WorldWideScience

Sample records for stimuli-responsive sers nanoparticles

  1. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Nikola [Iowa State Univ., Ames, IA (United States)

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  3. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

    Science.gov (United States)

    Cheng, Ru; Meng, Fenghua; Deng, Chao; Klok, Harm-Anton; Zhong, Zhiyuan

    2013-05-01

    In the past decades, polymeric nanoparticles have emerged as a most promising and viable technology platform for targeted and controlled drug delivery. As vehicles, ideal nanoparticles are obliged to possess high drug loading levels, deliver drug to the specific pathological site and/or target cells without drug leakage on the way, while rapidly unload drug at the site of action. To this end, various "intelligent" polymeric nanoparticles that release drugs in response to an internal or external stimulus such as pH, redox, temperature, magnetic and light have been actively pursued. These stimuli-responsive nanoparticles have demonstrated, though to varying degrees, improved in vitro and/or in vivo drug release profiles. In an effort to further improve drug release performances, novel dual and multi-stimuli responsive polymeric nanoparticles that respond to a combination of two or more signals such as pH/temperature, pH/redox, pH/magnetic field, temperature/reduction, double pH, pH and diols, temperature/magnetic field, temperature/enzyme, temperature/pH/redox, temperature/pH/magnetic, pH/redox/magnetic, temperature/redox/guest molecules, and temperature/pH/guest molecules have recently been developed. Notably, these combined responses take place either simultaneously at the pathological site or in a sequential manner from nanoparticle preparation, nanoparticle transporting pathways, to cellular compartments. These dual and multi-stimuli responsive polymeric nanoparticles have shown unprecedented control over drug delivery and release leading to superior in vitro and/or in vivo anti-cancer efficacy. With programmed site-specific drug delivery feature, dual and multi-stimuli responsive nanoparticulate drug formulations have tremendous potential for targeted cancer therapy. In this review paper, we highlight the recent exciting developments in dual and multi-stimuli responsive polymeric nanoparticles for precision drug delivery applications, with a particular focus

  4. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook

    Directory of Open Access Journals (Sweden)

    Song Y

    2016-12-01

    Full Text Available Yuanhui Song, Yihong Li, Qien Xu, Zhe Liu Wenzhou Institute of Biomaterials and Engineering (WIBE, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China Abstract: With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment. Keywords: mesoporous silica nanoparticle, drug delivery system, controlled release, stimuli-responsive, chemotherapy

  5. Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses

    Directory of Open Access Journals (Sweden)

    Panoraia I. Siafaka

    2016-08-01

    Full Text Available Nanocarriers, due to their unique features, are of increased interest among researchers working with pharmaceutical formulations. Polymeric nanoparticles and nanocapsules, involving non-toxic biodegradable polymers, liposomes, solid lipid nanoparticles, and inorganic–organic nanomaterials, are among the most used carriers for drugs for a broad spectrum of targeted diseases. In fact, oral, injectable, transdermal-dermal and ocular formulations mainly consist of the aforementioned nanomaterials demonstrating promising characteristics such as long circulation, specific targeting, high drug loading capacity, enhanced intracellular penetration, and so on. Over the last decade, huge advances in the development of novel, safer and less toxic nanocarriers with amended properties have been made. In addition, multifunctional nanocarriers combining chemical substances, vitamins and peptides via coupling chemistry, inorganic particles coated by biocompatible materials seem to play a key role considering that functionalization can enhance characteristics such as biocompatibility, targetability, environmental friendliness, and intracellular penetration while also have limited side effects. This review aims to summarize the “state of the art” of drug delivery carriers in nanosize, paying attention to their surface functionalization with ligands and other small or polymeric compounds so as to upgrade active and passive targeting, different release patterns as well as cell targeting and stimuli responsibility. Lastly, future aspects and potential uses of nanoparticulated drug systems are outlined.

  6. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy.

    Science.gov (United States)

    Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole

    2017-09-01

    In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    International Nuclear Information System (INIS)

    Chandra, Sudeshna; Noronha, Glen; Dietrich, Sascha; Lang, Heinrich; Bahadur, Dhirendra

    2015-01-01

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH 2 CH 2 C(O)O(CH 2 CH 2 O) 9 CH 3 and CH 2 CH 2 C(O)O(CH 2 CH 2 O) 2 C 2 H 5 , respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe 3 O 4 ) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells

  8. Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sudeshna; Noronha, Glen [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Dietrich, Sascha; Lang, Heinrich [Technische Universität Chemnitz, Institute of Chemistry, Straße der Nationen 62, d-09111 Chemnitz (Germany); Bahadur, Dhirendra, E-mail: dhirenb@iitb.ac.in [Metallurgical and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India)

    2015-04-15

    Two different chain lengths of (poly)ethylene glycol-PAMAM dendrimers namely, L6-PEG-PAMAM and S6-PEG-PAMAM with six end-grafted ethylene glycol ether-tentacles of type CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 9}CH{sub 3} and CH{sub 2}CH{sub 2}C(O)O(CH{sub 2}CH{sub 2}O){sub 2}C{sub 2}H{sub 5}, respectively, were synthesized. These dendrimers have multiple σ-donor capabilities and therefore, were used for stabilizing the magnetite (Fe{sub 3}O{sub 4}) nanoparticles. Both the dendrimer-magnetic nanoparticles (L6-PEG-PAMAM-MNPs and S6-PEG-PAMAM-MNPs) were characterized by different spectroscopic and microstructural techniques. The nanoparticles were mesoporous and superparamagnetic and therefore, explored for their possible use in delivery of cancer drug, doxorubicin (DOX). In the developed drug delivery system, achieving high drug-loading efficiency with controllable release were the main challenges. The change in zeta potential and quenching of fluorescence intensity suggests chemical interaction between DOX and the nanoparticles. The loading efficiency was calculated to be over 95% with a sustained pH and temperature sensitive release. Further, enzyme cathepsin B has also been used to degrade the dendritic shell to trigger sustained drug release in the vicinity of tumor cells.

  9. Dual stimuli-responsive nano-vehicles for controlled drug delivery: mesoporous silica nanoparticles end-capped with natural chitosan.

    Science.gov (United States)

    Hakeem, Abdul; Duan, Ruixue; Zahid, Fouzia; Dong, Chao; Wang, Boya; Hong, Fan; Ou, Xiaowen; Jia, Yongmei; Lou, Xiaoding; Xia, Fan

    2014-11-11

    Herein, we report natural chitosan end-capped MCM-41 type MSNPs as novel, dual stimuli, responsive nano-vehicles for controlled anticancer drug delivery. The chitosan nanovalves tightly close the pores of the MSNPs to control premature cargo release under physiological conditions but respond to lysozyme and acidic media to release the trapped cargo.

  10. and Au nanoparticles for SERS applications

    Directory of Open Access Journals (Sweden)

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  11. Poly(ethyl glyoxylate)-Poly(ethylene oxide) Nanoparticles: Stimuli-Responsive Drug Release via End-to-End Polyglyoxylate Depolymerization.

    Science.gov (United States)

    Fan, Bo; Gillies, Elizabeth R

    2017-08-07

    The ability to disrupt polymer assemblies in response to specific stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli-initiated events to release drugs. "Self-immolative polymers" offer the potential to provide amplified responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker end-caps were triggered by a thiol reducing agent, UV light, H 2 O 2 , and combinations of these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective in rapidly disrupting the nanoparticles. Nile red, doxorubin, and curcumin were encapsulated into the nanoparticles and were selectively released upon application of the appropriate stimulus. The ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new platform highly attractive for applications in drug delivery.

  12. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  13. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester) nanoparticles

    International Nuclear Information System (INIS)

    Park, Hye Sun; Lee, Jung Eun; Cho, Mi Young; Noh, Young-Woock; Lim, Yong Taik; Sung, Moon Hee; Poo, Haryoung; Hong, Kwan Soo

    2011-01-01

    pH-stimuli-responsive near-infrared optical imaging nanoprobes are designed and synthesized in this study in a facile one-step synthesis process based on the use of the biocompatible and biodegradable polymer poly(γ-glutamic acid) (γ-PGA)/poly(β-amino ester) (PBAE). PBAE has good transfection efficiency and promotes degradation properties under acidic conditions. This pH-responsive degradability can be used for the effective release of encapsulating materials after cellular uptake. As an optical imaging probe, indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye with a quenching property at a high concentration. In this regard, we focus here on the rapid degradation of PBAE in an acidic environment, in which the nanoparticles are disassembled. This allows the ICG dyes to show enhanced fluorescence signals after being releasing from the particles. We demonstrated this principle in cellular uptake experiments. We expect that the developed pH-stimuli-responsive smart nanoprobes can be applied in intracellular delivery signaling applications.

  14. Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer.

    Science.gov (United States)

    Nigam, Saumya; Bahadur, Dhirendra

    2017-07-01

    In recent years, functional nanomaterials have found an appreciable place in the understanding and treatment of cancer. This work demonstrates the fabrication and characterization of a new class of cationic, biocompatible, peptide dendrimers, which were then used for stabilizing and functionalizing magnetite nanoparticles for combinatorial therapy of cancer. The synthesized peptide dendrimers have an edge over the widely used PAMAM dendrimers due to better biocompatibility and negligible cytotoxicity of their degradation products. The surface engineering efficacy of the peptide dendrimers and their potential use as drug carriers were compared with their PAMAM counterparts. The peptide dendrimer was found to be as efficient as PAMAM dendrimers in its drug-carrying capacity, while its drug release profiles substantially exceeded those of PAMAM's. A dose-dependent study was carried out to assess their half maximal inhibitory concentration (IC 50 ) in vitro with various cancer cell lines. A cervical cancer cell line that was incubated with these dendritic nanoparticles was exposed to alternating current magnetic field (ACMF) to investigate the effect of elevated temperatures on the live cell population. The DOX-loaded formulations, in combination with the ACMF, were also assessed for their synergistic effects on the cancer cells for combinatorial therapy. The results established the peptide dendrimer as an efficient alternative to PAMAM, which can be used successfully in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution

    Directory of Open Access Journals (Sweden)

    Stephanie Christau

    2014-06-01

    Full Text Available The effect of brush thickness on the loading of gold nanoparticles (AuNPs within stimuli-responsive poly-(N,N-(dimethylamino ethyl methacrylate (PDMAEMA polyelectrolyte brushes is reported. Atom transfer radical polymerization (ATRP was used to grow polymer brushes via a “grafting from” approach. The brush thickness was tuned by varying the polymerization time. Using a new type of sealed reactor, thick brushes were synthesized. A systematic study was performed by varying a single parameter (brush thickness, while keeping all other parameters constant. AuNPs of 13 nm in diameter were attached by incubation. X-ray reflectivity, electron scanning microscopy and ellipsometry were used to study the particle loading, particle distribution and interpenetration of the particles within the brush matrix. A model for the structure of the brush/particle hybrids was derived. The particle number densities of attached AuNPs depend on the brush thickness, as do the optical properties of the hybrids. An increasing particle number density was found for increasing brush thickness, due to an increased surface roughness.

  16. Stimuli Responsive Amphiphilic Assemblies

    Science.gov (United States)

    2013-11-18

    Enzyme- Sensitive, Amphiphilic- Dendrimer -Based Nanoparticles through Photochemical Crosslinking, Chemistry - A European Journal, (10 2011): 0. doi...17, 2012 (Organizers: R. P. Singh) 8th International Dendrimer Symposium (IDS-8), Madrid, Spain, June 23-27, 2013 (Organizers: Dr. M’Angeles...investigate the pH-induced changes in surface properties. Nanocarriers that can be effectively transported across cellular membranes have potential in a

  17. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  18. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Sathe, V.; Umadevi, M.

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

  19. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  20. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials

    2009-05-06

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  1. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants.

    Science.gov (United States)

    Zhao, Pengkun; Liu, Hongyu; Deng, Hongbing; Xiao, Ling; Qin, Caiqin; Du, Yumin; Shi, Xiaowen

    2014-11-01

    In this study, the complex pH and electro responsive system made of chitosan hydrogel with embedded mesoporous silica nanoparticles (MSNs) was evaluated as a tunable drug release system. As a model drug, ibuprofen (IB) was used; its adsorption in MSNs was evidenced by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). In order to prepare the complex drug release system, the loaded particles IB-MSNs were dispersed in chitosan solution and then the complex IB-MSNs/chitosan film of 2mm thickness was deposited as a hydrogel on the titanium electrode. The codeposition of components was performed under a negative biasing of the titanium electrode at -0.75 mA/cm2 current density during 30 min. The IB release from the IB-MSNs/chitosan hydrogel film was studied as dependent on pH of the release media and electrical conditions applied to the titanium plate. When incubating the complex hydrogel film in buffers with different pH, the IB release followed a near zero-order profile, though its kinetics varied. Compared to the spontaneous IB release from the hydrogel in 0.9% NaCl solution (at 0 V), the application of negative biases to the coated titanium plate had profound effluences on the release behavior. The release was retarded when -1.0 V was applied, but a faster kinetics was observed at -5.0 V. These results imply that a rapid, mild and facile electrical process for covering titanium implants by complex IB-MSNs/chitosan hydrogel films can be used for controlled drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  3. Multi-Functional Stimuli-Responsive Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — Supramolecular polymers based on non-covalent interactions can display a wide array of stimuli-responsive attributes. They can be tailored to change shape, actuate...

  4. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

    Directory of Open Access Journals (Sweden)

    Oana-M. Buja

    2017-01-01

    Full Text Available A microfluidic setup which enables on-line monitoring of residues of malachite green (MG using surface-enhanced Raman scattering (SERS is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10−7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  5. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    Science.gov (United States)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  6. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  7. Stimuli-responsive liquid crystalline materials

    NARCIS (Netherlands)

    Debije, M.G.; Schenning, A.P.H.J.; Hashmi, Saleem

    2016-01-01

    Stimuli-responsive materials which respond to triggers from the environment by changing their properties are one of the focal points in materials science. For precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals

  8. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Nitzan, E-mail: n58987012@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Chen, Kuang-Yu [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Nien, Yung-Tang, E-mail: ytnien@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 63201, Taiwan (China); Perkas, Nina [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Gedanken, Aharon, E-mail: Aharon.Gedanken@biu.ac.il [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Chen, In-Gann, E-mail: ingann@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China)

    2015-03-15

    Highlights: • Solid state Ag SERS active substrates were sonochemically synthesized. • High intensity SERS spectra of both crystal violet and rhodamine 6G were observed. • We discovered that PVP aided synthesized substrates showed higher SERS intensity. - Abstract: Surface enhanced Raman scattering (SERS) enables the detection of substances at low concentrations using silver or gold nanostructure. The SERS technique has many applications, such as environmental detection and biosensing. Sonochemistry is an excellent and cheap deposition technique for coating substrates in a form of nanostructure at ambient temperature. It can also be utilized to prepare large SERS substrates. Here, we used the advantages of sonochemistry to deposit solid SERS substrates immobilized on GaN nanostructure. Morphology was studied by scanning electron microscopy. The elemental composition and the spatial distribution were examined by energy dispersive X-ray spectroscopy. The crystal structure and atomic presence was confirmed by X-ray diffraction. SERS substrates were examined with the analytes crystal violet (10{sup −5} M) and rhodamine 6G (10{sup −6} M), they showed prominent characteristic peaks. We discovered that the SERS intensity of poly-vinyl-pyrrolidinone aided sonochemical deposition of Ag nanoparticles was increased. The reason for the effect is morphological changes of the Ag nanoparticles. Smaller nanoparticles were fabricated, which increase their SERS intensity.

  9. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor

    Energy Technology Data Exchange (ETDEWEB)

    David, Catalina; Guillot, Nicolas; Chapelle, Marc Lamy de la [Laboratoire CSPBAT (FRE 3043), UFR SMBH, Universite Paris XIII, 74 rue Marcel Cachin, F-93017 Bobigny (France); Shen, Hong; Toury, Timothee, E-mail: marc.lamydelachapelle@univ-paris13.fr [ICD-LNIO-UMR, CNRS 6279, Universite de technologie de Troyes, 12 rue Marie Curie, F-10010 Troyes (France)

    2010-11-26

    In this paper we highlight the accurate spectral detection of bovine serum albumin and ribonuclease-A using a surface-enhanced Raman scattering (SERS) substrate based on gold nanocylinders obtained by electron-beam lithography (EBL). The nanocylinders have diameters from 100 to 180 nm with a gap of 200 nm. We demonstrate that optimizing the size and the shape of the lithographed gold nanocylinders, we can obtain SERS spectra of proteins at low concentration. This SERS study enabled us to estimate high enhancement factors (10{sup 5} for BSA and 10{sup 7} for RNase-A) of important bands in the protein Raman spectrum measured for 1 mM concentration. We demonstrate that, to reach the highest enhancement, it is necessary to optimize the SERS signal and that the main parameter of optimization is the LSPR position. The LSPR have to be suitably located between the laser excitation wavelength, which is 632.8 nm, and the position of the considered Raman band. Our study underlines the efficiency of gold nanocylinder arrays in the spectral detection of proteins.

  10. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  11. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    Science.gov (United States)

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  12. Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

    Directory of Open Access Journals (Sweden)

    Jinshan Yu

    2013-01-01

    Full Text Available The silver nanoparticles are synthesized by electrodeposition in ultradilute Ag+ concentration electrolyte under high overpotential. The as prepared Ag nanoparticles, with the sizes ranging from 20 to 30 nm, are arrayed orderly and formed dendritic morphology. The formation of this special dendritic nanoparticle structure can be contributed to the relatively high growth rate and the preferential growth directions along 111 due to the high overpotential, as well as the relative small number of Ag+ ions arriving at the Ag crystal surface per unit time due to the ultradilute Ag+ concentration. Surface enhanced Raman scattering (SERS experiments reveal that the as-prepared dendritic Ag nanoparticles possess high SERS properties and can be used as a candidate substrate for practical SERS applications to detect the Rhodamine 6G molecules.

  13. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    International Nuclear Information System (INIS)

    Murph, Simona Hunyadi; Searles, Emily

    2017-01-01

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  14. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  15. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  16. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications

    Directory of Open Access Journals (Sweden)

    Jaime Plazas-Tuttle

    2015-06-01

    Full Text Available Nanomaterial science and design have shifted from generating single passive nanoparticles to more complex and adaptive multi-component nanohybrids. These adaptive nanohybrids (ANHs are designed to simultaneously perform multiple functions, while actively responding to the surrounding environment. ANHs are engineered for use as drug delivery carriers, in tissue-engineered templates and scaffolds, adaptive clothing, smart surface coatings, electrical switches and in platforms for diversified functional applications. Such ANHs are composed of carbonaceous, metallic or polymeric materials with stimuli-responsive soft-layer coatings that enable them to perform such switchable functions. Since ANHs are engineered to dynamically transform under different exposure environments, evaluating their environmental behavior will likely require new approaches. Literature on polymer science has established a knowledge core on stimuli-responsive materials. However, translation of such knowledge to environmental health and safety (EHS of these ANHs has not yet been realized. It is critical to investigate and categorize the potential hazards of ANHs, because exposure in an unintended or shifting environment could present uncertainty in EHS. This article presents a perspective on EHS evaluation of ANHs, proposes a principle to facilitate their identification for environmental evaluation, outlines a stimuli-based classification for ANHs and discusses emerging properties and dynamic aspects for systematic EHS evaluation.

  17. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate

    Science.gov (United States)

    Coman, Cristina; Leopold, Loredana Florina; Rugină, Olivia Dumitriţa; Barbu-Tudoran, Lucian; Leopold, Nicolae; Tofană, Maria; Socaciu, Carmen

    2014-01-01

    A green synthesis was used for preparing stable colloidal gold nanoparticles by using Allium sativum aqueous extract both as reducing and capping agent. The obtained nanoparticles were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. Moreover, their potential to be used as surface-enhanced Raman scattering (SERS) substrate was investigated. The obtained gold nanoparticles have spherical shape with mean diameters of 9-15 nm (depending on the amount of reducing agent used under boiling conditions) and are stable up to several months. FTIR spectroscopy shows that the nanoparticles are capped by protein molecules from the extract. The protein shell offers a protective coating, relatively impervious to external molecules, thus, rendering the nanoparticles stable and quite inert. These nanoparticles have the potential to be used as SERS substrates, both in solution and inside human fetal lung fibroblast HFL-1 living cells. We were able to demonstrate both the internalization of the nanoparticles inside HFL-1 cells and their ability to preserve the SERS signal after cellular internalization.

  19. Effect of the size of silver nanoparticles on SERS signal enhancement

    Science.gov (United States)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  20. Nanostructured Silver Substrates With Stable and Universal SERS Properties: Application to Organic Molecules and Semiconductor Nanoparticles

    Directory of Open Access Journals (Sweden)

    Waurisch C

    2009-01-01

    Full Text Available Abstract Nanostructured silver films have been prepared by thermal deposition on silicon, and their properties as SERS substrates investigated. The optimal conditions of the post-growth annealing of the substrates were established. Atomic force microscopy study revealed that the silver films with relatively dense and homogeneous arrays of 60–80-nm high pyramidal nanoislands are the most efficient for SERS of both organic dye and inorganic nanoparticles analytes. The noticeable enhancement of the Raman signal from colloidal nanoparticles with the help of silver island films is reported for the first time.

  1. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  2. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles.

    Science.gov (United States)

    Li, Yue; Driver, Michael; Winuprasith, Thunnalin; Zheng, Jinkai; McClements, David Julian; He, Lili

    2014-10-21

    Herein, we fabricated amphiphilic gold nanoparticles (GNPs) that can self-assemble at oil-water interfaces. We applied those GNPs for in situ SERS detection of emulsifier molecules within the interfacial region of oil in water (O/W) emulsion systems.

  3. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    Science.gov (United States)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  4. Ag nanoparticles agargel nanocomposites for SERS detection of cultural heritage interest pigments

    Science.gov (United States)

    Amato, F.; Micciche', C.; Cannas, M.; Gelardi, F. M.; Pignataro, B.; Li Vigni, M.; Agnello, S.

    2018-02-01

    Agarose gel (agargel) composites with commercial and laboratory made silver nanoparticles were prepared by a wet solution method at room temperature. The gel composites were used for pigment extraction and detection by Raman spectroscopy. Red (alizarin) and violet (crystal violet) pigments deposited on paper were extracted by the composites and were investigated by micro-Raman spectroscopy. Evaluation was carried out of the surface-enhanced Raman spectroscopy (SERS) effect induced by the silver nanoparticles embedded in the gel. A kinetic approach as a function of time was used to determine the efficiency of pigments extraction by composites deposition. A non-invasive extraction process of few minutes is demonstrated. This process induces active SERS for both used pigments. The reported results show the full exploitability of agargel silver nanoparticle composites for the extraction of pigments from paper based artworks.

  5. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn

    2013-11-01

    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  6. 3D Plasmonic Ensembles of Graphene Oxide and Nobel Metal Nanoparticles with Ultrahigh SERS Activity and Sensitivity

    OpenAIRE

    Jing Lin; Xiansong Wang; Guangxia Shen; Daxiang Cui

    2016-01-01

    We describe a comparison study on 3D ensembles of graphene oxide (GO) and metal nanoparticles (silver nanoparticles (AgNPs), gold nanoparticles (GNPs), and gold nanorods (GNRs)) for surface-enhanced Raman scattering (SERS) application. For the first time, GNRs were successfully assembled on the surfaces of GO by means of electrostatic interactions without adding any surfactant. The SERS properties of GO/AgNPs, GO/GNPs, and GO/GNRs were compared using 2-mercaptopyridine (2-Mpy) as probing mole...

  7. Trace determination of thiram using SERS-active hollow sea-urchin gold nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Guanghui; Zhang, Chuankun; Ma, Yanan; Wang, Zheng; Wang, Shun; Xu, Chan; Wang, Dashuang

    2017-01-01

    Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO_3. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.

  8. Trace determination of thiram using SERS-active hollow sea-urchin gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanghui; Zhang, Chuankun, E-mail: zhangchk-lx@huat.edu.cn; Ma, Yanan; Wang, Zheng; Wang, Shun; Xu, Chan; Wang, Dashuang [Hubei University of Automotive Technology, School of Science (China)

    2017-04-15

    Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO{sub 3}. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.

  9. SERS efficiencies of micrometric polystyrene beads coated with gold and silver nanoparticles: the effect of nanoparticle size

    International Nuclear Information System (INIS)

    Mir-Simon, Bernat; Morla-Folch, Judit; Pazos-Perez, Nicolas; Xie, Hai-nan; Alvarez-Puebla, Ramon A; Guerrini, Luca; Gisbert-Quilis, Patricia; Bastús, Neus G; Puntes, Víctor

    2015-01-01

    Rapid advances in nanofabrication techniques of reproducibly manufacturing plasmonic substrates with well-defined nanometric scale features and very large electromagnetic enhancements paved the way for the final translation of the analytical potential of surface-enhanced Raman scattering (SERS) to real applications. A vast number of different SERS substrates have been reported in the literature. Among others, discrete particles consisting of an inorganic micrometric or sub-micrometric core homogeneously coated with plasmonic nanoparticles stand out for their ease of fabrication, excellent SERS enhancing properties, long-term optical stability and remarkable experimental flexibility (manipulation, storage etc). In this article, we performed a systematic experimental study of the correlation between the size of quasi-spherical gold and silver nanoparticle and the final optical property of their corresponding assembles onto micrometric polystyrene (PS) beads. The size and composition of nanoparticles play a key role in tuning the SERS efficiency of the hybrid material at a given excitation wavelength. This study provides valuable information for the selection and optimization of the appropriate PS@NPs substrates for the desired applications. (invited article)

  10. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    Science.gov (United States)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  11. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    Science.gov (United States)

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  12. Surface modified gold nanoparticles for SERS based detection of vulnerable plaque formations (Conference Presentation)

    Science.gov (United States)

    Matthäus, Christian; Dugandžić, Vera; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2017-02-01

    Cardiovascular diseases are the leading cause of death worldwide. Atherosclerosis is closely related to the majority of these diseases, as a process of thickening and stiffening of the arterial walls through accumulation of lipids, which is a consequence of aging and life style. Atherosclerosis affects all people in some extent, but not all arterial plaques will necessarily lead to the complications, such as thrombosis, stroke and heart attack. One of the greatest challenges in the risk assessment of atherosclerotic depositions is the detection and recognition of plaques which are unstable and prone to rupture. These vulnerable plaques usually consist of a lipid core that attracts macrophages, a type of white blood cells that are responsible for the degradation of lipids. It has been hypothesized that the amount of macrophages relates to the overall plaque stability. As phagocytes, macrophages also act as recipients for nanoscale particles or structures. Administered gold nanoparticles are usually rabidly taken up by macrophages residing within arterial walls and can therefore be indirectly detected. A very sensitive strategy for probing gold nanoparticles is by utilizing surface enhanced Raman scattering (SERS). By modifying the surface of these particles with SERS active labels it is possible to generate highly specific signals that exhibit sensitivity comparable to fluorescence. SERS labeled gold nanoparticles have been synthesized and the uptake dynamics and efficiency on macrophages in cell cultures was investigated using Raman microscopic imaging. The results clearly show that nanoparticles are taken up by macrophages and support the potential of SERS spectroscopy for the detection of vulnerable plaques. Acknowledgements: Financial support from the Carl Zeiss Foundation is highly acknowledged. The project "Jenaer Biochip Initiative 2.0" (03IPT513Y) within the framework "InnoProfile Transfer - Unternehmen Region" is supported by the Federal Ministry of

  13. Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Steven Y Leigh

    Full Text Available Surface-enhanced Raman scattering (SERS nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types ("flavors", each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI, based on the output of a direct classical least-squares (DCLS demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles.

  14. [Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].

    Science.gov (United States)

    Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun

    2009-05-01

    By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).

  15. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    International Nuclear Information System (INIS)

    Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L.

    2014-01-01

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO 3 ) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO 3 , KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed

  16. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Mikac, L.; Ivanda, M., E-mail: ivanda@irb.hr [Ruđer Bošković Institute, Laboratory for Molecular Physics (Croatia); Gotić, M. [Ruđer Bošković Institute, Laboratory for Synthesis of New Materials (Croatia); Mihelj, T. [Ruđer Bošković Institute, Laboratory for Synthesis and Processes of Self-assembling of Organic Molecules (Croatia); Horvat, L. [Ruđer Bošković Institute, Laboratory for Electron Microscopy (Croatia)

    2014-12-15

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO{sub 3}) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO{sub 3}, KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed.

  17. SERS Detection of Penicillin G Using Magnetite Decorated with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Paula C. Pinheiro

    2017-10-01

    Full Text Available Sensitive and reliable procedures for detecting vestigial antibiotics are of great relevance for water quality monitoring due to the occurrence of such emergent pollutants in the aquatic environment. As such, we describe here research concerning the use of multifunctional nanomaterials combining magnetic and plasmonic components. These nanomaterials have been prepared by decorating magnetite nanoparticles (MNP with colloidal gold nanoparticles (Au NPs of distinct particle size distributions. Several analytical conditions were investigated in order to optimize the surface enhanced Raman scattering (SERS detection of penicillin G (PG dissolved in water. In particular, the dependence of the SERS signal by using distinct sized Au NPs adsorbed at the MNP was investigated. Additionally, microscopic methods, including Raman confocal microscopy, were employed to characterize the SERS substrates and then to qualitatively detect penicillin G using such substrates. For example, magnetic–plasmonic nanocomposites can be employed for magnetically concentrate analyte molecules and their removal from solution. As a proof of concept, we applied magneto-plasmonic nanosorbents in the removal of aqueous penicillin G and demonstrate the possibility of SERS sensing this antibiotic.

  18. Dynamic bioactive stimuli-responsive polymeric surfaces

    Science.gov (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  19. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    International Nuclear Information System (INIS)

    Britto Hurtado, R.; Cortez-Valadez, M.; Ramírez-Rodríguez, L.P.; Larios-Rodriguez, Eduardo; Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H.; Hernández-Martínez, A.R.; Flores-Acosta, M.

    2016-01-01

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl_4 concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  20. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Britto Hurtado, R. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx [CONACYT-Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Ramírez-Rodríguez, L.P. [Departamento de Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Larios-Rodriguez, Eduardo [Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora (Mexico); Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Hernández-Martínez, A.R. [Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro C.P. 76130 (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico)

    2016-08-06

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl{sub 4} concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  1. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.; Mujica, V.; Martin, D.; Rajh, T. (Center for Nanoscale Materials)

    2009-04-13

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  2. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    Science.gov (United States)

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  3. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  4. TLC-SERS Plates with a Built-In SERS Layer Consisting of Cap-Shaped Noble Metal Nanoparticles Intended for Environmental Monitoring and Food Safety Assurance

    Directory of Open Access Journals (Sweden)

    H. Takei

    2015-01-01

    Full Text Available We report on a thin layer chromatograph (TLC with a built-in surface enhanced Raman scattering (SERS layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G, crystal violet (CV, and 1,2-di(4-pyridylethylene (BPE. The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm−1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles.

  5. Commercial Gold Nanoparticles on Untreated Aluminum Foil: Versatile, Sensitive, and Cost-Effective SERS Substrate

    Directory of Open Access Journals (Sweden)

    Kristina Gudun

    2017-01-01

    Full Text Available We introduce low-cost, tunable, hybrid SERS substrate of commercial gold nanoparticles on untreated aluminum foil (AuNPs@AlF. Two or three AuNP centrifugation/resuspension cycles are proven to be critical in the assay preparation. The limits of detection (LODs for 4-nitrobenzenethiol (NBT and crystal violet (CV on this substrate are about 0.12 nM and 0.19 nM, respectively, while maximum analytical SERS enhancement factors (AEFs are about 107. In comparative assays LODs for CV measured on AuNPs@Au film and AuNPs@glass are about 0.35 nM and 2 nM, respectively. The LOD for melamine detected on AuNPs@ Al foil is 27 ppb with 3 orders of magnitude for linear response range. Overall, AuNPs@AlF demonstrated competitive performance in comparison with AuNPs@ Au film substrate in SERS detection of CV, NBT, and melamine. To check the versatility of the AuNPs@AlF substrate we also detected KNO3 with LODs of 0.7 mM and SERS EF around 2 × 103, which is on the same order with SERS EF reported for this compound in the literature.

  6. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-09-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery applications. Herein, a novel method was devised for modification of liposomes with small molecules, polymers or nanoparticles to afford stimuli responsive systems that release on demand and stay relatively stable in the absence of the trigger.. This dissertation discusses thermosensitive, pH sensitive, light sensitive and magnetically triggered liposomes that have been prepared for controlled drug delivery application. RAFT polymerization was utilized for the preparation of thermosensitive liposomes (Cholesterol-PNIPAm) and acid-labile liposomes (DOPE-PAA). With low Mw Cholesterol-PNIPAm, the thermosensitive liposomes proved to be effective for controlled release and decreased the cytotoxicity of PNIPAm by eliciting the polymer doses. By crosslinking the DOPE-PAA on liposome surface with acid-labile diamine linkers, DOPE-PAA liposomes were verified to be sensitive at low pH. The effects of polymer structures (linear or hyperbranched) have also been studied for the stability and release properties of liposomes. Finally, a dual-responsive Au@SPIO embedded liposome hybrid (ALHs) was prepared with light-induced “on-and-off” function by photo-thermal process (visible light) and instant release properties triggered by alternating magnetic field, respectively. The ALH system would be further applied into the cellular imaging field as MRI contrast agent.

  7. Study of optical and physicochemical properties of colloidal silver nanoparticles as an efficient substrate for SERS

    International Nuclear Information System (INIS)

    Cyrankiewicz, M; Kruszewski, S

    2011-01-01

    The unique optical and physicochemical properties of the noble metal colloidal nanoparticles enable their use in a wide range of applications, especially as a substrate in SERS and MEF study. The aim of this work is to characterize the conditions for the enhancement of Raman scattering by molecules adsorbed on silver surface. Silver sol is prepared by slightly modified Lee-Meisel's method and rhodamine 6G is used as a probe adsorbate. Pure colloidal silver suspension containing isolated nanoparticles exhibits relatively poor SERS efficiency. The extremely large electromagnetic field is induced in the junctions between two or more metallic nanocrystalites so some degree of their aggregation is necessary. The influence of potassium chloride and nitric acid as the aggregating agents is investigated here. The experiments show that both of them can promote the controlled aggregation process but chloride anions, unlike nitrate, much more effectively affect both electromagnetic and chemical mechanisms contributing to SERS. Due to the co-adsorption with rhodamine 6G they allow the dye molecules to directly interact with metallic surface. Moreover, the results clearly indicate that chloride in the presence of silver particles can induce the dimerization of the dye molecules.

  8. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo

    2018-03-01

    Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quaternized chitosan/silver nanoparticles composite as a SERS substrate for detecting tricyclazole and Sudan I

    International Nuclear Information System (INIS)

    Chen, Kaihang; Shen, Zuguang; Luo, Jiwen; Wang, Xiaoying; Sun, Runcang

    2015-01-01

    Graphical abstract: - Highlights: • Synthesis optimization of Ag NPs with quaternized chitosan (QCS) was studied. • The size of Ag NPs was tuned by changing the DS and Mw of QCS. • QCS/Ag NPs exhibited much better SERS performance than Ag NPs without free QCS. • QCS/Ag NPs as SERS substrate detected tricyclazole in low concentration of 50 ppb. • QCS/Ag NPs as SERS substrate detected Sudan I with the detection limit of 10 ppm. - Abstract: There is an urgent need to develop a highly sensitive detection system for detecting trace amounts of food contaminants. In this study, optimal synthesis of silver nanoparticles (Ag NPs) with stable and narrow size distribution in the range of 15–25 nm was performed under microwave irradiation, using quaternized chitosan (QCS) as reducing and stabilizing agent. The results showed that the ratio of QCS to [Ag(NH 3 ) 2 ] + , reaction temperature, irradiation time, the degree of substitution (DS) and molecular weight (Mw) of QCS had obvious effects on the formation, particle size and size distribution of Ag NPs. In addition, utilizing QCS/Ag NPs composite as SERS substrate, tricyclazole and Sudan I could be rapidly and sensitively detected with the limit of detection (LOD) as low as 50 ppb and 10 ppm, respectively. Compared with previously reported works, our detection system are of great stability and operability. The QCS was coated on the surface of Ag core, avoiding aggregation of Ag NPs and creating hot spots, in turn, providing superior amplification of SERS. Thus, it is believed that the QCS/Ag NPs composite could be considered as an ideal SERS-active substrate for detection of food contaminants

  10. Quaternized chitosan/silver nanoparticles composite as a SERS substrate for detecting tricyclazole and Sudan I

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kaihang; Shen, Zuguang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Jiwen, E-mail: holdit@126.com [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Xiaoying, E-mail: xyw@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Sun, Runcang [State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Institute of Biomass Chemistry and Technology, Beijing Forestry University, Beijing 100083 (China)

    2015-10-01

    Graphical abstract: - Highlights: • Synthesis optimization of Ag NPs with quaternized chitosan (QCS) was studied. • The size of Ag NPs was tuned by changing the DS and Mw of QCS. • QCS/Ag NPs exhibited much better SERS performance than Ag NPs without free QCS. • QCS/Ag NPs as SERS substrate detected tricyclazole in low concentration of 50 ppb. • QCS/Ag NPs as SERS substrate detected Sudan I with the detection limit of 10 ppm. - Abstract: There is an urgent need to develop a highly sensitive detection system for detecting trace amounts of food contaminants. In this study, optimal synthesis of silver nanoparticles (Ag NPs) with stable and narrow size distribution in the range of 15–25 nm was performed under microwave irradiation, using quaternized chitosan (QCS) as reducing and stabilizing agent. The results showed that the ratio of QCS to [Ag(NH{sub 3}){sub 2}]{sup +}, reaction temperature, irradiation time, the degree of substitution (DS) and molecular weight (Mw) of QCS had obvious effects on the formation, particle size and size distribution of Ag NPs. In addition, utilizing QCS/Ag NPs composite as SERS substrate, tricyclazole and Sudan I could be rapidly and sensitively detected with the limit of detection (LOD) as low as 50 ppb and 10 ppm, respectively. Compared with previously reported works, our detection system are of great stability and operability. The QCS was coated on the surface of Ag core, avoiding aggregation of Ag NPs and creating hot spots, in turn, providing superior amplification of SERS. Thus, it is believed that the QCS/Ag NPs composite could be considered as an ideal SERS-active substrate for detection of food contaminants.

  11. SERS studies on the interaction between UO22+ and PVP-stabilized silver nanoparticles

    International Nuclear Information System (INIS)

    Roy, M.; Tyagi, A.K.; Kumar, Rakesh; Pandey, A.K.; Goswami, A.

    2010-01-01

    Interaction between uranyl (UO 2 2+ ) ions and silver nanoparticles (Ag-nps) stabilized by suitable polymeric capping agents has been studied in aqueous phase using surface enhanced resonance Raman spectroscopy technique (SERS). Polyvinylpyrrolidone (PVP) stabilized Ag-nps were synthesized by dissolving in water appropriate amount of PVP and AgNO 3 along with a suitable reducing agent in the form of either formamide or sodium borohydride. The solution was vigorously stirred for 5h and finally nanoparticle sols were obtained. A series of analyte samples was prepared by adding an appropriate amount of silver sol to different volumes of uranyl stock solution prepared at pH=3. The solutions were then drop cast on glass slides and dried in air. Preliminary results on drop-cast samples are presented here

  12. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued

  13. Adding stimuli-responsive extensions to antifouling hairy particles

    NARCIS (Netherlands)

    Munoz Bonilla, Sandra; Herk, van A.M.; Heuts, J.P.A.

    2010-01-01

    The use of living block copolymers as stabilisers in emulsion polymerisation allowed preparation of multilayer functional hairy particles via surface-initiated ATRP. Polymer films prepared from the obtained particles present antifouling properties along with stimuli-responsive behaviour.

  14. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    OpenAIRE

    Sandra dePedro; Xavier Munoz-Berbel; Rosalia Rodríguez-Rodríguez; Jordi Sort; Jose Antonio Plaza; Juergen Brugger; Andreu Llobera; Victor J Cadarso

    2016-01-01

    Stimuli-responsive materials undergo physicochemical and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of polydimethylsiloxane (PDMS)-based stimuli-responsive elastomers (SRE) has seldomly been presented. Here, we present the structural, biological, optical, magnetic, and mechanical properties of several magnetic SRE (M-SRE) obtained...

  15. Fe2O3-Au hybrid nanoparticles for sensing applications via SERS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States)

    2017-07-27

    Multifunctional iron oxide-gold hybrid nanostructures have been produced via solution chemistries and investigated for analyte detection. Gold nanoparticles of various shapes have been used for probing surface-enhanced Raman scattering (SERS) effects as they display unique optical properties in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies. The “hot spots” were created by using a seeded reaction to increase the gold loading on the iron oxide support by 43% by weight. SERS Nanomaterials were evaluated for their ability to promote surface-enhanced Raman scattering of a model analyte, 4-mercaptophenol. The data shows an enhancement effect of the model analyte on gold decorated iron oxide nanoparticles.

