WorldWideScience

Sample records for stimulated human umbilical

  1. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Directory of Open Access Journals (Sweden)

    Sanberg Paul R

    2008-02-01

    Full Text Available Abstract Background Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation. Results We determined that human umbilical cord blood mononuclear cells (UCBMC given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis. Conclusion The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.

  2. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  3. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  4. Kaempferol stimulates large conductance Ca2+-activated K+ (BKCa) channels in human umbilical vein endothelial cells via a cAMP/PKA-dependent pathway

    Science.gov (United States)

    Xu, Y C; Leung, G P H; Wong, P Y D; Vanhoutte, P M; Man, R Y K

    2008-01-01

    Background and purpose: Kaempferol has been shown to possess a vasodilator effect but its mechanism of action remains unclear. In this study, experiments were carried out to study the effect of kaempferol on K+ channels in endothelial cells. Experimental approach: K+ channel activities in human umbilical vein endothelial cells (HUVECs) were studied by conventional whole cell and cell-attached patch-clamp electrophysiology. Key results: Kaempferol stimulated an outward-rectifying current in HUVECs in a dose-dependent manner with an EC50 value of 2.5±0.02 μM. This kaempferol-induced current was abolished by large conductance Ca2+-activated K+ (BKCa) channel blockers, such as iberiotoxin (IbTX) and charybdotoxin (ChTX), whereas the small conductance Ca2+-activated K+ (SKCa) channel blocker, apamin, and the voltage-dependent K+ (KV) channel blocker, 4-aminopyridine, had no effect. Cell-attached patches demonstrated that kaempferol increased the open probability of BkCa channels in HUVECs. Clamping intracellular Ca2+ did not prevent kaempferol-induced increases in outward current. In addition, the kaempferol-induced current was diminished by the adenylyl cyclase inhibitor SQ22536, the cAMP antagonist Rp-8-Br-cAMP and the PKA inhibitor KT5720, but was not affected by the guanylyl cyclase inhibitor ODQ, the cGMP antagonist Rp-8-Br-cGMP and the PKG inhibitor KT5823. The activation of BKCa channels by kaempferol caused membrane hyperpolarization of HUVECs. Conclusion and implications: These results demonstrate that kaempferol activates the opening of BKCa channels in HUVECs via a cAMP/PKA-dependent pathway, resulting in membrane hyperpolarization. This mechanism may partly account for the vasodilator effects of kaempferol. PMID:18493242

  5. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sandra A Acosta

    Full Text Available Traumatic brain injury (TBI is associated with neuro-inflammation, debilitating sensory-motor deficits, and learning and memory impairments. Cell-based therapies are currently being investigated in treating neurotrauma due to their ability to secrete neurotrophic factors and anti-inflammatory cytokines that can regulate the hostile milieu associated with chronic neuroinflammation found in TBI. In tandem, the stimulation and mobilization of endogenous stem/progenitor cells from the bone marrow through granulocyte colony stimulating factor (G-CSF poses as an attractive therapeutic intervention for chronic TBI. Here, we tested the potential of a combined therapy of human umbilical cord blood cells (hUCB and G-CSF at the acute stage of TBI to counteract the progressive secondary effects of chronic TBI using the controlled cortical impact model. Four different groups of adult Sprague Dawley rats were treated with saline alone, G-CSF+saline, hUCB+saline or hUCB+G-CSF, 7-days post CCI moderate TBI. Eight weeks after TBI, brains were harvested to analyze hippocampal cell loss, neuroinflammatory response, and neurogenesis by using immunohistochemical techniques. Results revealed that the rats exposed to TBI treated with saline exhibited widespread neuroinflammation, impaired endogenous neurogenesis in DG and SVZ, and severe hippocampal cell loss. hUCB monotherapy suppressed neuroinflammation, nearly normalized the neurogenesis, and reduced hippocampal cell loss compared to saline alone. G-CSF monotherapy produced partial and short-lived benefits characterized by low levels of neuroinflammation in striatum, DG, SVZ, and corpus callosum and fornix, a modest neurogenesis, and a moderate reduction of hippocampal cells loss. On the other hand, combined therapy of hUCB+G-CSF displayed synergistic effects that robustly dampened neuroinflammation, while enhancing endogenous neurogenesis and reducing hippocampal cell loss. Vigorous and long-lasting recovery of

  6. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  7. Human umbilical cord derivatives regenerate intervertebral disc.

    Science.gov (United States)

    Beeravolu, Naimisha; Brougham, Jared; Khan, Irfan; McKee, Christina; Perez-Cruet, Mick; Chaudhry, G Rasul

    2016-09-30

    Intervertebral disc (IVD) degeneration is characterized by the loss of nucleus pulposus (NP), which is a common cause for lower back pain. Although, currently, there is no cure for the degenerative disc disease, stem cell therapy is increasingly being considered for its treatment. In this study, we investigated the feasibility and efficacy of human umbilical cord mesenchymal stem cells (MSCs) and chondroprogenitor cells (CPCs) derived from those cells to regenerate damaged IVD in a rabbit model. Transplanted cells survived, engrafted and dispersed into NP in situ. Significant improvement in the histology, cellularity, extracellular matrix proteins, and water and glycosaminoglycan contents in IVD recipients of CPCs was observed compared to MSCs. In addition, IVDs receiving CPCs exhibited higher expression of NP-specific human markers, SOX9, aggrecan, collagen 2, FOXF1 and KRT19. The novelty of the study is that in vitro differentiated CPCs derived from umbilical cord MSCs, demonstrated far greater capacity to regenerate damaged IVDs, which provides basis and impetus for stem cell based clinical studies to treat degenerative disc disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Human Umbilical Cord Blood Cell Transplantation in Neuroregenerative Strategies

    Science.gov (United States)

    Galieva, Luisa R.; Mukhamedshina, Yana O.; Arkhipova, Svetlana S.; Rizvanov, Albert A.

    2017-01-01

    At present there is no effective treatment of pathologies associated with the death of neurons and glial cells which take place as a result of physical trauma or ischemic lesions of the nervous system. Thus, researchers have high hopes for a treatment based on the use of stem cells (SC), which are potentially able to replace dead cells and synthesize neurotrophic factors and other molecules that stimulate neuroregeneration. We are often faced with ethical issues when selecting a source of SC. In addition to precluding these, human umbilical cord blood (hUCB) presents a number of advantages when compared with other sources of SC. In this review, we consider the key characteristics of hUCB, the results of various studies focused on the treatment of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis), ischemic (stroke) and traumatic injuries of the nervous system and the molecular mechanisms of hUCB-derived mononuclear and stem cells. PMID:28951720

  9. Histological study on the effect of transplanted human umbilical cord ...

    African Journals Online (AJOL)

    Histological study on the effect of transplanted human umbilical cord blood CD34+ stem cells on albino rats subjected to myocardial infarction. Z. Abdelhadi, M. Naeim, Y. El-Wazir, M. Ibrahim, S. Hosny ...

  10. Dielectric properties of human placenta, umbilical cord and amniotic fluid

    Science.gov (United States)

    Peyman, A.; Gabriel, C.; Benedickter, H. R.; Fröhlich, J.

    2011-04-01

    The dielectric properties of freshly delivered human placenta, umbilical cord and amniotic fluid have been acquired at 37 °C and in the frequency range of 200 MHz-10 GHz. The experimental data were fitted to a Cole-Cole expression. The results show that dielectric properties of the umbilical cord are significantly higher than placenta due to the presence of high water content Wharton's jelly. The results also demonstrate large differences in the dielectric properties of amniotic and cerebrospinal fluids. The data presented can be used in numerical simulations of the exposure of pregnant women to electromagnetic fields.

  11. Dielectric properties of human placenta, umbilical cord and amniotic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Peyman, A [Physical Dosimetry Department, Health Protection Agency, Chilton, Didcot OX11 0RQ (United Kingdom); Gabriel, C [MCL-P, Newbury RG14 5PY, Berkshire (United Kingdom); Benedickter, H R; Froehlich, J, E-mail: Azadeh.peyman@hpa.org.uk [Electromagnetic Fields and Microwave Electronics Laboratory, Swiss Federal Institute of Technology, Zurich (Switzerland)

    2011-04-07

    The dielectric properties of freshly delivered human placenta, umbilical cord and amniotic fluid have been acquired at 37 deg. C and in the frequency range of 200 MHz-10 GHz. The experimental data were fitted to a Cole-Cole expression. The results show that dielectric properties of the umbilical cord are significantly higher than placenta due to the presence of high water content Wharton's jelly. The results also demonstrate large differences in the dielectric properties of amniotic and cerebrospinal fluids. The data presented can be used in numerical simulations of the exposure of pregnant women to electromagnetic fields. (note)

  12. Histological study on the effect of transplanted human umbilical cord ...

    African Journals Online (AJOL)

    This study aimed at examining the regenerative effect of intravenously transplanted human umbilical cord blood CD34+ stem cell in a rat model of acute MI. Methods: Forty adult female rats were equally randomized into 5 groups. Groups I and II received saline alone or saline followed by isolation buffer respectively to serve ...

  13. Determination of the therapeutic potential of human umbilical cord ...

    African Journals Online (AJOL)

    This research was conducted to evaluate the therapeutic potential of human umbilical cord blood, by determining their effect on bacterial pathogens which included: Streptobacillus sp, Corynebacterium diphtheriae, Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli. Cord blood samples were obtained ...

  14. Isolation, culture and characterization of postnatal human umbilical vein-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    "Mehdi Kadivar

    2005-07-01

    Full Text Available On the basis of reports that mesenchymal stem cells (MSCs can be isolated from the placenta/umbilical cord stroma, the present study was undertaken to isolate and characterize MSCs from the human umbilical cord veins. In this investigation, a cell population was isolated which was derived from the endothelium/subendothelium layers of 20 umbilical cord veins obtained from term deliveries using a solution of 0.1% collagenase type IV. Results suggest that these cells possess morphological, immunophenotypical and cell differentiation capacities similar to the bone marrow-derived mesenchymal stem cells (MSCs. The isolated cell population has fibroblastoid morphology which upon proper stimulation gives rise to adipocytes, osteocytes and chondrocytes in culture. Immunophenotypically, this cell population is positive for CD54, CD29, CD73, CD49e, CD166, CD105, CD13, and CD44 markers and alpha-smooth muscle actin and negative for CD31, CD45, CD49d, and CD34 markers, von Willebrand factor (vWF and smooth muscle myosin (MySM. Altogether, these findings indicate that umbilical cord obtained from term deliveries is an important source of MSCs which could have an important application in cell therapy protocols.

