prepared hydrogels were confirmed by FT1R . The effect of copolymer composition, dose and dose rate on the swelling behaviour and the type of water diffusion in the network structure of the hydrogels was discussed. Increasing of MA content and G in the initial mixture leads to an increase in the amount of MA and G in the gel system and decrease in the gelation percent. The swelling behaviours of the hydrogel prepared at moderate dose rate increased with increasing MA mole content in the gel system. On the other hand, no systematic dependence of swelling on MA content was observed for the hydrogels obtained at low dose rate. Pore structure of the hydrogels was monitored by using scanning electron microscopy. Systematic swelling of P(AAm/MA/G) hydrogels prepared at moderate dose rates can be explained by the homogeneous pore size distribution of network. Thermogravimetric analysis (TGA) was employed to study the effect of network structure formation on the thermal behavior of the copolymer. To give a better understanding of the thermal stability of polymers, the rate of the thermal decomposition of P(AAm/MA/G) hydrogels has been evaluated

  13. A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss.

    Science.gov (United States)

    Aurora, Amit; Wrice, Nicole; Walters, Thomas J; Christy, Robert J; Natesan, Shanmugasundaram

    2018-01-01

    Extracellular matrix (ECM) scaffolds are being used for the clinical repair of soft tissue injuries. Although improved functional outcomes have been reported, ECM scaffolds show limited tissue specific remodeling response with concomitant deposition of fibrotic tissue. One plausible explanation is the regression of blood vessels which may be limiting the diffusion of oxygen and nutrients across the scaffold. Herein we develop a composite scaffold as a vasculo-inductive platform by integrating PEGylated platelet free plasma (PFP) hydrogel with a muscle derived ECM scaffold (m-ECM). In vitro, adipose derived stem cells (ASCs) seeded onto the composite scaffold differentiated into two distinct morphologies, a tubular network in the hydrogel, and elongated structures along the m-ECM scaffold. The composite scaffold showed a high expression of ITGA5, ITGB1, and FN and a synergistic up-regulation of ang1 and tie-2 transcripts. The in vitro ability of the composite scaffold to provide extracellular milieu for cell adhesion and molecular cues to support vessel formation was investigated in a rodent volumetric muscle loss (VML) model. The composite scaffold delivered with ASCs supported robust and stable vascularization. Additionally, the composite scaffold supported increased localization of ASCs in the defect demonstrating its ability for localized cell delivery. Interestingly, ASCs were observed homing in the injured muscle and around the perivascular space possibly to stabilize the host vasculature. In conclusion, the co