  16. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-25

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  17. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minghui; Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid “burst” release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)–doxorubicin (PEG–DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG–DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG–DOX prodrug were confirmed by {sup 1}H NMR analysis. The PEG–DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG–DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy. - Highlights: • A novel stimuli-responsive PEGylated prodrugs is synthesized. • PEGylated prodrugs can self-assemble into spherical nanoparticles (140 nm

  18. Selective Growth and SERS Property of Gold Nanoparticles on Amorphized Silicon Surface

    International Nuclear Information System (INIS)

    Matsuoka, T; Nishi, M; Sakakura, M; Shimotsuma, Y; Miura, K; Hirao, K

    2011-01-01

    We have fabricated gold patterns on a silicon substrate by a simple three-step method using a focused ion beam (FIB). The obtained gold patterns consisted of a large number of gold nanoparticles which grew selectively on the preprocessed silicon surface from an Au ion-containing solution dropped on the substrate. The solution was prepared by reacting HAuCl 4 aqueous solution with (3-mercaptopropyl)trimethoxysilane (MPTMS). It was found that the size and shape of the precipitating gold nanoparticles is controllable by changing the mixing ratio between HAuCl 4 aqueous solution and MPTMS. Additionally, we confirmed that the fabricated gold structures were surface enhanced Raman scattering (SERS)-active; the enhanced Raman peaks of rhodamin 6G (R6G) were detected on the fabricated gold structures, whereas no peak was detected on the alternative silicon surface. We also demonstrated the gold patterning using a femtosecond laser instead of an FIB. We believe that our method is a favorable candidate for fabricating SERS-active substrates, since the substrates can be prepared very simply and flexibly.

  19. Facile fabrication of silver nanoparticles with temperature-responsive sizes as highly active SERS substrates

    Science.gov (United States)

    Wu, Jing; Fang, Jinghuai; Cheng, Mingfei; Gong, Xiao

    2016-12-01

    In our work, large-scale silver NPs (nanoparticles) are successfully synthesized on zinc foils with controllable size by regulating the temperature of the displacement reaction. Our results show that when the temperature is 70 °C, the average size of silver NPs is approximately 88 nm in diameter, and they exhibit the strongest SERS activity. The gap between nanoparticles is simultaneously regulated as near as possible, which produces abundant "hot spots" and nanogaps. Crystal violet (CV) was used as probe molecules, and the SERS signals show that the values of relative standard deviation in the intensity of the main vibration modes are less than 10%, demonstrating excellent reproducibility of the silver NPs. Furthermore, the high surface-average enhancement factor of 3.86 × 107 is achieved even when the concentration of CV is 10-7 M, which is sufficient for single-molecule detection. We believe that this low cost and rapid route would get wide applications in chemical synthesis.

  20. The application of Silver nanoparticle based SERS in diagnosing thyroid tissue

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zufang; Chen Rong; Chen Guannan; Lin Duo; Xi Gangqin; Chen Yongjian; Lin Hongxin; Lei Jinping [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Li Zuanfang, E-mail: chenr@fjnu.edu.cn [Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108 (China)

    2011-01-01

    Surface-enhanced Raman scattering (SERS) is proved to be a powerful analytical tool for investigation of biological tissue. In this study, SERS based on Ag nanoparticles was used to investigate the normal and cancerous thyroid tissue. Preliminary results indicated that Raman peaks and the spectra profile from both normal and cancerous tissues showed a basic similarity, obvious differences are that, first, Raman peaks 563cm{sup -1}, 1449cm{sup -1} and 1587cm{sup -1} in cancerous tissue decreased obviously compared with the normal thyroid tissue. Besides, Raman peaks 1004cm{sup -1} and 1128cm{sup -1} might be specific peaks for normal thyroid tissue, whereas 1294cm{sup -1} might attribute to specific peak for cancerous thyroid tissue. In addition, some peaks in normal thyroid tissue appeared to have shifted in cancerous tissue. Intensity ratio of 656cm{sup -1} vs. 725cm{sup -1} in normal tissue are significantly different from cancerous tissue (P<0.005), and it can be a reference for spectroscopic diagnostics of thyroid tissue. This study demonstrates that SERS can be used to monitor the changes at molecular level as well as a complementary tool in thyroid histopathology.

  1. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    Science.gov (United States)

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  2. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Hui; Ma, Xiaoyuan; Liu, Ying; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Xu, Baocai

    2015-12-15

    Salmonella typhimurium and Staphylococcus aureus are most common causes of food-associated disease. A Raman based biosensor was developed for S. typhimurium and S. aureus detection simultaneously. The biosensor was based on nanoparticles enhanced Raman intensity and the specific recognition of aptamer. The Raman signal probe and the capture probe are built. Gold nanoparticles (GNPs) modified with Raman molecules (Mercaptobenzoic acid and 5,5'-Dithiobis(2-nitrobenzoic acid)) and aptamer are used as the signal probe for S. typhimurium and S. aureus, respectively. Fe3O4 magnetic gold nanoparticles (MGNPs) immobilized with both aptamer of S. typhimurium and S. aureus are used as the capture probe. When S. typhimurium and S. aureus are added in the reaction system, the capture probe will capture the target bacteria through the specific binding effect of aptamer. And then the signal probe will be connected to the bacteria also by the effect of aptamer to form the sandwich like detection structure. The Raman intensified spectrum was measured to quantify S. typhimurium and S. aureus. Under optimal conditions, the SERS intensity of MBA at 1582 cm(-1) are used to measure S. typhimurium (y=186.4762+704.8571x, R(2)=0.9921) and the SERS intensity of DNTB at 1333 cm(-1) are used to measure S. aureus (y=135.2381+211.4286x, R(2)=0.9946) in the range of 10(2)-10(7) cfu mL(-1). The LOD is 35 cfu mL(-1) for S. aureus and 15 cfu mL(-1) for S. typhimurium. This method is simple and rapid, results in high sensitivity and specificity, and can be used to detect actual samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Protein-surface interactions on stimuli-responsive polymeric biomaterials.

    Science.gov (United States)

    Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D

    2016-03-04

    Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.

  4. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    Science.gov (United States)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width

  5. SERS activity of Au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar

    International Nuclear Information System (INIS)

    Jiang Weifen; Zhang Yanfeng; Wang Yusheng; Xu Lei; Li Xinjian

    2011-01-01

    A novel composite structure, Au nanoparticles coated on a nest-shaped array of carbon nanotube nested into a silicon nanoporous pillar array (Au/NACNT/Si-NPA), was fabricated for surface-enhanced Raman scattering (SERS). The morphology of the Au/NACNT/Si-NPA composite structure was characterized with the aid of scanning electron microscopy, X-ray diffraction instrumentation and Transmission electron microscopy. Compared with SERS of rhodamine 6G (R6G) adsorbed on SERS-active Au substrate reported, the SERS signals of R6G adsorbed on these gold nanoparticles were obviously improved. This was attributed to the enlarged specific surface area for adsorption of target molecules brought by the nest-shaped CNTs structure.

  6. Silver-gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells

    International Nuclear Information System (INIS)

    Guo, X.; Guo, Z.; Jin, Y.; Liu, Z.; Zhang, W.; Huang, D.

    2012-01-01

    We report on silver-gold core-shell nanostructures that contain Methylene Blue (MB) at the gold/x96silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells. (author)

  7. Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications

    Science.gov (United States)

    Jung, Gyeong-Bok; Kim, Ji-Hye; Burm, Jin Sik; Park, Hun-Kuk

    2013-05-01

    We propose a simple, low-cost, large-area, and functional surface enhanced Raman scattering (SERS) substrate for biomedical applications. The SERS substrate with chitosan-silver nanoparticles (chitosan-Ag NPs) hybrid 3D porous structure was fabricated simply by a one-step method. The chitosan was used as a template for the Ag NPs deposition. SERS enhancement by the chitosan-Ag NPs substrate was experimentally verified using rhodamine B as an analyte. Thiolated single stranded DNA was also measured for atopic dermatitis genetic markers (chemokines CCL17) at a low concentration of 5 pM. We successfully designed a novel SERS substrate with silver nanoparticle hybridized 3D porous chitosan that has the potential to become a highly sensitive and selective tool for biomedical applications.

  8. Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

    Directory of Open Access Journals (Sweden)

    Ujjwala Gaware

    2012-01-01

    Full Text Available Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies.

  9. Fabrication of highly active and cost effective SERS plasmonic substrates by electrophoretic deposition of gold nanoparticles on a DVD template

    Energy Technology Data Exchange (ETDEWEB)

    Leordean, Cosmin; Marta, Bogdan; Gabudean, Ana-Maria; Focsan, Monica; Botiz, Ioan; Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro

    2015-09-15

    Highlights: • Simple and cost effective electrophoretic method to fabricate plasmonic substrates. • SERS performance at three different excitation laser lines. • Promising applicability in SERS based biosensing. - Abstract: In this work we present a simple, rapid and cost effective method to fabricate highly active SERS substrates. This method consists in an electrophoretic deposition of gold nanoparticles on a metallic nanostructured template of a commercial digital versatile disk (DVD). The negatively charged gold nanoparticles self-assemble on the positively charged DVD metallic film connected to a positive terminal of a battery, due to the influence of the electric field. When gold nanoparticles self-assembled on DVD metallic film, a 10-fold additional enhancement of Raman signal was observed when compared with the case of GNPs self-assembled on a polycarbonate DVD substrate only. Finite-difference time-domain simulations demonstrated that the additional electromagnetic field arising in the hot-spots created between gold nanoparticles and DVD metallic film induces an additional enhancement of the Raman signal. SERS efficiency of the fabricated plasmonic substrate was successfully demonstrated through detection of para-aminothiophenol molecule with three different excitation laser lines (532, 633 and 785 nm). The enhancement factor was calculated to be 10{sup 6} and indicates that plasmonic substrates fabricated through this method could be a promising platform for future SERS based sensors.

  10. External-stimuli responsive systems for cancer theranostic

    Directory of Open Access Journals (Sweden)

    Jianhui Yao

    2016-10-01

    Full Text Available The upsurge of novel nanomaterials and nanotechnologies has inspired the researchers who are striving for designing safer and more efficient drug delivery systems for cancer therapy. Stimuli responsive nanomaterial offered an alternative to design controllable drug delivery system on account of its spatiotemporally controllable properties. Additionally, external stimuli (light, magnetic field and ultrasound could develop into theranostic applications for personalized medicine use because of their unique characteristics. In this review, we give a brief overview about the significant progresses and challenges of certain external-stimuli responsive systems that have been extensively investigated in drug delivery and theranostics within the last few years.

  11. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding

    2016-12-01

    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  12. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  13. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field

    Directory of Open Access Journals (Sweden)

    H. Ahmad

    2016-08-01

    Full Text Available The inclusion of super paramagnetic iron oxide (Fe3O4 nanoparticles in stimuli-responsive hydrogel is expected to enhance the application potential for cellular therapy in cell labeling, separation and purification, protein immobilization, contrasting enhancement in magnetic resonance imaging (MRI, localized therapeutic hyperthermia, biosensors etc. in biomedical field. In this investigation two different magnetic and stimuli-responsive composite hydrogel particles with variable surface property were prepared by simply blending Fe3O4/SiO2 nanocomposite particles with stimuli-responsive hydrogel particles. Of the hydrogel particles prepared by free-radical precipitation polymerization poly(styrene-N-isopropylacrylamide-methyl methacrylate-polyethylene glycol methacrylate or P(S-NIPAM-MMA-PEGMA was temperature-sensitive and poly(S-NIPAM-methacrylic acid-PEGMA or P(S-NIPAM-MAA-PEGMA was both temperature- and pH-responsive. The morphological structure, size distributions and volume phase transitions of magnetic and stimuli-responsive composite hydrogel particles were analyzed. Temperature-responsive absorptions of biomolecules were observed on both magnetic and stimuli-responsive Fe3O4/SiO2/P(S-NIPAM-MMA-PEGMA and Fe3O4/SiO2/P(S-NIPAM-MAA-PEGMA composite hydrogel particles and separation of particles from the dispersion media could be achieved by applying magnetic field without time consuming centrifugation or decantation method.

  14. Stimuli-Responsive Materials for Controlled Release Applications

    KAUST Repository

    Li, Song

    2015-04-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. To address this outstanding problem, the design and fabrication of stimuli-responsive materials are pursued to guarantee the controlled release of cargo at a specific time and with an accurate amount. Upon applying different stimuli such as light, magnetic field, heat, pH change, enzymes or redox, functional materials change their physicochemical properties through physical transformation or chemical reactions, allowing the release of payload agents on demand. This dissertation studied three stimuli-responsive membrane systems for controlled release from films of macro sizes to microcapsules of nano sizes. The first membrane system is a polymeric composite film which can decrease and sustain diffusion upon light irradiation. The photo-response of membranes is based on the photoreaction of cinnamic derivatives. The second one is composite membrane which can improve diffusion upon heating. The thermo-response of membranes comes from the volume phase transition ability of hydrogels. The third one is microcapsule which can release encapsulated agents upon light irradiation. The photo-response of capsules results from the photoreaction of nitrobenzyl derivatives. The study on these membrane systems reveals that stimuli-responsive release can be achieved by utilizing different functional materials on either macro or micro level. Based on the abundant family of smart materials, designing and fabricating stimuli-responsive systems shall lead to various advanced release processes on demand for biomedical applications.

  15. Amnesic shellfish poisoning biotoxin detection in seawater using pure or amino-functionalized Ag nanoparticles and SERS.

    Science.gov (United States)

    Müller, Csilla; Glamuzina, Branko; Pozniak, Iva; Weber, Karina; Cialla, Dana; Popp, Jürgen; Cîntă Pînzaru, Simona

    2014-12-01

    Domoic acid (DA) biotoxin responsible for the amnesic shellfish poisoning (ASP) has been unambiguously detected in seawater in a broad range of concentration, with both pure and amino-functionalized Ag nanoparticles employed for surface enhanced Raman scattering (SERS). To achieve this, a comprehensive SERS study on DA dissolved in distilled water has been conducted. SERS of DA dissolved in seawater in concentrations ranging from 3.3 × 10(-4) to 3.3 × 10(-8) mol l(-1) exhibited specific signal, completely different to those of the corresponding DA aqueous solutions, due to the seawater interference in the overall SERS effect. In order to assess the capability of the technique as a cheaper alternative for rapid and unambiguous detection of the DA biotoxin in seawater, three detection schemes have been proposed. DA was detectable at 0.33 nmoll(-1) concentration (0.33) dissolved in distilled water and 0.033 nmol l(-1) (0.033 ppb) in seawater respectively, much lower than the admitted level by the current regulation. A solvent specific interaction of DA with the NPs was concluded, since DA aqueous solution added to Ag nanoparticles provided different SERS signal compared to that of DA directly dissolved in seawater. Employing amino-functionalized Ag nanoparticles with 4-aminothiophenol as SERS tag, SERS signal of DA on amino-AgNPs revealed significant specificity associated with the aromatic primary amine interaction of the SERS tag with DA, thus allowing DA detection in seawater at 4.16 × 10(-4) mol l(-1) concentration, much higher than in the case of pure NPs. To highlight the findings, a brief literature review to date on the DA biotoxin detection was also provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  17. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    Science.gov (United States)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  18. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers

    Science.gov (United States)

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range

  19. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.

    Science.gov (United States)

    Liu, Xiaoqing; Lu, Chun-Hua; Willner, Itamar

    2014-06-17

    CONSPECTUS: The base sequence in DNA dictates structural and reactivity features of the biopolymer. These properties are implemented to use DNA as a unique material for developing the area of DNA nanotechnology. The design of DNA machines represents a rapidly developing research field in the area of DNA nanotechnology. The present Account discusses the switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines, and it highlights potential applications and future perspectives of the area. Programmed switchable DNA machines driven by various fuels and antifuels, such as pH, Hg(2+) ions/cysteine, or nucleic acid strands/antistrands, are described. These include the assembly of DNA tweezers, walkers, a rotor, a pendulum, and more. Using a pH-oscillatory system, the oscillatory mechanical operation of a DNA pendulum is presented. Specifically, the synthesis and "mechanical" properties of interlocked DNA rings are described. This is exemplified with the preparation of interlocked DNA catenanes and a DNA rotaxane. The dynamic fuel-driven reconfiguration of the catenane/rotaxane structures is followed by fluorescence spectroscopy. The use of DNA machines as functional scaffolds to reconfigurate Au nanoparticle assemblies and to switch the fluorescence features within fluorophore/Au nanoparticle conjugates between quenching and surface-enhanced fluorescence states are addressed. Specifically, the fluorescence features of the different DNA machines are characterized as a function of the spatial separation between the fluorophore and Au nanoparticles. The experimental results are supported by theoretical calculations. The future development of reconfigurable stimuli-responsive DNA machines involves fundamental challenges, such as the synthesis of molecular devices exhibiting enhanced complexities, the introduction of new fuels and antifuels, and the integration of new payloads being reconfigured by the molecular devices, such as enzymes or

  20. Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles.

    Science.gov (United States)

    Prusinkiewicz, Martin A; Farazkhorasani, Fatemeh; Dynes, James J; Wang, Jian; Gough, Kathleen M; Kaminskyj, Susan G W

    2012-11-07

    High spatial resolution methods to assess the physiology of growing cells should permit analysis of fungal biochemical composition. Whole colony methods cannot capture the details of physiology and organism-environment interaction, in part because the structure, function and composition of fungal hyphae vary within individual cells depending on their distance from the growing apex. Surface Enhanced Raman Scattering (SERS) can provide chemical information on materials that are in close contact with appropriate metal substrates, such as nanopatterned gold surfaces and gold nanoparticles (AuNPs). Since nanoparticles can be generated by living cells, we have created conditions for AuNP formation within and on the surface of Aspergillus nidulans hyphae in order to explore their potential for SERS analysis. AuNP distribution and composition have been assessed by UV-Vis spectroscopy, fluorescence light microscopy, transmission electron microscopy, and scanning transmission X-ray microscopy. AuNPs were often associated with hyphal walls, both in the peripheral cytoplasm and on the outer wall surface. Interpretation of SERS spectra is challenging, and will require validation for the diversity of organic molecules present. Here, we show proof-of-principle that it is possible to generate SERS spectra from nanoparticles grown in situ by living hyphae.

  1. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    Science.gov (United States)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  2. Silver nanoparticle deposition on inverse opal SiO2 films embedded in protective polypropylene micropits for SERS applications

    Science.gov (United States)

    Ammosova, Lena; Ankudze, Bright; Philip, Anish; Jiang, Yu; Pakkanen, Tuula T.; Pakkanen, Tapani A.

    2018-01-01

    Common methods to fabricate surface enhanced Raman scattering (SERS) substrates with controlled micro-nanohierarchy are often complex and expensive. In this study, we demonstrate a simple and cost effective method to fabricate SERS substrates with complex geometries. Microworking robot structuration is used to pattern a polypropylene (PP) substrate with micropits, facilitating protective microenvironment for brittle SiO2 inverse opal (IO) structure. Hierarchical SiO2 IO patterns were obtained using polystyrene (PS) spheres as a sacrificial template, and were selectively embedded into the hydrophilized PP micropits. The same microworking robot technique was subsequently used to deposit silver nanoparticle ink into the SiO2 IO cavities. The fabricated multi-level micro-nanohierarchy surface was studied to enhance Raman scattering of the 4-aminothiophenol (4-ATP) analyte molecule. The results show that the SERS performance of the micro-nanohierarchical substrate increases significantly the Raman scattering intensity compared to substrates with structured 2D surface geometries.

  3. 3D Plasmonic Ensembles of Graphene Oxide and Nobel Metal Nanoparticles with Ultrahigh SERS Activity and Sensitivity

    Directory of Open Access Journals (Sweden)

    Jing Lin

    2016-01-01

    Full Text Available We describe a comparison study on 3D ensembles of graphene oxide (GO and metal nanoparticles (silver nanoparticles (AgNPs, gold nanoparticles (GNPs, and gold nanorods (GNRs for surface-enhanced Raman scattering (SERS application. For the first time, GNRs were successfully assembled on the surfaces of GO by means of electrostatic interactions without adding any surfactant. The SERS properties of GO/AgNPs, GO/GNPs, and GO/GNRs were compared using 2-mercaptopyridine (2-Mpy as probing molecule. We found that GO/AgNPs and GO/GNPs substrates are not suitable for detecting 2-Mpy due to the very strong π-π stacking interaction between the 2-Mpy molecules and sp2 carbon structure of GO. Conversely, the GO/GNRs substrates show ultrahigh SERS activity and sensitivity of 2-Mpy with the detection limit as low as ~10-15 M, which is ~2-3 orders of magnitude higher than that of the corresponding GNRs.

  4. A dual-stimuli-responsive fluorescent switch ultrathin film

    Science.gov (United States)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  5. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang, E-mail: chuliqiang@tust.edu.cn

    2017-06-15

    Highlights: • POEGMA/AgNPs composite film prepared via the in-stacking method is employed as 3D SERS substrate. • Control over POEGMA chain length is achieved via SI-ATRP method. • Influence of POEGMA chain length and in-stacking process on SERS performance is investigated. • The 3D SERS substrate is used for the ultrasensitive detection of ATP and S. aureus. - Abstract: Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV–vis and Raman spectroscopy. FE-SEM and UV–vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 10{sup 7} and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.

  6. Stimuli-Responsive Polymer-Clay Nanocomposites under Electric Fields

    Science.gov (United States)

    Piao, Shang Hao; Kwon, Seung Hyuk; Choi, Hyoung Jin

    2016-01-01

    This short Feature Article reviews electric stimuli-responsive polymer/clay nanocomposites with respect to their fabrication, physical characteristics and electrorheological (ER) behaviors under applied electric fields when dispersed in oil. Their structural characteristics, morphological features and thermal degradation behavior were examined by X-ray diffraction pattern, scanning electron microscopy and transmission electron microscopy, and thermogravimetric analysis, respectively. Particular focus is given to the electro-responsive ER characteristics of the polymer/clay nanocomposites in terms of the yield stress and viscoelastic properties along with their applications. PMID:28787852

  7. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.

    Science.gov (United States)

    Huang, Jie; Zhang, Liming; Chen, Biao; Ji, Nan; Chen, Fenghua; Zhang, Yi; Zhang, Zhijun

    2010-12-01

    In this paper, we describe the formation of Au nanoparticle-graphene oxide (Au-GO) and -reduced GO (Au-rGO) composites by noncovalent attachment of Au nanoparticles premodified with 2-mercaptopyridine to GO and rGO sheets, respectively, viaπ-π stacking and other molecular interactions. Compared with in situ reduction of HAuCl4 on the surface of graphene sheets that are widely used to prepare Au-GO composites, the approach developed by us offers well controlled size, size distribution, and morphology of the metal nanoparticles in the metal-GO nanohybrids. Moreover, we investigated surface enhanced Raman scattering (SERS) and catalysis properties of the Au-graphene composites. We have demonstrated that the Au-GO composites are superior SERS substrates to the Au NPs. Similarly, a comparative study on the catalytic activities of the Au, Au-GO, and Au-rGO composites in the reduction of o-nitroaniline to 1,2-benzenediamine by NaBH4 indicates that both Au-GO and Au-rGO composites exhibit significantly higher catalytic activities than the corresponding Au nanoparticles.

  8. SERS investigations on orientation of 2-bromo-3-methyl-1,4-dimethoxy-9,10-anthraquinone on silver nanoparticles.

    Science.gov (United States)

    Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Khoumeri, O; Meenakumari, V; Milton Franklin Benial, A

    2015-01-01

    Silver nanoparticles (Ag NPs) were prepared by solution combustion method with urea as fuel. Silver nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Surface-enhanced Raman scattering (SERS) of 2-bromo-3-methyl-1,4-dimethoxy-9,10-anthraquinone (BMDMAQ) adsorbed on silver nanoparticles was investigated. The orientation of BMDMAQ on silver nanoparticles was inferred from nRs and SERS spectral features. Density functional theory (DFT) calculation was also performed to study the theoretical performance. The observed spectral features such as the high intensity of C-H out-of-plane bending mode and ring C-C stretching mode revealed that BMDMAQ adsorbed on silver surface through 'stand-on' orientation. Anthraquinone (AQ) derivatives have wide biomedical application which includes laxatives, antimalarials and antineoplastics used in the treatment of cancer. This present study would help to identify the interaction of drug molecules with DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: zhlisuzh@163.com [School of Chemistry and Life Science, Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, SuZhou 234000 (China)

    2013-04-01

    A self-assembled protocol is introduced to provide effective platforms for the fabrication of ordered Ag nanosized monolayer film. The assembled Ag nanosized monolayer film was characterized using scanning electronic microscopy and surface-enhanced Raman scattering (SERS). The results show that the assembled SERS substrate own excellent Raman enhancement and reproducibility. The synthesized SERS-active substrate was further used to detect methyl-parathion, and the limitation of detection can reach 10{sup −7} M.

  10. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Liu, Zhonghui [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China); Bartic, Carmen [KU Leuven, Department of Physics (Belgium); Xu, Hong, E-mail: xuhong@sjtu.edu.cn; Ye, Jian, E-mail: yejian78@sjtu.edu.cn [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China)

    2016-08-15

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.

  11. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    International Nuclear Information System (INIS)

    Wang, Shanshan; Liu, Zhonghui; Bartic, Carmen; Xu, Hong; Ye, Jian

    2016-01-01

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.

  12. Healable thermoset polymer composite embedded with stimuli-responsive fibres

    Science.gov (United States)

    Li, Guoqiang; Meng, Harper; Hu, Jinlian

    2012-01-01

    Severe wounds in biological systems such as human skin cannot heal themselves, unless they are first stitched together. Healing of macroscopic damage in thermoset polymer composites faces a similar challenge. Stimuli-responsive shape-changing polymeric fibres with outstanding mechanical properties embedded in polymers may be able to close macro-cracks automatically upon stimulation such as heating. Here, a stimuli-responsive fibre (SRF) with outstanding mechanical properties and supercontraction capability was fabricated for the purpose of healing macroscopic damage. The SRFs and thermoplastic particles (TPs) were incorporated into regular thermosetting epoxy for repeatedly healing macroscopic damages. The system works by mimicking self-healing of biological systems such as human skin, close (stitch) then heal, i.e. close the macroscopic crack through the thermal-induced supercontraction of the SRFs, and bond the closed crack through melting and diffusing of TPs at the crack interface. The healing efficiency determined using tapered double-cantilever beam specimens was 94 per cent. The self-healing process was reasonably repeatable. PMID:22896563

  13. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    Science.gov (United States)

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  15. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    Science.gov (United States)

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  16. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  17. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis

    Science.gov (United States)

    He, Lili; Liu, Changqing; Tang, Jia; Zhou, Youchen; Yang, Hui; Liu, Ruiyu; Hu, Jiugang

    2018-03-01

    In-situ SERS monitoring of direct plasmon-driven photocatalysis was achieved using relatively earth-abundant Cu NPs following their decoration with tiny amounts of silver, which promoted excellent SERS and high catalytic activity. The SERS and catalytic performance of the Ag-Cu NPs can be tuned by changing their composition. In particular, it was found that the surface oxidation state of copper could be switched to its metallic state via self-plasmon catalysis under laser irradiation, highlighting the potential of air-unstable copper NPs as stable plasmonic catalysts. These dual functional Ag-Cu NPs were used for SERS real-time monitoring of plasmon-driven photocatalysis reactions involving the degradation of Rhodamine 6G and the dimerization of 4-nitrothiophenol. The corresponding catalytic reaction mechanisms were discussed.

  18. Stimuli Responsive Ionogels for Sensing Applications—An Overview

    Directory of Open Access Journals (Sweden)

    Andrew Kavanagh

    2012-02-01

    Full Text Available This overview aims to summarize the existing potential of “Ionogels” as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL confined within a polymer matrix. Recently defined as “a solid interconnected network spreading throughout a liquid phase”, the ionogel therefore combines the properties of both its solid and liquid components. ILs are low melting salts that exist as liquids composed entirely of cations and anions at or around 100 °C. Important physical properties of these liquids such as viscosity, density, melting point and conductivity can be altered to suit a purpose by choice of the cation/anion. Here we provide an overview to highlight the literature thus far, detailing the encapsulation of IL and responsive materials within these polymeric structures. Exciting applications in the areas of optical and electrochemical sensing, solid state electrolytes and actuating materials shall be discussed.

  19. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    Science.gov (United States)

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.

    Science.gov (United States)

    Lee, Mian Rong; Lee, Hiang Kwee; Yang, Yijie; Koh, Charlynn Sher Lin; Lay, Chee Leng; Lee, Yih Hong; Phang, In Yee; Ling, Xing Yi

    2017-11-15

    We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures. By varying the PVP concentration, we tune the AuNP size from 27.3 to 65.0 nm and the density from 172 to 965 particles/μm 2 , corresponding to a surface roughness of 12.9 to 67.1 nm, which is important for surface-based applications such as surface-enhanced Raman scattering (SERS). We find that the microstructures exhibit an SERS enhancement factor of >10 5 and demonstrate remote writing of well-defined Au microstructures within a microfluidic channel for the SERS detection of gaseous molecules. We showcase in situ SERS monitoring of gaseous 4-methylbenzenethiol and real-time detection of multiple small gaseous species with no specific affinity to Au. This one-step, laser-induced fabrication of AuNP microstructures ignites a plethora of possibilities to position desired patterns directly onto or within most surfaces for the future creation of multifunctional lab-on-a-chip devices.

  1. 3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    International Nuclear Information System (INIS)

    Chen, Jianjun; Su, Huilan; You, Xueling; Gao, Jing; Lau, Woon Ming; Zhang, Di

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO 2 nanocomposites. • The 3D submicrostructures Ag/TiO 2 presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO 2 nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO 2 substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO 2 surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO 2 submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants

  2. Dual-Mode SERS-Fluorescence Immunoassay Using Graphene Quantum Dot Labeling on One-Dimensional Aligned Magnetoplasmonic Nanoparticles.

    Science.gov (United States)

    Zou, Fengming; Zhou, Hongjian; Tan, Tran Van; Kim, Jeonghyo; Koh, Kwangnak; Lee, Jaebeom

    2015-06-10

    A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).

  3. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Guina, E-mail: xiaoguina@shnu.edu.cn; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei, E-mail: leihuang@shnu.edu.cn

    2017-05-15

    Highlights: • We developed a paper-based SERS substrate by gravure and inkjet printing methods. • The S-RGO/AgNPs comoposite structure had higher SERS activity than the pure AgNPs. • The Raman enhancement factor of S-RGO/AgNPs substrate was calculated to be 10{sup 9}. • The paper-based substrate exhibited good reproducibility and long-term stability. - Abstract: Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 10{sup 9}. The minimum detection limit for MG and R6G was down to 10{sup −7} M with good linear responses (R{sup 2} = 0.9996, 0.9983) range from 10{sup −4} M to 10{sup −7} M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  4. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Science.gov (United States)

    Guo, Jia; Xu, Shicai; Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong; Jiang, Shouzhen; Ning, Tingyin

    2017-02-01

    In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10-12 M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R2 of 612 and 773 cm-1 can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow the hybrid system a good stability and long lifetime. This GO-AgNPs-PSi substrate may provide a new way toward practical applications for the ultrasensitive and label-free SERS detection in areas of medicine, food safety and biotechnology.

  5. Development of a paper-based vertical flow SERS assay for citrulline detection using aptamer-conjugated gold nanoparticles

    Science.gov (United States)

    Locke, Andrea; Deutz, Nicolaas; Coté, Gerard

    2018-02-01

    Research toward development of point-of-care (POC) technologies is emerging as a means for diagnosis and monitoring of patients outside the hospital. These POC devices typically utilize assays capable of detecting low level biomarkers indicative of specific diseases. L-citrulline, an α-amino acid produced in the intestinal mucosa cells, is one such biomarker typically found circulating within the plasma at physiological concentrations of 40 μM. Researchers have found that intestinal enterocyte malfunction causes its level to be significantly lowered, establishing it as a potential diagnostic biomarker for gut function. Our research group has proposed the development of a surface enhanced Raman spectroscopy (SERS) based assay, using vertical flow paper fluidics, for citrulline detection. The assay consists of a fluorescently active, Raman reporter labeled aptamer conjugated on gold nanoparticles. The aptamer changes its confirmation on binding to its target, which in turn changes the distance between the Raman active molecule and the nanoparticle surface. These particles were embedded within a portable chip consisting of cellulose-based paper. After the chips were loaded with different concentrations of free L-citrulline in phosphate buffer, time was given for the assay to interact with the sample. A handheld Raman spectrometer (638 nm; Ocean Optics) was used to measure the SERS intensity. Results showed decrease in intensity with increasing concentration of L-citrulline (0-50μM).

  6. Metal Nanoparticles Deposited on Porous Silicon Templates as Novel Substrates for SERS

    Directory of Open Access Journals (Sweden)

    Lara Mikac

    2015-12-01

    Full Text Available In this paper, results on preparation of stable and uniform SERS solid substrates using macroporous silicon (pSi with deposited silver and gold are presented. Macroporous silicon is produced by anodisation of p-type silicon in hydrofluoric acid. The as prepared pSi is then used as a template for Ag and Au depositions. The noble metals were deposited in three different ways: by immersion in silver nitrate solution, by drop-casting silver colloidal solution and by pulsed laser ablation (PLA. Substrates obtained by different deposition processes were evaluated for SERS efficiency using methylene blue (MB and rhodamine 6G (R6G at 514.5, 633 and 785 nm. Using 514.5 nm excitation and R6G the limits of detection (LOD for macroporous Si samples with noble metal nanostructures obtained by immersion of pSi sample in silver nitrate solution and by applying silver colloidal solution to pSi template were 10–9 M and 10–8 M respectively. Using 633 nm laser and MB the most noticeable SERS activity gave pSi samples ablated with 30000 and 45000 laser pulses where the LODs of 10–10 M were obtained. The detection limit of 10–10 M was also reached for 4 mA cm–2-15 min pSi sample, silver ablated with 30000 pulses. Macroporous silicon proved to be a good base for the preparation of SERS substrates.

  7. Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS

    International Nuclear Information System (INIS)

    López -Lorente, Ángela I.; Valcárcel, Miguel; Mizaikoff, Boris

    2014-01-01

    We describe a method for the synthesis of gold nanoparticles in a stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor but without using a classical reducing agent. Gold(III) ion is reduced by stainless steel to form gold nanoparticles which are collected at the end of the coil. A single-phase system is introduced that generates dispersed nanoparticles in the absence of reducing agents on their surface. By controlling flow rates and temperature, the size of the nanoparticles can be tuned in the range from 24 nm to 36 nm. The reproducibility of the preparation was investigated, relative standard deviation of both the wavelength of the peak and the intensity of the plasmonic absorption band were determined and found to vary by 0.15 % and 6.5 %, respectively. Flow synthesis is found to be an excellent alternative to chemical methods to produce stable gold nanoparticles of varying size in an efficiently way. The particles obtained also perform very well when used as a substrate in surface enhanced Raman scattering as shown by the characterization of carboxylated single walled carbon nanotubes. (author)

  8. Silver nanoparticles on GaSb nanodots: a LSPR-boosted binary platform for broadband light harvesting and SERS

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com; Ranjan, Mukesh; Mukherjee, Subroto [FCIPT, Institute for Plasma Research (India)

    2015-02-15

    We report the LSPR-augmented optical response of silver nanoparticle-topped GaSb nanodots produced by low-energy ion beam irradiation. Nanostructure ordering and interdot gap play crucial roles for inducing the LSPR effect, enhancing the absorbing capacity of the structure as validated by reflection measurements. The measured size of silver-capped GaSb nanodot varies from 28 to 48 nm. Enhanced plasmon coupling for the 600 eV configuration initiates the presence of giant electromagnetic fields as confirmed by LSPR and SERS measurements. Anisotropic Bruggeman effective medium approximation was performed to match the experimentally observed optical response of the nanostructure. Calculated screening factor values of 0.29 and 0.23 for 600 and 800 eV ion energy produced nanodot configurations were obtained, respectively, which are in tune with the measured reflected and SERS signal. The calculated dielectric constants confirm the directional anisotropy along the length of the silver-capped GaSb nanodots. The proposed model successfully matches the void fraction and nanostructure height in accordance with SEM and reported TEM measurements. Thus, the model developed can be used to optimize the maximum plasmonic coupling efficiency among the dots. We propose two key applications for this nanostructure, first as an absorptive substrate for deep space photovoltaics and second to act as an effective SERS substrate.

  9. Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS

    International Nuclear Information System (INIS)

    Ma, Pinyi; Wang, Di; Yang, Qingqing; Song, Daqian; Wang, Xinghua; Liang, Fanghui; Ding, Yaying; Yu, Yong; Gao, Dejiang

    2015-01-01

    A selective and ultrasensitive surface-enhanced Raman spectroscopy (SERS) method was developed for the determination of formaldehyde (HCHO) in environmental waters and food samples. It is based on derivatization of HCHO with 4-amino-5-hydrazino-3-mercapto-1,2,4-triazole (AHMT) with HCHO. One of the products of the derivative reaction, 6-mercapto-5-triazolo[4,3-b]-s-tetrazine (MTT), can be quantified by SERS at 832 cm −1 using silver nanoparticles (AgNPs) as substrates. The incubation time for derivatization, the volume of reagents and the mixing times were optimized. The peak areas of the SERS are linearly related to the concentration of HCHO in the 1 − 1,000 μg L −1 range, the limit of detection is 0.15 μg L −1 , and the limit of quantification is 0.45 μg L −1 . Recoveries obtained by analyzing two spiked samples of environmental water and two spiked food samples were in the range between 91.0 and 108.7 %. There is no significant difference between the results obtained by the present method and the liquid chromatographic method (Chinese industrial standard method, SN/T 1547-2011). (author)

  10. Synthesis of silver nanoparticles in the presence of diethylaminoethyl-dextran hydrochloride polymer and their SERS activity

    Science.gov (United States)

    Mikac, L.; Jurkin, T.; Štefanić, G.; Ivanda, Mile; Gotić, Marijan

    2017-09-01

    The silver nanoparticles (AgNPs) were synthesized upon γ-irradiation of AgNO3 precursor suspensions in the presence of diethylaminoethyl-dextran hydrochloride (DEAE-dextran) cationic polymer as a stabilizer. The dose rate of γ-irradiation was 32 kGy h-1, and absorbed doses were 30 and 60 kGy. The γ-irradiation of the precursor suspension at acidic or neutral pH conditions produced predominantly the silver(I) chloride (AgCl) particles, because of the poor solubility of AgCl already present in the precursor suspension. The origin of AgCl in the precursor suspension was due to the presence of chloride ions in DEAE-dextran hydrochloride polymer. The addition of ammonia to the precursor suspension dissolved the AgCl precipitate, and the γ-irradiation of such colourless suspension at alkali pH produced a stable aqueous suspension with rather uniform spherical AgNPs of approximately 30 nm in size. The size of AgNPs was controlled by varying the AgNO3/DEAE-dextran concentration in the suspensions. The surface-enhanced Raman scattering (SERS) activities of synthesized AgNPs were examined using organic molecules rhodamine 6G, pyridine and 4-mercaptobenzoic acid (4-MBA). The NaBH4 was used as SERS aggregation agent. The SERS results have shown that in the presence of synthesized AgNPs, it was possible to detect low concentration of tested compounds.

  11. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors.

    Science.gov (United States)

    Lombardi, John R

    2017-12-04

    We present an expression for the lowest order nonzero contribution to the surface-enhanced Raman spectrum obtained from a system of a molecule adsorbed on a semiconductor nanoparticle. Herzberg-Teller vibronic coupling of the zero-order Born-Oppenheimer states results in an expression which may be regarded as an extension of the Albrecht A-, B-, and C-terms to SERS substrates. We show that the SERS enhancement is caused by combinations of several types of resonances in the combined system, namely, surface, exciton, charge-transfer, and molecular resonances. These resonances are coupled by terms in the numerator, which provide selection rules that enable various tests of the theory and predict the relative intensities of the Raman lines. Furthermore, by considering interactions of the various contributions to the SERS enhancement, we are able to develop ways to optimize the enhancement factor by tailoring the semiconductor nanostructure, thereby adjusting the locations of the various contributing resonances. This provides a procedure by which molecular sensors can be constructed and optimized. We provide several experimental examples on substrates such as monolayer MoS 2 and GaN nanorods.

  12. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    International Nuclear Information System (INIS)

    Felix-Rivera, H.; Gonzalez, R.; Rodriguez, G.D.M.; Oliva, M. P.; Hernandez-Rivera, S.P.; Rios-Velazquez, C.