  15. Estimation of the total number of mast cells in the human umbilical cord. A methodological study

    DEFF Research Database (Denmark)

    Engberg Damsgaard, T M; Windelborg Nielsen, B; Sørensen, Flemming Brandt

    1992-01-01

    The aim of the present study was to estimate the total number of mast cells in the human umbilical cord. Using 50 microns-thick paraffin sections, made from a systematic random sample of umbilical cord, the total number of mast cells per cord was estimated using a combination of the optical...... disector and fractionated sampling. The mast cell of the human umbilical cord was found in Wharton's jelly, most frequently in close proximity to the three blood vessels. No consistent pattern of variation in mast cell numbers from the fetal end of the umbilical cord towards the placenta was seen....... The total number of mast cells found in the umbilical cord was 5,200,000 (median), range 2,800,000-16,800,000 (n = 7), that is 156,000 mast cells per gram umbilical cord (median), range 48,000-267,000. Thus, the umbilical cord constitutes an adequate source of mast cells for further investigation...

  16. Immunomodulatory function of whole human umbilical cord derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Hao; Tao, Yanling; Liu, Haihui; Ren, Saisai; Zhang, Bin; Chen, Hu

    2017-07-01

    Bone marrow derived mesenchymal stem cells (MSCs) play a critical role in immune modulation. However, immunomodulatory function of whole human umbilical cord derived mesenchymal stem cells (UC-MSCs) remains unclear. In this study, UC-MSCs were separated from whole umbilical cord using a single enzyme digestion. UC-MSCs (CD73 + , CD90 + , CD105 + , and CD34 - , CD45 - , HLA-DR - ) were differentiated into adipocytes, osteocytes and chondrocytes in vitro under specific stimulatory environments. UC-MSCs suppressed umbilical cord blood lymphocyte proliferation stimulated by mitogen, and ELISA showed that the secretion of INF-γ was downregulated, and the secretion of IL-4 was upregulated, with CD8 + T cells markedly decreased and CD4 + T cells changed lightly. Moreover, the infusion of UC-MSCs in recipient mice transplanted with donor bone marrow cells ameliorated acute graft-versus host disease (aGVHD) and extended survival. In conclusion, UC-MSCs might negatively modulate immunoreactions, and have application potential in the treatment of aGVHD caused by allogeneic stem cells transplantation. Copyright © 2017. Published by Elsevier Ltd.

  17. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  18. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Wang, Shuaiyu; Yoon, Yeo Cho; Sung, Mi-Jeong; Hur, Haeng-Jeon; Park, Jae-Ho

    2012-01-01

    Highlights: ► Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. ► Cafestol inhibits phosphorylation of FAK and Akt. ► Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects the following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.

  19. Expression of MUC1 mucin in human umbilical vein endothelial cells (HUVEC)

    International Nuclear Information System (INIS)

    Porowska, H.; Paszkiewicz-Gadek, A.; Wosek, J.; Wnuczko, K.; Szczepanski, M.; Rusak, M.

    2010-01-01

    Mucin 1 (MUC1) is a membrane-bound glycoprotein that is expressed by various epithelial cell types. MUC1 functions include modulation of cell adhesion, signal transduction, lubrication and hydration of epithelial surfaces, and their protection from infection. In this study we demonstrated that MUC1 is expressed in human umbilical vein endothelial cells (HUVECs) and could be released/shed from cellular membrane. MUC1 presence in these cells was verified using three methods: Western blotting, flow cytometry and metabolic labeling. We also showed that mucin expression is stimulated by proinflammatory cytokines: about a 2-fold increase was observed after TNF-alpha treatment and lower after IFN-gamma alone and in combination with TNF-alpha treatment. It can be assumed that the presence of MUC1 in endothelial cells may have an important role in the interactions with different cell types in physiological and pathological processes. (authors)

  20. Immunoglobulin G (IgG) Expression in Human Umbilical Cord Endothelial Cells

    Science.gov (United States)

    Zhao, Yingying; Liu, Yuxuan; Chen, Zhengshan; Korteweg, Christine; Gu, Jiang

    2011-01-01

    Traditional views hold that immunoglobulin G (IgG) in the human umbilical cord is internalized by human umbilical endothelial cells for passive immunity. In this study, the protein and mRNA transcripts of IgG were found in the cytoplasm of human umbilical endothelial cells by immunohistochemistry, in situ hybridization, and reverse transcription PCR (RT-PCR). The essential enzymes for IgG synthesis and assembling, RAG1 (recombination activating gene 1), RAG2, and variable (V), diversity (D), and joining (J) segments for recombination of IgG, were also found in these cells by RT-PCR and real-time PCR. These results indicate that umbilical endothelial cells are capable of synthesizing IgG with properties similar to those of immune cells and that they may play additional roles besides lining the vessels and transporting IgG. PMID:21430258

  1. Organizational behavior of human umbilical vein endothelial cells.

    Science.gov (United States)

    Maciag, T; Kadish, J; Wilkins, L; Stemerman, M B; Weinstein, R

    1982-09-01

    Culture conditions that favor rapid multiplication of human umbilical vein endothelial cells (HUV-EC) also support long-term serial propagation of the cells. This is routinely achieved when HUV-EC are grown in Medium 199 (M-199) supplemented with fetal bovine serum (FBS) and endothelial cell growth factor (ECGF), on a human fibronectin (HFN) matrix. The HUV-EC can shift from a proliferative to an organized state when the in vitro conditions are changed from those favoring low density proliferation to those supporting high density survival. When ECGF and HFN are omitted, cultures fail to achieve confluence beyond the first or second passage: the preconfluent cultures organize into tubular structures after 4-6 wk. Some tubes become grossly visible and float in the culture medium, remaining tethered to the plastic dish at either end of the tube. On an ultrastructural level, the tubes consist of cells, held together by junctional complexes, arranged so as to form a lumen. The smallest lumens are formed by one cell folding over to form a junction with itself. The cells contain Weibel-Palade bodies and factor VIII-related antigen. The lumens contain granular, fibrillar and amorphous debris. Predigesting the HFN matrix with trypsin (10 min, 37 degrees C) or plasmin significantly accelerates tube formation. Thrombin and plasminogen activator had no apparent effect. Disruption of the largest tubes with trypsin/EDTA permits the cells to revert to a proliferative state if plated on HFN, in M-199, FBS, and ECGF. These observations indicate that culture conditions that do not favor proliferation permit attainment of a state of nonterminal differentiation (organization) by the endothelial cell. Furthermore, proteolytic modification of the HFN matrix may play an important role in endothelial organization.

  2. Impact of ethanol, dry care and human milk on the time for umbilical cord separation

    International Nuclear Information System (INIS)

    Golshan, M.; Hossein, N.

    2013-01-01

    Objective: To compare the extraction time and infection rate of umbilical cord by applying ethanol, human milk or dry care. Method: The parallel single-blinded randomised clinical trial was performed on 300 neonates at Shahid Sadougi University of Medical Sciences and Health Service, Yazd, Iran, between March and September 2010. The neonates were divided into three random but numerically equal groups. Each group was assigned the application of ethanol or mother's milk or to keep the stump dry. The neonates were visited on the 3rd and the 7th day after birth and follow-up was maintained telephonically until umbilical separation. Umbilical separation time and umbilical local infection frequency were considered as the study outcome, which was compared among the three groups according to age, gender and delivery type of the neonates. Results: Umbilical separation time in neonates of the human milk group had significant difference with the ethanol group (p=0.0001) and drying groups (p=0.003). Frequency of omphalitis had no significant difference among the three groups. Conclusion: Topical usage of human milk on umbilical cord stamp decreased separation time and incidence rate of omphalitis. (author)

  3. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  4. In vitro differentiation of human umbilical cord blood mesenchymal ...

    African Journals Online (AJOL)

    May H. Hasan

    2016-08-05

    Aug 5, 2016 ... Abstract Mesenchymal stem cells (MSCs) were isolated by gradient density centrifugation from umbilical cord blood. Spindle-shaped adherent cells were permitted to grow to 70% confluence in primary culture media which was reached by day 12. Induction of differentiation started by cul- turing cells with ...

  5. In vitro differentiation of human umbilical cord blood mesenchymal ...

    African Journals Online (AJOL)

    Mesenchymal stem cells (MSCs) were isolated by gradient density centrifugation from umbilical cord blood. Spindle-shaped adherent cells were permitted to grow to 70% confluence in primary culture media which was reached by day 12. Induction of differentiation started by culturing cells with differentiation medium ...

  6. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kadivar, Mehdi; Khatami, Shohreh; Mortazavi, Yousef; Shokrgozar, Mohammad Ali; Taghikhani, Mohammad; Soleimani, Masoud

    2006-01-01

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric α-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty

  7. [Effects of catalase on human umbilical cord mesenchymal stem cells].

    Science.gov (United States)

    Hu, Lin-Ping; Gao, Ying-Dai; Zheng, Guo-Guang; Shi, Ying-Xu; Xie, Yin-Liang; Liu, Yong-Jun; Yuan, Wei-Ping; Cheng, Tao

    2010-04-01

    This study was aimed to investigate the growth and multiple differentiation potential of human umbilical cord tissue derived mesenchymal stem cells (UC-MSCs) transfected by a retroviral vector with catalase (CAT) gene. The UC-MSCs cultured in vitro were transfected by using pMSCV carrying GFP (pMSCV-GFP) and pMSCV carrying CAT (pMSCV-GFP-CAT) respectively, then the MSC-GFP cell line and MSC-GFP-CAT cell line were obtained by sorting of flow cytometry. The GFP expression was observed by a fluorescent microscopy at 48 hours after CAT gene transfection. The GFP+ cells were sorted by flow cytometry. The activity of CAT in GFP+ cells was detected by catalase assay kit. The proliferative capacity of transfected UC-MSCs was determined by cell counting kit-8. The differentiation ability of gene-transfected GFP+ cells into osteogenesis and adipogenesis was observed by von Kossa and oil red O staining. The results indicated that green fluorescence in UC-MSCs was observed at 48 hours after transfection, and the fluorescence gradually enhanced to a steady level on day 3. The percentage of MSCs-GFP was (25.54+/-8.65)%, while the percentage of MSCs-GFP-CAT was (35.4+/-18.57)%. The activity of catalase in UC-MSCs, MSCs-GFP, MSCs-GFP-CAT cells were 19.5, 20.3, 67.2 U, respectively. The transfected MSCs-GFP-CAT could be induced into osteoblasts and adipocytes. After 21 days, von Kossa staining showed induced osteoblasts. Many lipid droplets with high refractivity occurred in cytoplasm of the transfected UC-MSCs, and showed red fat granules in oil red O staining cells. There were no significant differences between transfected and non-transfected UC-MSCs cells (p>0.05). It is concluded that UC-MSCs are successfully transfected by retrovirus carrying GFP or CAT gene, the activity of catalase increased by 3.4-fold. The transfected UC-MSCs maintain proliferation potential and ability of differentiation into osteoblasts and adipocytes.

  8. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    Science.gov (United States)

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  9. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    Science.gov (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  10. Expression of epithelial markers by human umbilical cord stem cells. A topographical analysis.