    2011-01-01

    The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt) were identified by surface-enhanced Raman scattering (SERS) spectroscopy using silver (Ag) nanoparticles (NPs) reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of hot spots, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  13. Improving SERS Detection of Bacillus thuringiensis Using Silver Nanoparticles Reduced with Hydroxylamine and with Citrate Capped Borohydride

    Directory of Open Access Journals (Sweden)

    Hilsamar Félix-Rivera

    2011-01-01

    Full Text Available The development of techniques that could be useful in fields other than biological warfare agents countermeasures such as medical diagnostics, industrial microbiology, and environmental applications have become a very important subject of research. Raman spectroscopy can be used in near field or at long distances from the sample to obtain fingerprinting information of chemical composition of microorganisms. In this research, biochemical components of the cell wall and endospores of Bacillus thuringiensis (Bt were identified by surface-enhanced Raman scattering (SERS spectroscopy using silver (Ag nanoparticles (NPs reduced by hydroxylamine and borohydride capped with sodium citrate. Activation of “hot spots”, aggregation and surface charge modification of the NPs, was studied and optimized to obtain signal enhancements from Bt by SERS. Slight aggregation of the NPs as well as surface charge modification to a more acidic ambient was induced using small-size borohydride-reduced NPs in the form of metallic suspensions aimed at increasing the Ag NP-Bt interactions. Hydroxylamine-reduced NPs required slight aggregation and no pH modifications in order to obtain high spectral quality results in bringing out SERS signatures of Bt.

  14. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu, Shicai [Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Dezhou 253023 (China); Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, Shouzhen, E-mail: jiang_sz@126.com [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China); Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China)

    2017-02-28

    Highlights: • We directly grown AgNPs on substrate by annealing method in the quartz tube. Compare with spin-coating Ag nanoparticles solution method, we got more uniform distribution of AgNPs and the AgNPs better adsorption on the substrate. • We use a simple and lost-cost method to obtain the pyramidal silicon (PSi). The PSi possessing well-separated pyramid arrays can make contribution to the homogeneity and sensitivity of the substrate. • In our work, graphene oxide (GO) film is uniformly deposited on AgNPs and PSi by using a spin-coating method. The GO films endow the hybrid system a good stability and enhance the homogeneity and sensitivity of the substrate. - Abstract: In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10{sup −12} M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R{sup 2} of 612 and 773 cm{sup −1} can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow

  15. Sputtering-growth of seeded Au nanoparticles for nanogap-assisted surface-enhanced Raman scattering (SERS) biosensing

    Science.gov (United States)

    Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini

    2011-12-01

    Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.

  16. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  17. Design, challenge, and promise of stimuli-responsive nanoantibiotics

    Science.gov (United States)

    Edson, Julius A.; Kwon, Young Jik

    2016-10-01

    Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.[Figure not available: see fulltext.

  18. SERS-active Ag, Au and Ag–Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Olea-Mejía, Oscar, E-mail: oleaoscar@yahoo.com.mx [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Fernández-Mondragón, Mariana; Rodríguez-de la Concha, Gabriela [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Universidad Autónoma del Estado de México, km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50200, México (Mexico); Camacho-López, Marco [Laboratorio de Investigación y Desarrollo de Materiales Avanzados, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, San Cayetano 50925, México (Mexico)

    2015-09-01

    Highlights: • We synthesized Ag/Au nanoparticles by laser ablation in liquids. • We characterized such particles by UV–vis, TEM and EDS/STEM. • The SERS effect was studied for the obtained nanoparticles. • Pure silver nanoparticles showed the highest SERS signals. • We can sense methylene blue at a concentration of 10{sup −10} mole/L. - Abstract: We have synthesized Ag–Au nanoparticles by laser ablation in liquids using five different targets: 100% Ag, 80%Ag/20%Au, 50%Ag/50%Au, 20%Ag/80%Au and 100% Au (weight percentages). We used ethanol and methylene blue solutions in ethanol as the liquid media. The nanoparticles were mostly spherical with diameters 15, 19, 18, 23 and 11 nm, respectively. When alloyed targets were used, the resulting nanoparticles were completely alloyed forming solid solutions as evidenced by UV–vis Spectroscopy and Scanning Transmission Electron Microscopy. The obtained nanoparticles were employed to study the SERS effect of the methylene blue molecule. All the samples showed good SERS activity, however the ones composed of pure silver showed the greatest Raman signal enhancement. Finally, pure Ag nanoparticles were used for sensing methylene blue at different concentrations. While almost no signal can be discerned from the Raman spectrum when no particles are used at a concentration of methylene blue of 1 × 10{sup −2} M (∼3000 ppm), when Ag nanoparticles are used one can observe the characteristic peak of the molecule at concentrations as low as 1 × 10{sup −10} M (∼3 × 10{sup −5} ppm)

  19. SERS active systems of water-soluble polythiophene and plasmonic nanoparticles: preparation and optical properties

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Pfleger, Jiří; Halašová, Klára; Procházka, M.; Bondarev, D.; Vohlídal, J.

    2011-01-01

    Roč. 55, č. 2 (2011), 23905_1-23905_6 ISSN 1286-0042. [International Symposium on Flexible Organic Electronics /3./. Ouranoupolis, 06.07.2010-09.07.2010] R&D Projects: GA AV ČR KAN100500652; GA MŠk 7E10040; GA ČR GAP208/10/0941 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanocomposite * SERS * .pi.-conjugated polymer s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.771, year: 2011

  20. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

    KAUST Repository

    Coluccio, M.L.; De Vitis, S.; Strumbo, G.; Candeloro, P.; Perozziello, G.; Di Fabrizio, Enzo M.; Gentile, F.

    2016-01-01

    MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

  1. 1-Hexadecylamine as both reducing agent and stabilizer to synthesize Au and Ag nanoparticles and their SERS application

    International Nuclear Information System (INIS)

    Hou Xiaomiao; Zhan, Xiaoling; Fang Yan; Chen Shutang; Li Na; Zhou Qi

    2011-01-01

    1-Hexadecylamine (HDA)-capped Au and Ag nanoparticles (NPs) have been successfully prepared by a one-pot solution growth method. The HDA is used as both reducing agent and stabilizer in the synthetic process is favorable for investigating the capping mechanism of Au and Ag NPs’ surface. The growth process and characterization of Au and Ag NPs are determined by Ultraviolet–visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). Experimental results demonstrate that the HDA-capped Au and Ag NPs are highly crystalline and have good optical properties. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 2-thionaphthol are obtained on the Au and Ag NPs modified glass surface, respectively, indicating that the as-synthesized noble metal NPs have potentially high sensitive optical detection application.

  2. 1-Hexadecylamine as both reducing agent and stabilizer to synthesize Au and Ag nanoparticles and their SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xiaomiao; Zhan, Xiaoling, E-mail: zhangxl@bit.edu.cn [Beijing Institute of Technology, Department of Chemistry, School of Science (China); Fang Yan, E-mail: fangyan@mail.cnu.edu.cn [Capital Normal University, Beijing Key Lab for Nano-Photonics and Nano-Structure (NPNS), Department of Physics (China); Chen Shutang; Li Na; Zhou Qi [Beijing Institute of Technology, Department of Chemistry, School of Science (China)

    2011-05-15

    1-Hexadecylamine (HDA)-capped Au and Ag nanoparticles (NPs) have been successfully prepared by a one-pot solution growth method. The HDA is used as both reducing agent and stabilizer in the synthetic process is favorable for investigating the capping mechanism of Au and Ag NPs' surface. The growth process and characterization of Au and Ag NPs are determined by Ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). Experimental results demonstrate that the HDA-capped Au and Ag NPs are highly crystalline and have good optical properties. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 2-thionaphthol are obtained on the Au and Ag NPs modified glass surface, respectively, indicating that the as-synthesized noble metal NPs have potentially high sensitive optical detection application.

  3. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    Science.gov (United States)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft

  4. Effect of Interface energy and electron transfer on shape, plasmon resonance and SERS activity of supported surfactant-free gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Dastmalchi, Babak [Ames Laboratory; Suvorova, Alexandra [University of Western Australia; Bianco, Giuseppe V. [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Hingerl, Kurt [Johannes Kepler University Linz; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP; Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP

    2014-01-01

    For device integration purposes plasmonic metal nanoparticles must be supported/deposited on substrates. Therefore, it is important to understand the interaction between surfactant-free plasmonic metal nanoparticles and different substrates, as well as to identify factors that drive nanoparticles nucleation and formation. Here we show that for nanoparticles grown directly on supports, the substrate/nanoparticle interfacial energy affects the equilibrium shape of nanoparticles. Therefore, oblate, spherical and prolate Au nanoparticles (NPs) with different shapes have been deposited by radiofrequency sputtering on substrates with different characteristics, namely a dielectric oxide Al2O3 (0001), a narrow bandgap semiconductor Si (100), and a polar piezoelectric wide bandgap semiconductor 4H–SiC (0001). We demonstrate that the higher the substrate surface energy, the higher the interaction with the substrate, resulting in flat prolate Au nanoparticles. The resulting localized surface plasmon resonance characteristics of Au NPs/Al2O3, Au NPs/Si and Au NPs/SiC have been determined by spectroscopic ellipsometry and correlated with their structure and shape studied by transmission electron microscopy. Finally, we have demonstrated the diverse response of the tailored plasmonic substrates as ultrasensitive SERS chemical sensors. Flat oblates Au NPs on SiC result in an enhanced and more stable SERS response. The experimental findings are validated by numerical simulations of electromagnetic fields.

  5. The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Marta Vicario-de-la-Torre

    2017-05-01

    Full Text Available Nanogels (NGs are currently under extensive investigation due to their unique properties, such as small particle size, high encapsulation efficiency and protection of active agents from degradation, which make them ideal candidates as drug delivery systems (DDS. Stimuli-responsive NGs are cross-linked nanoparticles (NPs, composed of polymers, natural, synthetic, or a combination thereof that can swell by absorption (uptake of large amounts of solvent, but not dissolve due to the constituent structure of the polymeric network. NGs can undergo change from a polymeric solution (swell form to a hard particle (collapsed form in response to (i physical stimuli such as temperature, ionic strength, magnetic or electric fields; (ii chemical stimuli such as pH, ions, specific molecules or (iii biochemical stimuli such as enzymatic substrates or affinity ligands. The interest in NGs comes from their multi-stimuli nature involving reversible phase transitions in response to changes in the external media in a faster way than macroscopic gels or hydrogels due to their nanometric size. NGs have a porous structure able to encapsulate small molecules such as drugs and genes, then releasing them by changing their volume when external stimuli are applied.

  6. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    Science.gov (United States)

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  7. Nanoparticle Surface Specific Adsorption of Zein and Its Self-assembled Behavior of Nanocubes Formation in Relation to On-Off SERS: Understanding Morphology Control of Protein Aggregates.

    Science.gov (United States)

    Navdeep; Banipal, Tarlok Singh; Kaur, Gurinder; Bakshi, Mandeep Singh

    2016-01-27

    Zein, an industrially important protein, is characterized in terms of its food and pharmaceutical coating applications by using surface enhanced Raman spectroscopy (SERS) on Au, Ag, and PbS nanoparticles (NPs). Its specific surface adsorption behavior on Ag NPs produced self-assembled zein nanocubes which demonstrated on and off SERS activity. Both SERS characterization as well as nanocube formation of zein helped us to understand the complex protein aggregation behavior in shape controlled morphologies, a process with significant ramifications in protein crystallization to achieve ordered morphologies. Interestingly, nanocube formation was promoted in the presence of Ag rather than Au or PbS NPs under in situ synthesis and discussed in terms of specific adsorption. Zein fingerprinting was much more clear and enhanced on Au surface in comparison to Ag while PbS did not demonstrate SERS due to its semiconducting nature.

  8. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijie; Wu, Yunping [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Wang, Zhihua, E-mail: zhwang@henu.edu.cn [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Zou, Xueyan; Zhao, Yanbao [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@hneu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China)

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  9. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    International Nuclear Information System (INIS)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-01-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  10. A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.

    Science.gov (United States)

    Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang

    2018-06-01

    Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  12. Morphological variation of stimuli-responsive polypeptide at air–water interface

    International Nuclear Information System (INIS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-01-01

    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  13. Morphological variation of stimuli-responsive polypeptide at air–water interface

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Chang, Hyejin; Jung, Dae-Hong [Department of Chemical Education, Seoul National University, Seoul 151-741 (Korea, Republic of); Hyun, Jinho, E-mail: jhyun@snu.ac.kr [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea. (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  14. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    Science.gov (United States)

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  15. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    Science.gov (United States)

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable

  16. SERS study of riboflavin on green-synthesized silver nanoparticles prepared by reduction using different flavonoids: What is the role of flavonoid used?

    Science.gov (United States)

    Švecová, Marie; Ulbrich, Pavel; Dendisová, Marcela; Matějka, Pavel

    2018-04-01

    Spectroscopy of surface-enhanced Raman scattering (SERS) is nowadays widely used in the field of bio-science and medicine. These applications require new enhancing substrates with special properties. They should be non-toxic, environmentally friendly and (bio-) compatible with examined samples. Flavonoids are natural antioxidants with many positive effects on human health. Simultaneously, they can be used as reducing agent in preparation procedure of plasmonic enhancing substrate for SERS spectroscopy. The best amplifiers of Raman vibrational spectroscopic signal are generally silver nanoparticles (AgNPs). In this study, several flavonoids (forming a logical set) were used as reducing agent in AgNPs preparation procedures. Reactivity of 10 structurally arranged flavonoids (namely flavone, chrysin, apigenin, luteolin, tricetin, 3-hydroxyflavone, galangin, kaempferol, quercetin and myricetin) was compared and SERS-activity of prepared AgNPs was tested using model analyte riboflavin. Riboflavin was detected down to concentration 10-9 mol/l.

  17. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

    KAUST Repository

    Coluccio, M.L.

    2016-03-25

    The study and the comprehension of the mechanism of cell adhesion and cell interaction with a substrate is a key point when biology and medicine meet engineering. This is the case of several biomedical applications, from regenerative medicine and tissue engineering to lab on chip and many others, in which the realization of the appropriate artificial surface allows the control of cell adhesion and proliferation. In this context, we aimed to design and develop a fabrication method of mesoporous (MeP) silicon substrates, doped with gold nanoparticles, in which we combine the capability of porous surfaces to support cell adhesion with the SERS capabilities of gold nanoparticles, to understand the chemical mechanisms of cell/surface interaction. MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

  18. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.

    Science.gov (United States)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-28

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL(-1) with the limit of detection (LOD) of 0.48 pg mL(-1). The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.

  19. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    Science.gov (United States)

    Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali

    2016-12-02

    Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.

  20. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Xie, Yujie; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu [State Key Lab. of Applied Organic Chemistry, Key Lab. of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou Univ. (China); Song, Bo [State Key Lab. of Fine Chemicals, School of Chemistry, Dalian Univ. of Technology, Dalian (China)

    2017-03-01

    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe2O4 Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection

    Science.gov (United States)

    Huy, Le Thanh; Tam, Le Thi; Van Son, Tran; Cuong, Nguyen Duy; Nam, Man Hoai; Vinh, Le Khanh; Huy, Tran Quang; Ngo, Duc-The; Phan, Vu Ngoc; Le, Anh-Tuan

    2017-06-01

    In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag-MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag-MnFe2O4 nanocomposites were analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy measurements. Noticeable antibacterial activity of the Ag-MnFe2O4 nanocomposites was demonstrated against two Gram-negative bacteria, Salmonella enteritidis and Klebsiella pneumoniae. A direct-drop diffusion method can be an effective way to investigate the antibacterial effects of nanocomposite samples. Interestingly, we also demonstrated the use of Ag-MnFe2O4 nanocomposites as a surface-enhanced Raman scattering (SERS) platform to detect and quantify trace amounts of organic dye in water solutions. The combination of Ag and MnFe2O4 nanoparticles opens opportunities for creating advantages such as targeted bactericidal delivery, recyclable capability, and sensitive SERS-based detection for advanced biomedicine and environmental monitoring applications.

  2. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity

    Science.gov (United States)

    Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.

    2015-12-01

    Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements.

  3. Next generation, in-situ microfluidic flow control using stimuli responsive materials for biomemetic microfluicic platforms

    NARCIS (Netherlands)

    Coleman, Simon; Azouz, Aymen Ben; Schiphorst, Jeroen Ter; Saez, Janire; Whyte, Jeffrey; McCluskey, Peter; Kent, Nigel; Benito-Lopez, Fernando; Schenning, Albert; Diamond, Dermot

    2016-01-01

    The requirement of significant off-chip fluid manipulation using high-cost mechanical components has resulted in design limitations in microfluidic devices. We report the use of novel stimuli responsive polymer gel materials for a variety of bio-inspired processes to achieve in-situ microfluidic

  4. The role of supramolecular chemistry in stimuli responsive and hierarchically structured functional organic materials

    NARCIS (Netherlands)

    Schenning, A.P.H.J.; Bastiaansen, C.W.M.; Broer, D.J.; Debije, M.G.

    2014-01-01

    ABSTRACT: In this review, we show the important role of supramolecular chemistry in the fabrication of stimuli responsive and hierarchically structured liquid crystalline polymer networks. Supramolecular interactions can be used to create three dimensional order or as molecular triggers in materials

  5. SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles

    Science.gov (United States)

    Zhang, Wei; Bai, Xueyuan; Wang, Yingping; Zhao, Bing; Zhao, Daqing; Zhao, Yu

    Raman and surface-enhanced Raman scattering (SERS) spectroscopy were employed to probe the interaction of the flavonol drugs, kaempferol and galangin, with human serum albumin (HSA). SERS spectra of both flavonol derivatives were obtained from a colloidal silver surface in physiological condition, based on the high performance of the enhanced substrate, the most enhanced modes of kaempferol and galangin were those with certain motions perpendicular to the metal surface. The SERS spectra were allowed to predict similar orientation geometry for both of the drugs on the colloidal surface with minor difference. In addition, both flavonols-HSA complexes were prepared in different concentration ratios and the orientated differences between kaempferol and galangin were investigated by SERS.

  6. Effect of x-radiation on SERS spectra of chitosan adsorbed on silver nanoparticles with plasmon resonance

    International Nuclear Information System (INIS)

    Motevich, I.G.; Strekal', N.D.; Dul', M.V.; Ganchits, A.T.; Lagun, Yu.Ya.; Melamed, V.D.; Maskevich, S.A.

    2016-01-01

    Chitosan, a deacetylated product of the polysaccharide chitin, is a natural biopolyaminosaccharide obtained from various organisms. Raman and SERS spectra of irradiated and unirradiated chitosan, adsorbed on silver hydrosols, are presented. (authors)

  7. A SERS-based pH sensor utilizing 3-amino-5-mercapto-1,2,4-triazole functionalized Ag nanoparticles.

    Science.gov (United States)

    Piotrowski, Piotr; Wrzosek, Beata; Królikowska, Agata; Bukowska, Jolanta

    2014-03-07

    We report the first use of 3-amino-5-mercapto-1,2,4-triazole (AMT) to construct a surface-enhanced Raman scattering (SERS) based pH nano- and microsensor, utilizing silver nanoparticles. We optimize the procedure of homogenous attachment of colloidal silver to micrometer-sized silica beads via an aminosilane linker. Such micro-carriers are potential optically trappable SERS microprobes. It is demonstrated that the SERS spectrum of AMT is strongly dependent on the pH of the surroundings, as the transformation between two different adsorption modes, upright (A form) and lying flat (B form) orientation, is provoked by pH variation. The possibility of tuning the nanosensor working range by changing the concentration of AMT in the surrounding solution is demonstrated. A strong correlation between the pH response of the nanosensor and the AMT concentration in solution is found to be controlled by the interactions between the surface and solution molecules. In the absence of the AMT monomer, the performance of both the nano- and microsensor is shifted substantially to the strongly acidic pH range, from 1.5 to 2.5 and from 1.0 to 2.0, respectively, which is quite unique even for SERS-based sensors.

  8. 3D TiO{sub 2} submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianjun [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Su, Huilan, E-mail: hlsu@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); You, Xueling; Gao, Jing [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Lau, Woon Ming [Chengdu Green Energy and Green Manufacturing Technology R and D Center, Sichuan 610207 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Zhang, Di, E-mail: zhangdi@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO{sub 2} nanocomposites. • The 3D submicrostructures Ag/TiO{sub 2} presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO{sub 2} nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO{sub 2} substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO{sub 2} surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO{sub 2} submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants.

  9. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  10. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  11. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    Science.gov (United States)

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  12. A rapid green strategy for the synthesis of Au "meatball"-like nanoparticles using green tea for SERS applications

    Science.gov (United States)

    Wu, Shichao; Zhou, Xi; Yang, Xiangrui; Hou, Zhenqing; Shi, Yanfeng; Zhong, Lubin; Jiang, Qian; Zhang, Qiqing

    2014-09-01

    We report a simple and rapid biological approach to synthesize water-soluble and highly roughened "meatball"-like Au nanoparticles using green tea extract under microwave irradiation. The synthesized Au meatball-like nanoparticles possess excellent monodispersity and uniform size (250 nm in diameter). Raman measurements show that these tea-generated meatball-like gold nanostructures with high active surface areas exhibit a high enhancement of surface-enhanced Raman scattering. In addition, the Au meatball-like nanoparticles demonstrate good biocompatibility and remarkable in vitro stability at the biological temperature. Meanwhile, the factors that influence the Au meatball-like nanoparticles morphology are investigated, and the mechanisms behind the nonspherical shape evolution are discussed.

  13. Multimodal assessment of SERS nanoparticle biodistribution post ingestion reveals new potential for clinical translation of Raman imaging.

    Science.gov (United States)

    Campbell, Jos L; SoRelle, Elliott D; Ilovich, Ohad; Liba, Orly; James, Michelle L; Qiu, Zhen; Perez, Valerie; Chan, Carmel T; de la Zerda, Adam; Zavaleta, Cristina

    2017-08-01

    Despite extensive research and development, new nano-based diagnostic contrast agents have faced major barriers in gaining regulatory approval due to their potential systemic toxicity and prolonged retention in vital organs. Here we use five independent biodistribution techniques to demonstrate that oral ingestion of one such agent, gold-silica Raman nanoparticles, results in complete clearance with no systemic toxicity in living mice. The oral delivery mimics topical administration to the oral cavity and gastrointestinal (GI) tract as an alternative to intravenous injection. Biodistribution and clearance profiles of orally (OR) vs. intravenously (IV) administered Raman nanoparticles were assayed over the course of 48 h. Mice given either an IV or oral dose of Raman nanoparticles radiolabeled with approximately 100 μCi (3.7MBq) of 64 Cu were imaged with dynamic microPET immediately post nanoparticle administration. Static microPET images were also acquired at 2 h, 5 h, 24 h and 48 h. Mice were sacrificed post imaging and various analyses were performed on the excised organs to determine nanoparticle localization. The results from microPET imaging, gamma counting, Raman imaging, ICP-MS, and hyperspectral imaging of tissue sections all correlated to reveal no evidence of systemic distribution of Raman nanoparticles after oral administration and complete clearance from the GI tract within 24 h. Paired with the unique signals and multiplexing potential of Raman nanoparticles, this approach holds great promise for realizing targeted imaging of tumors and dysplastic tissues within the oral cavity and GI-tract. Moreover, these results suggest a viable path for the first translation of high-sensitivity Raman contrast imaging into clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    Science.gov (United States)

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles: a highly efficient SERS substrate for pesticide detection

    Science.gov (United States)

    Sun, Mei; Zhao, Aiwu; Wang, Dapeng; Wang, Jin; Chen, Ping; Sun, Henghui

    2018-04-01

    As a novel surface-enhanced Raman spectroscopic (SERS) nanocomposite, cube-like Fe3O4@SiO2@Au@Ag magnetic nanoparticles (NPs) were synthesized for the first time. Cube-like α-Fe2O3 NPs with uniform size were achieved by optimizing reaction temperature and time. Firstly, the cube-like Fe3O4@SiO2 with good dispersity was achieved by calcining α-Fe2O3@SiO2 NPs in hydrogen atmosphere at 360 °C for 2.5 h, followed by self-assembling a PEI shell via sonication. Furthermore, the Au@Ag particles were densely assembled on the Fe3O4@SiO2 NPs to form the Fe3O4@SiO2@Au@Ag composite structure via strong Ag-N interaction. The obtained nanocomposites exhibited an excellent SERS behavior, reflected by the low detection of limit (p-ATP) at the 5 × 10-14 M level. Moreover, these nanocubes were used for the detection of thiram, and the detection limit can reach 5 × 10-11 M. Meanwhile, the U.S. Environmental Protection Agency specifies that the residue in fruit must be lower than 7 ppm. Hence, the resulting substrate with high SERS activity has great practical potential applications in the rapid detection of chemical, biological, and environment pollutants with a simple portable Raman instrument at trace level.

  16. A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides

    International Nuclear Information System (INIS)

    Pan, Yingcheng; Zhu, Jinglu; Wang, Xuan; Zhang, Han; Kang, Yan; Wu, Ting; Du, Yiping; Guo, Xiaoyu

    2015-01-01

    We have developed a simple, sensitive and practical substrate for surface enhanced Raman scattering (SERS). It consists of a column material that is obtained by modifying the surface of (glycidyl methacrylate)-co-(ethylene dimethacrylate) capillary monoliths with silver nanoparticles. This new SERS column substrate was applied to the determination of 4-mercaptopyridine (4-Mpy) and Rhodamine 6G (R6G) to give detection limits as low as 100 and 10 pM, respectively. The calculated enhancement factor is approximately 1.2 × 10 8 . This represents a substantial improvement over conventional colloidal substrates. The new substrate was applied to the determination of residues of the pesticide phosmet and gave a detection limit of 3 μg∙L −1 , with a linear response in the 3 to 1000 μg∙L −1 concentration range (R 2  = 0.995). Additionally, 0.2 mg∙kg −1 of phosmet on apples and oranges, and of 0.5 mg∙kg −1 on tea leaves were detectable via SERS using this column along with a simple extraction process. The above LODs are well below the tolerance level prescribed by National Standard of China. Thus, this simple method is highly efficient, sensitive, and affordable and introduces a SERS–based trace detection suitable for real-world applications, especially for the determination of pesticides. (author)

  17. Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives

    OpenAIRE

    Wei Chen; Yue Ma; Jianmin Pan; Zihui Meng; Guoqing Pan; Börje Sellergren

    2015-01-01

    Intelligent stimuli-responsive molecularly imprinted polymers (SR-MIPs) have attracted considerable research interest in recent years due to the potential applications in drug delivery, biotechnology and separation sciences. This review comprehensively summarizes various SR-MIPs, including the design and applications of thermo-responsive MIPs, pH-responsive MIPs, photo-responsive MIPs, biomolecule-responsive MIPs and ion-responsive MIPs. Besides the development of current SR-MIPs, the advanta...

  18. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  19. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection.

    Science.gov (United States)

    Wang, Xin; Gu, Mengjie; Toh, Tan Boon; Abdullah, Nurrul Lissa Binti; Chow, Edward Kai-Hua

    2018-02-01

    Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.

  20. Stimuli-responsive nanoparticles based on interaction of metallacarborane with poly(ethylene oxide)

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Zedník, J.; Ušelová, K.; Pleštil, Josef; Fanfrlík, Jindřich; Nykanen, A.; Ruokolainen, J.; Hobza, Pavel; Procházka, K.

    2009-01-01

    Roč. 42, č. 13 (2009), s. 4829-4837 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GD203/05/H001; GA AV ČR 1ET400500402; GA AV ČR IAAX00320901 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506 Keywords : block-copolymer micelles * light-scattering * dicarbollide anions Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.539, year: 2009

  1. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  2. FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Yang Jing-Liang; Li Ruo-Ping; Han Jun-He; Huang Ming-Ju

    2016-01-01

    We use Au@SiO 2 nanoparticles (NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering (SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO 2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the “hot spots” transferred from the NP–NP gaps to NP–surface of metal gaps, meanwhile, more “hot spots” occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement. (paper)

  3. Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites

    International Nuclear Information System (INIS)

    Yang Yingkui; He Chengen; He Wenjie; Yu Linjuan; Peng Rengui; Xie Xiaolin; Wang Xianbao; Mai Yiuwing

    2011-01-01

    Silver nanoparticles (Ag NPs) have been homogeneously deposited onto graphene oxide (GO) nanosheets by an optimal method, in which N,N-dimethylformamide (DMF) as a co-dispersant of GO and reductant of sliver ions is added to an aqueous suspension of GO and AgNO 3 . GO nanosheets are uniformly covered by Ag NPs with a narrow size distribution and inter-particle gap. Raman signals of GO are greatly enhanced after deposition owing to the charge transfer interaction of GO with Ag NPs. The GO/Ag composite can be further utilized as an effective surface-enhanced Raman scattering (SERS) active substrate. Several new Raman bands and frequency shifts are clearly observed in using 4-aminothiophenol (4-ATP) as a Raman probe on GO/Ag compared to the normal Raman spectrum of solid 4-ATP. The Raman enhancement arises from a major electromagnetic effect and a minor chemical effect.

  4. SERS Engineering Collaboration

    Science.gov (United States)

    2012-06-01

    laser beam. In the second approach, a pulsed laser was used to texture a silicon wafer to form sharp features. Silver was evaporated onto the wafer...orders of magnitude larger than that measured on a gold nanoparticle array on a glass substrate. The largest SERS enhancement for a silver device was...surface plasmons," Yizhuo Chu and Kenneth B. Crozier, Optics Letters vol. 34, 244 (2009) K3. "Gold nanorings as substrates for surface-enhanced Raman

  5. Development of a free-solution SERS-based assay for point-of-care oral cancer biomarker detection using DNA-conjugated gold nanoparticles

    Science.gov (United States)

    Han, Sungyub; Locke, Andrea K.; Oaks, Luke A.; Cheng, Yi-Shing Lisa; Coté, Gerard L.

    2018-02-01

    It is estimated that the number of new cases of oral cancers worldwide is 529,000 and more than 300,000 deaths each year. The five-year survival rate remains about 50%, and the low survival rate is believed to be due to delayed detection. The primary detection method is through a comprehensive clinical examination by a dentist followed by a biopsy of suspicious lesions. Systematic review and meta-analysis have revealed that clinical examination alone may not be sufficient to cause the clinician to perform a biopsy or refer for biopsy for early detection of OSCC. Therefore, a non-invasive, point-of-Care (POC) detection with high sensitivity and specificity for early detection would be urgently needed, and using salivary biomarkers would be an ideal technology for it. S100 calcium binding protein P (S100P) mRNA presenting in saliva is a potential biomarker for detection of oral cancer. Further, surface enhanced Raman spectroscopy (SERS) has been shown to be a promising POC diagnostic technique. In this research, a SERS-based assay using oligonucleotide strains was developed for the sensitive and rapid detection of S100P. Gold nanoparticles (AuNPs) as a SERS substrate were used for the conjugation with one of two unique 24 base pair oligonucleotides, referred to as left and right DNA probes. A Raman reporter molecule, malachite green isothiocyanate (MGITC), was bound to left-probe-conjugated AuNPs. UV-vis spectroscopy was employed to monitor the conjugation of DNA probes to AuNPs. The hybridization of S100P target to DNA-conjugated AuNPs in sandwich-assay format was confirmed by Raman spectroscopy and shown to yield and R2 of 0.917 across the range of 0-200 nM and a limit of detection of 3 nM.

  6. Ball-in-ball ZrO2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors.

    Science.gov (United States)

    Long, Dan; Niu, Meng; Tan, Longfei; Fu, Changhui; Ren, Xiangling; Xu, Ke; Zhong, Hongshan; Wang, Jingzhuo; Li, Laifeng; Meng, Xianwei

    2017-06-29

    Combined thermo-chemotherapy displays outstanding synergically therapeutic efficiency when compared with standalone thermotherapy and chemotherapy. Herein, we developed a smart tri-stimuli-responsive drug delivery system involving X@BB-ZrO 2 NPs (X represents loaded IL, DOX, keratin and tetradecanol) based on novel ball-in-ball-structured ZrO 2 nanoparticles (BB-ZrO 2 NPs). The microwave energy conversion efficiency of BB-ZrO 2 NPs was 41.2% higher than that of traditional single-layer NPs due to the cooperative action of self-reflection and spatial confinement effect of the special two-layer hollow nanostructure. The tri-stimuli-responsive controlled release strategy indicate that integrated pH, redox and microwaves in single NPs based on keratin and tetradecanol could effectively enhance the specific controlled release of DOX. The release of DOX was only 8.1% in PBS with pH = 7.2 and GSH = 20 μM. However, the release could reach about 50% at the tumor site (pH = 5.5, GSH = 13 mM) under microwave ablation. The as-made X@BB-ZrO 2 NPs exhibited perfect synergic therapy effect of chemotherapy and microwave ablation both in subcutaneous tumors (H22 tumor-bearing mice) and deep tumors (liver transplantation VX2 tumor-bearing rabbit model). There was no recurrence and death in the X@BB-ZrO 2 + MW group during the therapy of subcutaneous tumors even on the 42 nd day. The growth rates in the deep tumor of the control, MW and X@BB-ZrO 2 + MW groups were 290.1%, 14.1% and -42% 6 days after ablation, respectively. Dual-source CT was used to monitor the metabolism behavior of the as-made BB-ZrO 2 NPs and traditional CT was utilized to monitor the tumor growth in rabbits. Frozen section examination and ICP results indicated the precise control of drug delivery and enhanced cytotoxicity by the tri-stimuli-responsive controlled release strategy. The ball-in-ball ZrO 2 NPs with high microwave energy conversion efficiency were first developed for synergic microwave ablation and

  7. DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity† †Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA bands, SEM images, additional AFM images, FDTD simulations, additional reference spectra for Cy3 and detailed description of EF estimation, simulated absorption and scattering spectra. See DOI: 10.1039/c5nr08674d Click here for additional data file.

    Science.gov (United States)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.

    2016-01-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. PMID:26892770

  8. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao

    2016-04-01

    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  9. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Science.gov (United States)

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  10. Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications

    International Nuclear Information System (INIS)

    Lu, Tao; Peng, Wenhong; Zhu, Shenmin; Zhang, Di

    2016-01-01

    When the constitutive materials of photonic crystals (PCs) are stimuli-responsive, the resultant PCs exhibit optical properties that can be tuned by the stimuli. This can be exploited for promising applications in colour displays, biological and chemical sensors, inks and paints, and many optically active components. However, the preparation of the required photonic structures is the first issue to be solved. In the past two decades, approaches such as microfabrication and self-assembly have been developed to incorporate stimuli-responsive materials into existing periodic structures for the fabrication of PCs, either as the initial building blocks or as the surrounding matrix. Generally, the materials that respond to thermal, pH, chemical, optical, electrical, or magnetic stimuli are either soft or aggregate, which is why the manufacture of three-dimensional hierarchical photonic structures with responsive properties is a great challenge. Recently, inspired by biological PCs in nature which exhibit both flexible and responsive properties, researchers have developed various methods to synthesize metals and metal oxides with hierarchical structures by using a biological PC as the template. This review will focus on the recent developments in this field. In particular, PCs with biological hierarchical structures that can be tuned by external stimuli have recently been successfully fabricated. These findings offer innovative insights into the design of responsive PCs and should be of great importance for future applications of these materials. (topical review)

  11. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2016-07-01

    Full Text Available Although a number of tactics towards the fabrication and biomedical exploration of stimuli-responsive polymeric assemblies being responsive and adaptive to various factors have appeared, the controlled preparation of assemblies with well-defined physicochemical properties and tailor-made functions are still challenges. These responsive polymeric assemblies, which are triggered by stimuli, always exhibited reversible or irreversible changes in chemical structures and physical properties. However, simple drug/polymer nanocomplexes cannot deliver or release drugs into the diseased sites and cells on-demand due to the inevitable biological barriers. Hence, utilizing therapeutic or imaging agents-loaded stimuli-responsive block copolymer assemblies that are responsive to tumor internal microenvironments (pH, redox, enzyme, and temperature, etc. or external stimuli (light and electromagnetic field, etc. have emerged to be an important solution to improve therapeutic efficacy and imaging sensitivity through rationally designing as well as self-assembling approaches. In this review, we summarize a portion of recent progress in tumor and intracellular microenvironment responsive block copolymer assemblies and their applications in anticancer drug delivery and triggered release and enhanced imaging sensitivity. The outlook on future developments is also discussed. We hope that this review can stimulate more revolutionary ideas and novel concepts and meet the significant interest to diverse readers.

  12. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    Science.gov (United States)

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  13. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    Science.gov (United States)

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  14. Dual stimuli responsive self-reporting material for chemical reservoir coating

    Science.gov (United States)

    Lee, Tae Hee; Song, Young Kyu; Park, Sun Hee; Park, Young Il; Noh, Seung Man; Kim, Jin Chul

    2018-03-01

    In this study, we introduce a novel dual stimuli responsive self-reporting thiol-epoxy thermoset (DSRTET) coatings which can detect both crack occurrence and pH variation. For crack detection, microcapsule containing tetraphenylethylene (TPE) which exhibits aggregation induced emission (AIE) effect was prepared via multi-step emulsion polymerization and dispersed in DSRTET coatings. For pH variation detection, commercial thymol blue as a pH indicator was added into the polymer matrix. The effect of microcapsule contents in DSRTET on their curing behavior, material properties, and crack sensitivity was characterized using an oscillatory rheology, rigid body pendulum test (RPT), nano-indentation test (NST), universal test machine (UTM) and scratch tester. It was revealed that crack sensitivity of DSRTET coatings was greatly influenced by material properties as well as microcapsule content. The color transition of DSRTET coatings in response to acid or base solution were quantitatively investigated using a multi-angle spectrophotometer after simple acid and base solution drop tests. The color of DSRTET coatings changed from a pale green to red for acidic solution and to blue for basic solution. Finally, The DSRTET used in this study was applied to laboratory scale chemical reservoirs in order to verify the potential as a dual stimuli response self-reporting coating which can detect both crack in coating material and chemical spill caused by the leakage or breakage of the reservoir part.

  15. A review of stimuli-responsive polymers for smart textile applications

    International Nuclear Information System (INIS)

    Hu, Jinlian; Meng, Harper; Li, Guoqiang; Ibekwe, Samuel I

    2012-01-01

    Stimuli-responsive polymers (SRPs) are smart materials which can show noticeable changes in their properties with environmental stimulus variations. Novel functionalities can be delivered to textiles by integrating smart SRPs into them. SRPs inclusive of thermal-responsive polymers, moisture-responsive polymers, thermal-responsive hydrogels, pH-responsive hydrogels, and light-responsive polymers have been applied in textiles to improve or achieve textile smart functionalities. The functionalities include aesthetic appeal, comfort, textile soft display, smart controlled drug release, fantasy design with color changing, wound monitoring, smart wetting properties and protection against extreme variations in environmental conditions. In this review, the applications of SRPs in the textile and clothing sector are elucidated; the associated constraints in fabrication processes for textiles and their potential applications in the near future are discussed. (topical review)

  16. Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology

    Directory of Open Access Journals (Sweden)

    Yu Zhen Dong

    2018-03-01

    Full Text Available Functional core-shell-structured particles have attracted considerable attention recently. This paper reviews the synthetic methods and morphologies of various electro-stimuli responsive polyaniline (PANI-coated core-shell-type microspheres, including PANI-coated Fe3O4, SiO2, Fe2O3, TiO2, poly(methyl methacrylate, poly(glycidyl methacrylate, and polystyrene along with their electrorheological (ER characteristics when prepared by dispersing these particles in an insulating medium. In addition to the various rheological characteristics and their analysis, such as shear stress and yield stress of their ER fluids, this paper summarizes some of the mechanisms proposed for ER fluids to further understand the responses of ER fluids to an externally applied electric field.

  17. Stimuli-Responsive NO Release for On-Demand Gas-Sensitized Synergistic Cancer Therapy.

    Science.gov (United States)

    Fan, Wenpei; Yung, Bryant C; Chen, Xiaoyuan

    2018-03-08

    Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state-of-the-art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli-responsive NO-releasing nanomedicines and their biomedical applications for on-demand NO-sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery

    Directory of Open Access Journals (Sweden)

    Arijit Ghosh

    2017-07-01

    Full Text Available Untethered microtools that can be precisely navigated into deep in vivo locations are important for clinical procedures pertinent to minimally invasive surgery and targeted drug delivery. In this mini-review, untethered soft grippers are discussed, with an emphasis on a class of autonomous stimuli-responsive gripping soft tools that can be used to excise tissues and release drugs in a controlled manner. The grippers are composed of polymers and hydrogels and are thus compliant to soft tissues. They can be navigated using magnetic fields and controlled by robotic path-planning strategies to carry out tasks like pick-and-place of microspheres and biological materials either with user assistance, or in a fully autonomous manner. It is envisioned that the use of these untethered soft grippers will translate from laboratory experiments to clinical scenarios and the challenges that need to be overcome to make this transition are discussed.