    Science.gov (United States)

    Garzón, I; Alfonso-Rodríguez, C A; Martínez-Gómez, C; Carriel, V; Martin-Piedra, M A; Fernández-Valadés, R; Sánchez-Quevedo, M C; Alaminos, M

    2014-12-01

    Human umbilical cord stem cells have inherent differentiation capabilities and potential usefulness in regenerative medicine. However, the epithelial differentiation capability and the heterogeneity of these cells have not been fully explored to the date. We analyzed the expression of several undifferentiation and epithelial markers in cells located in situ in different zones of the umbilical cord -in situ analysis- and in primary ex vivo cell cultures of Wharton's jelly stem cells by microarray and immunofluorescence. Our results demonstrated that umbilical cord cells were heterogeneous and had intrinsic capability to express in situ stem cell markers, CD90 and CD105 and the epithelial markers cytokeratins 3, 4, 7, 8, 12, 13, 19, desmoplakin and zonula occludens 1 as determined by microarray and immunofluorescence, and most of these markers remained expressed after transferring the cells from the in situ to the ex vivo cell culture conditions. However, important differences were detected among some cell types in the umbilical cord, with subvascular zone cells showing less expression of stem cell markers and cells in Wharton's jelly and the amnioblastic zones showing the highest expression of stem cells and epithelial markers. These results suggest that umbilical cord mesenchymal cells have intrinsic potential to express relevant epithelial markers, and support the idea that they could be used as alternative cell sources for epithelial tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Michael G Liska

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB cells with granulocyte-colony stimulating factor (G-CSF in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  12. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    International Nuclear Information System (INIS)

    Zhao Yong; Mazzone, Theodore

    2005-01-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-MΦ). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-MΦ (CB f-MΦ) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-MΦ (TCB f-MΦ) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1, Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-MΦ differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-MΦ and may lead to develop new therapeutic strategy for treating dominant disease

  13. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    International Nuclear Information System (INIS)

    Wang, Ding; Chen, Ke; Du, Wei Ting; Han, Zhi-Bo; Ren, He; Chi, Ying

    2010-01-01

    Here, the effect of CD14 + monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-γ (IFN-γ) secretion capacities of CD4 + and CD8 + T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E 2 (PGE 2 ) as an important soluble mediator. CD14 + monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1β, either exogenously added or produced by CD14 + monocytes in culture, could trigger expression of high levels of PGE 2 by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE 2 expression, but also reversed the promotional effect of CD14 + monocytes and partially restored CD4 + and CD8 + T cell proliferation and IFN-γ secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  14. Tramadol differentially regulates M1 and M2 macrophages from human umbilical cord blood.

    Science.gov (United States)

    Zhang, Jun; Chen, Liang; Sun, Yunyun; Li, Yuanhai

    2017-03-17

    Tramadol is an analgesic drug and relieves pain through activating μ-opioid receptors and inhibiting serotonin and noradrenaline reuptake. Emerging evidence shows that it also stimulates immune cells, including NK cells, splenocytes, and lymphocytes, and elevates IL-2 production. However, it remains unknown whether and how tramadol directly affects macrophages. To answer these questions, we collected human umbilical cord blood, isolated macrophages, and examined their responses to tramadol. Although tramadol did not alter resting macrophages and the antigen-presenting function in lipopolysaccharide-activated macrophages, it regulated M1 and M2 macrophages, which are, respectively, transformed by IFN-γ and IL-4. Interestingly, tramadol inhibits production and secretion of cytokines in M1 macrophages, but facilitates the production of inflammation-responding molecules, synthesized in M2 macrophages. We also found that STAT6 cascade pathway in M2 macrophages was significantly enhanced by tramadol. Therefore, this study reveals that tramadol regulates inflammation by inhibiting M1 macrophages (killing process), but promoting the function of M2 macrophages (healing process).

  15. The human umbilical cord blood: a potential source for osteoblast progenitor cells

    DEFF Research Database (Denmark)

    Kjeldsen, Cecilia Rosada; Melsvik, Dorte; Ebbesen, Peter

    2003-01-01

    The presence of non-hematopoietic stem cells in the human umbilical cord blood (hUCB) is debated. In this study, we report the isolation of a population of fibroblast-like cells with osteogenic and adipogenic potential that resembles the stromal stem cells found in the bone marrow. Low...

  16. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo

    Science.gov (United States)

    Fan, Cungang; Wang, Dongliang; Zhang, Qingjun; Zhou, Jingru

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cell-based therapies are emerging as novel cell-based delivery vehicle for therapeutic agents. In the present study, we successfully isolated human umbilical cord mesenchymal stem cells by explant culture. The human umbilical cord senchymal stem cells were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cells as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cells demonstrated excellent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cells indicate that they may serve as a novel cellular vehicle for delivering therapeutic molecules in glioma therapy. PMID:25206518

  17. In vitro evaluation of the effects of human umbilical cord extracts on human fibroblasts, keratinocytes, and melanocytes.

    Science.gov (United States)

    Van Pham, Phuc; Dang, Loan Thi-Tung; Dinh, Uyen Thanh; Truong, Huyen Thi-Thu; Huynh, Ba Ngoc; Van Le, Dong; Phan, Ngoc Kim

    2014-04-01

    Skin aging is the result of internal and external factors. So-called photoaging has been identified as the major factor in skin aging. Effects of photoaging include inhibition of fibroblast and keratinocyte proliferation as well as collagen and fibronectin expression, while activating expression of collagenases such as matrix metalloproteinase-1. Previous studies have shown that extracts or products from human placenta significantly improve skin aging and chronic wound healing. However, there are few studies of umbilical cord extracts. Therefore, this study aimed to evaluate the effects of umbilical cord extract-derived formulae on three kinds of skin cells including fibroblasts, keratinocytes, and melanocytes. We prepared 20 formulae from intracellular umbilical cord extracts, extracellular umbilical cord extracts, and umbilical cord-derived stem cell extracts, as well as five control formulae. We evaluated the effects of the 25 formulae on fibroblast and keratinocyte proliferation, and expression of collagen I, fibronectin, and matrix metalloproteinase-1 in fibroblasts and tyrosinase in melanocytes. The results showed that 7.5% formula 35 was the most effective formula for promotion of fibroblast and keratinocyte proliferation. At this concentration, formula 35 also induced collagen expression and inhibited matrix metalloproteinase-1 expression at the transcriptional level. However, this formula had no effect on tyrosinase expression in melanocytes. These results demonstrate that umbilical cord extracts can serve as an attractive source of proteins for skincare and chronic wound healing products.

  18. Induced thyme product prevents VEGF-induced migration in human umbilical vein endothelial cells.

    Science.gov (United States)

    Krill, Diane; Madden, John; Huncik, Kevin; Moeller, Peter D

    2010-12-17

    Compounds with anti-angiogenic properties are useful in combating cancer by preventing new blood vessel formation to support the tumor. In this report we introduce a rapid method for screening potential anti-angiogenic compounds in a model system that stimulates the production of secondary defense chemicals in plants. This methodology identified an inducible vascular factor (IVF3), which was found to be inhibitory in all of the model systems tested. Thyme plants were exposed to highly vascular mint plants and the methanol extracts were analyzed by reverse phase HPLC. The thyme compounds induced by the invading mint tissue, and not present in the thyme plants grown alone, were tested in a vertical plate assay measuring root length as a quantitative assay for drug sensitivity. The HPLC-purified extract, referred to as IVF3, reduced the growth of root vascular tissue compared to the control and vehicle control, and 50% as well as known angiogenesis inhibitors, VEGF receptor tyrosine kinase inhibitor and amiloride hydrochloride. Extracted compounds that were effective inhibitors of plant roots were assayed in Madin Darby canine kidney epithelial cells (MDCK) for toxicity, and in human umbilical vein endothelial cells (HUVEC) for their effect on migration. IVF3 was effective at limiting HUVEC migration in VEGF-stimulated cultures. In vivo video capture of intersegmental vessel circulation between 48 and 72 h post fertilization in the developing vasculature of zebrafish embryos showed IVF3 also significantly reduced ISV functional circulation. This report demonstrates the anti-angiogenic effects of IVF3 extract in endothelial cells and in an intact vertebrate model for angiogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding, E-mail: qqhewd@gmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Chen, Ke, E-mail: chenke_59@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Du, Wei Ting, E-mail: duwtpumc@yahoo.com.cn [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); Han, Zhi-Bo, E-mail: zhibohan@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Ren, He, E-mail: knifesharp2000@hotmail.com [National Engineering Research Center of Cell Products, AmCellGene Co. Ltd, TEDA, Tianjin (China); Chi, Ying, E-mail: caizhuying@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); and others

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  20. Percutaneous transplantation of human umbilical cord-derived mesenchymal stem cells in a dog suspected to have fibrocartilaginous embolic myelopathy

    OpenAIRE

    Chung, Wook-Hun; Park, Seon-Ah; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Kang, Eun-Hee; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Hwang, Soo-Han; Han, Hoon; Kim, Hwi-Yool

    2013-01-01

    The use of human umbilical cord blood-derived mesenchymal stem cells for cell transplantation therapy holds great promise for repairing spinal cord injury. Here we report the first clinical trial transplantation of human umbilical cord (hUCB)-derived mesenchymal stem cells (MSCs) into the spinal cord of a dog suspected to have fibrocartilaginous embolic myelopathy (FCEM) and that experienced a loss of deep pain sensation. Locomotor functions improved following transplantation in a dog. Based ...

  1. Human umbilical cord blood mononuclear cell transplantation for delayed encephalopathy after carbon monoxide intoxication

    Directory of Open Access Journals (Sweden)

    Gong D

    2013-08-01

    Full Text Available Dianrong Gong,1 Haiyan Yu,1 Weihua Wang,2 Haixin Yang,1 Fabin Han1,21Department of Neurology, 2Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital, The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of ChinaAbstract: Stem cell transplantation is one of the potential treatments for neurological disorders. Since human umbilical cord stem cells have been shown to provide neuroprotection and promote neural regeneration, we have attempted to transplant the human umbilical cord blood mononuclear cells (hUCB-MNCs to treat patients with delayed encephalopathy after carbon monoxide intoxication (DEACOI. The hUCB-MNCs were isolated from fresh umbilical cord blood and were given to patients subarachnoidally. Physical examinations, mini-mental state examination scores, and computed tomography scans were used to evaluate the improvement of symptoms, signs, and pathological changes of the patient's brain before and after hUCB-MNC transplantation. A total of 12 patients with DEACOI were treated with hUCB-MNCs in this study. We found that most of the patients have shown significant improvements in movement, behavior, and cognitive function, and improved brain images in 1–4 months from the first transplantation of hUCB-MNCs. None of these patients have been observed to have any severe adverse effects. Our study suggests that the hUCB-MNC transplantation may be a safe and effective treatment for DEACOI. Further studies and clinical trials with more cases, using more systematic scoring methods, are needed to evaluate brain structural and functional improvements in patients with DEACOI after hUCB-MNC therapy.Keywords: human umbilical cord blood mononuclear cells, transplantation, delayed encephalopathy after carbon monoxide intoxication, MMSE