  19. Precise Control over the Rheological Behavior of Associating Stimuli-Responsive Block Copolymer Gels

    Directory of Open Access Journals (Sweden)

    Jérémy Brassinne

    2015-12-01

    Full Text Available “Smart” materials have considerably evolved over the last few years for specific applications. They rely on intelligent macromolecules or (supra-molecular motifs to adapt their structure and properties in response to external triggers. Here, a supramolecular stimuli-responsive polymer gel is constructed from heterotelechelic double hydrophilic block copolymers that incorporate thermo-responsive sequences. These macromolecular building units are synthesized via a three-step controlled radical copolymerization and then hierarchically assembled to yield coordination micellar hydrogels. The dynamic mechanical properties of this particular class of materials are studied in shear flow and finely tuned via temperature changes. Notably, rheological experiments show that structurally reinforcing the micellar network nodes leads to precise tuning of the viscoelastic response and yield behavior of the material. Hence, they constitute promising candidates for specific applications, such as mechano-sensors.

  20. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS.

    Science.gov (United States)

    Kazim, Samrana; Pfleger, Jiří; Procházka, Marek; Bondarev, Dmitrij; Vohlídal, Jiří

    2011-02-15

    We report tuning of structure dependent optical properties of colloidal systems of borate-stabilized silver nanoparticles (Ag NPs) and polythiophene-based cationic polyelectrolyte with ionic-liquid like side groups: poly{3-[6-(1-methylimidazolium-3-yl)hexyl]thiophene-2,5-diyl bromide} (PMHT-Br) towards obtaining local electromagnetic field enhancement effects. Surface-enhanced Raman scattering (SERS) studies showed that the strong electromagnetic field enhancement is related to the formation of aggregates of Ag NPs achieved at the components ratio providing the charge balance between Ag NPs and cationic polythiophene, at which Ag NPs are nearly single-polymer-layer coated, their zeta potential is close to zero and they easily form aggregates in which the mean inter-particle distance enables the occurrence of desired plasmonic effects. Fluorescence quenching is efficient only in the systems with low concentrations of PMHT-Br, in which almost all polymer chains directly interact with the Ag NPs surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Design, synthesis, and film formation of stimuli-responsive colloidal dispersions containing phospholipids

    Science.gov (United States)

    Lestage, David Jackson

    These studies were undertaken to further understand the design of colloidal dispersions containing bio-active phospholipids (PL) as stabilizing agents and their stimuli-responsive behaviors during film formation. Methyl methacrylate (MMA) and n-butyl acrylate (nBA) dispersions were synthesized using anionic surfactants and PL, and the surface-responsiveness of coalesced films was monitored at the film-air (F-A) and film-substrate (F-S) interfaces after exposure to temperature, UV, pH, ionic strength, and enzymatic stimuli. Using spectroscopic molecular-level probes such as attenuated total reflectance (ATR) and internal reflection IR imaging (IRIRI), these studies show that structural features of PL and surfactants significantly affect stimuli-responsiveness of polymeric films. MMA/nBA homopolymer, blend, copolymer, and core-shell particle coalescence studies indicated that controlled permeability is influenced by particle composition and sodium dioctyl sulfosuccinate (SDOSS) mobility to the F-A interface is enhanced in response to temperature. Utilization of hydrogenated soybean phosphocholine (HSPC) as a co-surfactant with SDOSS resulted in bimodal p-MMA/nBA colloidal particles, and experiments showed that ionic interactions with HSPC inhibit SDOSS mobility. However, the controlled release of individual species is detected in the presence of Ca2+ ionic strength stimuli. Utilizing 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DCPC), cocklebur-shape particle morphologies were obtained and using transmission electron microscopy (TEM), self-assembled tubules were detected at particle interfaces, but not in the presence of Ca 2+. At altered concentration levels of DCPC, surface localized ionic clusters (SLICs) composed of SDOSS and DCPC form at the F-A and F-S interfaces in response to temperature and ionic strength stimuli. Micelle formation of 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) stabilizes unimodal p-MMA/nBA colloidal particles

  2. Grafting of Interpenetrating Networks of Two Stimuli-responsive Polymers onto PP

    International Nuclear Information System (INIS)

    Ruiz, J. C.

    2006-01-01

    In this work a new strategy was used to prepare interpenetrating polymer networks (IPNs) of two 'stimuli-responsive' polymers: a thermosensitive poly N-isopropylacrylamide (PNIPAAm) and pH sensitive poly acrylic acid (PAAc), the last grafted onto PP films. IPNs are a combination of two or more polymers in network form, which are mixed together (not chemically but physically), with al least one such polymer polymerized and/or crosslinked in the immediate presence of the other(s). The 'stimuli-responsive' polymers, also called 'smart' polymers, exhibit relatively large and sharp physical or chemical changes in response to small physical or chemical stimuli. These polymers are being used as hydrogels or copolymers for technical applications in chemical and mechanical engineering systems such as mass separation, chemical valves, temperature or pH indicators, biomedical and drug delivery systems. For these applications a rapid response and good mechanical properties are necessary. Formerly when PNIPAAm and PAAc were chemically combined their sensitivity was often altered or eliminated and their copolymer had poor mechanical properties. Attempts to solve this problem by creating IPN's with a reduced gel size or by using a macro-porous structure were successful in preserving sensitivity but failed to produce adequate mechanical properties. The object of this paper is to improve the past results of using a binary graft of PNIPAAm and PAAc onto poly(tetrafluoroethylene) PTFE. Poly acrylic acid was grafted onto polypropylene films (with good mechanical properties) by gamma radiation in air (pre-irradiation method), then these grafts were crosslinked using any of the next two methods: The first one, the grafted film in water and argon atmosphere by gamma radiation; and the second one, in the same conditions, but adding a crosslinking agent N, N'-methylenebisacrylamide (MBAAm). The second network was carried out in situ, in the cross-linked PAAc grafted onto PP films, by

  3. Switching "on" and "off" the adhesion in stimuli-responsive elastomers.

    Science.gov (United States)

    Kaiser, S; Radl, S V; Manhart, J; Ayalur-Karunakaran, S; Griesser, T; Moser, A; Ganser, C; Teichert, C; Kern, W; Schlögl, S

    2018-03-28

    The present work aims at the preparation of dry adhesives with switchable bonding properties by using the reversible nature of the [4πs+4πs] cycloaddition of anthracenes. Photo-responsive hydrogenated carboxylated nitrile butadiene rubber with photo-responsive pendant anthracene groups is prepared by one-pot synthesis. The formation of 3D networks relies on the photodimerization of the anthracene moieties upon UV exposure (λ > 300 nm). Controlled cleavage of the crosslink sites is achieved by either deep UV exposure (λ = 254 nm) or thermal dissociation at 70 °C. The kinetics of the optical and thermal cleavage routes are compared in thin films using UV-vis spectroscopy and their influence on the reversibility of the network is detailed. Going from thin films to free standing samples the modulation of the network structure and thermo-mechanical properties over repeated crosslinking and cleavage cycles are characterized by low-field NMR spectroscopy and dynamic mechanical analysis. The applicability of the stimuli-responsive networks as adhesives with reversible bonding properties is demonstrated. The results evidence that the reversibility of the crosslinking reaction enables a controlled switching "on" and "off" of adhesion properties. The recovery of the adhesion force amounts to 75 and 80% for photo- and thermal dissociation, respectively. Spatial control of adhesion properties is evidenced by adhesion force mapping experiments of photo-patterned films.

  4. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    Science.gov (United States)

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  5. Stimuli-responsive transformation in carbon nanotube/expanding microsphere–polymer composites

    International Nuclear Information System (INIS)

    Loomis, James; Xu Peng; Panchapakesan, Balaji

    2013-01-01

    Our work introduces a class of stimuli-responsive expanding polymer composites with the ability to unidirectionally transform their physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core–shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or infrared stimuli, the liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. The microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Here, we show composite transformations including macroscopic volume expansion (>500%), density reduction (>80%), and elastic modulus increase (>675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. With the ability to pattern regions of tailorable expansion, strength, and electrical resistance into a single polymer skin, these composites present opportunities as structural and electrical building blocks in smart systems. (paper)

  6. Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release

    International Nuclear Information System (INIS)

    Zhu Shenmin; Li Jingbo; Chen Yuhang; Chen Zhixin; Chen Chenxin; Li Yao; Cui Zhaowen; Zhang Di

    2012-01-01

    A thermo-responsive drug delivery system was reported based on grafting of stimuli-responsive poly(N-isopropylacrylamide) (PNIPA) on the surface of graphene oxide (GO) via atom transfer radical polymerization. The successful synthesis of PNIPA attached on GO (GO–PNIPA) was confirmed by X-ray photoelectron spectrum, X-ray diffraction, atomic force microscope, field-emission scanning electron microscopy, and transmission electron microscopy measurements. Control of drug release through the composite GO–PNIPA was performed by measuring the uptake and release of ibuprofen (IBU). It was found the delivery system demonstrated a much high IBU storage of 280 wt%, attributing to the formation of the hydrogen bonding between the polymers on the GO surface and IBU as well as the large number of internal cavities of the PNIPA chains. In vitro test of IBU release exhibited a narrow pronounced transition at around 22 °C, indicating an attractive thermo-sensitive release property of this delivery system. The strategy may pave the way for the use of GO in numerous applications, from drug delivery to thermally responsive micro- and nano-devices.

  7. Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn; Li Jingbo; Chen Yuhang [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites, School of Electronic, Information and Electrical Engineering (China); Chen Zhixin [University of Wollongong, Faculty of Engineering (Australia); Chen Chenxin; Li Yao; Cui Zhaowen; Zhang Di, E-mail: zhangdi@sjtu.edu.cn [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites, School of Electronic, Information and Electrical Engineering (China)

    2012-09-15

    A thermo-responsive drug delivery system was reported based on grafting of stimuli-responsive poly(N-isopropylacrylamide) (PNIPA) on the surface of graphene oxide (GO) via atom transfer radical polymerization. The successful synthesis of PNIPA attached on GO (GO-PNIPA) was confirmed by X-ray photoelectron spectrum, X-ray diffraction, atomic force microscope, field-emission scanning electron microscopy, and transmission electron microscopy measurements. Control of drug release through the composite GO-PNIPA was performed by measuring the uptake and release of ibuprofen (IBU). It was found the delivery system demonstrated a much high IBU storage of 280 wt%, attributing to the formation of the hydrogen bonding between the polymers on the GO surface and IBU as well as the large number of internal cavities of the PNIPA chains. In vitro test of IBU release exhibited a narrow pronounced transition at around 22 Degree-Sign C, indicating an attractive thermo-sensitive release property of this delivery system. The strategy may pave the way for the use of GO in numerous applications, from drug delivery to thermally responsive micro- and nano-devices.

  8. Reversible chemical patterning on stimuli-responsive polymer film: Environment-responsive lithography

    International Nuclear Information System (INIS)

    Ionov, Leonid; Minko, Sergiy; Stamm, Manfred; Gohy, Jean-Francois; Jerome, Robert; Scholl, Andreas

    2003-01-01

    We report on a novel type of chemical patterning based on thin stimuli-responsive polymer films. The basic concept is the permanent storage (writing) of a pattern, which is reversibly developed and erased upon exposure to appropriate environment, e.g., solvent, pH, and temperature. The smart surface is fabricated from the mixed brush of poly(2-vinylpyridine) and polyisoprene. The mixed brush demonstrates switching behavior upon exposure to different solvents. Cross-linking of polyisoprene via illumination through a photomask results in formation of patterns with suppressed switching. Due to the contrast in switching between illuminated and dark areas, exposure of the smart surface to different solvents causes either reversible formation or erasing of chemical contrast between the illuminated and dark areas. Thus, the pattern surface can very locally attract colloidal particles or can be wetted by water only upon exposure to the special solvent which introduces the contrast between the illuminated and dark areas. Appearance of the patterns indicates particular environment and can be used for local switching of adsorption

  9. Spontaneous Ag-Nanoparticle Growth at Single-Walled Carbon Nanotube Defect Sites: A Tool for In Situ Generation of SERS Substrate

    Directory of Open Access Journals (Sweden)

    Jason Maley

    2011-01-01

    Full Text Available Silver nanoparticles were spontaneously formed on pristine and oxidized single-wall nanotubes. Nanoparticles were observed on carbon nanotubes with AFM, and the presence of Ag nanoparticles were confirmed by ESR experiments. Raman spectroscopy of the Ag-treated carbon nanotubes had a 4–10X enhancement of intensity compared to untreated carbon nanotubes. Ag nanoparticles formed at defect sites on the CNT surface, where free electrons located at the defect sites reduced Ag+ to Ag. A mechanism for the propagation of the nanoparticles is through a continual negative charge generation on the nanoparticle by electron transfer from doublet oxygen (O2−.

  10. Flexible SERS Substrates: Challenges and Opportunities

    Science.gov (United States)

    2016-01-28

    are still widely used due to the ease with which silver and gold nanoparticles can be produced. Nanoparticle inks are colloidal suspensions of...interactions between the analyte, silver nanoparticles, and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous

  11. An AIE-active boron-difluoride complex: multi-stimuli-responsive fluorescence and application in data security protection.

    Science.gov (United States)

    Zhu, Xiaolin; Liu, Rui; Li, Yuhao; Huang, Hai; Wang, Qiang; Wang, Danfeng; Zhu, Xuan; Liu, Shishen; Zhu, Hongjun

    2014-11-04

    A novel AIE-active boron-difluoride complex (PTZ) was synthesized which exhibits multi-stimuli responsive characteristics. Its colours and emissions can be switched by mechanical grinding, organic solvent vapours and acid/base vapours. This complex can be utilized in data encryption and decryption based on the protonation-deprotonation effect.

  12. Ser reina

    Directory of Open Access Journals (Sweden)

    José Manuel NIETO SORIA

    2006-07-01

    Full Text Available L’historiographie du règne des Rois Catholiques, héritière directe de celle des autres Trastamare, se caractérise par son étroite relation avec des enjeux politiques concrets. L’activité historiographie s’est ainsi inscrite elle-même dans le cadre des conflits politiques en cours. C’est pourquoi la royauté d’Isabelle Ire de Castille impliqua une bonne part de la production historiographique de cettte époque : soit qu’on dénonçât un déficit de légitimité dû à sa condition féminine, soit qu’on démentît, au contraire, ce déficit en attribuant à la reine des qualités « masculines ». Bien entendu, ces débats furent fonction de l’engagement politique de chacun des historiens.La cronística y la historiografía del reinado de los Reyes Católicos, como directas herederas de la labor historiográfica de la época de los monarcas Trastámara, se caracterizó por su estrecha vinculación con intereses políticos concretos, inscribiéndose la propia actividad historiográfica en el marco de los conflictos políticos en curso. Por ello, la dimensión regia de Isabel I de Castilla supuso una dimensión significativa del quehacer historiográfico de la época, bien para plantear un déficit de legitimidad por razón de su propia condición femenina, bien para negar tal déficit con la atribución de “cualidades masculinas” en su persona. De este modo, la toma en consideración del hecho de “ser reina” representó una dimensión significativa del quehacer historiográfico, de acuerdo siempre con los compromisos políticos de los distintos historiadores de la época.

  13. The development and characterization of stimuli-responsive systems for performance materials

    Science.gov (United States)

    Gordon, Melissa B.

    In nature, living organisms adjust to their surroundings by responding to environmental cues, such as light, temperature or force. Stimuli-triggered processes, such as the contraction of eyes in response to bright light or wound healing in skin after a cut, motivate the design of "smart" materials which are designed to respond to environmental stimuli. Responsive materials are used as self-healing materials, shape memory polymers and responsive coatings; moreover, responsive materials may also be employed as model systems, which enhance understanding of complex behavior. The overall goal of this work is to design a material that offers self-healing functionality, which will allow for self-repair following material fatigue or failure, and increased strength in response to ballistic or puncture threats through the incorporation of colloidal particles. The target application for this material is as a protective barrier in extreme environments, such as outer space. Towards this end, the dissertation is focused on the development and characterization of each component of the protective material by (1) designing and testing novel light- and force-sensitive polymers for self-healing applications and (2) examining and characterizing long-time behavior (i.e., aging) in model thermoreversible colloidal gels and glasses. Towards the development of novel stimuli-responsive materials, a photo-responsive polymer network is developed in which a dynamic bond is incorporated into the network architecture to enable a light-triggered, secondary polymerization, which increases the modulus by two orders of magnitude while strengthening the network by over 100%. Unlike traditional two-stage polymerization systems, in which the secondary polymerization is triggered by a leachable photoinitiator, the dynamic nature is imparted by the material itself via the dissociation of its own crosslinks to become stronger in response to light. Several attributes of the photo-responsive network are

  14. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  15. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  16. Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

    Directory of Open Access Journals (Sweden)

    Wu Li

    2013-01-01

    Full Text Available The assembly of photofunctional molecules into host matrices has become an important strategy to achieve tunable fluorescence and to develop intelligent materials. The stimuli-responsive photofunctional materials based on chromophores-assembled layered double hydroxides (LDHs have received much attention from both academic and industry fields as a result of their advantages, such as high photo/thermal stability, easy processing, and well reversibility, which can construct new types of smart luminescent nanomaterials (e.g., ultrathin film and nanocomposite for sensor and switch applications. In this paper, external environmental stimuli have mainly involved physical (such as temperature, pressure, light, and electricity and chemical factors (such as pH and metal ion; recent progress on the LDH-based organic-inorganic stimuli-responsive materials has been summarized. Moreover, perspectives on further development of these materials are also discussed.

  17. Fabrication of a novel transparent SERS substrate comprised of Ag-nanoparticle arrays and its application in rapid detection of ractopamine on meat

    Science.gov (United States)

    Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical tool that boasts the feature of high detection sensitivity and molecular fingerprint specificity attracting increased attention and showing promise in applications including detecting residues of veterinary drugs. In practice, spec...

  18. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    OpenAIRE

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using ?Composite Organic-Inorganic Nanoparticles? (COINs) Raman nanoparticles. COINs are Surface-Enhan...

  19. Effective visualization assay for alcohol content sensing and methanol differentiation with solvent stimuli-responsive supramolecular ionic materials.

    Science.gov (United States)

    Zhang, Li; Qi, Hetong; Wang, Yuexiang; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2014-08-05

    This study demonstrates a rapid visualization assay for on-spot sensing of alcohol content as well as for discriminating methanol-containing beverages with solvent stimuli-responsive supramolecular ionic material (SIM). The SIM is synthesized by ionic self-assembling of imidazolium-based dication C10(mim)2 and dianionic 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in water and shows water stability, a solvent stimuli-responsive property, and adaptive encapsulation capability. The rationale for the visualization assay demonstrated here is based on the combined utilization of the unique properties of SIM, including its water stability, ethanol stimuli-responsive feature, and adaptive encapsulation capability toward optically active rhodamine 6G (Rh6G); the addition of ethanol into a stable aqueous dispersion of Rh6G-encapsulated SIM (Rh6G-SIM) destructs the Rh6G-SIM structure, resulting in the release of Rh6G from SIM into the solvent. Alcohol content can thus be visualized with the naked eyes through the color change of the dispersion caused by the addition of ethanol. Alcohol content can also be quantified by measuring the fluorescence line of Rh6G released from Rh6G-SIM on a thin-layer chromatography (TLC) plate in response to alcoholic beverages. By fixing the diffusion distance of the mobile phase, the fluorescence line of Rh6G shows a linear relationship with alcohol content (vol %) within a concentration range from 15% to 40%. We utilized this visualization assay for on-spot visualizing of the alcohol contents of three Chinese commercial spirits and discriminating methanol-containing counterfeit beverages. We found that addition of a trace amount of methanol leads to a large increase of the length of Rh6G on TLC plates, which provides a method to identify methanol adulterated beverages with labeled ethanol content. This study provides a simple yet effective assay for alcohol content sensing and methanol differentiation.

  20. Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue

    Science.gov (United States)

    Chettri, Prajwal; Vendamani, V. S.; Tripathi, Ajay; Singh, Manish Kumar; Pathak, Anand P.; Tiwari, Archana

    2017-06-01

    Here we present the synthesis of reduced graphene oxide and silver nanoparticle-reduced graphene oxide composites using aqueous extract of dry leaves of Psidium guajava by one pot reflux method. Psidium guajava extract simultaneously reduces silver nitrate and graphene oxide in the reaction mixture which is confirmed by various spectroscopic techniques. Variable concentrations of silver nitrate solution are used to obtain reduced graphene oxide with different dosage of silver nanoparticles and the resultant composites are examined using surface enhanced Raman scattering measurements. Considering methylene blue as a probe molecule, it is found that the surface enhanced Raman scattering activity increases with the increase in the dose of silver nanoparticles. Our as-synthesised silver nanoparticle-reduced graphene oxide composite shows remarkable performance in detecting methylene blue with concentration as low as 10-8 M for which the enhancement factor is 4.6 × 105. In addition, we report that the reduced graphene oxide quenches the photoluminescence of methylene blue more efficiently than silver nanoparticle-reduced graphene oxide composite. The charge transfer states have been extracted which are mainly responsible for the quenching processes.

  1. SERS-Active Nanoinjector for Intracellular Spectroscopy

    Science.gov (United States)

    Vitol, Elina; Orynbayeva, Zulfiya; Bouchard, Michael; Azizkhan-Clifford, Jane; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    We developed a multifunctional nanopipette which allows simultaneous cell injection and intacellular surface-enhanced Raman spectroscopy (SERS) analysis. SERS spectra contain the characteristic frequencies of molecular bond vibrations. This is a unique method for studying cell biochemistry and physiology on a single organelle level. Unlike the fluorescence spectroscopy, it does not require any specific staining. The principle of SERS is based on very large electromagnetic field enhancement localized around a nano-rough metallic surface. Gold colloids are widely used SERS substrates. Previously, the colloidal nanoparticles were introduced into a cell by the mechanism of endocytosis. The disadvantage of this method is the uncontrollable aggregation and distribution of gold nanoparticles inside a cell which causes a significant uncertainty in the origin of the acquired data. At the same time, the nanoparticle uptake is irreversible. We present a SERS-active nanoinjector, coated with gold nanoparticles, which enables selective signal acquisition from any point-of-interest inside a cell. The nanoinjector provides a highly localized SERS signal with sub-nanometer resolution in real time.

  2. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Pfleger, Jiří; Procházka, M.; Bondarev, D.; Vohlídal, J.

    2011-01-01

    Roč. 354, č. 2 (2011), s. 611-619 ISSN 0021-9797 R&D Projects: GA AV ČR KAN100500652; GA ČR GA203/07/0717 Institutional research plan: CEZ:AV0Z40500505 Keywords : ionic conjugated polymer * polythiophene polyelectrolyte * plasmonic nanoparticle Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.070, year: 2011

  3. Stimuli-responsive protamine-based biodegradable nanocapsules for enhanced bioavailability and intracellular delivery of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini [Indian Institute of Science, Department of Materials Engineering (India); Gnanadhas, Divya P.; Chakravortty, Dipshikha [Indian Institute of Science, Department of Microbiology and Cell Biology (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Indian Institute of Science, Department of Materials Engineering (India)

    2015-08-15

    Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

  4. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers.

    Science.gov (United States)

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2015-07-07

    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  5. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  6. One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis.

    Science.gov (United States)

    Liu, Tzu-Ming; Yu, Jiashing; Chang, C Allen; Chiou, Arthur; Chiang, Huihua Kenny; Chuang, Yu-Chun; Wu, Cheng-Han; Hsu, Che-Hao; Chen, Po-An; Huang, Chih-Chia

    2014-07-07

    Surface functionalized nanoparticles have found their applications in several fields including biophotonics, nanobiomedicine, biosensing, drug delivery, and catalysis. Quite often, the nanoparticle surfaces must be post-coated with organic or inorganic layers during the synthesis before use. This work reports a generally one-pot synthesis method for the preparation of various inorganic-organic core-shell nanostructures (Au@polymer, Ag@polymer, Cu@polymer, Fe3O4@polymer, and TiO2@polymer), which led to new optical, magnetic, and catalytic applications. This green synthesis involved reacting inorganic precursors and poly(styrene-alt-maleic acid). The polystyrene blocks separated from the external aqueous environment acting as a hydrophobic depot for aromatic drugs and thus illustrated the integration of functional nanoobjects for drug delivery. Among these nanocomposites, the Au@polymer nanoparticles with good biocompatibility exhibited shell-dependent signal enhancement in the surface plasmon resonance shift, nonlinear fluorescence, and surface-enhanced Raman scattering properties. These unique optical properties were used for dual-modality imaging on the delivery of the aromatic photosensitizer for photodynamic therapy to HeLa cells.

  7. Molecularly imprinted nanoparticles with recognition properties towards a laminin H-Tyr-Ile-Gly-Ser-Arg-OH sequence for tissue engineering applications

    International Nuclear Information System (INIS)

    Rosellini, Elisabetta; Barbani, Niccoletta; Giusti, Paolo; Ciardelli, Gianluca; Cristallini, Caterina

    2010-01-01

    Nanotechnology is an emerging field that promises to revolutionize medicine and is increasingly used in tissue engineering applications. Our research group proposed for the first time molecular imprinting as a new nanotechnology for the creation of advanced synthetic support structures for cell adhesion and proliferation. The aim of this work was the synthesis and characterization of molecularly imprinted polymers with recognition properties towards a laminin peptide sequence and their application as functionalization structures in the development of bioactive materials. Nanoparticles with an average diameter of 200 nm were synthesized by precipitation polymerization of methacrylic acid in the presence of the template molecule and trimethylpropane trimethacrylate as the cross-linking agent. The imprinted nanoparticles showed good performance in terms of recognition capacity and selectivity. The cytotoxicity tests showed normal vitality of C2C12 myoblasts cultured in the medium that was put in contact with the imprinted polymers. After the deposition on the polymeric film surface, the imprinted particles maintained their specific recognition and rebinding behaviour, showing an even higher quantitative binding than free nanoparticles. Preliminary in vitro cell culture tests demonstrated the ability of functionalized materials to promote cell adhesion, proliferation and differentiation, suggesting that molecular imprinting can be used as an innovative functionalization technique.

  8. Tailoring stimuli-responsive delivery system driven by metal–ligand coordination bonding

    Directory of Open Access Journals (Sweden)

    Liang H

    2017-04-01

    Full Text Available Hongshan Liang,1–3 Bin Zhou,4 Yun He,1–3 Yaqiong Pei,1–3 Bin Li,1–3 Jing Li1–31College of Food Science and Technology, Huazhong Agricultural University, 2Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, 3Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan, Hubei, 4College of Food Science and Technology, Shanghai Ocean University, LinGang New City, Shanghai, People’s Republic of ChinaAbstract: In this study, a novel coordination bonding system based on metal–tannic acid (TA architecture on zein/carboxymethyl chitosan (CMCS nanoparticles (NPs was investigated for the pH-responsive drug delivery. CMCS has been reported to coat on zein NPs as delivery vehicles for drugs or nutrients in previous studies. The cleavage of either the “metal–TA” or “NH2–metal” coordination bonds resulted in significant release of guest molecules with high stimulus sensitivity, especially in mild acidic conditions. The prepared metal–TA-coated zein/CMCS NPs (zein/CMCS-TA/metal NPs could maintain particle size in cell culture medium at 37°C, demonstrating good stability compared with zein/CMCS NPs. In vitro release behavior of doxorubicin hydrochloride (DOX-loaded metal–TA film-coated zein/CMCS NPs (DOX-zein/CMCS-TA/metal NPs showed fine pH responsiveness tailored by the ratio of zein to CMCS as well as the metal species and feeding concentrations. The blank zein/CMCS-TA/metal NPs (NPs-TA/metal were of low cytotoxicity, while a high cytotoxic activity of DOX-zein/CMCS-TA/metal NPs (DOX-NPs-TA/metal against HepG2 cells was demonstrated by in vitro cell assay. Confocal laser scanning microscopy (CLSM and flow cytometry were combined to study the uptake efficiency of DOX-NPs or DOX-NPs-TA/metal. This system showed significant potential as a highly versatile and potent platform for drug delivery. Keywords: coordination bonding, pH-responsive, high stimulus

  9. Tunable Release of Silver Nanoparticles from Temperature-Responsive Polymer Blends.

    Czech Academy of Sciences Publication Activity Database

    Elashnikov, R.; Lyutakov, O.; Kalachyova, Y.; Solovyev, Andrey; Švorčík, V.

    2015-01-01

    Roč. 93, AUG (2015), s. 163-169 ISSN 1381-5148 Institutional support: RVO:67985858 Keywords : stimuli-responsive * release * silver nanoparticles Subject RIV: CC - Organic Chemistry Impact factor: 2.725, year: 2015

  10. Self-Assembly Behavior and pH-Stimuli-Responsive Property of POSS-Based Amphiphilic Block Copolymers in Solution

    Directory of Open Access Journals (Sweden)

    Yiting Xu

    2018-05-01

    Full Text Available Stimuli-responsive polymeric systems containing special responsive moieties can undergo alteration of chemical structures and physical properties in response to external stimulus. We synthesized a hybrid amphiphilic block copolymer containing methoxy polyethylene glycol (MePEG, methacrylate isobutyl polyhedral oligomeric silsesquioxane (MAPOSS and 2-(diisopropylaminoethyl methacrylate (DPA named MePEG-b-P(MAPOSS-co-DPA via atom transfer radical polymerization (ATRP. Spherical micelles with a core-shell structure were obtained by a self-assembly process based on MePEG-b-P(MAPOSS-co-DPA, which showed a pH-responsive property. The influence of hydrophobic chain length on the self-assembly behavior was also studied. The pyrene release properties of micelles and their ability of antifouling were further studied.

  11. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    Science.gov (United States)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  13. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  14. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  15. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    Science.gov (United States)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  16. Dual Stimuli-Responsive P(NIPAAm-co-SPA Copolymers: Synthesis and Response in Solution and in Films

    Directory of Open Access Journals (Sweden)

    Oliver Grimm

    2018-06-01

    Full Text Available We present the synthesis and solution properties of dual stimuli-responsive poly(N-isopropylacrylamide-co-spiropyran acrylate (P(NIPAAm-co-SPA copolymers of varying composition prepared via nitroxide-mediated copolymerization. The resulting copolymers feature molar masses from 40,000 to 100,000 g/mol according to static light scattering and an SPA content of up to 5.3%. The latter was determined by 1H NMR spectroscopy and UV–Vis spectroscopy. These materials exhibit reversible response upon irradiation in polymeric films for a minimum of three cycles; their response in solution to both light and temperature was also investigated in an aqueous TRIS buffer (pH 8. Irradiation was carried out using LED setups with wavelengths of 365 and 590 nm. In aqueous solution, a custom-made setup using a fiber-coupled 200 W Hg(Xe lamp with 340 and 540 nm filters was used and additional heating of the copolymer solutions during irradiation allowed to study influence of the presence of either the spiropyran or merocyanine form on the cloud point temperature. Hereby, it was found that increasing the SPA content leads to a more pronounced difference between both states and decreasing cloud points in general.

  17. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  18. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release

    Directory of Open Access Journals (Sweden)

    Chunli Xu

    2018-03-01

    Full Text Available Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS-g-PDMAEMA was facilely prepared through free radical graft copolymerization with 2-(dimethylamino ethyl 2-methacrylate (DMAEMA as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection.

  19. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release.

    Science.gov (United States)

    Xu, Chunli; Cao, Lidong; Zhao, Pengyue; Zhou, Zhaolu; Cao, Chong; Zhu, Feng; Li, Fengmin; Huang, Qiliang

    2018-03-14

    Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS- g -PDMAEMA) was facilely prepared through free radical graft copolymerization with 2-(dimethylamino) ethyl 2-methacrylate (DMAEMA) as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection.

  20. Stimuli-responsive poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) core–shell microgels: facile synthesis, modulation of surface properties and controlled internalisation into cells†

    NARCIS (Netherlands)

    Melle, A.; Balaceanu, A.; Kather, M.; Wu, Yaodong; Gau, E.; Sun, W.; Huang, Xiaobin; Shi, X; Karperien, Hermanus Bernardus Johannes; Pich, A.

    2016-01-01

    Herein we report the synthesis of biocompatible stimuli-responsive core–shell microgels consisting of a poly(N-vinylcaprolactam) (PVCL) core and a poly(2-methoxyethyl acrylate) (PMEA) corona via one-step surfactant-free precipitation copolymerization. The copolymerization process was investigated by

  1. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.

    Science.gov (United States)

    Karandish, Fataneh; Froberg, James; Borowicz, Pawel; Wilkinson, John C; Choi, Yongki; Mallik, Sanku

    2018-03-01

    Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG 1900 -S-S-PLA 6000 and the N 3 -PEG 1900 -PLA 6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N 3 -PEG 1900 -PLA 6000 polymer via a Cu 2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG 1900 -S-S-PLA 6000 , 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tuning SERS for living erythrocytes

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Parshina, E.Y.; Khabanova, V.V.

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (Ag......NP) properties. We demonstrate that the enhancement factor for 4/A1g, 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative...... between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands 10/B1g and A2g is more sensitive to AgNPs' size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band 4/A1g. This can...

  3. Toward practical SERS sensing

    Science.gov (United States)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  4. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  5. Radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents for separation purposes. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-08-01

    This coordinated research project coordinated research work for the development of novel materials prepared by radiation processing techniques. Single and multi-pore polyamide membranes, fast thermo-responsive hydrogels, porous polymer monoliths, stimuli-responsive hydrogels based on natural and synthetic polymers, temperature responsive membranes, selective adsorbents, polymeric nanogels and novel non-ionic thermo-sensitive hydrogels were produced. The application areas explored for beneficially utilizing these novel materials included specialized drug delivery systems (DDS), selective adsorbents, nanopores for single molecule detection, membranes for separation and concentration of solutes, health care and remediation of environmental pollution. The report provides basic information on radiation processing and promotes experience exchange for further developments of radiation technology. Protocols and procedures of preparation of various stimuli responsive membranes and their actual and perspective applications are described in the report. Public awareness and technology acceptance are other factors to be considered for further dissemination. This publication summarizes the present status and the prospects of this technology

  6. QbD-Enabled Development of Novel Stimuli-Responsive Gastroretentive Systems of Acyclovir for Improved Patient Compliance and Biopharmaceutical Performance.

    Science.gov (United States)

    Singh, Bhupinder; Kaur, Anterpreet; Dhiman, Shashi; Garg, Babita; Khurana, Rajneet Kaur; Beg, Sarwar

    2016-04-01

    The current studies entail systematic quality by design (QbD)-based development of stimuli-responsive gastroretentive drug delivery systems (GRDDS) of acyclovir using polysaccharide blends for attaining controlled drug release profile and improved patient compliance. The patient-centric quality target product profile was defined and critical quality attributes (CQAs) earmarked. Risk assessment studies, carried out through Ishikawa fish bone diagram and failure mode, effect, and criticality analysis, helped in identifying the plausible risks or failure modes affecting the quality attributes of the drug product. A face-centered cubic design was employed for systematic development and optimization of the concentration of sodium alginate (X 1) and gellan (X 2) as the critical material attributes (CMAs) in the stimuli-responsive formulations, which were evaluated for CQAs viz. viscosity, gel strength, onset of floatation, and drug release characteristics. Mathematical modeling was carried out for generation of design space, and optimum formulation was embarked upon, exhibiting formulation characteristics marked by excellent floatation and bioadhesion characteristics along with promising drug release control up to 24 h. Drug-excipient compatibility studies through FTIR and DSC revealed absence of any interaction(s) among the formulation excipients. In vivo pharmacokinetic studies in Wistar rats corroborated extension in the drug absorption profile from the optimized stimuli-responsive GR formulations vis-à-vis the marketed suspension (ZOVIRAX®). Establishment of in vitro/in vivo correlation (IVIVC) revealed a high degree of correlation between the in vitro and in vivo data. In a nutshell, the present investigations report the successful development of stimuli-responsive GRDDS of acyclovir, which can be applicable as a platform approach for other drugs too.

  7. Security effectiveness review (SER)

    International Nuclear Information System (INIS)

    Kouprianova, I.; Ek, D.; Showalter, R.; Bergman, M.

    1998-01-01

    As part of the on-going DOE/Russian MPC and A activities at the Institute of Physics and Power Engineering (IPPE) and in order to provide a basis for planning MPC and A enhancements, an expedient method to review the effectiveness of the MPC and A system has been adopted. These reviews involve the identification of appropriate and cost-effective enhancements of facilities at IPPE. This effort requires a process that is thorough but far less intensive than a traditional vulnerability assessment. The SER results in a quick assessment of current and needed enhancements. The process requires preparation and coordination between US and Russian analysts before, during, and after information gathering at the facilities in order that the analysis is accurate, effective, and mutually agreeable. The goal of this paper is to discuss the SER process, including the objectives, time scale, and lessons learned at IPPE

  8. Quiero ser citado

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2011-05-01

    Full Text Available Después de varios años de ser editor, muchos de mis jefes confunden la revista con el editor, y es común oír cosas como “conferencia a cargo de la revista” o en conversaciones se dirijan a mí para decir “y porque no te citan”, refiriéndose al motivo porqué la Rev peru biol. no es citada por otros trabajos. Aprovechando ese desquicio, en los siguientes párrafos encarnare a la revista y al editor, en la fusión mágica en la que algunos de mis jefes me imaginan.

  9. Label-free in situ SERS imaging of biofilms.

    Science.gov (United States)

    Ivleva, Natalia P; Wagner, Michael; Szkola, Agathe; Horn, Harald; Niessner, Reinhard; Haisch, Christoph

    2010-08-12

    Surface-enhanced Raman scattering (SERS) is a promising technique for the chemical characterization of biological systems. It yields highly informative spectra, can be applied directly in aqueous environment, and has high sensitivity in comparison with normal Raman spectroscopy. Moreover, SERS imaging can provide chemical information with spatial resolution in the micrometer range (chemical imaging). In this paper, we report for the first time on the application of SERS for in situ, label-free imaging of biofilms and demonstrate the suitability of this technique for the characterization of the complex biomatrix. Biofilms, being communities of microorganisms embedded in a matrix of extracellular polymeric substances (EPS), represent the predominant mode of microbial life. Knowledge of the chemical composition and the structure of the biofilm matrix is important in different fields, e.g., medicine, biology, and industrial processes. We used colloidal silver nanoparticles for the in situ SERS analysis. Good SERS measurement reproducibility, along with a significant enhancement of Raman signals by SERS (>10(4)) and highly informative SERS signature, enables rapid SERS imaging (1 s for a single spectrum) of the biofilm matrix. Altogether, this work illustrates the potential of SERS for biofilm analysis, including the detection of different constituents and the determination of their distribution in a biofilm even at low biomass concentration.

  10. Aprendendo a ser psicoterapeuta

    Directory of Open Access Journals (Sweden)

    Elizabeth Amelio Faleiros

    Full Text Available Este estudo investiga, na perspectiva de Jacob Levy Moreno, a concepção que alunos de Psicologia têm sobre o que é ser psicoterapeuta, quais elementos são necessários para o desenvolvimento dessa tarefa e os fatores impeditivos para realizá-la. Propõe formas de soluções para o desempenho daquela função, favorecendo a reflexão sobre a importância dessa tarefa e a responsabilidade do profissional junto ao paciente. A metodologia utilizada é a qualitativa, pois esta permite abordar dimensões da subjetividade dos sujeitos. Os resultados revelam que os alunos possuem em sua concepção os alicerces básicos, cujos indicadores são apontados por Moreno e por outros autores, percebem os requisitos básicos que constituem a essência do papel de terapeuta, evidenciam críticas realistas sobre os fatores limitadores e sugerem ações pedagógicas para minimizá-los.

  11. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  12. Preparação e caracterização de substratos SERS ativos: um estudo da adsorção do cristal violeta sobre nanopartículas de prata Preparation and characterization of SERS-active substrates: a study of the crystal violet adsorption on silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Henrique de Santana

    2006-04-01

    Full Text Available The structural characterization of molecules used in the sterilization of blood for transfusions, such as crystal violet (CV, is relevant for understanding the action of these prophylactic drugs. The characterization is feasible by surface enhanced resonance Raman spectroscopy (SERRS of CV in solution or on surfaces. The limit of detection of CV by SERRS, in the presence of colloidal particles, using 514.5 nm as excitation radiation, was found to be around 1 ppb. The characterization of CV was also made by SERS, by using different active-particles-containing substrates, proving the versatility of this technique for the study of such structures. The results suggest that the controlled production of highly efficient SERS-active substrates may allow qualitative and quantitative analysis, with high sensitivity, with potential applications in medical and environmental fields.

  13. Au nanoparticles grafted on Fe{sub 3}O{sub 4} as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jingjing; Xu, Jianwei; Sun, Zhenli; Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn

    2016-04-07

    Several methods and materials have been explored for the sensitive and practicable detection of polycyclic aromatic hydrocarbons (PAHs). However, it is still a challenge to develop simple and cost-effective sensing techniques for PAHs. Herein we report the synthesis and construction of Fe{sub 3}O{sub 4}@Au SERS substrate. This magnetic substrate was composed by Fe{sub 3}O{sub 4} microspheres and Au NPs. The size, morphology, and surface composition of Fe{sub 3}O{sub 4}@Au were characterized by multiple complimentary techniques including scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The spatial distributions of electro-magnetic field enhancement around Fe{sub 3}O{sub 4}@Au was calculated using finite difference time domain (FDTD) simulations. As a result of its remarkable sensitivity, the Fe{sub 3}O{sub 4}@Au-based SERS assay has been applied to detect the 16 EPA priority PAHs. The LODs achieved by our method (100–5 nM, 16.6–1.01 μg L{sup −1}) make it promising for the rapid screening of highly contaminated cases. As a proof-of-concept study, the substrate was applied in SERS sensing of PAHs in river matrix. The 16 PAHs could be differentiated based upon their characteristic SERS peaks. Most importantly, the detection was successfully conducted using a portable Raman spectrometer, which could be used for on-site monitoring of PAHs. - Highlights: • SERS detection of the 16 EPA priority PAHs was conducted. • The satellite-core structure lead to high SERS enhancement by confined hotspots. • The approach does not require expensive instrumentation or large sample volumes. • The effective protocol is useful for the identification of hydrophobic molecules.