  2. Comparison between mechanical properties of human saphenous vein and umbilical vein

    Directory of Open Access Journals (Sweden)

    Hamedani Borhan

    2012-08-01

    Full Text Available Abstract Background As a main cause of mortality in developed countries, Coronary Artery Disease (CAD is known as silent killer with a considerable cost to be dedicated for its treatment. Coronary Artery Bypass Graft (CABG is a common remedy for CAD for which different blood vessels are used as a detour. There is a lack of knowledge about mechanical properties of human blood vessels used for CABG, and while these properties have a great impact on long-term patency of a CABG. Thus, studying these properties, especially those of human umbilical veins which have not been considered yet, looks utterly necessary. Methods Umbilical vein, as well as human Saphenous vein, are respectively obtained after cesarean and CABG. First, histological tests were performed to investigate different fiber contents of the samples. Having prepared samples carefully, force-displacement results of samples were rendered to real stress–strain measurements and then a fourth-order polynomial was used to prove the non-linear behavior of these two vessels. Results Results were analyzed in two directions, i.e. circumferentially and longitudinally, which then were compared with each other. The comparison between stiffness and elasticity of these veins showed that Saphenous vein’s stiffness is much higher than that of umbilical vein and also, it is less stretchable. Furthermore, for both vessels, longitudinal stiffness was higher than that of circumferential and in stark contrast, stretch ratio in circumferential direction came much higher than longitudinal orientation. Conclusion Blood pressure is very high in the region of aorta, so there should be a stiff blood vessel in this area and previous investigations showed that stiffer vessels would have a better influence on the flow of bypass. To this end, the current study has made an attempt to compare these two blood vessels’ stiffness, finding that Saphenous vein is stiffer than umbilical vein which is somehow as stiff as

  3. Comparative Proteomic Profile of the Human Umbilical Cord Blood Exosomes between Normal and Preeclampsia Pregnancies with High-Resolution Mass Spectrometry

    OpenAIRE

    Ruizhe Jia; Jingyun Li; Can Rui; Hui Ji; Hongjuan Ding; Yuanqing Lu; Wei De; Lizhou Sun

    2015-01-01

    Background/Aims: Exosomes are extracellular vesicles that are involved in several biological processes. The roles of proteins from human umbilical cord blood exosomes in the pathogenesis of preeclampsia remains poorly understood. Methods: In this study, we used high-resolution LC-MS/MS technologies to construct a comparative proteomic profiling of human umbilical cord blood exosomes between normal and preeclamptic pregnancies. Results: A total of 221 proteins were detected in human umbilical ...

  4. CREG Promotes the Proliferation of Human Umbilical Vein Endothelial Cells through the ERK/Cyclin E Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xinliang Ma

    2013-09-01

    Full Text Available Cellular repressor of E1A-stimulated genes (CREG is a recently discovered secreted glycoprotein involved in homeostatic modulation. We previously reported that CREG is abundantly expressed in the adult vascular endothelium and dramatically downregulated in atherosclerotic lesions. In addition, CREG participates in the regulation of apoptosis, inflammation and wound healing of vascular endothelial cells. In the present study, we attempted to investigate the effect of CREG on the proliferation of vascular endothelial cells and to decipher the underlying molecular mechanisms. Overexpression of CREG in human umbilical vein endothelial cells (HUVEC was obtained by infection with adenovirus carrying CREG. HUVEC proliferation was investigated by flow cytometry and 5-bromo-2'-deoxy-uridine (BrdU incorporation assays. The expressions of cyclins, cyclin-dependent kinases and signaling molecules were also examined. In CREG-overexpressing cells, we observed a marked increase in the proportion of the S and G2 population and a decrease in the G0/G1 phase population. The number of BrdU positively-stained cells also increased, obviously. Furthermore, silencing of CREG expression by specific short hairpin RNA effectively inhibited the proliferation of human umbilical vein endothelial cells (HUVEC. CREG overexpression induced the expression of cyclin E in both protein and mRNA levels to regulate cell cycle progression. Further investigation using inhibitor blocking analysis identified that ERK activation mediated the CREG modulation of the proliferation and cyclin E expression in HUVEC. In addition, blocking vascular endothelial growth factor (VEGF in CREG-overexpressed HUVEC and supplementation of VEGF in CREG knocked-down HUVEC identified that the pro-proliferative effect of CREG was partially mediated by VEGF-induced ERK/cyclin E activation. These results suggest a novel role of CREG to promote HUVEC proliferation through the ERK/cyclin E signaling pathway.

  5. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  6. IMPACT OF MECHANICAL MYOCARDIAL INJURY PRODUCTS, LPS AND THEIR COMBINATION ON HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    V. G. Matveeva

    2014-01-01

    Full Text Available Complicated systemic inflammatory response (SIR often determines the outcome in patients after cardiac surgery. Systemic endothelial activation plays the most important role in SIR pathogenesis. We have studied the impact of mechanical myocardial injury products, LPS and their combination on human umbilical vein endothelial cells (HUVEC. We have found that HUVEC increase the production of proinflammatory cytokines in response tocardiomyocyte cytosolic fraction responsible for mechanical injury modeling. 2% cytosolic fraction containing 0.204 ng/mL of Hsp70 was a greater stimulus for endothelial cells to produce IL-6 and IL8 than moderateendotoxin concentrations.

  7. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  8. Babesia bovis: expression of adhesion molecules in bovine umbilical endothelial cells stimulated with plasma from infected cattle

    Directory of Open Access Journals (Sweden)

    Marlene I. Vargas

    2014-10-01

    Full Text Available Ten male, 12-month-old Jersey with intact spleens, serologically and parasitologically free from Babesia were housed individually in an arthropod-free isolation system from birth and throughout entire experiment. The animals were randomly divided into two groups. Five animals (group A were intravenously inoculated with 6.6 X10(7 red blood cells parasitized with pathogenic sample of Babesia bovis (passage 7 BboUFV-1, for the subsequent "ex vivo" determination of the expression of adhesion molecules. Five non-inoculated animals (group B were used as the negative control. The expression of the adhesion molecules ICAM-1, VCAM, PECAM-1 E-selectin and thrombospondin (TSP was measured in bovine umbilical vein endothelial cells (BUVECs. The endothelial cells stimulated with a pool of plasma from animals infected with the BboUFV-1 7th passage sample had a much more intense immunostaining of ICAM-1, VCAM, PECAM-1 E-selectin and TSP, compared to the cells which did not received the stimulus. The results suggest that proinflammatory cytokines released in the acute phase of babesiosis may be involved in the expression of adhesion molecules thereby implicating them in the pathophysiology of babesiosis caused by B. bovis.

  9. Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering.

    Science.gov (United States)

    Diao, Yinze; Ma, Qingjun; Cui, Fuzhai; Zhong, Yanfeng

    2009-10-01

    Mesenchymal stem cells (MSCs) are ideal seed cells for bone tissue engineering. However, intrinsic deficiencies exist for the autologous transplantation strategy of constructing artificial bone with MSCs derived from bone marrow of patients. In this study, MSCs-like cells were isolated from human umbilical cords and were expanded in vitro. Flow cytometric analysis revealed that cells from the fourth passage were positive for CD29, CD44, CD71, CD73, CD90, and CD105 whereas they were negative for CD14, CD34, CD45, and CD117. Furthermore, these cells expressed HLA-A, B, C (MHC-I), but not HLA-DP, DQ, DR (MHC-II), or costimulatory molecules such as CD80 and CD86. Following incubation in specific inductive media for 3 weeks, cultured cells were shown to possess potential to differentiate into adipogenic, osteogenic or chondrogenic lineages in vitro. The umbilical cord-derived MSCs (UC-MSCs) were loaded with a biomimetic artificial bone scaffold material before being implanted subcutaneously in the back of Balb/c nude mice for four to twelve weeks. Our results revealed that UC-MSCs loaded with the scaffold displayed capacity of osteogenic differentiation leading to osteogenesis with human origin in vivo. As a readily available source of seed cells for bone tissue engineering, UC-MSCs should have broad application prospects.

  10. Percutaneous transplantation of human umbilical cord-derived mesenchymal stem cells in a dog suspected to have fibrocartilaginous embolic myelopathy.

    Science.gov (United States)

    Chung, Wook-Hun; Park, Seon-Ah; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Kang, Eun-Hee; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Hwang, Soo-Han; Han, Hoon; Kim, Hwi-Yool

    2013-01-01

    The use of human umbilical cord blood-derived mesenchymal stem cells for cell transplantation therapy holds great promise for repairing spinal cord injury. Here we report the first clinical trial transplantation of human umbilical cord (hUCB)-derived mesenchymal stem cells (MSCs) into the spinal cord of a dog suspected to have fibrocartilaginous embolic myelopathy (FCEM) and that experienced a loss of deep pain sensation. Locomotor functions improved following transplantation in a dog. Based on our findings, we suggest that transplantation of hUCB-derived MSCs will have beneficial therapeutic effects on FCEM patients lacking deep pain sensation.

  11. Microcystins Induces Vascular Inflammation in Human Umbilical Vein Endothelial Cells via Activation of NF-κB

    Directory of Open Access Journals (Sweden)

    Jun Shi

    2015-01-01

    Full Text Available Microcystins (MCs produced by toxic cyanobacteria cause serious water pollution and public health hazard to humans and animals. However, direct molecular mechanisms of MC-LR in vascular endothelial cells (ECs have not been understood yet. In this study, we investigated whether MC-LR induces vascular inflammatory process in cultured human umbilical vein endothelial cells (HUVECs. Our data demonstrated that MC-LR decreased HUVECs proliferation and tube formation and enhanced apoptosis. MC-LR also induced intracellular reactive oxygen species formation (ROS in HUVECs. The MC-LR directly stimulated phosphorylation of NF-κB. Furthermore, MC-LR also increased cell adhesion molecules (ICAM-1 and VCAM-1 expression in HUVECs. Taken together, the present data suggested that MC-LR induced vascular inflammatory process, which may be closely related to the oxidative stress, NF-κB activation, and cell adhesion molecules expression in HUVECs. Our findings may highlight that MC-LR causes potential damage to blood vessels.

  12. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  13. Scheduled transplantation of human umbilical cord blood to severe combined immunodeficient mice

    International Nuclear Information System (INIS)

    Wu Jianqiu; Yang Yunfang; Jin Zhijun; Cai Jianming; Yang Rujun; Xiang Yingsong

    2000-01-01

    Objective: To explore a new method for developing the efficiency of human umbilical cord blood (UCB) cells engraftment, and further understand the growth characteristic of hematopoietic stem cells (HSC) in vivo. Methods: Sublethally irradiated severe combined immunodeficient (SCID) mice were transplanted i.v. with UCB cells which had been cryo-preserved at -80 degree C. The human cells in recipient mice were detected by flow cytometry and CFU-GM assay. Results: In contrast to the single transplantation, scheduled engraftment of similar numbers of UCB cells resulted in a proportionally obvious increase in the percentages of CD45 + , CD34 + cells produced in SCID mouse bone marrow (BM). When the donor cells were reduced to 20 percent, an identical reconstitution of both hematopoietic and part of immunologic functions was achieved. Conclusion: Scheduled engraftment improves the repopulating ability of HSC, which would provide a novel way for clinical cord blood engraftment in adult objects

  14. Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China.

    Science.gov (United States)

    Yu, Yanxin; Wang, Xilong; Wang, Bin; Tao, Shu; Liu, Wenxin; Wang, Xuejun; Cao, Jun; Li, Bengang; Lu, Xiaoxia; Wong, Ming H

    2011-12-01

    This paper provides the results of an investigation on dietary intakes and internal doses of polycyclic aromatic hydrocarbons (PAHs) for nonsmoking women from Beijing, China. Concentrations of PAHs were measured by gas chromatography/mass spectrometry (GC/MS) for human milk, placenta, and umbilical cord blood samples from 40 nonsmoking women and for 144 composite food samples covering major food categories. Information on food consumption and estimated ingestion doses of PAHs by the cohort was also collected individually. Relationship among the studied human samples and relative importance of breastfeeding to the total exposure dose of infants were addressed. The median (mean and standard deviation) total concentrations of 15 PAHs in human milk, placenta, and umbilical cord blood with (or without) fat normalization were 278 (9.30 ± 5.75), 819 (35.9 ± 15.4), and 1370 (5.521 ± 3.71) ng/g of fat, respectively, and the corresponding levels of benzo[a]pyrene equivalent (B[a]P(equiv)) were 11.2 (0.473 ± 0.605), 16.2 (0.717 ± 0.318), and 13.1 (0.140 ± 0.225) ng/g of fat, respectively. The calculated intake of B[a]P(equiv) by Beijing cohort varied from 0.609 to 4.69 ng·kg(-1)·day(-1) with a median value of 1.93 (2.09 ± 0.921 mean ± standard deviation) ng·kg(-1)·day(-1). Significant correlations were found among human milk, placenta, and umbilical cord blood (p 0.05). Ingested doses of PAHs (3.00-102 ng·kg(-1)·day(-1)), which were much higher than the inhaled doses (0.152-8.50 ng·kg(-1)·day(-1)), were 3-4 orders of magnitude lower than the recommended reference doses, unlikely to impose any obvious risk based on current knowledge.

  15. Cytoprotective role of astaxanthin against glycated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Nishigaki, Ikuo; Rajendran, Peramaiyan; Venugopal, Ramachandran; Ekambaram, Gnapathy; Sakthisekaran, Dhanapal; Nishigaki, Yutaka

    2010-01-01

    Astaxanthin (ASX), a red carotenoid pigment with no pro-vitamin A activity, is a biological antioxidant that occurs naturally in a wide variety of plants, algae and seafoods. This study investigated whether ASX could inhibit glycated protein/iron chelate-induced toxicity in human umbilical-vein endothelial cells (HUVEC) by interfering with ROS generation in these cells. Glycated fetal bovine serum (GFBS) was prepared by incubating fetal bovine serum (FBS) with high-concentration glucose. Stimulation of cultured HUVECs with 50 mm 1 mL of GFBS significantly enhanced lipid peroxidation and decreased antioxidant enzyme activities and levels of phase II enzymes. However, preincubation of the cultures with ASX resulted in a marked decrease in the level of lipid peroxide (LPO) and an increase in the levels of antioxidant enzymes in an ASX concentration-dependent manner. These results demonstrate that ASX could inhibit LPO formation and enhance the antioxidant enzyme status in GFBS/iron chelate-exposed endothelial cells by suppressing ROS generation, thereby limiting the effects of the AGE-RAGE interaction. The results indicate that ASX could have a beneficial role against glycated protein/iron chelate-induced toxicity by preventing lipid and protein oxidation and increasing the activity of antioxidant enzymes. (c) 2009 John Wiley & Sons, Ltd.

  16. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Science.gov (United States)

    Zhang, Zhong-jun; Li, Ya-jun; Liu, Xiao-guang; Huang, Feng-xiao; Liu, Tie-jun; Jiang, Dong-mei; Lv, Xue-man; Luo, Min

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. PMID:26330839

  17. Inhibitory effects of Vietnamese medicinal plants on tube-like formation of human umbilical venous cells.

    Science.gov (United States)

    Nam, Nguyen-Hai; Kim, Hwan-Mook; Bae, Ki-Hwan; Ahn, Byung-Zun

    2003-02-01

    Seven of 58 plant materials from Vietnamese medicinal plants showed strong to moderate inhibitory activity on the tube-like formation induced by human umbilical venous endothelial cells in the in vitro angiogenesis assay. These plant materials include the herb of Ephedra sinica, leaves and stem of Ceiba pentandra, seed of Coix lachryma-jobi, rhizome of Drynaria fortunei, fruits and stem of Illicium verum and stem of Bombax ceiba. Of these, the methanol extracts of the herb of Ephedra sinica and stem of -Ceiba pentandra exhibited the strongest activities with inhibition percentages of 89.3% and 87.5% at 30 and 100 microgram/mL, respectively. Copyright 2003 John Wiley & Sons, Ltd.

  18. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Høgh, Mette; Tannetta, D; Sargent, I

    2006-01-01

    Objective Syncytiotrophoblast membrane fragments (STBM) exist in the peripheral circulation in pregnant women and it has been shown that the level of circulating STBM is significantly increased with pre-eclampsia compared with uncomplicated pregnancies. STBM could be one of the factors which...... directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. Design Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... results. Results Overall, the results do not show any great changes in gene expression in endothelial cells after STBM treatment (28 genes changed two-fold or more out of approximately 10 000 genes examined by microarray). In general, the changes observed are consistent with inhibition of proliferation...

  19. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells

    DEFF Research Database (Denmark)

    Hoegh, A M; Tannetta, D; Sargent, I

    2006-01-01

    OBJECTIVE: Syncytiotrophoblast membrane fragments (STBM) exist in the peripheral circulation in pregnant women and it has been shown that the level of circulating STBM is significantly increased with pre-eclampsia compared with uncomplicated pregnancies. STBM could be one of the factors which...... directly causes the endothelial cell dysfunction of pre-eclampsia. This study investigates the effect of STBM on endothelial cell gene expression. DESIGN: Human umbilical vein endothelial cells were cultured in the presence and absence of STBM. At specified time points, total RNA was purified from...... results. RESULTS: Overall, the results do not show any great changes in gene expression in endothelial cells after STBM treatment (28 genes changed two-fold or more out of approximately 10,000 genes examined by microarray). In general, the changes observed are consistent with inhibition of proliferation...

  20. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  1. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  2. Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves.

    Science.gov (United States)

    Sodian, Ralf; Schaefermeier, Philipp; Abegg-Zips, Sybille; Kuebler, Wolfgang M; Shakibaei, Mehdi; Daebritz, Sabine; Ziegelmueller, Johannes; Schmitz, Christoph; Reichart, Bruno

    2010-03-01

    Tissue engineering of autologous heart valves with the potential to grow and to remodel represents a promising concept. Here we describe the use of cryopreserved umbilical cord blood-derived CD133(+) cells as a single cell source for the tissue engineering of heart valves. After expansion and differentiation of CD133(+) cells, phenotypes were analyzed by immunohistochemistry and cryopreserved. Heart valve scaffolds fabricated from a biodegradable polymer (n = 8) were seeded with blood-derived myofibroblasts and subsequently coated with blood-derived endothelial cells. Afterward, the heart valve constructs were grown in a pulse duplicator system. Analysis of all heart valves, including histology, immunohistochemistry, electron microscopy, fluorescence imaging, and biochemical and biomechanical examination, was performed. The tissue-engineered heart valves showed endothelialized layered tissue formation including connective tissue between the inside and the outside of the scaffold. The notion of an intact endothelial phenotype was substantiated by fluorescence imaging studies of cellular nitric oxide production and Ca(2+) signaling. Electron microscopy showed that the cells had grown into the pores and formed a confluent tissue layer. Biochemical examination showed extracellular matrix formation (77% +/- 9% collagen of human pulmonary leaflet tissue [HPLT], 85% +/- 61% glycosaminoglycans of HPLT and 67% +/- 17% elastin of HPLT). Importantly, this study demonstrates in vitro generation of viable human heart valves based on CD133(+) cells derived from umbilical cord blood. These findings constitute a significant step forward in the development of new clinical strategies for the treatment of congenital defects. 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. TSLP promotes angiogenesis of human umbilical vein endothelial cells by strengthening the crosstalk between cervical cancer cells and eosinophils.

    Science.gov (United States)

    Zhang, Bing; Wei, Chun-Yan; Chang, Kai-Kai; Yu, Jia-Jun; Zhou, Wen-Jie; Yang, Hui-Li; Shao, Jun; Yu, Jin-Jin; Li, Ming-Qing; Xie, Feng

    2017-12-01

    Our previous study demonstrated that thymic stromal lymphopoietin (TSLP) secreted by cervical cancer cells promotes angiogenesis and recruitment, and regulates the function of eosinophils (EOS). However, the function of TSLP in the crosstalk between EOS and vascular endothelial cells in cancer lesions remains unknown. The aim of the present study was to investigate the effect of EOS caused by TSLP in in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs). The results of the present study revealed that recombinant human TSLP protein (rhTSLP) increased the secretion of vascular endothelial growth factor (VEGF), but not fibroblast growth factors, in HL-60-eosinophils (HL-60E). Compared with cervical cancer cells (HeLa or CasKi cells) or HL-60E alone, there were increased levels of interleukin (IL)-8 and VEGF in the co-culture system between cervical cancer cells, and HL-60E cells. This effect was strengthened by rhTSLP, but inhibited by inhibiting the TSLP signal with anti-human TSLP or TSLP receptor neutralizing antibodies. The results of the tube formation assays revealed that treatment with the supernatant from cervical cancer cells and/or HL-60E resulted in an increase in angiogenesis in HUVECs, which could be decreased by TSLP or TSLPR inhibitors. The results of the present study suggested that TSLP derived of cervical cancer cells may indirectly stimulate angiogenesis of HUVECs, by upregulating IL-8 and VEGF production, in a co-culture model between cervical cancer cells and EOS, therefore promoting the development of cervical cancer.

  4. Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells.