  14. Development of SERS active fibre sensors

    International Nuclear Information System (INIS)

    Polwart, Ewan

    2002-01-01

    Surface-enhanced Raman scattering (SERS) is sensitive and selective and when coupled with fibre-optics could potentially produce an effective chemical sensing system. This thesis concerns the development of a single-fibre-based sensor, with an integral SERS-active substrate. A number of different methods for the manufacture of SERS-active surfaces on glass substrates were investigated and compared. The immobilisation of metal nanoparticles on glass functionalised with (3-aminopropyl)trimethoxysilane emerged as a suitable approach for the production of sensors. Substrates prepared by this approach were characterised using UV-visible spectroscopy, electron microscopy and Raman mapping. It was found that exposure of substrates to laser radiation led to a decrease in the signal recorded from adsorbed analytes. This speed of the decrease was shown to depend on the analyte, and the exciting wavelength and power. SERS-active fibre sensors were produced by immobilisation of silver nanoparticles at the distal end of a (3-aminopropyl)trimethoxysilane-derivatised optical fibre. These sensors were used to obtain spectra with good signal to noise ratios from 4-(benzotriazol-5-ylazo)-3,5-dimethoxyphenylamine and crystal violet. Sensing of dyes in effluent was also investigated. The development of sensors for the measurement of pH, by treating the SERS-active fibre tip with pH sensitive dyes is also described. Spectral changes were observed with these sensors as a response to the pH. Partial least squares regression was used to produce linear calibration models for the pH range 5-11 from which it was possible to predict the pH with an accuracy of ∼0.2 pH units. Some of the limitations of these sensors were explored. The feasibility of using these sensors for measurement of oxygen and thiols, was investigated. The measurement of oxygen using methylene blue as a transducer was demonstrated. Two transduction methodologies--reactions with iron porphyrins and pyrrole-2,5-diones

  15. Potential application of SERS for arsenic speciation in biological matrices.

    Science.gov (United States)

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  16. SERS Raman Sensor Based on Diameter-Modulated Sapphire Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Shimoji, Yutaka

    2010-08-09

    Surface enhanced Raman scattering (SERS) has been observed using a sapphire fiber coated with gold nano-islands for the first time. The effect was found to be much weaker than what was observed with a similar fiber coated with silver nanoparticles. Diameter-modulated sapphire fibers have been successfully fabricated on a laser heated pedestal growth system. Such fibers have been found to give a modest increase in the collection efficiency of induced emission. However, the slow response of the SERS effect makes it unsuitable for process control applications.

  17. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N

    2018-03-01

    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    Science.gov (United States)

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  19. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink

    Science.gov (United States)

    Hu, Xiaochen; Liu, Yang; Duan, Yuai; Han, Jingqi; Li, Zhongfeng; Han, Tianyu

    2017-09-01

    In this study, we reported the photoluminescence (PL) behaviour of a new intramolecular charge transfer (ICT) compound, ((E)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid, (HABA), which shows ICT solvent effect in aprotic solvents as confirmed by absorption and emission spectra. While in protic solvents including water and ethanol, the charge transfer (CT) band significantly reduces. Remarkable fluorescence enhancement in the blue region was also observed for HABA in polar protic solvents. We described such phenomena as ;specific solvent effect;. It can be ascribed to the hydrogen bonding formation between HABA and protic solvents, which not only causes significant reduction in the rate of internal conversion but also elevates the energy gap. Density functional theory (DFT) calculations as well as the dynamics analysis were performed to further verify the existence of hydrogen bonding complexes. Stronger emission turn-on effect was observed on HABA solid film when it is treated with water and base solution. The stimuli-responsive fluorescence of HABA enables a new green printing technique that uses water/base as the ink, affording fluorescent handwritings highly distinct from the background. Thermoanalysis of the dye suggests the nice thermostability, which is highly desired for real-world printing in a wide temperature range.

  20. "On-off" switchable tool for food sample preparation: merging molecularly imprinting technology with stimuli-responsive blocks. Current status, challenges and highlighted applications.

    Science.gov (United States)

    Garcia, Raquel; Gomes da Silva, Marco D R; Cabrita, Maria João

    2018-01-01

    Sample preparation still remains a great challenge in the analytical workflow representing the most time-consuming and laborious step in analytical procedures. Ideally, sample pre-treatment procedures must be more selective, cheap, quick and environmental friendly. Molecular imprinting technology is a powerful tool in the development of highly selective sample preparation methodologies enabling to preconcentrate the analytes from a complex food matrix. Actually, the design and development of molecularly imprinted polymers-based functional materials that merge an enhancement of selectivity with a controllable and switchable mode of action by means of specific stimulus constitutes a hot research topic in the field of food analysis. Thus, combining the stimuli responsive mechanism and imprinting technology a new generation of materials are emerging. The application of these smart materials in sample preparation is in early stage of development, nevertheless new improvements will promote a new driven in the demanding field of food sample preparation. The new trends in the advancement of food sample preparation using these smart materials will be presented in this review and highlighted the most relevant applications in this particular area of knowledge. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A stimuli-responsive fluorescence platform for simultaneous determination of D-isoascorbic acid and Tartaric acid based on Maillard reaction product

    Science.gov (United States)

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-01

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from D-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of D-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO4, resulting from a new complex (GLA-KMnO4) formation between GLA and KMnO4. Upon addition of D-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for D-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for D-isoascorbic acid or tartaric acid, because the detection limits were 5.9 μM and 21.5 μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of D-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results.

  2. A stimuli-responsive fluorescence platform for simultaneous determination of d-isoascorbic acid and Tartaric acid based on Maillard reaction product.

    Science.gov (United States)

    Zhao, Yanmei; Yuan, Haiyan; Zhang, Xinling; Yang, Jidong

    2018-05-05

    An activatable fluorescence monitoring platform based on a novel Maillard reaction product from d-glucose and L-arginine was prepared through a facile one-pot approach and applied for simultaneous detection of d-isoascorbic acid and tartaric acid. In this work, the new Maillard reaction product GLA was first obtained, and its fluorescence intensity can be effectively quenched by KMnO 4 , resulting from a new complex (GLA-KMnO 4 ) formation between GLA and KMnO 4 . Upon addition of d-isoascorbic acid or tartaric acid, an enhanced fluorescence was observed under the optimumed experimental conditions, indicating a stimuli-responsive fluorescence turn on platform for d-isoascorbic acid or tartaric acid can be developed. The corresponding experimental results showed that this turn on fluorescence sensing platform has a high sensitivity for d-isoascorbic acid or tartaric acid, because the detection limits were 5.9μM and 21.5μM, respectively. Additionally, this proposed sensing platform was applied to simultaneously detection of d-isoascorbic acid and tartaric acid in real tap water samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Silver coated aluminium microrods as highly colloidal stable SERS platforms.

    Science.gov (United States)

    Pazos-Perez, Nicolas; Borke, Tina; Andreeva, Daria V; Alvarez-Puebla, Ramon A

    2011-08-01

    We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles. This journal is © The Royal Society of Chemistry 2011

  4. Stamping SERS for creatinine sensing

    Science.gov (United States)

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  5. ser en ortodoncia

    OpenAIRE

    Ruíz-Esculpi, María; Ricse-Chaupis, Estela; Villanueva-Vega, Judith; Torres-Maita, Liz

    2014-01-01

    La primera aplicación del láser en un diente fue realizada en 1965. Desde entonces ha presentado una constante evolución y desarrollo. La tecnología láser permite realizar procedimientos en tejidos duros y blandos, pudiendo ser utilizado con las siguientes finalidades: como prevención de la desmineralización, en la adhesión y remoción de brackets, en la reducción del dolor producto del movimiento dental, en la reparación ósea después de la expansión, en diversas cirugías y otras aplicaciones ...

  6. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Pedro M. Fierro-Mercado

    2012-01-01

    Full Text Available We report on a novel and extremely low-cost surface-enhanced Raman spectroscopy (SERS substrate fabricated depositing gold nanoparticles on common lab filter paper using thermal inkjet technology. The paper-based substrate combines all advantages of other plasmonic structures fabricated by more elaborate techniques with the dynamic flexibility given by the inherent nature of the paper for an efficient sample collection, robustness, and stability. We describe the fabrication, characterization, and SERS activity of our substrate using 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene as analytes. The paper-based SERS substrates presented a high sensitivity and excellent reproducibility for analytes employed, demonstrating a direct application in forensic science and homeland security.

  7. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates.

    Science.gov (United States)

    Wang, Lei; Lian, Wenjing; Yao, Huiqin; Liu, Hongyun

    2015-03-11

    In the present work, reduced graphene oxide (rGO)/poly(N-isopropylacrylamide) (PNIPAA) composite films were electrodeposited onto the surface of Au electrodes in a fast and one-step manner from an aqueous mixture of a graphene oxide (GO) dispersion and N-isopropylacrylamide (NIPAA) monomer solutions. Reflection-absorption infrared (IR) and Raman spectroscopies were employed to characterize the successful construction of the rGO/PNIPAA composite films. The rGO/PNIPAA composite films exhibited reversible potential-, pH-, temperature-, and sulfate-sensitive cyclic voltammetric (CV) on-off behavior to the electroactive probe ferrocenedicarboxylic acid (Fc(COOH)2). For instance, after the composite films were treated at -0.7 V for 7 min, the CV responses of Fc(COOH)2 at the rGO/PNIPAA electrodes were quite large at pH 8.0, exhibiting the on state. However, after the films were treated at 0 V for 30 min, the CV peak currents became much smaller, demonstrating the off state. The mechanism of the multiple-stimuli switchable behaviors for the system was investigated not only by electrochemical methods but also by scanning electron microscopy and X-ray photoelectron spectroscopy. The potential-responsive behavior for this system was mainly attributed to the transformation between rGO and GO in the films at different potentials. The film system was further used to realize multiple-stimuli responsive bioelectrocatalysis of glucose catalyzed by the enzyme of glucose oxidase and mediated by the electroactive probe of Fc(COOH)2 in solution. On the basis of this, a four-input enabled OR (EnOR) logic gate network was established.

  8. Ionic and Polyampholyte N-Isopropylacrylamide-Based Hydrogels Prepared in the Presence of Imprinting Ligands: Stimuli-Responsiveness and Adsorption/Release Properties

    Directory of Open Access Journals (Sweden)

    Carmen Alvarez-Lorenzo

    2011-12-01

    Full Text Available The conformation of the imprinted pockets in stimulus-responsive networks can be notably altered when the stimulus causes a volume phase transition. Such a tunable affinity for the template molecule finds interesting applications in the biomedical and drug delivery fields. Nevertheless, the effect that the binding of the template causes on the stimuli-responsiveness of the network has barely been evaluated. In this work, the effect of two ionic drugs used as templates, namely propranolol hydrochloride and ibuprofen sodium, on the responsiveness of N-isopropylacrylamide-based hydrogels copolymerized with acrylic acid (AAc and N-(3-aminopropyl methacrylamide (APMA and on their ability to rebind and to control the release of the template was evaluated. The degree of swelling and, in some cases, energetics (HS-DSC of the transitions were monitored as a function of temperature, pH, and concentration of drug. Marked decrease in the transition temperature of the hydrogels, accompanied by notable changes in the transition width, was observed in physiological NaCl solutions and after the binding of the drug molecules, which reveals relevant changes in the domain structure of the hydrogels as the charged groups are shielded. The ability of the hydrogels to rebind propranolol or ibuprofen was quantified at both 4 and 37 °C and at two different drug concentrations, in the range of those that cause major changes in the network structure. Noticeable differences between hydrogels bearing AAc or APMA and between imprinted and non-imprinted networks were also observed during the release tests in NaCl solutions of various concentrations. Overall, the results obtained evidence the remarkable effect of the template molecules on the responsiveness of intelligent imprinted hydrogels.

  9. A Double-Stimuli-Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices.

    Science.gov (United States)

    Xu, Xiao-Yu; Lian, Xiao; Hao, Ji-Na; Zhang, Chi; Yan, Bing

    2017-10-01

    Unsafe food is a huge threat to human health and the economy, and detecting food spoilage early is an ongoing and imperative need. Herein, a simple and effective strategy combining a fluorescence sensor and one-to-two logic operation is designed for monitoring biogenic amines, indicators of food spoilage. Sensors (methyl red@lanthanide metal-organic frameworks (MR@EuMOFs)) are created by covalently modifying MR into NH 2 -rich EuMOFs, which have a high quantum yield (48%). A double-stimuli-responsive fluorescence center is produced via energy transfer from the ligands to Eu 3+ and MR. Portable sensory hydrogels are obtained by dispersing and solidifying MR@EuMOFs in water-phase sodium salt of carboxy methyl cellulose (CMC-Na). The hydrogels exhibit a color transition upon "smelling" histamine (HI) vapor. This transition and shift in the MR-based emission peak are closely related to the HI concentration. Using the HI concentration as the input signal and the two fluorescence emissions as output signals, an advanced analytical device based on a one-to-two logic gate is constructed. The four output combinations, NOT (0, 1), YES (1, 0), PASS 1 (1, 1), and PASS 0 (0, 0), allow the direct analysis of HI levels, which can be used for real-time food-freshness evaluation. The novel strategy suggested here may be a new application for a molecular logic system in the sensing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Science.gov (United States)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  11. La importancia de ser grande

    OpenAIRE

    Baisre, J. A.

    2007-01-01

    Se responde a las preguntas ¿por qué los mamíferos marinos son los animales más grandes del planeta?, ¿Por qué los peces no pueden ser más grandes?. Éstas y otras interrogantes son respondidas de forma sencilla y clara.

  12. Normal Raman and SERS spectroscopy of the vitamin E

    International Nuclear Information System (INIS)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes (±)- -tocopherol were dissolved in chloroform (CHCl 3 ) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the (±)- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  13. Normal Raman and SERS spectroscopy of the vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang, E-mail: guhm@scnu.edu.cn [MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631, Guangzhou (China)

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes ({+-})- -tocopherol were dissolved in chloroform (CHCl{sub 3}) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the ({+-})- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  14. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  15. Advanced Gas Sensors Using SERS-Activated Waveguides

    Science.gov (United States)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  16. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    Science.gov (United States)

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-08

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications.

  17. Nanosphere Templating Through Controlled Evaporation: A High Throughput Method For Building SERS Substrates

    Science.gov (United States)

    Alexander, Kristen; Hampton, Meredith; Lopez, Rene; Desimone, Joseph

    2009-03-01

    When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.

  18. por láser

    Directory of Open Access Journals (Sweden)

    Mayra Garcimuño

    2013-01-01

    Full Text Available En el presente trabajo, la técnica Espectroscopia de plasmas producidos por láser (Laser-induced breakdown spectroscopy –LIBS– se aplicó a la determinación cuan- titativa de Na en agua natural dulce, de interés en agricultura para el estudio de la alcalinidad de aguas de regadío. Para efectuar el análisis, se prepararon soluciones con concentraciones conocidas del analito, se mezclaron con óxido de calcio y se compactaron en pastillas sólidas. Los plasmas se produjeron en aire a presión atmos- férica utilizando un láser pulsado Nd:YAG. Se construyó una curva de calibración y se calculó el límite de detección. Se analizaron muestras de agua natural y los resultados se compararon con los obtenidos mediante espectroscopia de absorción atómica. Se demostró la factibilidad del método para la determinación de Na en agua natural dulce.

  19. Applications of the surface enhanced Raman scattering (SERS)

    International Nuclear Information System (INIS)

    Picquart, M.; Haro P, E.; Bernard, S.

    2007-01-01

    Full text: Vibration spectroscopy techniques are used for many times to identify substances, determine molecular structure and quantify them, independently of their physical state. Raman spectroscopy as infrared absorption permit to access the vibration energy levels of molecules. In the second case, the permanent dipolar moment is involved while in the first one it is the polarizability (and the induced dipolar moment). Unfortunately, the classical Raman spectroscopy is low sensitive in particular in the case of biological molecules. On the opposite, the surface enhanced Raman spectroscopy (SERS) offers great potentialities. In this case, the molecules are adsorbed on a rough surface or on nanoparticles of gold or silver and the: signal can be increased by a factor of 10 7 to 10 8 . Moreover, the spectral enhancement is greater for the vibrations of the functional group of the molecule adsorbed on the substrate. In this work, we present the main theoretical bases of SERS, and some results obtain on different systems. (Author)

  20. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    Science.gov (United States)

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  1. Ser do tempo em Bergson

    OpenAIRE

    Coelho,Jonas Gonçalves

    2004-01-01

    O artigo apresenta a concepção bergsoniana de duração. Pretende-se mostrar que, segundo Bergson, o tempo dos filósofos e cientistas é um tempo fictício, um esquema espacial que oculta a natureza do tempo real, o qual não pode ser separado dos acontecimentos físicos e psicológicos. Para Bergson, o tempo real é sucessão, continuidade, mudança, memória e criação. El presente artículo trata de la concepción bergsoniana de duración. Pretendemos mostrar que, según Bergson, el tiempo de los filós...

  2. Ser do tempo em Bergson

    OpenAIRE

    Coelho, Jonas Gonçalves

    2004-01-01

    O artigo apresenta a concepção bergsoniana de duração. Pretende-se mostrar que, segundo Bergson, o tempo dos filósofos e cientistas é um tempo fictício, um esquema espacial que oculta a natureza do tempo real, o qual não pode ser separado dos acontecimentos físicos e psicológicos. Para Bergson, o tempo real é sucessão, continuidade, mudança, memória e criação. We considered Bergson's duration concept. We intended to show that, according to Bergson, the time of philosophers and scientists i...

  3. for SERS and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2011-01-01

    Full Text Available ZnS/Si nanocables were synthesized via a simple two-step thermal evaporation method. The shape and diameter of the ZnS/Si nanocables can be controlled by adjusting the morphologies of the ZnS nanostructures (nanowire or nanoribbon obtained in the first step and the deposition time of the Si shell in the second step, respectively. Furthermore, we obtained polycrystalline Si nanotubes with different shapes and diameters by etching away the inner ZnS core. The as-prepared Si nanotubes were employed as SERS-active substrates, which exhibited a high sensitivity for the detection of R6G. The Si nanotubes also showed effective photocatalytic activity on the decomposition of R6G under the irradiation of visible light.

  4. Reduced graphene oxide wrapped Ag nanostructures for enhanced SERS activity

    Science.gov (United States)

    Nair, Anju K.; Kala, M. S.; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    Graphene - metal nanoparticle hybrids have received great attention due to their unique electronic properties, large specific surface area, very high conductivity and more charge transfer. Thus, it is extremely advantages to develop a simple and efficient process to disperse metal nanostructures over the surface of graphene sheets. Herein, we report a hydrothermal assisted strategy for developing reduced graphene oxide /Ag nanomorphotypes (cube, wire) for surface enhanced Raman scattering (SERS) applications, considering the advantages of synergistic effect of graphene and plasmonic properties of Ag nanomorphotypes.

  5. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates

    Science.gov (United States)

    Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang

    2018-06-01

    The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.

  6. A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features

    Science.gov (United States)

    Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang

    2016-04-01

    Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.

  7. Engineered magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Canfarotta, Francesco; Piletsky, Sergey A

    2014-02-01

    In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design and Preparation of Nanoparticle Dimers for SERS Detection

    Science.gov (United States)

    2012-09-10

    biodetection, protein identification, Polymer solar cell, bulk heterojunction, processing additive, transmission electron microscopy, bipolar field effect... thiolated polyethyleneglycol prior to the purification steps. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers...peer-reviewed journals: (c) Presentations Insight into the Synthesis, Design and Processing of Narrow Band Gap Organic Semiconducting Polymers for

  9. Entre contener y ser contenido

    Directory of Open Access Journals (Sweden)

    Jorge Morales Meneses

    2016-08-01

    Full Text Available El presente artículo propone una nueva manera de entender los elementos comunes en la formación y el hacer del diseño y de la arquitectura, posibilitando un pensar común y un coactuar en diversas escalas de intervención, necesarias para el manejo de la complejidad del paisaje contemporáneo. La convicción de un pensar común entre ambas disciplinas permite explorar un marco filosófico que incluye a pensadores tan trascendentales como Aristóteles, Kant y Heidegger, estableciendo un orden de pensamiento que los relaciona y sitúa. En momentos en que el territorio está siendo visible y negativamente afectado por elementos no pensados o que fueron imaginados separadamente, este artículo propone una mirada que le dé sentido de totalidad a las acciones del diseño y de la arquitectura, como elementos que permanentemente se contienen en otros de diferente escala, pero que siempre están vinculados. Reconocer el paisaje físico y mental, tangible e intangible que contiene al diseño y a la arquitectura contribuirá a establecer un marco de acción donde todos los elementos construidos por el ser humano puedan tener un rol específico y una escala asumida, e intercomprenderse para mejor utilización de los recursos, disminuir el impacto ambiental y contribuir a un orden social mejor interpretado por los objetos, espacios y sus representaciones.

  10. Achieving optimal SERS through enhanced experimental design.

    Science.gov (United States)

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J; Goodacre, Royston

    2016-01-01

    One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.

  11. Stimuli-Responsive Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Behrad Darvishi

    2017-06-01

    Full Text Available Triple negative breast cancer (TNBC is the most aggressive and lethal subtype of breast cancer. It is associated with a very poor prognosis and intrinsically resistant to several conventional and targeted chemotherapy agents and has a 5-year survival rate of less than 25%. Because the treatment options for TNBC are very limited and not efficient enough for achieving minimum desired goals, shifting toward a new generation of anti-cancer agents appears to be very critical. Among recent alternative approaches being proposed, small interfering RNA (siRNA gene therapy can potently suppress Bcl-2 proto-oncogene and p-glycoprotein gene expression, the most important chemotherapy resistance inducers in TNBC. When resensitized, primarily ineffective chemotherapy drugs turn back into valuable sources for further intensive chemotherapy. Regrettably, siRNA’s poor stability, rapid clearance in the circulatory system, and poor cellular uptake mostly hampers the beneficial outcomes of siRNA therapy. Considering these drawbacks, dual siRNA/chemotherapy drug encapsulation in targeted delivery vehicles, especially mesoporous silica nanoparticles (MSNs appears to be the most reasonable solution. The literature is full of reports of successful treatments of multi-drug-resistant cancer cells by administration of dual drug/siRNA-loaded MSNs. Here we tried to answer the question of whether application of a similar approach with identical delivery devices in TNBC is rational.

  12. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  13. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.

  14. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift

    International Nuclear Information System (INIS)

    Luo, X L; Bentley, W E; Buckhout-White, S; Rubloff, G W

    2011-01-01

    Surface-enhanced Raman scattering (SERS) has grown dramatically as an analytical tool for the sensitive and selective detection of molecules adsorbed on nano-roughened noble metal structures. Quantification with SERS based on signal intensity remains challenging due to the complicated fabrication process to obtain well-dispersed nanoparticles and well-ordered substrates. We report a new biofabrication strategy of SERS substrates that enable quantification through a newly discovered spectroscopic shift resulting from the chitosan-analyte interactions in solution. We demonstrate this phenomenon by the quantification of adenine, which is an essential part of the nucleic acid structure and a key component in pathways which generate signal molecules for bacterial communications. The SERS substrates were fabricated simply by sequential electrodeposition of chitosan on patterned gold electrodes and electroplating of a silver nitrate solution through the chitosan scaffold to form a chitosan-silver nanoparticle composite. Active SERS signals of adenine solutions were obtained in real time from the chitosan-silver composite substrates with a significant concentration-dependent spectroscopic shift. The Lorentzian curve fitting of the dominant peaks suggests the presence of two separate peaks with a concentration-dependent area percentage of the separated peaks. The chitosan-mediated composite SERS substrates can be easily biofabricated on predefined electrodes within microfluidic channels for real-time detection in microsystems.

  15. Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection

    Science.gov (United States)

    Wang, Pu

    Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically

  16. SERS Technique for Rapid Bacterial Screening

    Science.gov (United States)

    This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...

  17. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Hasan, E-mail: samarhass@yahoo.com [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Minami, Hideto [Graduate School of Engineering, Kobe University, Kobe 657-8501 (Japan); Tauer, Klaus [Max Planck Institute of Colloid and Interfaces, Am Mühlenberg, 14476 Golm (Germany); Gafur, Mohammad Abdul [Pilot Plant and Process Development Centre, BCSIR, Dhaka 1205 (Bangladesh); Rahman, Mohammad Mahbubor [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh)

    2016-08-15

    A combination of maghemite polypyrrole (PPy/γ-Fe{sub 2}O{sub 3}) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl{sub 3} as a oxidant and p-toluene sulfonic acid ( p-TSA) as a dopant. In the reaction system FeCl{sub 3} functioned as a source of Fe(III) for the formation of γ-Fe{sub 2}O{sub 3}. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl{sub 2}. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water. - Highlights: • P(S-NIPAM-MAA-PEGMA) hydrogel particles were prepared. • P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles were prepared. • Oxidative polymerization of pyrrole and precipitation of γ-Fe{sub 2}O{sub 3

  18. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    Science.gov (United States)

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Smart nanoparticles as targeting platforms for HIV infections

    Science.gov (United States)

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-04-01

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  20. Using Ag-embedded TiO{sub 2} nanotubes array as recyclable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Zhuo, Yuqing; Huang, Liang [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Mao, Duolu [School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Xining, Qinghai 810007 (China)

    2016-12-01

    Highlights: • Ag embedded nanoparticles inside nanotube have better SERS enhancement than surface cap. • Ag NPs reconstruction via self-migration with UV and humidity control. • Self-cleaning effects both on organic molecule photo-oxidation as well as Ag ions photo-reduction. - Abstract: A simple strategy for synthesizing Ag-loaded TiO{sub 2} nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO{sub 2} nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  1. Engineering Metal Nanostructure for SERS Application

    Directory of Open Access Journals (Sweden)

    Yanqin Cao

    2013-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS has attracted great attention due to its remarkable enhancement and excellent selectivity in the detection of various molecules. Noble metal nanomaterials have usually been employed for producing substrates that can be used in SERS because of their unique local plasma resonance. As the SERS enhancement of signals depends on parameters such as size, shape, morphology, arrangement, and dielectric environment of the nanostructure, there have been a number of studies on tunable nanofabrication and synthesis of noble metals. In this work, we will illustrate progress in engineering metallic nanostructures with various morphologies using versatile methods. We also discuss their SERS applications in different fields and the challenges.

  2. Nanofabrication of SERS Substrates for Single/Few Molecules Detection

    KAUST Repository

    Melino, Gianluca

    2015-05-04

    Raman spectroscopy is among the most widely employed methods to investigate the properties of materials in several fields of study. Evolution in materials science allowed us to fabricate suitable substrates, at the nanoscale, capable to enhance the electromagnetic field of the signals coming from the samples which at this range turn out to be in most cases singles or a few molecules. This particular variation of the classical technique is called SERS (Surface Enanched Raman Spectroscopy). In this work, the enhancement of the electromagnetic field is obtained by manipulation of the optical properties of metals with respect to their size. By using electroless deposition (bottom up technique), gold and silver nanoparticles were deposited in nanostructured patterns obtained on silicon wafers by means of electron beam lithography (top down technique). Rhodamine 6G in aqueous solution at extremely low concentration (10-8 M) was absorbed on the resultant dimers and the collection of the Raman spectra demonstrated the high efficiency of the substrates.

  3. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids

    DEFF Research Database (Denmark)

    Hassanain, Waleed A.; Izake, Emad L.; Schmidt, Michael Stenbæk

    2017-01-01

    the extractor nanoparticles within 5min by manipulating the pH environment of the nanoparticles. The regenerated extractor nanoparticles maintained their capture efficiency and, therefore, were re-used to capture of MC-LR from successive samples. The released purified toxin was screened within 10min on gold......A highly sensitive nanosensing method for the combined selective capture and SERS detection of Microcystin-LR (MC-LR) in blood plasma has been developed. The new method utilizes gold coated magnetic nanoparticles that are functionalized with anti MC-LR antibody Fab' fragments for the selective...... capture of MC-LR from aqueous media and blood plasma. Using an oriented immobilization approach, the Fab' fragments are covalently attached to gold surface to form a monolayer with high capture efficiency towards the toxin. After the selective capture, the purified MC-LR molecules were released from...

  4. Melanin-Associated Synthesis of SERS-Active Nanostructures and the Application for Monitoring of Intracellular Melanogenesis

    OpenAIRE

    Haixin Dong; Zhiming Liu; Huiqing Zhong; Hui Yang; Yan Zhou; Yuqing Hou; Jia Long; Jin Lin; Zhouyi Guo

    2017-01-01

    Melanin plays an indispensable role in the human body. It serves as a biological reducer for the green synthesis of precious metal nanoparticles. Melanin?Ag nanocomposites were successfully produced which exhibited very strong surface-enhanced Raman scattering (SERS) effect because of the reducibility property of melanin. A melanin?Ag composite structure was synthesized in situ in melanin cells, and SERS technique was performed for the rapid imaging and quantitative assay of intracellular mel...

  5. Single molecule SERS: Perspectives of analytical applications

    Czech Academy of Sciences Publication Activity Database

    Vlčková, B.; Pavel, I.; Sládková, M.; Šišková, K.; Šlouf, Miroslav

    834-836, - (2007), s. 42-47 ISSN 0022-2860. [European Congress on Molecular Spectroscopy /28./. Istanbul, 03.09.2006-08.09.2006] R&D Projects: GA ČR GA203/04/0688 Institutional research plan: CEZ:AV0Z40500505 Keywords : surface-enhanced Raman scattering (SERS) * surface-enhanced resonance Raman (SERRS) * single molecule SERS Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.486, year: 2007

  6. Hierarchical Ag mesostructures for single particle SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minwei, E-mail: xuminwei@xjtu.edu.cn; Zhang, Yin

    2017-01-30

    Highlights: • Hierarchical Ag mesostructures with the size of 250, 360 and 500 nm are synthesized via a seed-mediated approach. • The Ag mesostructures present the tailorable size and highly roughened surfaces. • The average enhancement factors for individual Ag mesostructures were estimated to be as high as 10{sup 6}. - Abstract: Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250–500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 10{sup 6}.

  7. Conocer y ser en el paradigma constructivista

    Directory of Open Access Journals (Sweden)

    Jose Antonio Camargo Rodriguez

    2014-03-01

    Full Text Available Toda teoría acerca del aprendizaje se fundamenta en una interpretación del conocimiento, la cual se encuentra, a su vez, ligada a una cierta concepción de «ser». No será posible asimilar verdaderamente cualquiera de tales teorías si se ignoran, o no se consideran con el debido detenimiento, las ideas de conocer y «ser» que le sirven de base. Sc pone de presente que el constructivismo, en contraste con la teoría transmisionista de la enseñanza y el aprendizaje, predominante en la pedagogía tradicional, tiene su fundamento en la interpretación según la cual el conocer es una actividad humana en la que, a medida quo conoce, el hombre construye el «ser». Antes de todo conocimiento, las cosas no tienen un «ser»; están ahí, pero no se sabe lo que son. El «ser», quo constituye el objeto de todo conocer, aquello que el sujeto persigue a través de su conocimiento, no toes dada de antemano, ni le viene de fuera, sino quo es una elaboración quo el mismo realiza a través de su actividad cognoscitiva, un contenido de su propia conciencia. Hay, pues, una cierta paradoja entre las ideas de conocer y «ser» que sirven de fundamento al constructivismo, cuya reflexión se propone en aras de ganar una mejor comprensión, de encontrarle a este paradigma un sentido más allá de la pedagogía y la didáctica.

  8. Electromagnetic Modelling of Raman Enhancement from Nanoscale Structures as a Means to Predict the Efficacy of SERS Substrates

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2007-01-01

    Full Text Available The requirement to optimise the balance between signal enhancement and reproducibility in surface enhanced Raman spectroscopy (SERS is stimulating the development of novel substrates for enhancing Raman signals. This paper describes the application of finite element electromagnetic modelling to predict the Raman enhancement produced from a variety of SERS substrates with differently sized, spaced and shaped morphologies with nanometre dimensions. For the first time, a theoretical comparison between four major generic types of SERS substrate (including metal nanoparticles, structured surfaces, and sharp tips has been performed and the results are presented and discussed. The results of the modelling are consistent with published experimental data from similar substrates.

  9. A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation.

    Science.gov (United States)

    Yang, Libin; Sang, Qinqin; Du, Juan; Yang, Ming; Li, Xiuling; Shen, Yu; Han, Xiaoxia; Jiang, Xin; Zhao, Bing

    2018-06-06

    Ag simultaneously deposited and doped TiO2 (Ag-TiO2) hybrid nanoparticles (NPs) were prepared via a sol-hydrothermal method, as both a sensitive surface-enhanced Raman scattering (SERS) substrate and a superior photocatalyst for the first time. Ag-TiO2 hybrid NPs exhibit excellent SERS performance for several probe molecules and the enhancement factor is calculated to be 1.86 × 105. The detection limit of the 4-mercaptobenzoic acid (4-MBA) probe on the Ag-TiO2 substrate is 1 × 10-9 mol L-1, which is four orders of magnitude lower than that on pure TiO2 as a consequence of the synergistic effects of TiO2 and Ag. This is the highest SERS sensitivity among the reported semiconductor substrates and even comparable to noble metal substrates, and a SERS enhancement mechanism from the synergistic contribution of the semiconductor and noble metal was proposed. And importantly, the Ag-TiO2 hybrid shows excellent photocatalytic degradation activity for the detected species under UV light irradiation at lower concentration conditions, even for the hard to degrade 4-MBA molecule. This makes the Ag-TiO2 hybrid promising as a dual-function platform for both highly sensitive SERS detection and photocatalytic degradation of a pollutant system. Moreover, it also proves that the Ag-TiO2 hybrid can serve as a promising recyclable SERS-active substrate by virtue of its photocatalytic self-cleaning properties for some specific applications, for instance comparative studies of different species on the same SERS platform, in addition to the economic benefit.

  10. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

    Science.gov (United States)

    Jeong, Cheolhwan; Kim, Hyung-Mo; Park, So Yeon; Cha, Myeong Geun; Park, Sung-Jun; Kyeong, San; Pham, Xuan-Hung; Hahm, Eunil; Ha, Yuna; Jeong, Dae Hong; Jun, Bong-Hyun; Lee, Yoon-Sik

    2017-01-01

    We report magnetic silver nanoshells (M-AgNSs) that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe3O4 nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system. PMID:28608835

  11. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

    Directory of Open Access Journals (Sweden)

    Cheolhwan Jeong

    2017-06-01

    Full Text Available We report magnetic silver nanoshells (M-AgNSs that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe3O4 nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system.

  12. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors.

    Science.gov (United States)

    Chen, Kun; Han, Heyou; Luo, Zhihui; Wang, Yanjun; Wang, Xiuping

    2012-04-15

    Since the global cultivation of genetically modified crops constantly expands, it remains a high demand to establish different ways to sort food and feed that consist or contain genetically modified organisms. Surface-enhanced Raman scattering (SERS) spectroscopy is a flexible tool for biological analysis due to its excellent properties for detecting wide varieties of target biomolecules including nucleic acids. In the present study, a SERS-barcoded nanosensor was developed to detect Bacillus thuringiensis (Bt) gene-transformed rice expressing insecticidal proteins. The barcoded sensor was designed by encapsulation of gold nanoparticles with silica and conjugation of oligonucleotide strands for targeting DNA strands. The transition between the cry1A(b) and cry1A(c) fusion gene sequence was used to construct a specific SERS-based detection method with a detection limit of 0.1 pg/mL. In order to build the determination models to screen transgene, a series mixture of Bt rice and normal rice were prepared for SERS assay, and the limit of detection was 0.1% (w/w) transgenic Bt rice relative to normal rice. The sensitivity and accuracy of the SERS-based assay was comparable with real-time PCR. The SERS-barcoded analytical method would provide precise detection of transgenic rice varieties but also informative supplement to avoid false positive outcomes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  13. Stimuli-responsive microjets with reconfigurable shape.

    Science.gov (United States)

    Magdanz, Veronika; Stoychev, Georgi; Ionov, Leonid; Sanchez, Samuel; Schmidt, Oliver G

    2014-03-03

    Flexible thermoresponsive polymeric microjets are formed by the self-folding of polymeric layers containing a thin Pt film used as catalyst for self-propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self-propulsion at the microscale, and also for biorelated applications. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  14. Stimuli-Responsive Microjets with Reconfigurable Shape**

    Science.gov (United States)

    Magdanz, Veronika; Stoychev, Georgi; Ionov, Leonid; Sanchez, Samuel; Schmidt, Oliver G

    2014-01-01

    Flexible thermoresponsive polymeric microjets are formed by the self-folding of polymeric layers containing a thin Pt film used as catalyst for self-propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self-propulsion at the microscale, and also for biorelated applications. PMID:24481856

  15. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    Science.gov (United States)

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  16. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface.

    Science.gov (United States)

    Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong

    2018-01-26

    As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.

  17. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes

    Directory of Open Access Journals (Sweden)

    Giuseppe Quero

    2018-02-01

    Full Text Available In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS optical fiber sensor devices (optrodes, as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate and inter-sample (i.e., between regions of different substrates repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5 was found to be the

  18. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection.

    Science.gov (United States)

    Gu, Xuefang; Yan, Yuerong; Jiang, Guoqing; Adkins, Jason; Shi, Jian; Jiang, Guomin; Tian, Shu

    2014-03-01

    A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle-protein-bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL(-1) for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.

  19. SERS Substrates by the Assembly of Silver Nano cubes: High-Throughput and Enhancement Reliability Considerations

    International Nuclear Information System (INIS)

    Rabin, O.; Lee, S.Y.; Rabin, O.

    2012-01-01

    Small clusters of nanoparticles are ideal substrates for SERS measurements, but the SERS signal enhancement by a particular cluster is strongly dependent on its structural characteristics and the measurement conditions. Two methods for high-throughput assembly of silver nano cubes into small clusters at predetermined locations on a substrate are presented. These fabrication techniques make it possible to study both the structure and the plasmonic properties of hundreds of nanoparticle clusters. The variations in SERS enhancement factors from cluster to cluster were analyzed and correlated with cluster size and configuration, and laser frequency and polarization. Using Raman instruments with 633 nm and 785 nm lasers and linear clusters of nano cubes, an increase in the reproducibility of the enhancement and an increase in the average enhancement values were achieved by increasing the number of nano cubes in the cluster, up to 4 nano cubes per cluster. By examining the effect of cluster configuration, it is shown that linear clusters with nano cubes attached in a face-to-face configuration are not as effective SERS substrates as linear clusters in which nano cubes are attached along an edge

  20. Fluorescence ON–OFF switching using micelle of stimuli-responsive double hydrophilic block copolymers: Nile Red fluorescence in micelles of poly(acrylic acid-b-N-isopropylacrylamide)

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Min Min; Tsubone, Miyabi; Morita, Takuya [Department of Chemistry, Graduate School of Science & Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Yusa, Shin-ichi [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji 671-2280 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Graduate School of Science & Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2016-08-15

    The dual-mode fluorescence ON–OFF switching of Nile Red (NR) by using stimuli-responsive polymeric micelle of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNIPAM) has been studied. PAA-b-PNIPAM, one of double hydrophilic block copolymers, is known to form PNIPAM-core/PAA-corona micelles in aqueous solutions when the temperature of the solution is elevated up to the lower critical solution temperature (LCST) of PNIPAM block. It also forms PAA-core/PNIPAM-corona micelles when the anionic PAA block is charge-neutralized with cationic cetyltrimethylammonium ion. Fluorescence properties of NR in the micelles are elucidated by observing various fluorescence parameters such as intensity, polarization, and quantum yield. It is found that the fluorescence intensity is negligibly low (OFF-state) when PAA-b-PNIPAM exists as a form of unimer, whereas it is remarkably enhanced (ON-state) when the PNIPAM-core or PAA-core micelles are formed. These results demonstrate that a novel fluorescence ON–OFF switching system can be constructed by using PAA-b-PNIPAM micelles and NR.

  1. Acerca de tres dimensiones del ser humano

    OpenAIRE

    Fúnez, Rubén

    2007-01-01

    El autor resume las ideas importantes del libro "Tres dimensiones del ser humano", se pregunta por la importancia del planteamiento zubiriano, tanto para la historia de la filosofía, como para la situación que actualmente nos ha tocado vivir.