    Science.gov (United States)

    Salehinejad, Parvin; Alitheen, Noorjahan Banu; Nematollahi-Mahani, Seyed Noureddin; Ali, Abdul Manaf; Omar, Abdul Rahman; Janzamin, Ehsan; Hajghani, Masoomeh

    2012-09-01

    Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media. We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups. The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h. Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

  5. Human Umbilical Cord Blood Serum Has Higher Potential in Inducing Proliferation of Fibroblast than Fetal Bovine Serum

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2017-09-01

    Full Text Available Background: Cytokines and growth factors were reported to play an important role in stimulating fibroblast proliferation. In vitro culture, fibroblast is mostly culture in medium containing fetal bovine serum (FBS.  Human umbilical cord blood (hUCB has been reported to have low immunogenic property and potential in wound healing, so therefore hUCB serum (hUCBS could be potential and were investigated in current study. Materials and Methods: Five hUCBs were collected from healthy volunteers with normal delivering procedure. hUCB was ex utero immediately collected from umbilical vein in vacutainers and processed. NIH3T3 cells were cultured in DMEM with 10% FBS or 5-20% hUCBS for 48 hours. Cells were then quantified using MTT assay. Protein concentration of FBS and hUCBS were quantified using Bradford assay. Results: NIH3T3 cells density grown in DMEM with 10% FBS was the lowest. NIH3T3 cells densities were increased along with the increment of hUCBS concentrations. MTT results showed that average number of NIH3T3 cells grown in DMEM with 10% FBS was 6,185±1,243. Meanwhile average numbers of NIH3T3 cells grown in DMEM with 5%, 10% and 20% hUCBS were 8,126±628, 9,685±313 and 12,200±304, respectively. Average numbers of NIH3T3 cells grown in DMEM with 5% hUCBS were significantly higher than the ones with 10% FBS (p=0.000. Bradford results showed that concentration of hUCBS was significantly higher than the one of FBS (p=0.000. Conclusion: hUCBS could induce higher proliferation rate of NIH3T3 cells than FBS. Hence hUCBS could be suggested as an alternate of FBS in inducing fibroblast. Keywords: NIH3T3, fibroblast, UCB, serum, FBS, proliferation

  6. Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles

    Directory of Open Access Journals (Sweden)

    Yu Q

    2015-11-01

    Full Text Available Qingtong Yu,1,2 Jin Cao,2 Baoding Chen,3 Wenwen Deng,2 Xia Cao,2 Jingjing Chen,2 Yan Wang,2 Shicheng Wang,2 Jiangnan Yu,2 Ximing Xu,2 Xiangdong Gao1 1School of Life Science and Technology, China Pharmaceutical University, Nanjing, 2Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, 3Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China Abstract: This study centered on an innovative application of Porphyra yezoensis polysaccharide (PPS with cationic modification as a safe and efficient nonviral gene vector to deliver a plasmid encoding human Wnt3a (pWnt3a into human umbilical cord mesenchymal stem cells (HUMSCs. After modification with branched low-molecular-weight (1,200 Da polyethylenimine, the cationized PPS (CPPS was combined with pWnt3a to form spherical nanoscale particles (CPPS-pWnt3a nanoparticles. Particle size and distribution indicated that the CPPS-pWnt3a nanoparticles at a CPPS:pWnt3a weight ratio of 40:1 might be a potential candidate for DNA plasmid transfection. A cytotoxicity assay demonstrated that the nanoparticles prepared at a CPPS:pWnt3a weight ratio of 40:1 were nontoxic to HUMSCs compared to those of Lipofectamine 2000 and polyethylenimine (25 kDa. These nanoparticles were further transfected to HUMSCs. Western blotting demonstrated that the nanoparticles (CPPS:pWnt3a weight ratio 40:1 had the greatest transfection efficiency in HUMSCs, which was significantly higher than that of Lipofectamine 2000; however, when the CPPS:pWnt3a weight ratio was increased to 80:1, the nanoparticle-treated group showed no obvious improvement in translation efficiency over Lipofectamine 2000. Therefore, CPPS, a novel cationic polysaccharide derived from P. yezoensis, could be developed into a safe, efficient, nonviral gene vector in a gene-delivery system. Keywords: Porphyra yezoensis, nanoparticle

  7. Isolation of Multipotent Mesenchymal Stromal Cells from Cryopreserved Human Umbilical Cord Tissue.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2016-02-01

    Umbilical cord stroma is an easily available, convenient, and promising source of multipotent mesenchymal stromal cells for regenerative medicine. Cryogenic storage of umbilical cord tissue provides more possibilities for further isolation of multipotent mesenchymal stromal cells for autologous transplantation or scientific purposes. Here we developed a protocol for preparation of the whole umbilical cord tissue for cryogenic storage that in combination with the previously described modified method of isolation of multipotent mesenchymal stromal cells allowed us to isolate cells with high proliferative potential, typical phenotype, and preserved differentiation potencies.

  8. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  9. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  10. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes.

    Science.gov (United States)

    Li, Xingfu; Duan, Li; Liang, Yujie; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2016-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs) and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2) and decreased type I collagen (COL1) protein expression levels. SRY-box 9 (SOX9) mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  11. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  12. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    Full Text Available Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs, and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2 acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI. UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.

  13. Simultaneous harvesting of endothelial progenitor cells and mesenchymal stem cells from the human umbilical cord.

    Science.gov (United States)

    Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu

    2018-01-01

    The human umbilical cord (UC) is usually discarded as biological waste. However, it has attracted interest as a source of cells including endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs), which have demonstrated enormous potential in regenerative medicine. The present study describes a convenient protocol that has been developed to sequentially extract these two cell types from a single UC. EPCs which had properties of progenitor cells were successfully isolated from the UC vein. These cells had cobble-shaped morphology and expressed Flt-1, KDR, VE-cadherin, von Willebrand factor and CD31 mRNA, in addition to CD73, CD105 and vascular endothelial growth factor receptor-2. In addition to absorbing fluorescent-labeled acetylated low density protein and binding to fluorescein isothiocyanate-UEA-l, they were able to form vascular tube-like structures on Matrigel. Typical fibroblast-like cells, which were isolated from the Wharton's jelly, were confirmed to be MSCs by their expression of CD73, CD90 and CD105, and their ability to differentiate into adipocytes and osteoblasts. Thus, the human UC-derived cells may be suitable for use in tissue engineering and cell therapy.

  14. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hass Ralf

    2010-07-01

    Full Text Available Abstract Following cultivation of distinct mesenchymal stem cell (MSC populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2 revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2. A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

  15. Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles.

    Science.gov (United States)

    Yu, Qingtong; Cao, Jin; Chen, Baoding; Deng, Wenwen; Cao, Xia; Chen, Jingjing; Wang, Yan; Wang, Shicheng; Yu, Jiangnan; Xu, Ximing; Gao, Xiangdong

    2015-01-01

    This study centered on an innovative application of Porphyra yezoensis polysaccharide (PPS) with cationic modification as a safe and efficient nonviral gene vector to deliver a plasmid encoding human Wnt3a (pWnt3a) into human umbilical cord mesenchymal stem cells (HUMSCs). After modification with branched low-molecular-weight (1,200 Da) polyethylenimine, the cationized PPS (CPPS) was combined with pWnt3a to form spherical nanoscale particles (CPPS-pWnt3a nanoparticles). Particle size and distribution indicated that the CPPS-pWnt3a nanoparticles at a CPPS:pWnt3a weight ratio of 40:1 might be a potential candidate for DNA plasmid transfection. A cytotoxicity assay demonstrated that the nanoparticles prepared at a CPPS:pWnt3a weight ratio of 40:1 were nontoxic to HUMSCs compared to those of Lipofectamine 2000 and polyethylenimine (25 kDa). These nanoparticles were further transfected to HUMSCs. Western blotting demonstrated that the nanoparticles (CPPS:pWnt3a weight ratio 40:1) had the greatest transfection efficiency in HUMSCs, which was significantly higher than that of Lipofectamine 2000; however, when the CPPS:pWnt3a weight ratio was increased to 80:1, the nanoparticle-treated group showed no obvious improvement in translation efficiency over Lipofectamine 2000. Therefore, CPPS, a novel cationic polysaccharide derived from P. yezoensis, could be developed into a safe, efficient, nonviral gene vector in a gene-delivery system.

  16. Physiological and pharmacological characterization of transmembrane acid extruders in cultured human umbilical artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Gunng-Shinng Chen

    2015-01-01

    Full Text Available Background: Intracellular pH (pH i is a pivotal factor for cellular functions and homeostasis. Apart from passive intracellular buffering capacity, active transmembrane transporters responsible for kinetic changes of pH i impacts. Acid extrusion transporters such as Na + /H + exchanger (NHE and Na + /HCO3− cotransporter (NBC have been found to be activated when cells are in an acidic condition in different cell types. However, such far, the pH i regulators have not been characterized in human umbilical artery smooth muscle cells (HUASMCs. Materials and Methods: We, therefore, investigated the mechanism of pH i recovery from intracellular acidosis, induced by NH 4 Cl-prepulse, using pH-sensitive fluorescence dye: 2′,7′-bis(2-carboxethyl-5(6-carboxy-fluorescein in HUASMCs. Cultured HUASMCs were derived from the segments of the human umbilical artery that were obtained from women undergoing children delivery. Results: The resting pH i is 7.23 ± 0.03 when cells in HEPES (nominally HCO 3− -free buffered solution. The resting pH i is higher as 7.27 ± 0.03 when cells in CO 2 /HCO3− -buffered solution. In HEPES-buffered solution, a pH i recovery following induced intracellular acidosis could be inhibited completely by 30 μM HOE 694 (a specific NHE inhibitor or by removing [Na +]o . In 5% CO2/HCO3− -buffered solution, 30 μM HOE 694 slowed the pH i recovery from the induced intracellular acidosis only. On the contrary, HOE 694 adding together with 0.2 mM 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (a specific NBC inhibitor or removal of [Na +]o entirely blocked the acid extrusion. By using Western blot technique, we demonstrated that four different isoforms of NBC, that is, SLC4A8 (NBCBE, SLC4A7 (NBCn1, SLC4A5 (NBCe2 and SLC4A4 (NBCe1, co-exist in the HUASMCs. Conclusions: We demonstrate, for the 1 st time, that apart from the housekeeping NHE1, another Na + couple HCO3− -transporter, that is, NBC, functionally coexists to

  17. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury.

    Science.gov (United States)

    Li, Zhi; Qin, Hanjiao; Feng, Zishan; Liu, Wei; Zhou, Ye; Yang, Lifeng; Zhao, Wei; Li, Youjun

    2013-12-25

    In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 10(7) cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.