  2. Label-Free Detection of Glycan-Protein Interactions for Array Development by Surface-Enhanced Raman Spectroscopy (SERS)

    NARCIS (Netherlands)

    Li, Xiuru; Martin, Sharon J H; Chinoy, Zoeisha S; Liu, Lin; Rittgers, Brandon; Dluhy, Richard A; Boons, Geert-Jan

    2016-01-01

    A glyco-array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain-promoted azide-alkyne cycloaddition. Glycan-protein binding events can then be detected in a label-free manner employing surface-enhanced Raman spectroscopy (SERS). As proof of concept,

  3. SERS microRaman spectral probing of adsorbate-containing, liquid-overlayed nanosponge Ag aggregates assembled from fractal aggregates

    Czech Academy of Sciences Publication Activity Database

    Sutrova, V.; Šloufová, I.; Nevoralová, Martina; Vlčková, B.

    2015-01-01

    Roč. 46, č. 6 (2015), s. 559-565 ISSN 0377-0486 R&D Projects: GA ČR GAP208/10/0941 Institutional support: RVO:61389013 Keywords : surface-enhanced Raman scattering (SERS) spectroscopy * Ag nanoparticles * Ag nanosponge aggregate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.395, year: 2015

  4. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    Science.gov (United States)

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  5. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  6. Criatividade em ação: ser criativo é ser criança

    Directory of Open Access Journals (Sweden)

    Antonio Mendes Silva Filho

    2012-11-01

    Full Text Available Todo ser humano é criativo e isso decorre da capacidade de imaginação. Essa capacidade é acentuada quando você tem a possibilidade de explorar e a curiosidade aguçada. Não exemplo melhor do que uma criança. Ser criativo é ser criança. Esta capacidade alcança o ápice quando se busca criar como criança fazendo uso de sagacidade, persistência, desorganização e com a possibilidade de errar. Isso é explorar e experimentar, deixando o cérebro livre e sem pressão, agindo despreocupadamente em determinado período de tempo. Nesse sentido, este artigo explora a importancia dar oportunidade do ser humano explorar sua capacidade de criar via imaginação

  7. SERS as a tool for in vitro toxicology.

    Science.gov (United States)

    Fisher, Kate M; McLeish, Jennifer A; Jamieson, Lauren E; Jiang, Jing; Hopgood, James R; McLaughlin, Stephen; Donaldson, Ken; Campbell, Colin J

    2016-06-23

    Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.

  8. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli

    Science.gov (United States)

    Bozkurt, Akif Goktug; Buyukgoz, Guluzar Gorkem; Soforoglu, Mehmet; Tamer, Ugur; Suludere, Zekiye; Boyaci, Ismail Hakki

    2018-04-01

    In this study, a sandwich immunoassay method utilizing enzymatic activity of alkaline phosphatase (ALP) on 5-bromo-4-chloro-3-indolyl phosphate (BCIP) for Escherichia coli (E. coli) detection was developed using surface enhanced Raman spectroscopy (SERS). For this purpose, spherical magnetic gold coated core-shell nanoparticles (MNPs-Au) and rod shape gold nanoparticles (Au-NRs) were synthesized and modified for immunomagnetic separation (IMS) of E. coli from the solution. In order to specify the developed method to ALP activity, Au-NRs were labeled with this enzyme. After successful construction of the immunoassay, BCIP substrate was added to produce the SERS-active product; 5-bromo-4-chloro-3-indole (BCI). A good linearity (R2 = 0.992) was established between the specific SERS intensity of BCI at 600 cm- 1 and logarithmic E. coli concentration in the range of 1.7 × 101-1.7 × 106 cfu mL- 1. LOD and LOQ values were also calculated and found to be 10 cfu mL- 1 and 30 cfu mL- 1, respectively.

  9. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation.

    Science.gov (United States)

    Zhang, Kun; Liu, Yu; Wang, Yuning; Zhang, Ren; Liu, Jiangang; Wei, Jia; Qian, Hufei; Qian, Kun; Chen, Ruoping; Liu, Baohong

    2018-05-09

    Reliable profiling of the extracellular dopamine (DA) concentration in the central nervous system is essential for a deep understanding of its biological and pathological functions. However, quantitative determination of this neurotransmitter remains a challenge because of the extremely low concentration of DA in the cerebrospinal fluid (CSF) of patients. Herein, on the basis of the specific recognition of boronate toward diol and N-hydroxysuccinimide ester toward the amine group, a simple and highly sensitive strategy was presented for DA detection by using surface-enhanced Raman scattering (SERS) spectroscopy as a signal readout. This was realized by first immobilizing 3,3'-dithiodipropionic acid di( N-hydroxysuccinimide ester) on gold thin film surfaces to capture DA, followed by introducing 3-mercaptophenylboronic acid (3-MPBA)-functionalized silver nanoparticles to generate numerous plasmonic "hot spots" with the nanoparticle-on-mirror geometry. Such a dual-recognition mechanism not only avoids complicated bioelement-based manipulations but also efficiently decreases the background signal. With the direct use of the recognition probe 3-MPBA as a Raman reporter, the "signal-on" SERS method was employed to quantify the concentration of DA from 1 pM to 1 μM with a detection limit of 0.3 pM. Moreover, our dual-recognition-directed SERS assay exhibited a high resistance to cerebral interference and was successfully applied to monitoring of DA in CSF samples of patients.

  10. El Segundo Cerebro del ser humano.

    OpenAIRE

    Rocío Ponce

    2015-01-01

    Existen dos tipos de cerebros, el conocido por todos formado por el sistema nervioso central, que sería el cerebro donde las emociones se forman en base a las experiencias anteriores. El segundo cerebro, el otro, ignorado por la mayoría de seres humanos es el cerebro que está en los intestinos, Sistema Nervioso Enteral o mesentérico, que se caracteriza por la relación del cerebro y aparato digestivo, este cerebro posee más neuronas que su par, guarda emociones, determina la respuesta de acuer...

  11. On the chemical enhancement in SERS

    Science.gov (United States)

    Jensen, Lasse

    2012-12-01

    In Surface-enhanced Raman scattering (SERS), the Raman signal of a molecule adsorbed on a metal surface is enhanced by many orders of magnitude. This provides a "finger-print" of molecules which can be used in ultrasensitive sensing devises. Here we present a time-dependent density functional theory (TDDFT) study of the molecule-surface chemical coupling in SERS. A systematic study of the chemical enhancement (CHEM) of meta-and para-substituted pyridines interacting with a small silver cluster (Ag20) is presented. We find that the magnitude of chemical enhancement is governed to a large extent by the energy difference between the highest occupied energy level (HOMO) of the metal and the lowest unoccupied energy level (LUMO) of the molecule. A two-state approximation shows that the enhancement scales roughly as (ωX/ω¯e)4, where accent="true">ω¯e is an average excitation energy between the HOMO of the metal and the LUMO of the molecule and wX the HOMO-LUMO gap of the free molecule. Furthermore, we demonstrate that it is possible to control the CHEM enhancement by switching a dithienylethene photoswitch from its closed form to its open form. The open form of the photoswitch is found to be the strongest Raman scatterer when adsorbed on the surface whereas the opposite is found for the free molecule. This trend is explained using the simple two-state approximation.

  12. Highly Sensitive and Reproducible SERS Sensor for Biological pH Detection Based on a Uniform Gold Nanorod Array Platform.

    Science.gov (United States)

    Bi, Liyan; Wang, Yunqing; Yang, Ying; Li, Yuling; Mo, Shanshan; Zheng, Qingyin; Chen, Lingxin

    2018-05-09

    Conventional research on surface-enhanced Raman scattering (SERS)-based pH sensors often depends on nanoparticle aggregation, whereas the variability in nanoparticle aggregation gives rise to poor repeatability in the SERS signal. Herein, we fabricated a gold nanorod array platform via an efficient evaporative self-assembly method. The platform exhibits great SERS sensitivity with an enhancement factor of 5.6 × 10 7 and maintains excellent recyclability and reproducibility with relative standard deviation (RSD) values of less than 8%. On the basis of the platform, we developed a highly sensitive bovine serum albumin (BSA)-coated 4-mercaptopyridine (4-MPy)-linked (BMP) SERS-based pH sensor to report pH ranging from pH 3.0 to pH 8.0. The intensity ratio variation of 1004 and 1096 cm -1 in 4-MPy showed excellent pH sensitivity, which decreased as the surrounding pH increased. Furthermore, this BMP SERS-based pH sensor was employed to measure the pH value in C57BL/6 mouse blood. We have demonstrated that the pH sensor has great advantages such as good stability, reliability, and accuracy, which could be extended for the design of point-of-care devices.

  13. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    Science.gov (United States)

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  14. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  15. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy

    Science.gov (United States)

    Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.

    2015-02-01

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  16. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  17. Sodium Chloride Crystal-Induced SERS Platform for Controlled Highly Sensitive Detection of Illicit Drugs.

    Science.gov (United States)

    Yu, Borong; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Shaofei; Yang, Liangbao

    2018-04-03

    A sodium chloride crystal-driven spontaneous 'hot spot' structure was demonstrated as a SERS-active platform, to get reproducible SERS signals, and eliminate the need for mapping large areas, in comparison with solution phase testing. During the process of solvent evaporation, the crystals produced induced silver aggregates to assemble around themselves. The micro-scale crystals can also act as a template to obtain an optical position, such that the assembled hot area is conveniently located during SERS measurements. More importantly, the chloride ions added in colloids can also replace the citrate and on the surface of the silver sol, and further decrease the background interference. High quality SERS spectra from heroin, methamphetamine (MAMP), and cocaine have been obtained on the crystal-driven hot spot structure with high sensitivity and credible reproducibility. This approach can not only bring the nanoparticles to form plasmonic hot spots in a controlled way, and thus provide high sensitivity, but also potentially be explored as an active substrate for label-free detection of other illicit drugs or additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    Science.gov (United States)

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  20. Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes.

    Directory of Open Access Journals (Sweden)

    Myeong Geun Cha

    Full Text Available Surface-enhanced Raman scattering (SERS provides a unique non-destructive spectroscopic fingerprint for chemical detection. However, intrinsic differences in affinity of analyte molecules to metal surface hinder SERS as a universal quantitative detection tool for various analyte molecules simultaneously. This must be overcome while keeping close proximity of analyte molecules to the metal surface. Moreover, assembled metal nanoparticles (NPs structures might be beneficial for sensitive and reliable detection of chemicals than single NP structures. For this purpose, here we introduce thin silica-coated and assembled Ag NPs (SiO2@Ag@SiO2 NPs for simultaneous and quantitative detection of chemicals that have different intrinsic affinities to silver metal. These SiO2@Ag@SiO2 NPs could detect each SERS peak of aniline or 4-aminothiophenol (4-ATP from the mixture with limits of detection (LOD of 93 ppm and 54 ppb, respectively. E-field distribution based on interparticle distance was simulated using discrete dipole approximation (DDA calculation to gain insight into enhanced scattering of these thin silica coated Ag NP assemblies. These NPs were successfully applied to detect aniline in river water and tap water. Results suggest that SiO2@Ag@SiO2 NP-based SERS detection systems can be used as a simple and universal detection tool for environment pollutants and food safety.

  1. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  2. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Hanna V. Bandarenka

    2018-05-01

    Full Text Available The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs, and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  3. Complete urinary tract infection (UTI) diagnosis and antibiogram using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Kyriakides, Alexandros; Pitris, Costas

    2012-03-01

    There are three stages to a complete UTI diagnosis: (1) identification of a urine sample as positive/negative for an infection, (2) identification of the responsible bacterium, (3) antibiogram to determine the antibiotic to which the bacteria are most sensitive to. Using conventional methods, all three stages require bacterial cultures in order to provide results. This long delay in diagnosis causes a rise in ineffective treatments, chronic infections, health care costs and antibiotic resistance. In this work, SERS is used to identify a sample as positive/negative for a UTI as well as to obtain an antibiogram against different antibiotics. SERS spectra of serial dilutions of E. coli bacteria mixed with silver nanoparticles, showed a linear correlation between spectral intensity and concentration. For antibiotic sensitivity testing, SERS spectra of three species of gram negative bacteria were collected four hours after exposure to the antibiotics ciprofloxacin and amoxicillin. Spectral analysis revealed clear separation between bacterial samples exposed to antibiotics to which they were sensitive and samples exposed to antibiotics to which they were resistant. With the enhancement provided by SERS, the technique can be applied directly to urine samples leading to the development of a new, rapid method for UTI diagnosis and antibiogram.

  4. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  5. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  6. Ser lo mismo, ser diferente: contra la masificación

    OpenAIRE

    Saldarriaga Roa, Alberto

    2005-01-01

    La sociedad moderna se ha configurado, en los dos últimos siglos, como una sociedad de masas. Esto parece ser una condición sine qua non de su estructura y operatividad. La masificación se manifiesta no sólo en el comportamiento social sino también en el

  7. Smart supramolecular sensing with cucurbit[n]urils: probing hydrogen bonding with SERS.

    Science.gov (United States)

    de Nijs, Bart; Kamp, Marlous; Szabó, Istvan; Barrow, Steven J; Benz, Felix; Wu, Guanglu; Carnegie, Cloudy; Chikkaraddy, Rohit; Wang, Wenting; Deacon, William M; Rosta, Edina; Baumberg, Jeremy J; Scherman, Oren A

    2017-12-04

    Rigid gap nano-aggregates of Au nanoparticles formed using cucurbit[n]uril (CB[n]) molecules are used to investigate the competitive binding of ethanol and methanol in an aqueous environment. We show it is possible to detect as little as 0.1% methanol in water and a ten times higher affinity to methanol over ethanol, making this a useful technology for quality control in alcohol production. We demonstrate strong interaction effects in the SERS peaks, which we demonstrate are likely from the hydrogen bonding of water complexes in the vicinity of the CB[n]s.

  8. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  9. Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation

    International Nuclear Information System (INIS)

    Yamauchi, Motohiro; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    Phosphorylation of p53 at Ser15, Thr18, and Ser20 has been thought to be important for p53 stabilization in response to ionizing radiation. In the present study, we examined the X-ray-induced stabilization of Ala-substituted p53 protein at Ser15, Thr18, and Ser20, whose gene expression was controlled under an ecdyson-inducible promoter. We found that all single-, double-, or triple-Ala-substituted p53 at Ser15, Yhr18, and Ser20 were accumulated in the nucleus similarly to wild-type p53 after X-irradiation. These results indicate that the phosphorylation of p53 at Ser15, Thr18, and Ser20 is not necessarily needed for p53 stabilization in response to ionizing radiation

  10. O Talco deve ser utilizado para Pleurodese

    Directory of Open Access Journals (Sweden)

    Steven A. Sahn

    2001-03-01

    Full Text Available RESUMO: A pleurodese està recomendada nos den·ames pleurais malignos quando o tumor não é sensível à quimioterapia. Aprcsenta taxas de sucesso vari:lveis em parte justificadas pelos diferentes agentes e doses utilizadas, a selecção de doentes eo tipo de técnica aplicada. O talco parece ser o agente mais efi caz de pleurodese.Steven Sahn defende que o talco deve ser utilizado para pleurodese, apoiando a sua opini ao em diferentes factores:Mecanisme da pleurodese para talcagcm - o talco após contacto com as células mesoteliais promove um influxo de neutrófil os IL8 mediadus e posterior acumulação de macrófagos, diminuiçãa actividade fibrinolftica e aumento do factor de crescimento dos fi broblastos. Quando o tumor reveste uma grande area de mesotclio, a pleurodese não é tao eficaz.Eficácia - uma revisão da li teratura inglesa de I966 a 1994 constatou que u talco foi o agente mais eficaz de pleurodese, cum uma taxa de sucesso de 93%, comparada cum a da tetraciclina de 67 %, doxicicli na de 72% e bleomicina de 54%. Outras séries reve1aram uma taxa de sucesso do talco sempre superior a 91 %.Custo - o talco é pouco dispendioso e se apl icado em suspensao (“slutTy” por tubo de toracostomia ainda reduz mais os custos inerentes a uma toracoscopia 4uando se utiliza o talco em pó, aprescntando cstas duas tecnicas, taxas ue eticacia scmelhantes. Reacçãoes Adversas Minor e Major Agudas- a toracalgia e a febre são OS efcitos adversos mains frequcntes, frequcntes de todos os agentes de pleurudese. A toracalgia surge em 7% dos doentcs submetiuos a plcurodesc com talco, em 28% com a bleomicina c 40% com a dox iciclina. A tetraciclina provoca geralmente wracalgia grave. A febre surge entre I6 a 69% após talcagem não ultrapassando as 72 horas.As reacçãoes adversas graves sao raras e incluern o cmpiema. arritmia cardfaca e insufcicncia rcspiratória. Se o talco

  11. Deterministic nanoparticle assemblies: from substrate to solution

    International Nuclear Information System (INIS)

    Barcelo, Steven J; Gibson, Gary A; Yamakawa, Mineo; Li, Zhiyong; Kim, Ansoon; Norris, Kate J

    2014-01-01

    The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process. (paper)

  12. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  13. Improved size-tunable synthesis and SERS properties of Au nanostars

    Science.gov (United States)

    Khlebtsov, Boris; Panfilova, Elizaveta; Khanadeev, Vitaly; Khlebtsov, Nikolai

    2014-10-01

    Multibranched Au nanoparticles with sharp tips (commonly called nanostars, NSTs) have attracted significant attention as bright scattering labels, photothermal transducers, nanocarriers, and surface-enhanced Raman scattering (SERS) tags. However, for surfactant-free synthesized NSTs, the existing data on the size tuning and the relation between the size of NSTs and their SERS efficiency still remain limited. Here, we address these questions by synthesizing and comparing SERS for surfactant-free NSTs of different sizes and plasmon resonance (PR) wavelengths. The NSTs were fabricated by seeded growth through a two-step surfactant-free approach in which quasispherical seeds were overgrown via reduction of added Au by ascorbic acid in the presence of Ag ions. By varying the seed size from 3 to 35 nm, we tuned the final NST size from 45 to 150 nm while retaining the star-like morphology with sharp tips and ensuring PR tunability from 630 to 900 nm. The NST size and PR limits can be expanded from 40 to 200 nm and from 600 to 930 nm, respectively, by simultaneous variation in the seed size and concentration. The SERS efficiency of the fabricated NSTs was examined by Raman measurements of 1,4-aminothiophenol (ATP) adsorbed on the surface of colloidal NST particles. Although the homogenous analytical enhancement factor (AEF) did not depend essentially on the NST size and varied from 4 × 106 to 107, the enhancing properties of single-particle NST tags were strongly size-dependent. Specifically, the AEF for 150-nm NST35-ATP complexes was 30 and 100 times greater than that for 70-nm NST15-ATP and 45-nm NST3-ATP complexes, respectively. These properties make the NST-ATP complex a prospective platform for SERS imaging.

  14. MODOS DE SER DA JUVENTUDE OCIDENTAL

    Directory of Open Access Journals (Sweden)

    Prof. Dr. Luiz Antônio Dias

    2015-09-01

    Full Text Available O presente artigo é resultado de investigações ainda em andamento no Grupo de Pesquisa “Culturas juvenis, consumo e mobilidade urbana na contemporaneidade”, iniciadas em 2013 junto ao Programa de Mestrado Interdisciplinar em Ciências Humanas da Universidade de Santo Amaro (UNISA. A pesquisa dedica-se a entender, entre outras reflexões, o percurso dos jovens na sociedade contemporânea e as contribuições que eles trouxeram para repensar o espaço urbano. Nesse estudo buscamos localizar no espaço e no tempo em quais condições históricas o sentimento de juventude apareceu para a sociedade. Em seguida, fazemos um minucioso levantamento da trajetória dessa nova categoria social nos mais diferentes períodos da história contemporânea. Chegamos, assim, ao século XX, momento em que as reuniões juvenis deixam de ser fatos isolados e adquirem conotações de manifestações verdadeiramente sociais. Ainda nessa perspectiva de análise, buscamos compreender as similitudes, aproximações e distanciamentos do movimento punk com seus congêneres do passado.

  15. Llegar a ser Simone de Beauvoir

    Directory of Open Access Journals (Sweden)

    Nora Levinton Dolman

    2009-01-01

    Full Text Available A la manera de un Psicoanálisis aplicado a la obra de Simone de Beauvoir se señalan algunos aspectos cruciales que reflejan cómo se va configurando la vida y el pensamiento de una mujer que encarnó, para muchas de nosotras, un modelo de identificación. Su trabajo es en este sentido un espejo y una valiosa muestra de la naturaleza proyectiva de muchos de sus enunciados, donde a partir de su irreemplazable experiencia Simone arriba a conclusiones en las que podemos seguir el rastro de sus vivencias personales. En el contexto singular de su historia personal y en cómo es relatada. Al exponer su vida en sus libros y en numerosas entrevistas concedidas a distintos medios, ha dado lugar a que surgieran diferentes interpretaciones, por lo tanto a que sus palabras y argumentos puedan, como en este artículo, ser utilizados, contrastados entre sí y sometidos a exploración.

  16. Libertas que serás enfermagem

    Directory of Open Access Journals (Sweden)

    Mary Anne Fontenele Martins

    1998-09-01

    Full Text Available O título deste ensaio nos faz lembrar a Inconfidência Mineira, que teve como líder José Joaquim da Silva Xavier, o Tiradentes, sendo um movimento que ansiava por liberdade, assim como a enfermagem que, ao longo dos anos, vem construindo sua história e caminhando em busca de sua autonomia. A presente pesquisa tem como objetivo investigar os caminhos percorridos pela enfermagem, enquanto ciência na busca de sua autonomia, e refletir sobre a atuação do enfermeiro enquanto profissional criativo e autônomo. Estudo respaldado no materialismo histórico e dialético, realizado no período de maio a agosto de 1997 com enfermeiras do Estado do Ceará, que estão envolvidas com o processo histórico da profissão. Os resultados deram origem a uma categoria central, prática profissional e outras três: autonomia, criatividade e disposição para enfrentar desafios, que favoreceram uma melhor compreensão dos caminhos já trilhados pela enfermagem, além de nos permitir entender que o enfermeiro pode ser autônomo e livre.

  17. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    Science.gov (United States)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  18. Biomarkers of cigarette smoking and DNA methylating agents: Raman, SERS and DFT study of 3-methyladenine and 7-methyladenine

    Science.gov (United States)

    Harroun, Scott G.; Zhang, Yaoting; Chen, Tzu-Heng; Ku, Ching-Rong; Chang, Huan-Tsung

    2017-04-01

    3-Methyladenine and 7-methyladenine are biomarkers of DNA damage from exposure to methylating agents. For example, the concentration of 3-methyladenine increases significantly in the urine of cigarette smokers. Surface-enhanced Raman spectroscopy (SERS) has shown much potential for detection of biomolecules, including DNA. Much work has been dedicated to the canonical nucleobases, with comparatively fewer investigations of modified DNA and modified DNA nucleobases. Herein, Raman spectroscopy and SERS are used to examine the adsorption orientations of 3-methyladenine and 7-methyladenine on Ag nanoparticles. Density functional theory (DFT) calculations at the B3LYP level are used to support the conclusions via simulated spectra of the nucleobases and of Ag+/nucleobase complexes. The results herein show that 7-methyladenine adsorbs upright via its N3 and N9 atoms side, similarly to adenine. 3-Methyladenine adsorbs in a very tilted or flat orientation on the Ag nanoparticles. These findings will be useful for future SERS or other nanoparticle-based bioanalytical assays for detection of these methyladenines or other modified nucleobases.

  19. Preparation of sensitive and recyclable porous Ag/TiO{sub 2} composite films for SERS detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe, E-mail: thwang56@126.com

    2015-12-30

    Graphical abstract: - Highlights: • A new but simple method of fabricating robust TiO{sub 2} films on glass. • AgNPs were deposited on the surface of TiO{sub 2} films with the assistance of UV irradiation. • Substrates with high SERS sensitivity and excellent recyclability. - Abstract: Porous Ag/TiO{sub 2} composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO{sub 2} films. The highest SERS sensitivity that allowed as low as 10{sup −10} M aqueous CV to be detected, was achieved with the PEG/(C{sub 4}H{sub 9}O){sub 4}Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10{sup −10} to 10{sup −5} M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO{sub 2} film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  20. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Science.gov (United States)

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  1. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya

    Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pHhuman skin are typically acidic. Demonstrated by fluorescent and antimicrobial experiments, the bound gold nanoparticles effectively prevent LipoLA from fusing with one another at neutral pH value. However, at acidic condition, the gold particles detatch from LipoLA surface, allowing the fusion with P.acnes membrane and lauric acid delivery, resulting in a complete killing effect. The stimuli-responsive liposomes presented here provide a new, safe, and effective approach to

  2. Emergence of two near-infrared windows for in vivo and intraoperative SERS.

    Science.gov (United States)

    Lane, Lucas A; Xue, Ruiyang; Nie, Shuming

    2018-04-06

    Two clear windows in the near-infrared (NIR) spectrum are of considerable current interest for in vivo molecular imaging and spectroscopic detection. The main rationale is that near-infrared light can penetrate biological tissues such as skin and blood more efficiently than visible light because these tissues scatter and absorb less light at longer wavelengths. The first clear window, defined as light wavelengths between 650nm and 950nm, has been shown to be far superior for in vivo and intraoperative optical imaging than visible light. The second clear window, operating in the wavelength range of 1000-1700nm, has been reported to further improve detection sensitivity, spatial resolution, and tissue penetration because tissue photon scattering and background interference are further reduced at longer wavelengths. Here we discuss recent advances in developing biocompatible plasmonic nanoparticles for in vivo and intraoperative surface-enhanced Raman scattering (SERS) in both the first and second NIR windows. In particular, a new class of 'broad-band' plasmonic nanostructures is well suited for surface Raman enhancement across a broad range of wavelengths allowing a direct comparison of detection sensitivity and tissue penetration between the two NIR window. Also, optimized and encoded SERS nanoparticles are generally nontoxic and are much brighter than near-infrared quantum dots (QDs), raising new possibilities for ultrasensitive detection of microscopic tumors and image-guided precision surgery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Instaurando maneiras de ser, conhecer e interpretar

    Directory of Open Access Journals (Sweden)

    Maria Stephanou

    1998-01-01

    Full Text Available O artigo propõe a discussão e a problematização do tema "currículo e história". Na primeira parte explicita os fundamentos propostos para a abordagem, as concepções de currículo e história. Na segunda, privilegia as indicações de autores e a experiência pessoal para: a caracterizar o que têm sido os currículos e o ensino de história, particularmente no ensino fundamental, comentan-do suas implicações; b examinar alternativas e encaminhamentos propostos pelos debates da atualidade. Sugere que a aprendizagem de conteúdos históricos na escola, para além da mera aquisição de informações, implica a produção ativa de subjetividades, ou maneiras de ser, conhecer e interpretar o mundo e a si próprio.This article proposes to discuses and to question the theme "curriculum & history". On first part, it explains the fundaments proposed to the dissertation, the conception of curriculum & history. On the second, it grants privilege upon authors remarks and personal experience for purpose to: a characterize what were the curricular activities and the teaching of history, inside primary school particularly, with comments about its implications. b examine alternatives and forwarding proposed by present debates. It suggests that in the school the apprenticeship around historical contents, other than a pure acquisition of information, implies and actives production of subjectivities or manners of being, knowing and interpreting the world and oneself.

  4. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  5. A reagent-assisted method in SERS detection of methyl salicylate

    Science.gov (United States)

    Li, Yali; Li, Qianwen; Wang, Yanan; Oh, Joohee; Jin, Sila; Park, Yeonju; Zhou, Tieli; Zhao, Bing; Ruan, Weidong; Jung, Young Mee

    2018-04-01

    With the explosive application of methyl salicylate (MS) molecules in food and cosmetics, the further detection of MS molecules becomes particularly important. Here we investigated the detection of MS molecules based on surface-enhanced Raman scattering (SERS) in a novel molecule/assistant/metal system constructed with MS, 4,4‧-(hexafluoroisopropylidene) bis (benzoic acid) and Ag nanoparticles (AgNPs). The minimum detection concentration is 10-4 M. To explore the function of assisted reagent, we also referred another system without assistant molecules. The result demonstrates that SERS signals were not acquired, which proves that the assistant molecules are critical for the capture of MS molecules. Two possible mechanisms of MS/assistant/AgNPs system were speculated through two patterns of hydrogen bonds. The linker molecules acted as the role of the bridge between metallic substrates and target molecules through the molecular recognition. This strategy is very beneficial to the expanding of MS detection techniques and other hydrogen bond based coupling detections with SERS.

  6. Two-step fabrication of nanoporous copper films with tunable morphology for SERS application

    Science.gov (United States)

    Diao, Fangyuan; Xiao, Xinxin; Luo, Bing; Sun, Hui; Ding, Fei; Ci, Lijie; Si, Pengchao

    2018-01-01

    It is important to design and fabricate nanoporous metals (NPMs) with optimized microstructures for specific applications. In this contribution, nanoporous coppers (NPCs) with controllable thicknesses and pore sizes were fabricated via the combination of a co-sputtering of Cu/Ti with a subsequent dealloying process. The effect of dealloying time on porous morphology and the corresponding surface enhanced Raman scattering (SERS) behaviors were systematically investigated. Transmission electron microscopy (TEM) identified the presences of the gaps formed between ligaments and also the nanobumps on the nanoparticle-aggregated ligament surface, which were likely to contribute as the ;hot spots; for electromagnetic enhancement. The optimal NPC film exhibited excellent SERS performance towards Rhodamine 6G (R6G) with a low limiting detection (10-9 M), along with good uniformity and reproducibility. The calculated enhancement factor of ca. 4.71 × 107 was over Au substrates and comparable to Ag systems, promising the proposed NPC as a cheap candidate for high-performance SERS substrate.

  7. SERS-barcoded colloidal gold NP assemblies as imaging agents for use in biodiagnostics

    Science.gov (United States)

    Dey, Priyanka; Olds, William; Blakey, Idriss; Thurecht, Kristofer J.; Izake, Emad L.; Fredericks, Peter M.

    2014-03-01

    There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

  8. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    Science.gov (United States)

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  9. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study.

    Science.gov (United States)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-12-21

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.

  10. Silver-gelatine bionanocomposites for qualitative detection of a pesticide by SERS.

    Science.gov (United States)

    Fateixa, S; Soares, S F; Daniel-da-Silva, A L; Nogueira, H I S; Trindade, T

    2015-03-07

    The controlled release of pesticides using hydrogel vehicles is an important procedure to limit the amount of these compounds in the environment, providing an effective way for crop protection. A key-step in the formulation of new materials for these purposes encompasses the monitoring of available pesticides in the gel matrix under variable working conditions. In this work, we report a series of bionanocomposites made of Ag nanoparticles (NPs) and gelatine A for the surface enhanced Raman scattering (SERS) detection of sodium diethyldithiocarbamate (EtDTC) as a pesticide model. These studies demonstrate the effectiveness of these substrates for the detection of EtDTC in aqueous solutions in a concentration as low as 10(-5) M. We have monitored the Raman signal enhancement of this analyte in bionanocomposites having an increasing amount of gelatine due to their relevance in formulating hydrogels of variable gel strengths. Under these conditions, the bionanocomposites have shown an effective SERS activity using EtDTC, demonstrating their effectiveness in the qualitative detection of this analyte. Finally, experiments involving the release of EtDTC from Ag/gelatine samples have been monitored by SERS, which attest the potential of this spectroscopic method in the laboratorial monitoring of hydrogels for pesticide release.

  11. SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand

    Directory of Open Access Journals (Sweden)

    Jae Min Choi

    2017-01-01

    Full Text Available Ethylenediamine-modified β-cyclodextrin (Et-β-CD was immobilized on aggregated silver nanoparticle (NP-embedded silica NPs (SiO2@Ag@Et-β-CD NPs for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via host-guest inclusion complex formation, as indicated by enhanced ultraviolet absorption spectra. The resulting SiO2@Ag@Et-β-CD NPs were used as the SERS substrate for detecting flavonoids, such as hesperetin, naringenin, quercetin, and luteolin. In particular, luteolin was detected more strongly in the linear range 10−7 to 10−3 M than various organic molecules, namely ethylene glycol, β-estradiol, isopropyl alcohol, naphthalene, and toluene. In addition, the SERS signal for luteolin captured by the SiO2@Ag@Et-β-CD NPs remained even after repeated washing. These results indicated that the SiO2@Ag@Et-β-CD NPs can be used as a rapid, sensitive, and selective sensor for flavonoids.

  12. Development of chitosan-coated gold nanoflowers as SERS-active probes

    Science.gov (United States)

    Xu, Dan; Gu, Jiangjiang; Wang, Weina; Yu, Xuehai; Xi, Kai; Jia, Xudong

    2010-09-01

    Surface-enhanced Raman scattering (SERS) has been intensely researched for many years as a potential technique for highly sensitive detection. This work, through the reduction of HAuCl4 with pyrrole in aqueous solutions, investigated a facile one-pot synthesis of flower-like Au nanoparticles with rough surfaces. The formation process of the Au nanoflowers (AuNFs) was carefully studied, and a spontaneous assembly mechanism was proposed based on the time-course experimental results. The key synthesis strategy was to use pyrrole as a weak particle stabilizing and reducing agent to confine crystal growth in the limited ligand protection region. The nanometer-scale surface roughness of AuNFs provided several hot spots on a single particle, which significantly increased SERS enhancement. Good biocompatible stable Raman-active probes were synthesized by coating AuNFs with chitosan. The conservation of the SERS effects in living cells suggested that the chitosan-capped AuNFs could be suitable for highly sensitive detection and have potential for targeting of tumors in vivo.

  13. Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish

    KAUST Repository

    Mauriello Jimenez, Chiara

    2018-03-30

    Periodic mesoporous organosilica nanoparticles emerge as promising vectors for nanomedicine applications. Their properties are very different from those of well-known mesoporous silica nanoparticles as there is no silica source for their synthesis. So far, they have only been synthesized from small bis-silylated organic precursors. However, no studies employing large stimuli-responsive precursors have been reported on such hybrid systems yet. Here, the synthesis of porphyrin-based organosilica nanoparticles from a large octasilylated metalated porphyrin precursor is described for applications in near-infrared two-photon-triggered spatiotemporal theranostics. The nanoparticles display unique interconnected large cavities of 10-80 nm. The framework of the nanoparticles is constituted with J-aggregates of porphyrins, which endows them with two-photon sensitivity. The nanoparticle efficiency for intracellular tracking is first demonstrated by the in vitro near-infrared imaging of breast cancer cells. After functionalization of the nanoparticles with aminopropyltriethoxysilane, two-photon-excited photodynamic therapy in zebrafish is successfully achieved. Two-photon photochemical internalization in cancer cells of the nanoparticles loaded with siRNA is also performed for the first time. Furthermore, siRNA targeting green fluorescent protein complexed with the nanoparticles is delivered in vivo in zebrafish embryos, which demonstrates the versatility of the nanovectors for biomedical applications.

  14. Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, Martin; Patze, Sophie [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bocklitz, Thomas [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Weber, Karina [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Cialla-May, Dana, E-mail: dana.cialla-may@uni-jena.de [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Popp, Jürgen [Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena (Germany); Leibniz Institute of Photonic Technology (IPHT) Jena, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2015-02-20

    Highlights: • A lipophilic sensor layer was applied to enzymatically grown SERS substrates. • Sudan III molecules could be detected in presence of water-insoluble competitors. • The carcinogenic food dye Sudan III was detected in a relevant concentration range. • Multivariate statistics allows quantitative measurements of Sudan III. • Sudan III contaminations were successfully detected out of spiked paprika powder. - Abstract: Food safety is a topic of great importance for our society which places high demands on analytical methods. Surface enhanced Raman spectroscopy (SERS) meets the requirements for a rapid, sensitive and specific detection technique. The fact that metallic colloids, one of the most often used SERS substrates, are usually prepared in aqueous solution makes the detection of water-insoluble substances challenging. In this paper we present a SERS based approach for the detection of water-insoluble molecules by applying a hydrophobic surface modification onto the surface of enzymatic generated silver nanoparticles. By this approach the detection of the illegal water-insoluble food dyes, such as Sudan III in presence of riboflavin, as water-soluble competitor, is possible. Moreover, we demonstrate the usability of this kind of SERS substrates for determination of Sudan III out of spiked paprika extracts.

  15. Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices

    International Nuclear Information System (INIS)

    Jahn, Martin; Patze, Sophie; Bocklitz, Thomas; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2015-01-01

    Highlights: • A lipophilic sensor layer was applied to enzymatically grown SERS substrates. • Sudan III molecules could be detected in presence of water-insoluble competitors. • The carcinogenic food dye Sudan III was detected in a relevant concentration range. • Multivariate statistics allows quantitative measurements of Sudan III. • Sudan III contaminations were successfully detected out of spiked paprika powder. - Abstract: Food safety is a topic of great importance for our society which places high demands on analytical methods. Surface enhanced Raman spectroscopy (SERS) meets the requirements for a rapid, sensitive and specific detection technique. The fact that metallic colloids, one of the most often used SERS substrates, are usually prepared in aqueous solution makes the detection of water-insoluble substances challenging. In this paper we present a SERS based approach for the detection of water-insoluble molecules by applying a hydrophobic surface modification onto the surface of enzymatic generated silver nanoparticles. By this approach the detection of the illegal water-insoluble food dyes, such as Sudan III in presence of riboflavin, as water-soluble competitor, is possible. Moreover, we demonstrate the usability of this kind of SERS substrates for determination of Sudan III out of spiked paprika extracts

  16. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis

    Science.gov (United States)

    Chen, Yanmin; Ge, Fengyan; Guang, Shanyi; Cai, Zaisheng

    2018-04-01

    The large-scale surface enhanced Raman scattering (SERS) cotton fabrics were fabricated based on traditional woven ones using a dyeing-like method of vat dyes, where silver nanoparticles (Ag NPs) were in-situ synthesized by 'dipping-reducing-drying' process. By controlling the concentration of AgNO3 solution, the optimal SERS cotton fabric was obtained, which had a homogeneous close packing of Ag NPs. The SERS cotton fabric was employed to detect p-Aminothiophenol (PATP). It was found that the new fabric possessed excellent reproducibility (about 20%), long-term stability (about 57 days) and high SERS sensitivity with a detected concentration as low as 10-12 M. Furthermore, owing to the excellent mechanical flexibility and good absorption ability, the SERS cotton fabric was employed to detect carbaryl on the surface of an apple by simply swabbing, which showed great potential in fast trace analysis. More importantly, this study may realize large-scale production with low cost by a traditional cotton fabric.

  17. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  18. Metal nanoinks as chemically stable surface enhanced scattering (SERS) probes for the analysis of blue BIC ballpoint pens.

    Science.gov (United States)

    Alyami, A; Saviello, D; McAuliffe, M A P; Mirabile, A; Lewis, L; Iacopino, D

    2017-06-07

    Metal nanoinks constituted by Ag nanoparticles and Au nanorods were employed as probes for the Surface Enhanced Raman Scattering (SERS) analysis of a blue BIC ballpoint pen. The dye components of the pen ink were first separated by thin layer chromatography (TLC) and subsequently analysed by SERS at illumination wavelengths of 514 nm and 785 nm. Compared to normal Raman conditions, enhanced spectra were obtained for all separated spots, allowing easy identification of phthalocyanine Blue 38 and triarylene crystal violet in the ink mixture. A combination of effects such as molecular resonance, electromagnetic and chemical effects were the contributing factors to the generation of spectra enhanced compared to normal Raman conditions. Enhancement factors (EFs) between 5 × 10 3 and 3 × 10 6 were obtained, depending on the combination of SERS probes and laser illumination used. In contrast to previous conflicting reports, the metal nanoinks were chemically stable, allowing the collection of reproducible spectra for days after deposition on TLC plates. In addition and in advance to previously reported SERS probes, no need for additional aggregating agents or correction of electrostatic charge was necessary to induce the generation of enhanced SERS spectra.

  19. Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules

    Science.gov (United States)

    Nguyen, Minh-Kha; Su, Wei-Nien; Chen, Ching-Hsiang; Rick, John; Hwang, Bing-Joe

    2017-03-01

    Surface-enhanced Raman scattering (SERS) and fluorescence microscopy are a widely used biological and chemical characterization techniques. However, the peak overlapping in multiplexed experiments and rapid photobleaching of fluorescent organic dyes is still the limitations. When compared to Ag nanocubes (NCs), higher SERS sensitivities can be obtained with thin shelled silica Ag@SiO2 NCs, in contrast metal-enhanced photoluminescence (MEPL) is only found with NCs that have thicker silica shells. A 'dual functionality' represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of 1.5 nm and 4.4 nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at 90% after 12 weeks of storage. Based on the distinguished detection of creatinine and flavin adenine dinucleotide in the mixture, the integration of SERS and MEPL together on a stable single plasmonic nanoparticle platform offers an opportunity to enhance both biomarker detection sensitivity and specificity.

  20. 1998 report on results of R and D project for industrial science and technology (R and D for technologies of producing innovative high performance material) (development of technologies for structural control material). R and D for high stimuli-responsive material; 1998 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu (kozo seigyo zairyo gijutsu kaihatsu) kodo shigeki oto zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A report was made on the results of 1998 R and D concerning high stimuli-responsive materials. This R and D was intended to develop technologies for producing, by copying organism, innovative new stocks and new materials which repeatedly provide functions such as separating, transmitting and moving in response to stimuli. In the R and D of polymeric high stimuli-responsive materials, studies were conducted on multi-stimuli-responsive separation materials, molecular recognition controlled separation materials, and cell adhesion/separation materials with molecular recognition function. In the R and D of composite high stimuli-responsive materials, release controlled function materials and materials for actuator were studied. The investigation and research of common basic technologies were carried out on such subjects as synthesis and functional development of multi-signal responded polymer gels, development of temperature-responsive chromatography, synthesis and characterization of novel stimuli-sensitive materials, studies on structural characterization of intelligent gels, novel thermosensitive polymers, polyelectrolytic model networks, etc. (NEDO)

  1. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    Directory of Open Access Journals (Sweden)

    Hussam E Salhi

    2016-12-01

    Full Text Available Troponin I (TnI is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate

  2. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry.

    Science.gov (United States)

    Kim, Nam Hoon; Hwang, Wooseup; Baek, Kangkyun; Rohman, Md Rumum; Kim, Jeehong; Kim, Hyun Woo; Mun, Jungho; Lee, So Young; Yun, Gyeongwon; Murray, James; Ha, Ji Won; Rho, Junsuk; Moskovits, Martin; Kim, Kimoon

    2018-04-04

    Single-molecule surface-enhanced Raman spectroscopy (SERS) offers new opportunities for exploring the complex chemical and biological processes that cannot be easily probed using ensemble techniques. However, the ability to place the single molecule of interest reliably within a hot spot, to enable its analysis at the single-molecule level, remains challenging. Here we describe a novel strategy for locating and securing a single target analyte in a SERS hot spot at a plasmonic nanojunction. The "smart" hot spot was generated by employing a thiol-functionalized cucurbit[6]uril (CB[6]) as a molecular spacer linking a silver nanoparticle to a metal substrate. This approach also permits one to study molecules chemically reluctant to enter the hot spot, by conjugating them to a moiety, such as spermine, that has a high affinity for CB[6]. The hot spot can accommodate at most a few, and often only a single, analyte molecule. Bianalyte experiments revealed that one can reproducibly treat the SERS substrate such that 96% of the hot spots contain a single analyte molecule. Furthermore, by utilizing a series of molecules each consisting of spermine bound to perylene bisimide, a bright SERS molecule, with polymethylene linkers of varying lengths, the SERS intensity as a function of distance from the center of the hot spot could be measured. The SERS enhancement was found to decrease as 1 over the square of the distance from the center of the hot spot, and the single-molecule SERS cross sections were found to increase with AgNP diameter.

  3. QUE É O "SER DA FAMÍLIA"?

    Directory of Open Access Journals (Sweden)

    Josefa Aida Delgado

    2005-01-01

    Full Text Available Es un estudio basado en la filosofía fenomenológica heideggeriana, su propósito es desvelar los elementos estructurales de la existencia del "ser de la familia". El camino metodológico fue construido con base en el pensamiento de Heidegger. Los datos de la familia fueron recolectados por medio de las entrevistas y las observaciones. Cada uno de nosotros contribuye para su existencia, y ella posibilita el desarrollo de nuestro "ser-en el-mundo" al vivenciar y compartir experiencias cotidianas de la familia. Allí surge la posibilidad de compartir un modo de ser en el mundo, un modo de cuidado para "ser familia en el mundo". Un mundo que genera esa unidad de relacionamiento que emerge de sentimientos interligados entre los integrantes, respondiendo a las exigencias de cada miembro, por el sentimiento de pertenencia primaria generado en ellos. Esa unidad da la posibilidad de nacer a cada uno de nosotros, asi también, nos da la posibilidad de poder ser ser humano, llegando a ser un referencial de sí misma en cada ser humano.

  4. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  5. Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, M.E., E-mail: mihaela_ek@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., Sofia 1784 (Bulgaria); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 (Japan); Nedyalkov, N.N.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee blvd., Sofia 1784 (Bulgaria); Gerlach, J.W.; Hirsch, D.; Prager, A.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Fukata, N.; Jevasuwan, W. [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 (Japan)

    2016-04-25

    This research is focused on investigation of coupled plasmonic/metal-semiconductor nanomaterials. A two-step laser-assisted method is demonstrated for formation of plasmonic Ag nanoparticles (NPs) distributed into porous metal–oxide semiconductors. The mosaic Ag-ZnO target is used for laser ablation and, subsequently, laser annealing of the deposited layer is applied. The plasmon resonance properties of the nanostructures produced are confirmed by optical transmission spectroscopy. The wurtzite structure of ZnO is formed with tilted c-axis orientation and, respectively, a mixed Raman mode appears at 580 cm{sup −1}. The oxygen pressure applied during a deposition process has impact on the morphology and thickness of the porous nanostructures, but not on the size and size distribution of AgNPs. The porous nanocomposites exhibited potential for SERS applications, most pronounced for the oxygen deficient sample, grown at lower oxygen pressure. The observed considerable SERS enhancement of R6G molecules on AgNP/ZnO can be attributed to the ZnO-to-molecule charge transfer contribution, enhanced by the additional electrons from the local surface plasmon resonance (LSPR) of AgNPs to the ZnO through the conduction band. - Highlights: • Porous AgNPs/ZnO composites are obtained by laser deposition and laser annealing. • Morphology and properties depend on growth oxygen pressure. • The emergence of mixed-symmetry Raman mode at 580 cm{sup −1} is registered. • The AgNPs/ZnO porous nanocomposites are suitable for SERS-active substrates. • The charge transfer enhanced by LSPR has a contribution to SERS effect.

  6. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of optimized nanogap plasmonic substrate for improved SERS enhancement

    Directory of Open Access Journals (Sweden)

    Jayakumar Perumal

    2017-05-01

    Full Text Available SERS enhancement factor (EF of planar substrates depends on the size and shape of the fine nanostructure forming a defect free, well-arranged matrix. Nano-lithographic process is considered to be the most advanced methods employed for the fabrication SERS substrates. Nanostructured plasmonic substrates with nanogap (NG pattern often results in stable, efficient and reproducible SERS enhancement. For such substrates, NG and their diagonal length (DL need to be optimized. Theoretically smaller NGs (∼30-40 nm or smaller results in higher SERS enhancement. However, fabrication of NG substrates below such limit is a challenge even for the most advanced lithography process. In this context, herein, we report the optimization of fabrication process, where higher SERS enhancement can be realized from larger NGs substrates by optimizing their DL of nanostructures between the NGs. Based on simulation we could demonstrate that, by optimizing the DL, SERS enhancement from larger NG substrate such as 60 and 80 nm could be comparable to that of smaller (40nm NG substrates. We envision that this concept will open up new regime in the nanofabrication of practically feasible NG based plasmonic substrates with higher SERS enhancement. Initial results of our experiments are in close agreement with our simulated study.

  8. Multiwalled carbon nanotubes/silver nanocomposite as effective SERS platform for detection of methylene blue dye in water

    Directory of Open Access Journals (Sweden)

    Ngo Xuan Dinh

    2016-03-01

    Full Text Available In this work, a functional nanocomposite consisting of silver nanoparticles and multiwalled carbon nanotubes (MWCNTs-Ag was successfully synthesized using a two-step chemical process. The MWCNTs-Ag nanocomposite has been studied as a surface-enhanced Raman scattering (SERS sensing platform for detection of methylene blue (MB dye in an aqueous medium. The obtained results reveal that the MWCNTs-Ag nanocomposite exhibits higher SERS detection activity than that of pure Ag-nanoparticles (Ag-NPs. The calculated enhancement factors are 1.51 × 106 for pure Ag-NPs and 4.68 × 106 for the MWCNTs-Ag nanocomposite. MB detection has been achieved as low as 1 ppm. The SERS enhancement of the MWCNTs-Ag nanocomposite can be attributed to the combination of both an electromagnetic (EM effect and a chemical effect (CE. With exhibited properties, the MWCNTs-Ag nanocomposite can be effectively used for detection of various organic dyes in water solution.

  9. Colloidal lithography with electrochemical nickel deposition as a unique method for improved silver decorated nanocavities in SERS applications

    Science.gov (United States)

    Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol

    2017-11-01

    Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.

  10. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    International Nuclear Information System (INIS)

    Wadhwa, Heena; Kumar, Devender; Mahendia, Suman; Kumar, Shyam

    2017-01-01

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO_3) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  11. Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, Heena, E-mail: heenawadhwa1988@gmail.com; Kumar, Devender, E-mail: devkumsaroha@kuk.ac.in; Mahendia, Suman, E-mail: mahendia@gmail.com; Kumar, Shyam, E-mail: profshyam@gmail.com

    2017-06-15

    The present paper represents the facile and rapid synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite with the help of microwave irradiation. The graphene oxide (GO) solution has been prepared in bulk using Hummer's method followed by microwave assisted in-situ reduction of GO and silver nitrate (AgNO{sub 3}) by hydrazine hydrate in a short spam of 5 min. The prepared nanocomposite has been characterized using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) Scanning Electron Microscopy (SEM) and UV–Visible spectroscopy. TEM analysis shows that Ag nanoparticles with average size 32 nm are uniformly entangled with in RGO layers. The UV–Visible absorption spectrum of nanocomposite depicts the reduction of GO to RGO along with the formation of Ag nanoparticles with the presence of characteristic surface Plasmon resonance (SPR) peak of Ag nanoparticles at 422 nm. The performance of prepared nanocomposite has been tested as the active Surface Enhanced Raman Scattering (SERS) substrate for Rhodamine 6G with detection limit 0.1 μM. - Highlights: • The RGO and RGO-Ag nanocomposite were synthesized with microwave irradiation. • Ag nanoparticles of average size 32 nm are uniformly entangled within RGO layers. • RGO itself is a florescence quencher with SERS detection limit 1 μM for R6G. • RGO-Ag nanocomposite show good SERS activity for R6G with detection limit 0.1 μM.

  12. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment

    International Nuclear Information System (INIS)

    Yang, Ke-Ni; Zhang, Chun-Qiu; Wang, Wei; Wang, Paul C.; Zhou, Jian-Ping; Liang, Xing-Jie

    2014-01-01

    In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanoparticles, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail

  13. Generalized green synthesis of Fe{sub 3}O{sub 4}/Ag composites with excellent SERS activity and their application in fungicide detection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongyan; Zhao, Aiwu, E-mail: awzhao@iim.ac.cn [University of Science and Technology of China, Department of Chemistry (China); Wang, Rujing [Chinese Academy of Sciences, Institute of Intelligent Machines (China); Wang, Dapeng [University of Science and Technology of China, Department of Chemistry (China); Wang, Liusan; Gao, Qian; Sun, Henghui [Chinese Academy of Sciences, Institute of Intelligent Machines (China); Li, Lei; He, Qinye [University of Science and Technology of China, Department of Chemistry (China)

    2015-12-15

    This paper reports the generalized green synthesis of a series of Fe{sub 3}O{sub 4}/Ag composites by magnetron sputtering method. The amounts of silver nanoparticles located on the hollow Fe{sub 3}O{sub 4} magnetic nanoparticles can be tuned by controlling the sputtering time. The surfaces of Fe{sub 3}O{sub 4}/Ag composites are rough with high density and numerous Ag nanogaps (which can serve as Raman active hot spots to amplify the Raman signal), providing the sound reliability and reproducibility of Raman detection. With p-aminothiophenol and Rhodamine 6G (R6G) for probe molecules, the surface-enhanced Raman scattering (SERS) properties of these Fe{sub 3}O{sub 4}/Ag composites were studied. It was found that the SERS signal reached the maximum with the sputtering time of 130 s, indicating that this compound had most hot spots. In this paper, we used the composite with the strongest SERS signal for thiram detection, and the detection limit can reach 5 × 10{sup −7} mol/L (about 0.012 ppm), which is lower than the maximal residue limit of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency. The Fe{sub 3}O{sub 4}/Ag composites are readily available, easy to carry, and show great potential for applications in universal SERS substrates in practical SERS detection.

  14. Plasmonic response and SERS modulation in electrochemical applied potentials

    DEFF Research Database (Denmark)

    Martino, G. Di; Turek, V. A.; Tserkezis, Christos

    2017-01-01

    We study the optical response of individual nm-wide plasmonic nanocavities using a nanoparticle-on-mirror design utilised as an electrode in an electrochemical cell. In this geometry Au nanoparticles are separated from a bulk Au film by an ultrathin molecular spacer, giving intense and stable Ram...

  15. Historia de una coma. Gadamer y el sentido del ser

    OpenAIRE

    Vattimo, Gianni

    2005-01-01

    A partir de la doble posibilidad de traducir en las lenguas románicas la expresión gadameriana «Sein, das verstanden werden kann, ist Sprache» como «El ser, que puede ser comprendido, es lenguaje» o como «El ser que puede ser comprendido es lenguaje», se consideran las importantes repercusiones ontológicas que tendría una interpretación más moderada (y más habitual) de ese enunciado (la primera exhibida), o una lectura más radical y nihilista (la que aquí se defiende) del mismo (la ...

  16. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.

    Science.gov (United States)

    Xu, Liguang; Yin, Honghong; Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-05-15

    Mercuric ions (Hg(2+)) mediate the transformation of single-stranded DNA to form double helical DNA by T-Hg(2+)-T interaction between base pairs. With this strategy, DNA modified gold nanoparticles (Au NPs) were assembled into chains which were displayed remarkable surface-enhanced Raman scattering (SERS) signal. Under optimized conditions, the length of gold nanochains was directly proportional to the mercuric ions concentrations over 0.001-0.5 ng mL(-1) and the limit of detection (LOD) in drinking water was as low as 0.45 pg mL(-1). With ultrasensitivity and excellent selectivity, this feasible and simple method is potentially as a promising tool for monitoring of mercury ions in food safety and environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  18. Towards field detection of polycyclic aromatic hydrocarbons (PAHs) in environment water using a self-assembled SERS sensor

    Science.gov (United States)

    Yan, Xia; Shi, Xiaofeng; Yang, Jie; Zhang, Xu; Jia, Wenjie; Ma, Jun

    2017-10-01

    A self-assembled surface enhanced Raman scattering (SERS) sensor is reported in this paper. To achieve high sensitivity, a high sensitive SERS substrate and a high efficient self-constructed light path were made. The SERS substrate was composed by gold nanoparticles (AuNPs, pH=13), glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material and syringe filter. The substrate had a good repeatability, and the relative standard deviation (RSD) of the same substrate was less than 5%. The efficiency of the self-constructed light path is about two times better than RPB Y type reflection fiber when the energy density was roughly equal on samples. The size of the SERS sensor is 350×300×180 mm and the weight is 15 kg. Its miniaturization and portable can comply with the requirements of field detection. Besides, it has good sensitivity, stability and selectivity. For lab experiments, strong enhancements of Raman scattering from organic pollutant polycyclic aromatic hydrocarbons (PAHs) molecules were exhibited. The dependences of SERS intensities on concentrations of PAHs were investigated, and the results indicated that they revealed a satisfactory linear relationship in low concentrations. The limits of detection (LODs) of PAHs phenanthrene and fluorene are 8.3×10-10 mol/L and 7.1×10-10 mol/L respectively [signal to noise ratio (S/N) =3]. Based on this SERS sensor, signals of benzo (a) pyrene and pyrene were found in environmental water and the sensor would be an ideal candidate for field detection of PAHs.

  19. Dynamic SERS nanosensor for neurotransmitter sensing near neurons.

    Science.gov (United States)

    Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François

    2017-12-04

    Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.

  20. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response

    Science.gov (United States)

    Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.

    2015-12-01

    Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform

  1. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    Science.gov (United States)

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  2. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings.

    Science.gov (United States)

    Frano, Kristen A; Mayhew, Hannah E; Svoboda, Shelley A; Wustholz, Kristin L

    2014-12-21

    The analysis of paint cross-sections can reveal a remarkable amount of information about the layers and materials in a painting without visibly altering the artwork. Although a variety of analytical approaches are used to detect inorganic pigments as well as organic binders, proteins, and lipids in cross-sections, they do not provide for the unambiguous identification of natural, organic colorants. Here, we develop a novel combined surface-enhanced Raman scattering (SERS), light microscopy, and normal Raman scattering (NRS) approach for the identification of red organic and inorganic pigments in paint cross-sections obtained from historic 18th and 19th century oil paintings. In particular, Ag nanoparticles are directly applied to localized areas of paint cross-sections mounted in polyester resin for SERS analysis of the organic pigments. This combined extractionless non-hydrolysis SERS and NRS approach provides for the definitive identification of carmine lake, madder lake, and vermilion in multiple paint layers. To our knowledge, this study represents the first in situ identification of natural, organic pigments within paint cross-sections from oil paintings. Furthermore, the combination of SERS and normal Raman, with light microscopy provides conservators with a more comprehensive understanding of a painting from a single sample and without the need for sample pretreatment.

  3. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate

    Directory of Open Access Journals (Sweden)

    Dandan Men

    2018-02-01

    Full Text Available Two-dimensional (2D periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE, depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP and rhodamine 6G (R6G due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  4. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    Science.gov (United States)

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  5. Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Science.gov (United States)

    Alyami, Abeer; Saviello, Daniela; McAuliffe, Micheal A. P.; Cucciniello, Raffaele; Mirabile, Antonio; Proto, Antonio; Lewis, Liam; Iacopino, Daniela

    2017-08-01

    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences.

  6. Evaluation and Optimization of Paper-Based SERS Substrate for Potential Label-Free Raman Analysis of Seminal Plasma

    Directory of Open Access Journals (Sweden)

    Zufang Huang

    2017-01-01

    Full Text Available Characterization and optimization of paper SERS substrate were performed in detail, in which morphologies and distribution of silver nanoparticles (AgNPs on the paper substrate pretreated with different concentrations of NaCl and the subsequent soaking with colloidal AgNPs for different period of time were evaluated. Our results show that both NaCl concentration and soaking time with AgNPs have a significant influence on SERS enhancement, showing that an optimal EF of 2.27 × 107 was achieved when the paper substrate was treated with 20 mM NaCl and one-hour soak with AgNPs. Moreover, seminal plasma (SP was specifically selected to evaluate the performance of paper-based SERS substrate for potential clinical detection and diagnosis. The optimization of the paper SERS substrate demonstrates potential applications in reliable on-site detection of SP and clinical diagnosis of fertility-related diseases as well.

  7. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances

    International Nuclear Information System (INIS)

    Gan, Zibao; Zhao, Aiwu; Zhang, Maofeng; Wang, Dapeng; Guo, Hongyan; Tao, Wenyu; Gao, Qian; Mao, Ranran; Liu, Erhu

    2013-01-01

    Fe 3 O 4 –noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe 3 O 4 NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe 3 O 4 –noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe 3 O 4 –noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe 3 O 4 –noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe 3 O 4 –Ag aggregates for R6G is as low as 10 −14  M, and the calculated EF reaches up to 1.2 × 10 6 , which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances

  8. Quantitative SERS detection of low-concentration aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene.

    Science.gov (United States)

    Bao, Zhi Yong; Liu, Xin; Chen, Y; Wu, Yucheng; Chan, Helen L W; Dai, Jiyan; Lei, Dang Yuan

    2014-09-15

    This paper reports a simple label-free high-sensitive method for detecting low-concentration persistent organic pollutants and explosive materials. The proposed method combines surface-enhanced Raman spectroscopy (SERS) and magnetomotive enrichment of the target molecules on the surface of Ag nanoparticles (NPs). This structure can be achieved through self-assembling integration of Ag NPs with ferromagnetic Fe3O4 microspheres, forming a hybrid SERS nanoprobe with both optical and magnetic properties. Moreover, the magnetic response of ferromagnetic Fe3O4 microspheres can be used to dynamically modulate the optical property of Ag NPs through controlling their geometric arrangement on the substrate by applying an external magnetic field. It is also demonstrated from the full-wave numerical simulation results that the maximum electromagnetic field enhancement can be greatly increased by shortening the distance of neighboring Ag NPs and therefore resulting in an improved SERS detecting limit. More importantly, by using the prepared substrate, the SERS signals from organic pollution substances, i.e. aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene, were quantitatively analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Detection of cancerous biological tissue areas by means of infrared absorption and SERS spectroscopy of intercellular fluid

    Science.gov (United States)

    Velicka, M.; Urboniene, V.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.

    2015-08-01

    We present a novel approach to the detection of cancerous kidney tissue areas by measuring vibrational spectra (IR absorption or SERS) of intercellular fluid taken from the tissue. The method is based on spectral analysis of cancerous and normal tissue areas in order to find specific spectral markers. The samples were prepared by sliding the kidney tissue over a substrate - surface of diamond ATR crystal in case of IR absorption or calcium fluoride optical window in case of SERS. For producing the SERS signal the dried fluid film was covered by silver nanoparticle colloidal solution. In order to suppress fluorescence background the measurements were performed in the NIR spectral region with the excitation wavelength of 1064 nm. The most significant spectral differences - spectral markers - were found in the region between 400 and 1800 cm-1, where spectral bands related to various vibrations of fatty acids, glycolipids and carbohydrates are located. Spectral markers in the IR and SERS spectra are different and the methods can complement each other. Both of them have potential to be used directly during surgery. Additionally, IR absorption spectroscopy in ATR mode can be combined with waveguide probe what makes this method usable in vivo.

  10. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  11. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong [Department of Chemistry Education, Seoul (Korea, Republic of); Kang, Homan; Lee, Yoonsik [Interdisciplinary Program in Nano-Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature.

  12. Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jaewook; Kang, Ikjoong [Gachon Univ., Seongnam (Korea, Republic of)

    2014-01-15

    This research was aimed to fabricate an optical fiber-based SERS substrate which can detect dopamine neurotransmitters. Chitosan nanoparticles (NPs) were firstly anchored on the surface of optical fiber, and then gold layer was subseque N{sub T}ly deposited on the anchored chitosan NPs via electroless plating method. Finally, chitosan-gold nanocomposites combined with optical fiber reacted with dopamine molecules of 100-1500 mg/ day which is a standard daily dose for Parkinson's disease patientss. The amplified Raman signal at 1348 cm{sup -1} obtained from optical fiber-based SERS substrate was plotted versus dopamine concentrations (1-10 mM), demonstrating an approximate linearity of Y = 303.03X + 2385.8 (R{sup 2} = 0.97) with narrow margin errors. The optical fiber-based Raman system can be potentially applicable to in-vitro (or in-vivo) detection of probe molecules.

  13. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    International Nuclear Information System (INIS)

    Baia, M; Melinte, G; Iancu, V; Baia, L; Barbu-Tudoran, L; Diamandescu, L; Cosoveanu, V; Danciu, V

    2011-01-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10 -1 -10 -4 M for acrylamide and around 10 -5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  14. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Energy Technology Data Exchange (ETDEWEB)

    Baia, M; Melinte, G; Iancu, V; Baia, L [Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca (Romania); Barbu-Tudoran, L [Faculty of Biology and Geology, Babes-Bolyai University, 400015, Cluj-Napoca (Romania); Diamandescu, L [National Institute of Materials Physics, PO Box MG-7, 77125, Bucharest-Magurele (Romania); Cosoveanu, V; Danciu, V, E-mail: lucian.baia@phys.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca (Romania)

    2011-07-06

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10{sup -1}-10{sup -4} M for acrylamide and around 10{sup -5} M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  15. Controllable Charge Transfer in Ag-TiO2 Composite Structure for SERS Application

    Directory of Open Access Journals (Sweden)

    Yaxin Wang

    2017-06-01

    Full Text Available The nanocaps array of TiO2/Ag bilayer with different Ag thicknesses and co-sputtering TiO2-Ag monolayer with different TiO2 contents were fabricated on a two-dimensional colloidal array substrate for the investigation of Surface enhanced Raman scattering (SERS properties. For the TiO2/Ag bilayer, when the Ag thickness increased, SERS intensity decreased. Meanwhile, a significant enhancement was observed when the sublayer Ag was 10 nm compared to the pure Ag monolayer, which was ascribed to the metal-semiconductor synergistic effect that electromagnetic mechanism (EM provided by roughness surface and charge-transfer (CT enhancement mechanism from TiO2-Ag composite components. In comparison to the TiO2/Ag bilayer, the co-sputtered TiO2-Ag monolayer decreased the aggregation of Ag particles and led to the formation of small Ag particles, which showed that TiO2 could effectively inhibit the aggregation and growth of Ag nanoparticles.

  16. A white-emitting ZnO-Au nanocomposite and its SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Ding Meng; Zhao Haifeng; Zhang Zhenzhong; Li Binghui; Shen Dezhen [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2012-08-01

    We reported a simple method to synthesize ZnO-Au nanocomposites (hybrid A) by combining hydrothermal and electric beam evaporation deposition method. It was found that Au deposition time takes an important role in the generation of Au nanoparticles. Changing Au deposition time makes the thickness of Au formed on ZnO nanorods increase from 10 nm to 70 nm. On the other hand, white-emitting ZnO-Au nanocomposites (hybrid B) were obtained after treating hybrid A with HCl solution. Thanks to the covering of Au film and acid etching, it induces many defects on the surface of ZnO NRs, and largely enhances the visible emission of surviving ZnO and finally generates white emission on Au mesocrystals (hybrid B). Both of the ZnO-Au hybrids (A and B) can be applied as substrates in surface-enhanced Raman scattering (SERS) measurement. A typical probe molecule, 4-ATP was used to test the SERS activity of the ZnO-Au composites and the results indicated good Raman activity on the substrates.

  17. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance.

    Science.gov (United States)

    Kuttner, Christian; Mayer, Martin; Dulle, Martin; Moscoso, Ana; López-Romero, Juan Manuel; Förster, Stephan; Fery, Andreas; Pérez-Juste, Jorge; Contreras-Cáceres, Rafael

    2018-04-04

    We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV-vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 10 4 and 5.6 × 10 4 and nanomolar limit of detection (10 -8 -10 -9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

  18. Characterization of temperature and pH-responsive poly-N-isopropylacrylamide-co-polymer nanoparticles for the release of antimicrobials

    International Nuclear Information System (INIS)

    Hill, Laura E; Gomes, Carmen L

    2014-01-01

    Chitosan and alginate are both pH-responsive biopolymers extracted from crustacean exoskeletons and brown algae, respectively. Poly-N-isopropylacrylamide (PNIPAAM) is a hydrogel that becomes hydrophobic at a lower-critical solution temperature. This study sought to combine pH- and temperature-responsive polymers via crosslinking, in order to create a dual-stimuli responsive polymer for hydrophobic antimicrobial compounds delivery, improving their antimicrobial effects. Cinnamon bark extract (CBE) was used as a model for hydrophobic antimicrobial. Two co-polymers were synthesized to create two nanoparticles types: chitosan-co-PNIPAAM and alginate-co-PNIPAAM. Nanoparticles were formed from the resulting co-polymers using a self-assembly top-down process followed by glutaraldehyde or calcium chloride crosslinking. These nanoparticles were then used as controlled delivery vehicles for CBE, whose rapid release could be triggered by specific external stimuli. For the same pH and temperature conditions, the chitosan-co-PNIPAAM nanoparticles were significantly more potent bacterial inhibitors against both pathogens and also exhibited a faster CBE release over time as well as slightly higher entrapment efficiency. The alginate-co-PNIPAAM nanoparticles were significantly smaller and exhibited a slow, gradual release over a long time period. Although both nanoparticles were able to effectively inhibit pathogen growth at lower (P < 0.05) concentration than free CBE, the chitosan-co-PNIPAAM nanoparticles were more effective in delivering a natural antimicrobial with controlled release against foodborne pathogens. (paper)

  19. Gold Nanoparticles Sliding on Recyclable Nanohoodoos-Engineered for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu; Li, Tao; Schmidt, Michael Stenbæk

    2018-01-01

    Robust, macroscopically uniform, and highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS) are fabricated using wafer-scale block copolymer lithography. The substrate consists of gold nanoparticles that can slide and aggregate on dense and recyclable alumina/silicon nanohoodo...... for obtaining cost-effective, high-quality, and reliable SERS spectra, facilitating a wide and simple use of SERS for both laboratorial and commercial applications...

  20. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2016-01-01

    Full Text Available Malignant spinal tumors, categorized into primary and metastatic ones, are one of the most serious diseases due to their high morbidity and mortality rates. Common primary spinal tumors include chordoma, chondrosarcoma, osteosarcoma, Ewing’s sarcoma, and multiple myeloma. Spinal malignancies are not only locally invasive and destructive to adjacent structures, such as bone, neural, and vascular structures, but also disruptive to distant organs (e.g., lung. Current treatments for spinal malignancies, including wide resection, radiotherapy, and chemotherapy, have made significant progress like improving patients’ quality of life. Among them, chemotherapy plays an important role, but its potential for clinical application is limited by severe side effects and drug resistance. To ameliorate the current situation, various polymer nanoparticles have been developed as promising excipients to facilitate the effective treatment of spinal malignancies by utilizing their potent advantages, for example, targeting, stimuli response, and synergetic effect. This review overviews the development of polymer nanoparticles for antineoplastic delivery in the treatment of spinal malignancies and discusses future prospects of polymer nanoparticle-based treatment methods.

  1. SERS substrates for in-situ biosensing (Conference Presentation)

    Science.gov (United States)

    Venugopalan, Priyamvada; Quilis, Nestor; Jakub, Dostalek; Wolfgang, Knoll

    2017-06-01

    Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature

  2. SERS-based application in food analytics (Conference Presentation)

    Science.gov (United States)

    Cialla-May, Dana; Radu, Andreea; Jahn, Martin; Weber, Karina; Popp, Jürgen

    2017-02-01

    To establish detection schemes in life science applications, specific and sensitive methods allowing for fast detection times are required. Due to the interaction of molecules with strong electromagnetic fields excited at metallic nanostructures, the molecular fingerprint specific Raman spectrum is increased by several orders of magnitude. This effect is described as surface-enhanced Raman spectroscopy (SERS) and became a very powerful analytical tool in many fields of application. Within this presentation, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer. To do so, the food colorant Sudan III, an indirect carcinogen substance found in chili powder, palm oil or spice mixtures, is detected quantitatively in the background of the competitor riboflavin as well as paprika powder extracts. The SERS-based detection of azorubine (E122) in commercial available beverages with different complexity (e.g. sugar content, alcohol concentration) illustrates the strong potential of SERS as a qualitative as well as semiquantitative prescan method in food analytics. Here, a good agreement between the estimated concentration employing SERS as well as the gold standard technique HPLC, a highly laborious method, is found. Finally, SERS is applied to detect vitamin B2 and B12 in cereals as well as the estimate the ratio of lycopene and β-carotene in tomatoes. Acknowledgement: Funding the projects "QuantiSERS" and "Jenaer Biochip Initiative 2.0" within the framework "InnoProfile Transfer - Unternehmen Region" the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged.

  3. SERS-Based Prognosis of Kidney Transplant Outcome

    Science.gov (United States)

    Chi, Jingmao

    Kidney transplant is the predominant procedure of all organ transplants around the world. The number of patients on the waiting list for a kidney is growing rapidly, yet the number of donations does not keep up with the fast-growing need. This thesis focuses on the surface-enhanced Raman scattering (SERS) analysis of urine samples for prognosis of kidney transplant outcome, which can potentially let patients have a more timely treatment as well as expand the organ pool for transplant. We have observed unique SERS spectral features from urine samples of kidney transplant recipients that have strong associations with the kidney acute rejection (AR) based on the analysis of urine one day after the transplant. Our ability to provide an early prognosis of transplant outcome is a significant advance over the current gold standard of clinical diagnosis, which occurs weeks or months after the surgical procedure. The SERS analysis has also been applied to urine samples from deceased kidney donors. Excellent classification ability was achieved when the enhanced PCA-LDA analysis was used to classify and identify urine samples from different cases. The sensitivity of the acute tubular necrosis (ATN) class is more than 90%, which can indicate the usable kidneys in the high failure risk category. This analysis can help clinicians identify usable kidneys which would be discarded using conventional clinic methods as high failure risk. To investigate the biomarkers that cause the unique SERS features, an HPLC-SERS-MS approach was established. The high-performance liquid chromatography (HPLC) was used to separate the urinary components to reduce the sample complexity. The mass spectrometry (MS) was used to determine the formulas and the structures of the biomarkers. The presence of 1-methyl-2-pyrrolidone (NMP) and adenine in urine samples were confirmed by both MS and SERS analysis. Succinylmonocholine, a metabolite of suxamethonium, has a potential to be the biomarker that causes

  4. Plasmonic crystal based solid substrate for biomedical application of SERS

    Science.gov (United States)

    Morasso, Carlo F.; Mehn, Dora; Picciolini, Silvia; Vanna, Renzo; Bedoni, Marzia; Gramatica, Furio; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Valsesia, Andrea

    2014-02-01

    Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson's disease which has been demonstrated being difficult to study by traditional HPLC based approaches.

  5. Enhancing SERS by Means of Supramolecular Charge Transfer

    Science.gov (United States)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  6. Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery

    Science.gov (United States)

    Fernando, Isurika R.; Ferris, Daniel P.; Frasconi, Marco; Malin, Dmitry; Strekalova, Elena; Yilmaz, M. Deniz; Ambrogio, Michael W.; Algaradah, Mohammed M.; Hong, Michael P.; Chen, Xinqi; Nassar, Majed S.; Botros, Youssry Y.; Cryns, Vincent L.; Stoddart, J. Fraser

    2015-04-01

    Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells.Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells. Electronic supplementary information (ESI) available: Experimental details relating to (i) the synthesis and characterisation of the surface-functionalised MSN and POL (ii) cargo-loading and release studies in solution, (iii) cellular internalisation of nanomaterials, and (iv) cell viability tests. See DOI: 10.1039/c4nr07443b

  7. Ser lugar e ser território como experiências do ser-no-mundo: um exercício de existencialismo geográfico

    Directory of Open Access Journals (Sweden)

    Angelo Serpa

    2017-10-01

    Full Text Available Este ensaio busca aprofundar uma abordagem existencialista dos conceitos de lugar e território assumindo o pressuposto de que eles remetem, antes de tudo, a experiências geográficas que ora se distinguem, ora se aproximam e carregam em si a marca do espaço vivido. Para esta análise, parte-se do conceito de geograficidade – a base pré-consciente e pré-conceitual da geografia – assumindo também que, antes de qualquer conceituação ou estratégia de representação conceitual, as pessoas são seres essencialmente espaciais e que viver é produzir/experienciar espaço. O ensaio está dividido em seis seções: a introdução, uma problematização da dialética entre interior e exterior e seu desdobramento numa abordagem de como lugar e território se exprimem como modos geográficos de existência no espaço público; nas duas últimas seções, reflete-se sobre o papel do corpo nos processos de apropriação do espaço e sobre como ser lugar e ser território se exprimem como facetas do ser-no-mundo em seu sentido mais político.

  8. SERS-based pesticide detection by using nanofinger sensors

    Science.gov (United States)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  9. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis

    Directory of Open Access Journals (Sweden)

    T. Joshua Moore

    2018-05-01

    Full Text Available For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.

  10. Bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite for in situ SERS monitoring and degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan, E-mail: fliao@suda.edu.cn; Shao, Mingwang, E-mail: mwshao@suda.edu.cn [Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University (China)

    2016-01-15

    The bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co{sub 3}O{sub 4}). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of ∼47.5 nm. While the Co{sub 3}O{sub 4} showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of ∼79.0 nm. Both the as-prepared Au/FeS and Au/Co{sub 3}O{sub 4} composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 10{sup 6} and 7.60 × 10{sup 4}, respectively. Moreover, Au/FeS (Au/Co{sub 3}O{sub 4}) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H{sub 2}O{sub 2} into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co{sub 3}O{sub 4}) composite both as SERS substrate and catalyst. Graphical abstract: SERS was used to real-time and in situ monitoring the degradation of R6G, employing the Au/FeS and Au/Co{sub 3}O{sub 4} composites both as SERS substrates and catalysts.

  11. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using polycaprolactone as the polymer. The nanoparticles were characterised for drug content, particles size, in vitro drug release and the drug-polymer interaction. The in vivo properties of the formulations in male ...

  12. SER Y ESTAR CON ADJETIVOS – SIGNIFICACION DE LAS PROPOSICIONES SER Y ESTAR CON ADJETIVOS – SIGNIFICACION DE LAS PROPOSICIONES

    Directory of Open Access Journals (Sweden)

    Javier García de María

    2008-07-01

    Full Text Available Ser y estar: uno de los temas difíciles de la enseñanza/aprendizaje del español. Este trabajo expone un enfoque que recurre a la significación como hilo conductor. Por una parte, a la significación de ser y de estar como verbos, en sí mismos. Por otra, a la significación de los adjetivos. El planteamiento no es ya qué significa un determinado adjetivo con ser o con estar, sino cuál de estos verbos puede expresar su significado único o cada uno de sus significados. Sobre esta base el análisis considera, primero, los significados de ser/estar y los significados de un adjetivo dado y, segundo, los resultados significativos que arroja la relación entre verbos y adjetivo. Cuando el significado de un adjetivo se pueda expresar con los dos verbos, la elección vendrá determinada por la intencionalidad del hablante en el contexto comunicativo en que se encuentre. A partir de aquí las construcciones en las que aparecen ser y estar son tratadas como proposiciones retórico-argumentativas.Ser and estar: a difficult aspect of Spanish as a foreign language. This essay presents an approach that takes signification as guide line. On the one hand, the signification of ser and estar for their own cause; on the other hand the signification of the adjectives. The question is no longer what the meaning of a given adjective is with ser or with estar, but with which of the two verbs is it possible to express the unique meaning or each of the meanings of that adjective. Starting from this basis the approach considers first, the isolated meanings of the verbs and of the adjectives and, second, the resultant signification out of the relation between the two sides. If the meaning of a given adjective can be expressed by both verbs, the selection of the verb is determined by the intentionality of the speaker in the communicative context in which he negotiates. From this background on the syntactical constructions in which ser and estar appear are treated as

  13. Fabrication of SERS Substrate by Multilayered Nanosphere Deposition Technique

    International Nuclear Information System (INIS)

    Fu, Chit Yaw; Dinish, U. S.; Praveen, Thoniyot; Koh, Zhen Yu; Kho, Khiang Wei; Malini, Olivo

    2010-01-01

    Metal film over nanosphere (MFON) has been employed as a reproducible and predictable SERS-active device in biosensing applications. In addition to its economic fabrication process, such substrate can be further processed to a prism-structure with increased SERS enhancement and wider Plasmon tunability. In this work, we investigate an alternative coating method to deposit a larger area of well-ordered PS beads with different sizes (oe = 100nm and 400 nm) onto a glass. The result suggests that the proposed well-coating technique can be suitably used to form closely-packed PS beads with diameter less than 100 nm for developing MFON substrates.

  14. LA GENÉTICA Y LA DIGNIDAD DEL SER HUMANO

    OpenAIRE

    Nicolás Jouve de Barreda

    2013-01-01

    Los elementos biológicos del hombre no son suficientes para afrontar las cuestiones bioéticas que se plantean en torno al concepto de persona, pero son necesarios para definir con precisión las propiedades de los seres humanos y los aspectos teológicos, filosóficos y jurídicos que son atribuibles a cada persona. El ser humano es un ser singular. En él que conviven dos dimensiones de distinta naturaleza, una material y otra espiritual, y precisamente esta es la principal de las diferencias en...

  15. New nanocomposites for SERS studies of living cells and mitochondria

    DEFF Research Database (Denmark)

    Sarycheva, A. S.; Brazhe, N. A.; Baizhumanov, A. A.

    2016-01-01

    A great enhancement in Raman scattering (SERS) from heme-containing submembrane biomolecules inside intact erythrocytes and functional mitochondria is demonstrated for the first time using silver–silica beads prepared using a new method involving aerosol pyrolysis with aqueous diamminesilver...... molecules. The SERS spectra of functional mitochondria are sensitive to the activity of the mitochondrial electron transport chain, thus making the method a novel label-free approach to monitor the redox state and conformation of cytochromes in their natural cell environment. The developed nanocomposites...

  16. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  17. Rapid Surface Enhanced Raman Scattering (SERS Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate

    Directory of Open Access Journals (Sweden)

    Lei Ouyang

    2017-07-01

    Full Text Available Sibutramine hydrochloride (SH is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0–150.0 µg·mL–1, and a detection limit low to 3.0 µg·mL−1. It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications.

  18. Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate.

    Science.gov (United States)

    Ouyang, Lei; Jiang, Zuyan; Wang, Nan; Zhu, Lihua; Tang, Heqing

    2017-07-10

    Sibutramine hydrochloride (SH) is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS) is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA) to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0-150.0 µg·mL -1 , and a detection limit low to 3.0 µg·mL -1 . It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications.

  19. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.

    Science.gov (United States)

    Lu, Lehui; Ai, Kelong; Ozaki, Yukihiro

    2008-02-05

    We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.