  18. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Science.gov (United States)

    Lv, Xue-man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  19. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury

    Science.gov (United States)

    Li, Zhi; Qin, Hanjiao; Feng, Zishan; Liu, Wei; Zhou, Ye; Yang, Lifeng; Zhao, Wei; Li, Youjun

    2013-01-01

    In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55–65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury. PMID:25206667

  20. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  1. Human diploid MRC-5 cells exhibit several critical properties of human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Kehua; Na, Tao; Wang, Lin; Gao, Qiang; Yin, Weidong; Wang, Junzhi; Yuan, Bao-Zhu

    2014-11-28

    MRC-5 is the most common human diploid cell line used in production of viral vaccines; mesenchymal stem cells (MSCs) is a type of adult multipotent stem cells. Both cell types share the same fibroblast-like morphology and maintain a normal diploid karyotype over long in vitro expansion. However, other than these similarities, very little is known about MRC-5 in terms of biological properties possessed by MSCs. In this study, we compared MRC-5 with human umbilical cord-derived MSCs (hUC-MSCs), which serves as a representative of human MSCs, in expression of cell surface markers, abilities to differentiate into multiple cell lineages, inhibition of lymphocyte proliferation and promotion of Regulatory T lymphocytes (Treg), and IDO1 expression in response to inflammatory cytokines, all of which are critical properties of MSCs. It was revealed that MRC-5 was almost identical to hUC-MSCs in expression of both positive and negative surface markers of MSCs. Similar to hUC-MSCs, MRC-5 was also able to differentiate into osteocytes and chondrocytes, effectively inhibit mitogen-activated lymphocyte proliferation and promote Tregs, and express IDO1 in response to inflammatory cytokines IFN-γ and TNF-α. In addition, both MRC-5 and hUC-MSCs were non-tumorigenic with an extremely low telomerase activity. Moreover, both cells demonstrated a similar sensitivity to infection by EV71 and rubella viruses, which served as model viruses, in a virus infectivity assay. Therefore, this study suggests that MRC-5 is very likely a previously undefined MSC cell line, thus suggesting the feasibility of developing MSCs of at least umbilical cord origin as new cell substrates to be used in production of viral vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  3. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Luning [Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001 (China); Li, Qiang; Sun, Bei; Xu, Zhiying [Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001 (China); Ge, Zhiming, E-mail: zhimingge2000@hotmail.com [Department of Cardiology, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  4. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556-576. Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs, we demonstrated that TLQP-21 (10 or 50 nM dose-dependently prevented apoptosis under high-glucose (30 mmol/L conditions (the normal glucose concentration is 5.6 mmol/L. TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH and a reduction in the levels of reactive oxygen species (ROS. TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD, which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.

  5. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth.

    Science.gov (United States)

    Gong, Ting; Heng, Boon Chin; Xu, Jianguang; Zhu, Shaoyue; Yuan, Changyong; Lo, Edward Chin Man; Zhang, Chengfei

    2017-04-01

    Dental stem cells can serve as a potential source of functional endothelial cells for tissue engineering applications, but the endothelial-lineage differentiation efficiency is rather low even with growth factors and mechanical stimuli, which greatly limits their clinical applications. This is partly due to the deficiency of standard two-dimensional (2-D) culture systems, which is unable to recapitulate the three-dimensional (3-D) in vivo milieu that is rich in extracellular matrix. Hence, we extracted decellularized extracellular matrix from human umbilical vein endothelial cells (HUVECs-DECM) to provide a bioactive substratum conducive to the endothelial differentiation of dental stem cells. Compared to cells plated on tissue culture polystyrene (TCP), stem cells from exfoliated deciduous teeth (SHED) cultured on the HUVECs-DECM demonstrated more regular arrangement and elongated morphology. HUVECs-DECM significantly enhanced the rapid adhesion and proliferation rates of SHED, as demonstrated by WST-8 assay and immunocytochemistry indicating higher expression levels of vinculin by newly adherent SHED on HUVECs-DECM versus TCP. In addition, there was twofold to fivefold higher mRNA expression levels of endothelial-specific markers CD31 and VEGFR-2 in SHED after seven days of culture on DECM versus TCP. Functional testing with in vitro matrigel angiogenesis assay identified more capillary-like structure formation with significantly higher tubule length in SHED induced by DECM versus TCP. Hence, the results of this study provide a better understanding of the unique characteristics of cell-specific ECM and demonstrated the potential use of HUVECs-DECM as a culture substratum conducive for stimulating the endothelial differentiation of SHED for therapeutic angiogenic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1083-1093, 2017. © 2017 Wiley Periodicals, Inc.

  6. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells.

    Science.gov (United States)

    Horigome, Satoru; Yoshida, Izumi; Ito, Shihomi; Inohana, Shuichi; Fushimi, Kei; Nagai, Takeshi; Yamaguchi, Akihiro; Fujita, Kazuhiro; Satoyama, Toshiya; Katsuda, Shin-Ichi; Suzuki, Shinobu; Watai, Masatoshi; Hirose, Naoto; Mitsue, Takahiro; Shirakawa, Hitoshi; Komai, Michio

    2017-04-01

    The rhizome of Kaempferia parviflora (KP) is used in traditional Thai medicine. In this study, we investigated the effects of an ethanol KP extract and two of its components [5,7-dimethoxyflavone (DMF) and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (TMF)] on monocyte adhesion and cellular reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs), which provide an in vitro model of events relevant to the development and progression of atherosclerosis. RAW264.7 mouse macrophage-like cells were incubated with various concentrations of KP extract or polymethoxyflavonoids and stimulated with lipopolysaccharide prior to measuring nitrite levels in the culture media. Monocyte adhesion was evaluated by measuring the fluorescently labeled human monocytic leukemia THP-1 cells that is attached to tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Cellular ROS production was assessed by measuring cellular antioxidant activity using pyocyanin-stimulated HUVECs. KP extract and DMF reduced nitrite levels (as indicator of nitric oxide production) in LPS-stimulated RAW264.7 cells and also inhibited THP-1 cell adhesion to HUVECs. These treatments induced mRNA expression of endothelial nitric oxide synthase in TNF-α-stimulated HUVECs and downregulated that of various cell adhesion molecules, inflammatory mediators, and endothelial function-related genes. Angiotensin-converting enzyme activity was inhibited by KP extract in vitro. Furthermore, KP extract, DMF, and TMF inhibited the production of cellular ROS in pyocyanin-stimulated HUVECs. KP extract, DMF, and TMF showed potential anti-inflammatory and antioxidant effects in these in vitro models, properties that would inhibit the development and progression of atherosclerosis.

  7. Analysis of Volatile Organic Compounds Liberated and Metabolised by Human Umbilical Vein Endothelial Cells (HUVEC) In Vitro

    OpenAIRE

    Mochalski, Pawe?; Theurl, Markus; Sponring, Andreas; Unterkofler, Karl; Kirchmair, Rudolf; Amann, Anton

    2014-01-01

    Gas chromatography with mass spectrometric detection combined with head-space needle trap extraction as the pre-concentration technique was applied to identify and quantify volatile organic compounds released or metabolised by human umbilical vein endothelial cells. Amongst the consumed species there were eight aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, n-hexanal, benzaldehyde, n-octanal and n-nonanal) and n-butyl acetate. Further eight compounds (e...

  8. Effect of Human Umbilical Cord Mesenchymal Stem Cells Transplantation on Nerve Fibers of A Rat Model of Endometriosis

    OpenAIRE

    Chen, Yan; Li, Dong; Zhang, Zhe; Takushige, Natsuko; Kong, Bei-Hua; Wang, Guo-Yun

    2015-01-01

    Background: Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal and multipotentiality of differentiation. We investigated how human umbilical cord-M...

  9. Effect of Human Umbilical Cord Mesenchymal Stem Cells Transplantation on Nerve Fibers of A Rat Model of Endometriosi

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-04-01

    Full Text Available Background: Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal and multipotentiality of differentiation. We investigated how human umbilical cord-MSCs (hUC-MSCs could affect nerve fibers density in endometriosis. Materials and Methods: In this experimental study, hUC-MSCs were isolated from fresh human umbilical cord, characterized by flow cytometry, and then transplanted into surgically induced endometriosis in a rat model. Ectopic endometrial implants were collected four weeks later. The specimens were sectioned and stained immunohistochemically with antibodies against neurofilament (NF, nerve growth factor (NGF, NGF receptor p75 (NGFRp75, tyrosine kinase receptor-A (Trk-A, calcitonin gene-related peptide (CGRP and substance P (SP to compare the presence of different types of nerve fibers between the treatment group with the transplantation of hUC-MSCs and the control group without the transplantation of hUC-MSCs. Results: There were significantly less nerve fibers stained with specific markers we used in the treatment group than in the control group (p<0.05. Conclusion: MSC from human umbilical cord reduced nerve fiber density in the treatment group with the transplantation of hUC-MSCs.

  10. Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis.

    Science.gov (United States)

    Zhang, Qian; Li, Zhuo-heng; Li, Yuan-yuan; Shi, San-jun; Zhou, Shi-wen; Fu, Yuan-yuan; Zhang, Qing; Yang, Xue; Fu, Ruo-qiu; Lu, Lai-chun

    2015-12-17

    The conventional photosensitizers used in photodynamic therapy (PDT), such as haematoporphyrin (HP), have not yet reached satisfactory therapeutic effects on port-wine stains (PWSs), due largely to the long-term dark toxicity. Previously we have showed that hypericin exhibited potent photocytotoxic effects on Roman chicken cockscomb model of PWSs. However, the molecular mechanism of hypericin-mediated photocytotoxicity remains unclear. In this study, we employed human umbilical vein endothelial cells (HUVECs) to investigate the hypericin-photolytic mechanism. Our study showed that hypericin-PDT induced reactive oxygen species (ROS), resulting in cell killings and an activation of the inflammatory response. Importantly, we have also discovered that photoactivated hypericin induced apoptosis by activating the mitochondrial caspase pathway and inhibiting the activation of the vascular endothelial growth factor-A (VEGF-A)-mediated PI3K/Akt pathway. Notably, we found that hypericin exhibited a more potent photocytotoxic effect than HP, and largely addressed the inconvenience issue associated with the use of HP. Thereby, hypericin may be a better alternative to HP in treating PWSs.

  11. Effects of Nebivolol on Endothelial Gene Expression during Oxidative Stress in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ulisse Garbin

    2008-01-01

    Full Text Available The endothelium plays a key role in the development of atherogenesis and its inflammatory and proliferative status influences the progression of atherosclerosis. The aim of this study is to compare the effects of two beta blockers such as nebivolol and atenolol on gene expression in human umbilical vein endothelial cells (HUVECs following an oxidant stimulus. HUVECs were incubated with nebivolol or atenolol (10 micromol/L for 24 hours and oxidative stress was induced by the addition of oxidized (ox-LDL. Ox-LDL upregulated adhesion molecules (ICAM-1, ICAM-2, ICAM-3, E-selectin, and P-selectin; proteins linked to inflammation (IL-6 and TNFalpha, thrombotic state (tissue factor, PAI-1 and uPA, hypertension such as endothelin-1 (ET-1, and vascular remodeling such as metalloproteinases (MMP-2, MMP-9 and protease inhibitor (TIMP-1. The exposure of HUVECs to nebivolol, but not to atenolol, reduced these genes upregulated by oxidative stress both in terms of protein and RNA expression. The known antioxidant properties of the third generation beta blocker nebivolol seem to account to the observed differences seen when compared to atenolol and support the specific potential protective role of this beta blocker on the expression of a number of genes involved in the initiation and progression of atherosclerosis.

  12. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro.