  20. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

    Science.gov (United States)

    Spadaro, Salvatore; Santoro, Marco; Barreca, Francesco; Scala, Angela; Grimato, Simona; Neri, Fortunato; Fazio, Enza

    2018-02-01

    A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

  1. Visualization of elongation measurements using an SER universal testing platform

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Radek; Filip, Petr; Zelenková, Jana

    2015-01-01

    Roč. 25, č. 1 (2015), s. 1-8 ISSN 1430-6395 R&D Projects: GA ČR(CZ) GAP105/11/2342 Institutional support: RVO:67985874 Keywords : elongational viscosity * Universal Testing Platform (SER) * polymer melts * LDPE Subject RIV: BK - Fluid Dynamics Impact factor: 1.241, year: 2015

  2. SERS internship fall 1995 abstracts and research papers

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Beverly

    1996-05-01

    This report is a compilation of twenty abstracts and their corresponding full papers of research projects done under the US Department of Energy Science and Engineering Research Semester (SERS) program. Papers cover a broad range of topics, for example, environmental transport, supercomputers, databases, biology. Selected papers were indexed separately for inclusion the the Energy Science and Technology Database.

  3. BACH1 Ser919Pro variant and breast cancer risk

    Directory of Open Access Journals (Sweden)

    Eerola Hannaleena

    2006-01-01

    Full Text Available Abstract Background BACH1 (BRCA1-associated C-terminal helicase 1; also known as BRCA1-interacting protein 1, BRIP1 is a helicase protein that interacts in vivo with BRCA1, the protein product of one of the major genes for hereditary predisposition to breast cancer. Previously, two BACH1 germ line missense mutations have been identified in early-onset breast cancer patients with and without family history of breast and ovarian cancer. In this study, we aimed to evaluate whether there are BACH1 genetic variants that contribute to breast cancer risk in Finland. Methods The BACH1 gene was screened for germ line alterations among probands from 43 Finnish BRCA1/2 negative breast cancer families. Recently, one of the observed common variants, Ser-allele of the Ser919Pro polymorphism, was suggested to associate with an increased breast cancer risk, and was here evaluated in an independent, large series of 888 unselected breast cancer patients and in 736 healthy controls. Results Six BACH1 germ line alterations were observed in the mutation analysis, but none of these were found to associate with the cancer phenotype. The Val193Ile variant that was seen in only one family was further screened in an independent series of 346 familial breast cancer cases and 183 healthy controls, but no additional carriers were observed. Individuals with the BACH1 Ser919-allele were not found to have an increased breast cancer risk when the Pro/Ser heterozygotes (OR 0.90; 95% CI 0.70–1.16; p = 0.427 or Ser/Ser homozygotes (OR 1.02; 95% CI 0.76–1.35; p = 0.91 were compared to Pro/Pro homozygotes, and there was no association of the variant with any breast tumor characteristics, age at cancer diagnosis, family history of cancer, or survival. Conclusion Our results suggest that the BACH1 Ser919 is not a breast cancer predisposition allele in the Finnish study population. Together with previous studies, our results also indicate that although some rare germ line variants

  4. BACH1 Ser919Pro variant and breast cancer risk

    International Nuclear Information System (INIS)

    Vahteristo, Pia; Yliannala, Kristiina; Tamminen, Anitta; Eerola, Hannaleena; Blomqvist, Carl; Nevanlinna, Heli

    2006-01-01

    BACH1 (BRCA1-associated C-terminal helicase 1; also known as BRCA1-interacting protein 1, BRIP1) is a helicase protein that interacts in vivo with BRCA1, the protein product of one of the major genes for hereditary predisposition to breast cancer. Previously, two BACH1 germ line missense mutations have been identified in early-onset breast cancer patients with and without family history of breast and ovarian cancer. In this study, we aimed to evaluate whether there are BACH1 genetic variants that contribute to breast cancer risk in Finland. The BACH1 gene was screened for germ line alterations among probands from 43 Finnish BRCA1/2 negative breast cancer families. Recently, one of the observed common variants, Ser-allele of the Ser919Pro polymorphism, was suggested to associate with an increased breast cancer risk, and was here evaluated in an independent, large series of 888 unselected breast cancer patients and in 736 healthy controls. Six BACH1 germ line alterations were observed in the mutation analysis, but none of these were found to associate with the cancer phenotype. The Val193Ile variant that was seen in only one family was further screened in an independent series of 346 familial breast cancer cases and 183 healthy controls, but no additional carriers were observed. Individuals with the BACH1 Ser919-allele were not found to have an increased breast cancer risk when the Pro/Ser heterozygotes (OR 0.90; 95% CI 0.70–1.16; p = 0.427) or Ser/Ser homozygotes (OR 1.02; 95% CI 0.76–1.35; p = 0.91) were compared to Pro/Pro homozygotes, and there was no association of the variant with any breast tumor characteristics, age at cancer diagnosis, family history of cancer, or survival. Our results suggest that the BACH1 Ser919 is not a breast cancer predisposition allele in the Finnish study population. Together with previous studies, our results also indicate that although some rare germ line variants in BACH1 may contribute to breast cancer development, the

  5. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds.

    Science.gov (United States)

    Köker, Tuğba; Tang, Nathalie; Tian, Chao; Zhang, Wei; Wang, Xueding; Martel, Richard; Pinaud, Fabien

    2018-02-09

    The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.

  6. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    Science.gov (United States)

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  7. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  8. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  9. A simple technique for direct growth of Au into a nanoporous alumina layer on conductive glass as a reusable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiajie [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Muzhong [School of Engineering, AnHui Agricultural University, Hefei 230036 (China); Liu, Siyu; Li, Feng [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun, Dongping, E-mail: sundpe301@163.com [School of Engineering, AnHui Agricultural University, Hefei 230036 (China); Wang, Tianhe, E-mail: thwang56@126.com [Chemicobiology and Functional Materials Institute, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2017-06-01

    Graphical abstract: A simple technique for direct growth of gold nanoparticles (GNPs) into a nanostructured porous alumina layer on conductive glass slide (PAOCG). Gold was uniformly distributed in porous alumina layer. Au/PAOCG can serve as a portable, durable and reusable SERS substrate. - Highlights: • A simple method of producing nanoporous alumina layer on conductive glasses. • A facile technique for direct growth of gold nanoparticles (GNPs) into PAOCG. • It presents a general protocol for preparation of (MNPs) on conductive glasses. • Au/PAOCG exhibits high SERS sensitivity and excellent reusability. - Abstract: In this paper, we describe a simple technique for direct growth of gold nanoparticles (GNPs) into a nanostructured porous alumina layer on conductive glass slide (PAOCG). PAOCG was attached firmly with a small piece of steel and was then immersed in a HAuCl{sub 4} solution. Electro-induced electrons from steel were employed to reduce AuCl{sub 4}{sup −} on PAOCG. The galvanic replacement reaction (GRR) was adopted as the fundamental mechanism for reducing metal precursors. This mechanism was further studied by open circuit potential-time (OCP-t) experiment and the result demonstrated that steel induced the continuous proceeding of this reaction. This strategy presents a simple and general protocol for preparation of metal nanoparticles (MNPs) on conductive glass substrates. The SERS properties of Au/PAOCG were investigated using aqueous crystal violet (CV) and 4-mercaptopyridine (4-Mpy) as probe molecules. Au/PAOCG allowed as low as 10{sup −9} M CV and 10{sup −8} M 4-Mpy to be detected. The reusability of this substrate was achieved by measuring the SERS spectrum of the probe molecules followed with a 400 °C heat treatment for 10 min to remove the residuals. This substrate could be reused for at least ten cycles without any significantly reduced SERS performance. Therefore, this surface can serve as a portable, durable and reusable SERS

  10. (shell) nanoparticles

    Indian Academy of Sciences (India)

    the quasistatic approximation shows good agreement with the Mie theory results. .... medium, respectively, and f = (rcore/rshell)1/3 is the fraction of the total particle ..... [27] Michael Quinten, Optical properties of nanoparticle systems: Mie and ...

  11. Processing ser and estar to locate objects and events

    Science.gov (United States)

    Dussias, Paola E.; Contemori, Carla; Román, Patricia

    2016-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as ‘to be’). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of ‘object/event + estar/ser’ permutations. Participants provided grammaticality judgments on correct (object + estar; event + ser) and incorrect (object + ser; event + estar) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while ‘object + ser’ constructions were considered grossly ungrammatical, ‘event + estar’ combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ‘en’ showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500–700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less

  12. Effect of Metal–Liquid Interface Composition on the Adsorption of a Cyanine Dye onto Gold Nanoparticles

    NARCIS (Netherlands)

    Guerrini, L.; Jurasekova, Z.; del Puerto, E.; Hartsuiker, Liesbeth; Domingo, C.; Garcia-Ramos, J.V.; Otto, Cornelis; Sanchez-Cortes, S.

    2013-01-01

    Synthesis of asymmetric nanoparticles, such as gold nanorods, with tunable optical properties providing metal structures with improved SERS performance is playing a critical role in expanding the use of SERS to imaging and sensing applications. However, the synthetic methods usually require

  13. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong [Chemistry and Chemical Engineering College, Chongqing University, Shapingba, Chongqing 400044 (China); Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Analytical and Testing Center, Sichuan University of Science & Engineering, Zigong, Sichuan 643000 (China); Xu, Yi [Chemistry and Chemical Engineering College, Chongqing University, Shapingba, Chongqing 400044 (China); Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Wang, Chunyan [Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Zhao, Huazhou; Wang, Renjie; Liao, Xin [Chemistry and Chemical Engineering College, Chongqing University, Shapingba, Chongqing 400044 (China); Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); Chen, Li; Chen, Gang [Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, and School of Optoelectronics Engineering, Chongqing University, Shapingba, Chongqing 400044 (China); School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing 400044 (China)

    2015-09-15

    Highlights: • A novel structure of ITO-rGO/Ag NPs substrate was developed for SERS application. • Two-step chronoamperometry deposition method was used to prepare SERS substrate. • The SERS substrate had high SERS activity, good uniformity and reproducibility. - Abstract: A novel composite structure of reduced graphene oxide (rGO)–Ag nanoparticles (Ag NPs) nanocomposite, which was integrated on the indium tin oxide (ITO) glass by a facile and rapid two-step chronoamperometry electrodeposition route, was proposed and developed in this paper. SERS-activity of the rGO/Ag NPs nanocomposite was mainly affected by the structure and size of the fabricated rGO/Ag NPs nanocomposite. In the experiments, the operational conditions of electrodeposition process were studied in details. The electrodeposited time was the important controllable factor, which decided the particle size and surface coverage of the deposited Ag NPs on ITO glass. Under the optimized conditions, the detection limit for rhodamine6G (R6G) was as low as 10{sup −11} M and the Raman enhancement factor was as large as 5.9 × 10{sup 8}, which was 24 times higher than that for the ITO–Ag NPs substrate. Apart from this higher enhancement effect, it was also illustrated that extremely good uniformity and reproducibility with low standard deviation could be obtained by the prepared ITO-rGO/Ag NPs nanocomposite for SRES detection.

  14. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate

    International Nuclear Information System (INIS)

    Wang, Rong; Xu, Yi; Wang, Chunyan; Zhao, Huazhou; Wang, Renjie; Liao, Xin; Chen, Li; Chen, Gang

    2015-01-01

    Highlights: • A novel structure of ITO-rGO/Ag NPs substrate was developed for SERS application. • Two-step chronoamperometry deposition method was used to prepare SERS substrate. • The SERS substrate had high SERS activity, good uniformity and reproducibility. - Abstract: A novel composite structure of reduced graphene oxide (rGO)–Ag nanoparticles (Ag NPs) nanocomposite, which was integrated on the indium tin oxide (ITO) glass by a facile and rapid two-step chronoamperometry electrodeposition route, was proposed and developed in this paper. SERS-activity of the rGO/Ag NPs nanocomposite was mainly affected by the structure and size of the fabricated rGO/Ag NPs nanocomposite. In the experiments, the operational conditions of electrodeposition process were studied in details. The electrodeposited time was the important controllable factor, which decided the particle size and surface coverage of the deposited Ag NPs on ITO glass. Under the optimized conditions, the detection limit for rhodamine6G (R6G) was as low as 10 −11 M and the Raman enhancement factor was as large as 5.9 × 10 8 , which was 24 times higher than that for the ITO–Ag NPs substrate. Apart from this higher enhancement effect, it was also illustrated that extremely good uniformity and reproducibility with low standard deviation could be obtained by the prepared ITO-rGO/Ag NPs nanocomposite for SRES detection

  15. Synthesis of Au NP@MoS2 Quantum Dots Core@Shell Nanocomposites for SERS Bio-Analysis and Label-Free Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Xixi Fei

    2017-06-01

    Full Text Available In this work, we report a facile method using MoS2 quantum dots (QDs as reducers to directly react with HAuCl4 for the synthesis of Au nanoparticle@MoS2 quantum dots (Au NP@MoS2 QDs core@shell nanocomposites with an ultrathin shell of ca. 1 nm. The prepared Au NP@MoS2 QDs reveal high surface enhanced Raman scattering (SERS performance regarding sensitivity as well as the satisfactory SERS reproducibility and stability. The limit of detection of the hybrids for crystal violet can reach 0.5 nM with a reasonable linear response range from 0.5 μM to 0.5 nM (R2 ≈ 0.974. Furthermore, the near-infrared SERS detection based on Au NP@MoS2 QDs in living cells is achieved with distinct Raman signals which are clearly assigned to the various cellular components. Meanwhile, the distinguishable SERS images are acquired from the 4T1 cells with the incubation of Au NP@MoS2 QDs. Consequently, the straightforward strategy of using Au NP@MoS2 QDs exhibits great potential as a superior SERS substrate for chemical and biological detection as well as bio-imaging.

  16. Fabrication of cube-like Fe3O4@SiO2@Ag nanocomposites with high SERS activity and their application in pesticide detection

    International Nuclear Information System (INIS)

    Li, Lei; Zhao, Aiwu; Wang, Dapeng; Guo, Hongyan; Sun, Henghui; He, Qinye

    2016-01-01

    The cube-like Fe 3 O 4 @SiO 2 @Ag (FSA) nanocomposites with great SERS activity have been successfully synthesized by a layer-by-layer procedure in this paper. The cube-like Fe 3 O 4 @SiO 2 core–shell structures were prepared via a new route and Ag nanoparticles were introduced onto their surface through a one-pot hydrothermal reaction. By controlling the reaction time, the coverage rate of Ag on the FSA surface could be tuned, and then a series of FSA composites were obtained. The SERS properties of these FSA composites were investigated using p-aminothiophenol (p-ATP) as the probe molecule. It was found that the FSA composites synthesized with a reaction time of 6 h showed the best SERS performance, and the detection limit for p-ATP could reach 1 × 10 −7 M. For practical application, the FSA composites were also used to detect thiram, one of the dithiocarbamate fungicides that has been widely used as a pesticide in agriculture. The detection limit is as low as 1 × 10 −6 M (0.24 ppm), lower than the maximal residue limit of 7 ppm in fruit prescribed by the US Environmental Protection Agency. The resulting substrate with high SERS activity, stability and strong magnetic responsivity makes the FSA composite a perfect choice for practical SERS detection applications.

  17. 3D plasmonic nanostar structures for recyclable SERS applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea

    2015-01-01

    Nanofabrication of metallic nanostructures/nanoparticles enables the detection of analyte molecules at ultra-low concentrations with the aid of plasmon induced hot-spots. The high fabrication cost and large fabrication time of nanostructures limit their usage in practical applications. Here we pr...

  18. Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates

    DEFF Research Database (Denmark)

    Krintel, Christian; Osmark, Peter; Larsen, Martin Røssel

    2008-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well...

  19. Patchy silica-coated silver nanowires as SERS substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-05-08

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  20. Patchy silica-coated silver nanowires as SERS substrates

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-01-01

    We report a class of core–shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4-mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV–visible spectroscopy, and phase-analysis light-scattering for measuring effective surface charge. Surprisingly, the patchy silica-coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  1. [TLC-FT-SERS study on ingredients of Isrhynchophylline].

    Science.gov (United States)

    Wang, Yuan; Wang, Song-ying; Zhao, Yi-xue; Ren, Gui-fen; Zi, Feng-lan

    2002-02-01

    A new method for analysing the ingredients of Isrhynchophylline in Uncaria Rhynchophylla Jacks by thin layer chromatography (TLC) and the surface-enhanced Raman spectroscopy (SERS) is reported in this paper. The results show that the characteristic spectra bands of Isrhynchophylline situated at the thin layer with the amount of sample about 2.5 micrograms were obtained. The difference between SERS and solid spectra was found. Great enhancement of the 1,615 cm-1 spectral band was abstained. Molecule was absorbed in surface silver sol by pi electrons in phenyl and by pair of electrons in N together. An absorption model of Isrhynchophylline and silver sol was proposed. This method can be used to analyse the chemical ingredients with high sensitivity.

  2. [TLC-SERS study on evodiamine in evodia rutaecarpa].

    Science.gov (United States)

    Zhang, Jin-zhi; Wang, Yuan; Chen, Hui; Shao, Hui-bo

    2007-05-01

    A new method for analyzing the ingredients of evodiamine (EV), rutaecarpine (RU), hydroxyevodiamine (HYD), evodiamide (ED), dihydrorutaecarpine (DRU) and 14-formyldihydrorutaecarpine (FDRU) in evodia rutaecarpa using high performance thin layer chromatography (TLC) and surface enhanced Raman spectroscopy (SERS) technique is reported. The character of this method is that standard samples are not needed. The results show that the characteristic spectral bands of EV, RU, HYD, and ED can be obtained from the TLC spot with microgramme of sample. The spectral band at 1562 cm(-1) was obtained with great enhancement. Molecule absorbed in surface silver sol by nr electrons in ring. The spectral bands of EV, RU, HYD and ED are obviously different due to their differences in structure. The TLC and SERS techniques standard samples are a convenient and speedy method to analyze chemical ingredients with high sensitivity for the study of the Chinese traditional medicine.

  3. Radiation Synthesis of Stimuli-Responsive Hydrogels for Biological Applications

    International Nuclear Information System (INIS)

    Eid, M.; Hegazy, S.A.

    2009-01-01

    Poly(acrylamide/maleic acid/gelatin) P(AAm/MA/G) hydrogel networks were synthesized by 60 Co gamma irradiation at different doses. The properties of the hydrogels such as gelation percent, porosity, and moisture retention were investigated. The swelling ratio (S), equilibrium water content (EWC) and diffusion characteristics, including equilibrium swelling ratio (ESR), diffusion constant (n) and diffusion coefficients (D) were investigated and a non-Fickian type of diffusion characteristics was found in all the swelling media for the diffusion of water into these hydrogels. Further, the swelling pattern of P(AAm/MA/G) hydrogels was studied in different physiological bio-fluids, ph and ionic/salt solutions and showed great responsiveness due to their ionic character. The penetration velocity (v) of these biological fluids into such hydrogels was also calculated and it was found to be the maximum in urea and the minimum in synthetic urine. The higher equilibrium water content of these hydrogels, promotes them to be used as biomedical/pharmaceutical technology. The caffeine release as a drug model has been studied at ph 1 and ph 7 to resemble the ph of the stomach and the intestine, respectively. The caffeine release was controlled by the hydrogel crosslinking density that caused in increase of the irradiation dose

  4. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    The influence of external stimuli such as pH, temperature, and ionic strength of the swelling media on equilibrium swelling properties has been observed. Hydrogels showed a typical pH and temperature responsive behaviour such as low pH and high temperature has maximum swelling while high pH and low temperature ...

  5. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    Unknown

    ceutics, tissue engineering, chromatography, metal chela- tion etc. This has prompted ... lower limit) up to thousands of time of water or biological fluid than their dry ... 2000), and other industrial as well as biomedical applica- tions. A number of ...

  6. Stimuli-Responsive Super Absorbent Copolymers for Industrial Waste Treatment

    International Nuclear Information System (INIS)

    Abo-Elkher, D.M.E.

    2009-01-01

    Two hydrogels were prepared by gamma radiation copolymerization. The first hydrogel was based on different ratios of acrylic acid (AAc) and methacrylic acid (MAc) monomers, whereas the second was based on different ratios of poly (vinyl alcohol) and poly (ethylene glycol) (PVA/PEG). The hydrogels were characterized by IR spectroscopy and thermogravimetric analysis (TGA). The effect of temperature and pH on the degree of swelling of both hydrogels was also studied. The dye uptake of basic and direct dyestuffs was studied for the hydrogel based on AAc/MAc. Moreover, the metal uptake was studied for the hydrogel based on PVA/PEG. The results showed that the gel fraction of AAc is relatively higher than MAc, while, the gel fraction of AAc/MAc hydrogels decreased slightly with increasing the ratio of MAc monomer in the initial solution. The thermal study showed that PAAc hydrogel displayed higher thermal stability than PMAc and AAc/MAc hydrogels, over the studied compositions. However, the thermal study showed that PVA/PEG hydrogels displayed higher thermal stability than PVA over the studied compositions. The results showed that PAAc hydrogel reached equilibrium swelling state in water after four hours, whereas PMAc and AAc/MAc hydrogels reached the equilibrium after seven hours. It was found that the swelling of

  7. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-01-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery

  8. Stimuli-responsive hydrogels in drug delivery and tissue engineering.

    Science.gov (United States)

    Sood, Nikhil; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2016-01-01

    Hydrogels are the three-dimensional network structures obtained from a class of synthetic or natural polymers which can absorb and retain a significant amount of water. Hydrogels are one of the most studied classes of polymer-based controlled drug release. These have attracted considerable attention in biochemical and biomedical fields because of their characteristics, such as swelling in aqueous medium, biocompatibility, pH and temperature sensitivity or sensitivity towards other stimuli, which can be utilized for their controlled zero-order release. The hydrogels are expected to explore new generation of self-regulated delivery system having a wide array of desirable properties. This review highlights the exciting opportunities and challenges in the area of hydrogels. Here, we review different literatures on stimuli-sensitive hydrogels, such as role of temperature, electric potential, pH and ionic strength to control the release of drug from hydrogels.

  9. Stimuli-responsive biodegradable polymeric micelles for targeted cancer therapy

    NARCIS (Netherlands)

    Talelli, M.A.

    2011-01-01

    Thermosensitive and biodegradable polymeric micelles based on mPEG-b-pHPMAmLacn have shown very promising results during the past years. The results presented in this thesis illustrate the high potential of these micelles for anticancer therapy and imaging and fully justify further pharmaceutical

  10. La polémica sobre el ser en el Avicena y Averroes latinos

    OpenAIRE

    García-Marqués, A. (Alfonso)

    1987-01-01

    Fiosofía medieval; recepción del aristotelismo árabe en Occidente; metafísica; aristotelismo platonizante; esencia; universal; accidentalidad del ser; ser y esencia; ser veritativo y ser extramental; crítica de Averroes a Avicena.

  11. Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)

    Science.gov (United States)

    2017-06-22

    which form covalent metal–S bonds), amine, cyanide , and carboxylic acid functional groups; and their adsorption depends on solution pH and ionic...for some SERS sensing appli- cations, such as biosensing in complex biological fluids (where multiple molecules with primary amine and carboxylic acid...bonding interactions.33d,e Furthermore, mixed SAMs can take advantage of multiple types of interactions and build complexity into the surface chemistry

  12. Significado de ser docente para el adulto mayor sanfernandino

    OpenAIRE

    Martina, Martha; Santos, Gladys; Lema, Julia

    2013-01-01

    Objetivos: Comprender el significado de ser docente para el adulto mayor de la Facultad de Medicina de San Marcos y describir las motivaciones que determinan, de alguna forma, su decisión de postergar su retiro, no obstante haber cumplido con los requisitos legales para la jubilación. Diseño: Estudio de caso cualitativo. Institución: Facultad de Medicina, UNMSM. Participantes: Docentes adulto mayores de la Facultad de Medicina. Intervenciones: Entrevista a profundidad. Principales medidas de ...

  13. Development of polyphenolic nanoparticles for biomedical applications

    Science.gov (United States)

    Cheng, Huaitzung Andrew

    enough to be uptaken into mammalian cells. Furthermore, by self-assembling with gadolinium, pseudotannins can effectively attenuate the signal of gadolinium based MRI contrast agents. This in conjunction with oxidation responsive decomplexation could be a viable option for diagnosing the severity and risk of rupture of atherosclerotic plaques. Also, we demonstrate that pegylated compounds can easily be incorporated into pseudotannin nanoparticles to impart cell targeting functionality. The subsequent uptake of pseudotannin nanoparticles into breast cancer cells demonstrated the ability to increase their sensitivity to UV radiation. The creation of synthetic tannin-like polymers leads to directly to making a variety of self-assembling, stimuli responsive, and bioactive nanoparticles well-suited for various biomedical applications.

  14. Laser in medicine Láser en medicina

    Directory of Open Access Journals (Sweden)

    Juan C. Cárdenas

    1993-03-01

    Full Text Available The fundamentals of laser functioning and a brief historic description on the subject are presented; laser Is classified according to emission potency, materials with which it is built and pulsation. Different mechanisms of action of laser as well as Its indications and contraindications are discussed. Emphasis is given to low-power laser. Local and foreign experiences with Its medlcal use are briefly described

    Se revisan los principios fundamentales del funcionamiento del láser, se hace una breve revisión histórica del mismo y se lo clasifica de acuerdo con la potencia de emisión, los materiales de fabricación y la pulsación. Se enumeran los diferentes mecanismos de acción del láser y sus indicaciones y contraindicaciones haciendo énfasis en lo concerniente al láser de baja potencia, tanto pulsado como no pulsado; se alude a las experiencias nacionales y de otros países.

  15. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  16. Incorporation of metal nanoparticles into wood substrate and methods

    Science.gov (United States)

    Rector, Kirk D; Lucas, Marcel

    2015-11-04

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation process at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.

  17. Observing single molecule chemical reactions on metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Emory, S. R. (Steven R.); Ambrose, W. Patrick; Goodwin, P. M. (Peter M); Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  18. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.

    Science.gov (United States)

    Cheng, Ziyong; Lin, Jun

    2015-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near-infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli-responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies.

    Science.gov (United States)

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-11-01

    This work briefly reviews up-to-date developments in solid lipid nanoparticles (SLNs) as effective nanocolloidal system for drug delivery. It summarizes SLNs in terms of their preparation, surface modification and properties. The application of SLNs as a carrier system enables to improve the therapeutic efficacy of drugs from various therapeutic groups. Present uses of SLNs include cancer therapy, dermatology, bacterial infections, brain targeting and eye disorders among others. The usage of SLNs provides enhanced pharmacokinetic properties and modulated release of drugs. SLN ubiquitous application results from their specific features such as possibility of surface modification, increased permeation through biological barriers, resistance to chemical degradation, possibility of co-delivery of various therapeutic agents or stimuli-responsiveness. This paper will be useful to the scientists working in the domain of SLN-based drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Leucipo, Demócrito e Kant: uma Reflexão sobre a Equivalência entre Ser e Não-Ser

    Directory of Open Access Journals (Sweden)

    Eberth Eleuterio dos Santos

    2015-08-01

    Full Text Available De início, apresentaremos a tese de Demócrito e Leucipo, segundo a qual o ser não é mais que o não-ser, tendo como contraponto o pensamento eleata acerca da inexistência necessária do não-ser. Esta discussão nos remete à oposição entre o pleno (cheio e o vazio que será posteriormente traduzida na oposição entre o ser e o nada (ou o não-ser. Desse modo, a oposição entre o pleno e o vazio é uma oposição que se desloca para o ser e o não-ser. Em seguida, faremos a apreciação do escrito pré-crítico kantiano Ensaio para introduzir em filosofia o conceito de grandeza negativa, no qual distinguimos certo tipo de oposição tomada entre grandezas em geral que, acreditamos, poderia ser interpretado como estando de acordo com o posicionamento de Demócrito e Leucipo sobre o estatuto ontológico do não-ser como princípio equivalente ao ser, e não como sua contradição em sentido puramente lógico.

  1. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering.

    Science.gov (United States)

    Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir

    2015-01-01

    Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.

    Science.gov (United States)

    Ndokoye, Pancras; Li, Xinyong; Zhao, Qidong; Li, Tingting; Tade, Moses O; Liu, Shaomin

    2016-01-15

    Fabrication of Au nanostars (AuNSs) can expand the application range of Au nanoparticles because of their high electron density and localized surface plasmon resonance (LSPR) on branches. Exploiting this potential requires further refinement of length of the branches and radius of their tips. To this end, we successfully synthesized AuNSs with uniform and sharply-pointed branches by combining benzyldimethylammonium chloride (BDAC) and cetyltrimethylammonium bromide (CTAB) at low BDAC/CTAB ratios. Once mixed with CTAB, BDAC lowers the critical micelle concentration (CMC) for quick formation of the micelles, which provides favorable growth templates for AuNSs formation. Besides, BDAC increases the concentration of Cl(-), which favors Ag(+) in adsorbing on Au facets. This feature is crucial for the yield boosting and synergic shape control of AuNSs regardless of types of Au seeds used. Use of less amounts of seeds as the center of nucleation benefited sharper and longer growth of the branches. AuNSs exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) intensities as the result of high electron density localized at the tips; however, the enhancement degree varied in accordance with the size of branches. In addition, AuNSs showed high catalytic performance toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Efficient catalysis over AuNSs originates from their corners, stepped surfaces and high electron density at the tips. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel.

    Science.gov (United States)

    Granger, Jennifer H; Granger, Michael C; Firpo, Matthew A; Mulvihill, Sean J; Porter, Marc D

    2013-01-21

    Proteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples. This paper describes the development of a nanoparticle-based multiplexed platform that has the potential for simultaneous read-out of large numbers of biomolecules. For this purpose, we have chosen pancreatic adenocarcinoma (PA) as a test bed for diagnosis and prognosis. PA is a devastating form of cancer in which an estimated 86% of diagnoses resulted in death in the United States in 2010. The high mortality rate is due, in part, to the asymptomatic development of the disease and the dearth of sensitive diagnostics available for early detection. One promising route lies in the development of a serum biomarker panel that can generate a signature unique to early stage PA. We describe the design and development of a proof-of-concept PA biomarker immunoassay array coupled with surface-enhanced Raman scattering (SERS) as a sensitive readout method.

  4. SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating

    Science.gov (United States)

    Fazio, Barbara; D'Andrea, Cristiano; Foti, Antonino; Messina, Elena; Irrera, Alessia; Donato, Maria Grazia; Villari, Valentina; Micali, Norberto; Maragò, Onofrio M.; Gucciardi, Pietro G.

    2016-06-01

    Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the “hot spots” of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the μg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection.

  5. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    Science.gov (United States)

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  6. SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating

    Science.gov (United States)

    Fazio, Barbara; D’Andrea, Cristiano; Foti, Antonino; Messina, Elena; Irrera, Alessia; Donato, Maria Grazia; Villari, Valentina; Micali, Norberto; Maragò, Onofrio M.; Gucciardi, Pietro G.

    2016-01-01

    Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the “hot spots” of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the μg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection. PMID:27246267

  7. Biopolymeric nanoparticles

    International Nuclear Information System (INIS)

    Sundar, Sushmitha; Kundu, Joydip; Kundu, Subhas C

    2010-01-01

    This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides) which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope. (topical review)

  8. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate

    International Nuclear Information System (INIS)

    Wang Na; Yang Haifeng; Zhu Xuan; Zhang Rui; Wang Yao; Huang Guanfeng; Zhang Zongrang

    2009-01-01

    We report a novel method of synthesizing a kind of silver nanoparticles aided by the inositol hexakisphosphoric micelle as a soft template and stabilizer. By controlling the reaction time, UV-vis and TEM observations of the size growth of the nanoparticles are performed. Careful examinations of surface enhanced Raman scattering (SERS) spectra of 2-mercaptopyridine (2-Mpy) on the as-produced silver nanoparticles exhibit very stable and reproducible Raman signals within about 4 months.

  9. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  10. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.

    Science.gov (United States)

    Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J

    2014-12-02

    The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

  11. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    avenues for creating flexible conducting and semiconducting materials in a variety of simple or complex geometries. B. Conducting nanoparticle...coated with poly(MPC-co-DHLA) proved stable against challenging conditions, and resisted cyanide ion digestion. Au NRs coated with poly(MPC-co-DHLA

  12. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR and Surface Enhanced Raman Spectroscopy (SERS Detection of Adsorbed (Biomolecules

    Directory of Open Access Journals (Sweden)

    Rodica Elena Ionescu

    2017-01-01

    Full Text Available Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography or inexpensive (e.g., thermal synthesis approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C. The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS optical responses and where used for the detection of low concentrations of two model (biochemical molecules, namely the human cytochrome b5 (Cyt-b5 and trans-1,2-bis(4-pyridylethylene (BPE.

  13. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  14. Investigation of the chemical origin and evidential value of differences in the SERS spectra of blue gel inks.

    Science.gov (United States)

    Ho, Yen Cheng; Lee, Wendy W Y; Bell, Steven E J

    2016-08-15

    Highly swellable polymer films doped with Ag nanoparticle aggregates (poly-SERS films) have been used to record very high signal : noise ratio, reproducible surface-enhanced (resonance) Raman (SER(R)S) spectra of in situ dried ink lines and their constituent dyes using both 633 and 785 nm excitation. These allowed the chemical origins of differences in the SERRS spectra of different inks to be determined. Initial investigation of pure samples of the 10 most common blue dyes showed that the dyes which had very similar chemical structures such as Patent Blue V and Patent Blue VF (which differ only by a single OH group) gave SERRS spectra in which the only indications that the dye structure had been changed were small differences in peak positions or relative intensities of the bands. SERRS studies of 13 gel pen inks were consistent with this observation. In some cases inks from different types of pens could be distinguished even though they were dominated by a single dye such as Victoria Blue B (Zebra Surari) or Victoria Blue BO (Pilot Acroball) because their predominant dye did not appear in other inks. Conversely, identical spectra were also recorded from different types of pens (Pilot G7, Zebra Z-grip) because they all had the same dominant Brilliant Blue G dye. Finally, some of the inks contained mixtures of dyes which could be separated by TLC and removed from the plate before being analysed with the same poly-SERS films. For example, the Pentel EnerGel ink pen was found to give TLC spots corresponding to Erioglaucine and Brilliant Blue G. Overall, this study has shown that the spectral differences between different inks which are based on chemically similar, but nonetheless distinct dyes, are extremely small, so very close matches between SERRS spectra are required for confident identification. Poly-SERS substrates can routinely provide the very stringent reproducibility and sensitivity levels required. This, coupled with the awareness of the reasons

  15. SERS Assay for Copper(II) Ions Based on Dual Hot-Spot Model Coupling with MarR Protein: New Cu2+-Specific Biorecognition Element.

    Science.gov (United States)

    Wang, Yulong; Su, Zhenhe; Wang, Limin; Dong, Jinbo; Xue, Juanjuan; Yu, Jiao; Wang, Yuan; Hua, Xiude; Wang, Minghua; Zhang, Cunzheng; Liu, Fengquan

    2017-06-20

    We have developed a rapid and ultrasensitive surface-enhanced Raman scattering (SERS) assay for Cu 2+ detection using the multiple antibiotic resistance regulator (MarR) as specific bridging molecules in a SERS hot-spot model. In the assay, Cu 2+ induces formation of MarR tetramers, which provide Au nanoparticle (NP)-AuNP bridges, resulting in the formation of SERS hot spots. 4-Mercaptobenzoic acid (4-MBA) was used as a Raman reporter. The addition of Cu 2+ increased the Raman intensity of 4-MBA. Use of a dual hot-spot signal-amplification strategy based on AuNP-AgNP heterodimers combined through antigen-antibody reactions increased the sensitivity of the sensing platform by 50-fold. The proposed method gave a linear response for Cu 2+ detection in the range of 0.5-1000 nM, with a detection limit of 0.18 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu 2+ in drinking water (20 μM). In addition, all analyses can be completed in less than 15 min. The high sensitivity, high specificity, and rapid detection capacity of the SERS assay therefore provide a combined advantage over current assays.

  16. An association between apo-A4 gene polymorphism (Thr347Ser ...

    African Journals Online (AJOL)

    Pramod Kumar

    Objective: We aimed at studying the relationship between apoA4 gene polymorphisms (Thr347Ser and ... showed significant association with lipid risk factors like high levels of ..... in German population showed that Ser347 allele is associated.

  17. Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS.

    Science.gov (United States)

    Brown, Richard J C; Wang, Jian; Tantra, Ratna; Yardley, Rachel E; Milton, Martin J T

    2006-01-01

    Despite widespread use for more than two decades, the SERS phenomenon has defied accurate physical and chemical explanation. The relative contributions from electronic and chemical mechanisms are difficult to quantify and are often not reproduced under nominally similar experimental conditions. This work has used electromagnetic modelling to predict the Raman enhancement expected from three configurations: metal nanoparticles, structured metal surfaces, and sharp metal tips interacting with metal surfaces. In each case, parameters such as artefact size, artefact separation and incident radiation wavelength have been varied and the resulting electromagnetic field modelled. This has yielded an electromagnetic description of these configurations with predictions of the maximum expected Raman enhancement, and hence a prediction of the optimum substrate configuration for the SERS process. When combined with experimental observations of the dependence of Raman enhancement with changing ionic strength, the modelling results have allowed a novel estimate of the size of the chemical enhancement mechanism to be produced.

  18. pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform

    Science.gov (United States)

    Wei, Haoran; Vikesland, Peter J.

    2015-12-01

    The low affinity of neutral and hydrophobic molecules towards noble metal surfaces hinders their detection by surface-enhanced Raman spectroscopy (SERS). Herein, we present a method to enhance gold nanoparticle (AuNP) surface affinity by lowering the suspension pH below the analyte pKa. We developed an AuNP/bacterial cellulose (BC) nanocomposite platform and applied it to two common pollutants, carbamazepine (CBZ) and atrazine (ATZ) with pKa values of 2.3 and 1.7, respectively. Simple mixing of the analytes with AuNP/BC at pH < pKa resulted in consistent electrostatic alignment of the CBZ and ATZ molecules across the nanocomposite and highly reproducible SERS spectra. Limits of detection of 3 nM and 11 nM for CBZ and ATZ, respectively, were attained. Tests with additional analytes (melamine, 2,4-dichloroaniline, 4-chloroaniline, 3-bromoaniline, and 3-nitroaniline) further illustrate that the AuNP/BC platform provides reproducible analyte detection and quantification while avoiding the uncontrolled aggregation and flocculation of AuNPs that often hinder low pH detection.

  19. A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria.

    Science.gov (United States)

    Liang, Weiwei; Chen, Qiao; Peng, Fang; Shen, Aiguo; Hu, Jiming

    2018-07-01

    Methane-oxidizing bacteria (MOB), a unique group of Gram-negative bacteria utilizing methane as a sole source of carbon and energy, have been proved to be a biological indicator for gas prospecting. Field and cultivation-free detection of MOB is important but still challenging in current microbial prospecting of oil and gas (MPOG) system. Herein, SERS was used for the first time to our knowledge to investigate two species of methanotrophs and four closely relevant bacteria that universally coexisted in the upper soil of natural gas. A special but very simple approach was utilized to make silver nanoparticles (Ag NPs) sufficiently contact with every single bacterial cell, and highly strong and distinct Raman signals free from any native fluorescence have been obtained, and successfully utilized for distinguishing MOB from other species. A more convincing multi-Raman criterion based on single Raman bands, and further the entire Raman spectrum in combination with statistical analysis (e.g., principal component analysis (PCA)), which were found capable of classifying MOB related bacterial cells in soil with an accuracy of 100%. This study therefore demonstrated sensitive and rapid SERS measurement technique accompanied by complete Raman database of various gas reservoirs related bacteria could aid field exploration of natural gas reservoir. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Synthesis of SERS active Au nanowires in different noncoordinating solvents

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xiaomiao; Zhang Xiaoling, E-mail: zhangxl@bit.edu.cn [Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Department of Chemistry, School of Science (China); Fang Yan, E-mail: fangyan@mail.cnu.edu.cn [Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Capital Normal University (China); Chen Shutang; Li Na; Zhou Qi [Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Department of Chemistry, School of Science (China)

    2011-06-15

    Au nanowires with length up to micrometers were synthesized through a simple and one-pot solution growth method. HAuCl{sub 4} was reduced in a micellar structure formed by 1-octadecylamine and oleic acid in hexane, heptane, toluene and chloroform, respectively. As the non-polarity of noncoordinating solvents can affect the nucleation and growth rates of Au nanostructures, Au nanowires with different diameters could be obtained by changing the noncoordinating solvents in the synthetic process. The influences of the solvents on the morphology of Au nanowires were systematically studied. When using hexane as reaction solvent, the product turned to be high portion of Au nanowires with more uniform size than the others. Furthermore, surface-enhanced Raman scattering (SERS) spectrum of 2-thionaphthol was obtained on the Au nanowire-modified substrate, indicating that the as-synthesized Au nanowires have potential for highly sensitive optical detection application.