    Science.gov (United States)

    Ge, S; Wang, G; Shen, Y; Zhang, Q; Jia, D; Wang, H; Dong, Q; Yin, T

    2011-06-01

    The MgO nanoparticles are widely used in many fields. However, the toxicity of these nanoparticles to cells and organs remains fairly undiscovered. In this study, the cytotoxicity of MgO nanoparticles on human umbilical vein endothelial cells (HUVECs) in vitro was examined. The morphology and size of MgO nanoparticles were analysed by the transmission electron microscope (TEM) and nanoparticle size analyser. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 h-tetrazolium bromide) assay, 4',6-diamidino-2-phenylindole (DAPI) staining analysis, NO release and total antioxidation competence (T-AOC) assay were used to evaluate the cytotoxicity of MgO nanoparticles. The results showed that most MgO nanoparticles were spherical with agglomerated state and the diameter of single particle was about 100 nm. Meanwhile, low concentration (below 200 [micro sign]g/ml) of MgO nanoparticles suspension showed no cytotoxicity by MTT assay. However, once the concentration of MgO nanoparticles was higher than 500 [micro sign]g/ml, the relative growth rate was lower than the control. The DAPI staining analysis results showed no significant difference of the cells morphology between the groups with or without MgO nanoparticles. In addition, the MgO nanoparticles significantly enhanced the NO release and T-AOC content of the HUVECs. The testing results indicated that low concentration of MgO nanoparticles exhibited non-cytotoxicity.

  13. Biochanin A inhibits lipopolysaccharide-induced inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Ming, Xiaodong; Ding, Mingfeng; Zhai, Bo; Xiao, Lei; Piao, Taikui; Liu, Ming

    2015-09-01

    Biochanin A, an isoflavone isolated from red clover, cabbage or alfalfa, has been reported to have anti-inflammatory activity. However, the effects of biochanin A on vascular inflammation have not been investigated. In this study, we investigate the anti-inflammatory effects of biochanin A on lipopolysaccharide (LPS)-induced inflammatory response in human umbilical vein endothelial cells (HUVEC cells). The HUVEC cells were treated with biochanin A for 12h before exposure to LPS. The expression of ECAMs, including VCAM-1, ICAM-1, E-selectin, NF-κB and PPAR-γ was detected by Western blotting. The expression of cytokines TNF-α and IL-8 was detected by ELISA. The results showed that biochanin A inhibited LPS-induced TNF-α and IL-8 production. Meanwhile, biochanin A also suppressed VCAM-1, ICAM-1, and E-selectin expression induced by LPS. We also found that biochanin A inhibited NF-κB activation induced by LPS. Furthermore, biochanin A could activate PPAR-γ and the anti-inflammatory effects of biochanin A can be reversed by GW9662, a specific antagonist for PPAR-γ. In conclusion, the anti-inflammatory effect of biochanin A is associated with activating PPAR-γ, thereby attenuating NF-κB activation and LPS-induced inflammatory response. These findings suggest that biochanin A may be a therapeutic agent for inflammatory cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Clinical Evaluation of Human Umbilical Cord Mesenchymal Stem Cell Transplantation After Angioplasty for Diabetic Foot.

    Science.gov (United States)

    Qin, H L; Zhu, X H; Zhang, B; Zhou, L; Wang, W Y

    2016-09-01

    Aims: The multilineage differentiation potential of human umbilical cord mesenchymal stem cells (HUCMSCs) holds therapeutic promise for non-healing ulcers and tissue regeneration. The present study evaluated the effects of HUCMSC transplantation after angioplasty for treatment of diabetic foot. Methods: Included in the study were 53 patients (72 limbs) with severe symptoms of Fontaine II-IV diabetic foot accompanied by varying degrees of lower extremity arterial disease. The patients were randomly apportioned to a control group (25 patients; 38 limbs) or an experimental group (28 patients; 34 limbs). Patients of both groups received interventional treatment with angioplasty; those in the experimental group also received HUCMSCs by endovascular infusion and injection around the foot ulcer. Results: Within the 3-month follow-up, relative to patients in the control group, those in the experimental group experienced significantly greater and more stable improvements in skin temperature, ankle-brachial pressure index, transcutaneous oxygen tension, and claudication distance. Notably, 3 months after treatment a significant increase in neovessels, accompanied by complete or gradual ulcer healing, was shown in the experimental group. In addition, no serious complications or adverse reactions were associated with the treatment. Conclusion: Therefore, our results indicate that HUCMSC transplantation after angioplasty is a safe and effective clinical therapy for severe diabetic foot. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration

    Directory of Open Access Journals (Sweden)

    Dwi Liliek Kusindarta

    2016-06-01

    Full Text Available Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM to promote regenerations of primary wound healing on the incision skin injury. Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining. Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase. Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process.

  16. The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Figulla Hans R

    2004-05-01

    Full Text Available Abstract Background Statins are cholesterol-lowering drugs that are widely used to reduce the risk of cardiac infarction. Their beneficial clinical effects, however, are not restricted to their influence on cholesterol production. As several studies have shown that they have a potency of relaxing blood vessels. Methods We measured the effects of statins on the intracellular free calcium concentration ([Ca2+]i in human umbilical vein endothelial cells (HUVEC after acute application and 24-h-preincubation of statins. Results Incubation of the cells for 24 h with cerivastatin or fluvastatin significantly increased the resting [Ca2+]i. For cerivastatin this effect manifested at a concentration of 1 μM. Increase of resting [Ca2+]i in the presence of cerivastatin also occurred when the nitric oxide synthase was inhibited. Transient Ca2+ release induced by histamine was not affected. Conclusions The increase of resting [Ca2+]i after incubation with cerivastatin or fluvastatin may provide an explanation for the direct effects of statins on the endothelial-dependent vasodilatation and restoration of endothelial activity in vivo.

  17. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Oishi, Akira; Ohmichi, Masahide; Takahashi, Kazuhiro; Takahashi, Toshifumi; Mori-Abe, Akiko; Kawagoe, Jun; Otsu, Reiko; Mochizuki, Yoshiko; Inaba, Noriyuki; Kurachi, Hirohisa

    2004-01-01

    We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17β estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner

  18. Genetic Comparison of Stemness of Human Umbilical Cord and Dental Pulp.

    Science.gov (United States)

    Kang, Chung-Min; Kim, Hyunok; Song, Je Seon; Choi, Byung-Jai; Kim, Seong-Oh; Jung, Han-Sung; Moon, Seok-Jun; Choi, Hyung-Jun

    2016-01-01

    This study focuses on gene expression patterns and functions in human umbilical cord (UC) and dental pulp (DP) containing mesenchymal stem cells (MSCs). DP tissues were collected from 25 permanent premolars. UC tissue samples were obtained from three newborns. Comparative gene profiles were obtained using cDNA microarray analysis and the expression of tooth development-associated and MSC-related genes was assessed by the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Genes related to cell proliferation, angiogenesis, and immune responses were expressed at higher levels in UC, whereas genes related to growth factor and receptor activity and signal transduction were more highly expressed in DP. Although UC and DP tissues exhibited similar expression of surface markers for MSCs, UC showed higher expression of CD29, CD34, CD44, CD73, CD105, CD146, and CD166. qRT-PCR analysis showed that CD146, CD166, and MYC were expressed 18.3, 8.24, and 1.63 times more highly in UC, whereas the expression of CD34 was 2.15 times higher in DP. Immunohistochemical staining revealed significant differences in the expression of genes (DSPP, DMP1, and CALB1) related to odontogenesis and angiogenesis in DP. DP and UC tissue showed similar gene expression, with the usual MSC markers, while they clearly diverged in their differentiation capacity.

  19. Genetic Comparison of Stemness of Human Umbilical Cord and Dental Pulp

    Directory of Open Access Journals (Sweden)

    Chung-Min Kang

    2016-01-01

    Full Text Available This study focuses on gene expression patterns and functions in human umbilical cord (UC and dental pulp (DP containing mesenchymal stem cells (MSCs. DP tissues were collected from 25 permanent premolars. UC tissue samples were obtained from three newborns. Comparative gene profiles were obtained using cDNA microarray analysis and the expression of tooth development-associated and MSC-related genes was assessed by the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR. Genes related to cell proliferation, angiogenesis, and immune responses were expressed at higher levels in UC, whereas genes related to growth factor and receptor activity and signal transduction were more highly expressed in DP. Although UC and DP tissues exhibited similar expression of surface markers for MSCs, UC showed higher expression of CD29, CD34, CD44, CD73, CD105, CD146, and CD166. qRT-PCR analysis showed that CD146, CD166, and MYC were expressed 18.3, 8.24, and 1.63 times more highly in UC, whereas the expression of CD34 was 2.15 times higher in DP. Immunohistochemical staining revealed significant differences in the expression of genes (DSPP, DMP1, and CALB1 related to odontogenesis and angiogenesis in DP. DP and UC tissue showed similar gene expression, with the usual MSC markers, while they clearly diverged in their differentiation capacity.

  20. Buprenorphine differentially affects M1- and M2-polarized macrophages from human umbilical cord blood.

    Science.gov (United States)

    Sun, Juan; Guo, Wei; Du, Xingguang

    2017-06-01

    As a partial μ-opioid receptor agonist with long half-life time, buprenorphine has been widely used to relieve chronic cancer and nonmalignant pain. The maintenance of chronic pain involves inflammation; however whether buprenorphine has anti-inflammation property remains unclear. Macrophages, the immune cells that initiate and maintain inflammation, were isolated from human umbilical cord blood, and were polarized into M1 or M2 macrophages with IFN-γ in the presence of lipopolysaccharide (LPS) or IL-4, respectively. Quantitative PCR, ELISA, Western blotting analysis, and chromatin immunoprecipitation assays were employed to characterize M1 and M2 macrophages. 1) Buprenorphine did not change not only the apoptosis, survival, and morphology of resting macrophages, but also the antigen-presenting function of macrophages. 2) Buprenorphine inhibited the levels of mRNA and protein of several cytokines in M1 macrophages, and enhanced the expression of Ym1 and Fizz1 in M2 macrophages. 3) Buprenorphine did not affect the modulation of NF-κB and MAPK cascades by LPS in M1 macrophages. 4) Buprenorphine inhibited the expression of IRF5 and reduced binding of DNA to IRF5. Buprenorphine may downregulate IRF5 pathway and limit M1 macrophage phenotype. These effects may contribute to its therapeutic benefit for chronic neuropathic pain.

  1. Buddleja officinalis inhibits high glucose-induced matrix metalloproteinase activity in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-12-01

    The aim of the present investigation was to investigate whether an aqueous extract of Buddleja officinalis (ABO), a traditional Korean herbal medicine, suppresses the endothelial extracellular matrix degradation under high glucose condition. The incubation with high concentration of glucose (25 mM) increased significantly matrix metalloproteinase (MMP)-2/-9 expressions and activities in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment with ABO decreased high glucose-induced increase of MMP-2/-9 activities in a dose-dependent manner. Real time qRT-PCR revealed that high glucose-induced MMP-2/-9 mRNA expression levels were attenuated by pretreatment with ABO. High glucose-induced MCP-1 and IL-8 mRNA expression levels also decreased by ABO. ABO decreased high glucose-induced hydrogen peroxide production, oxidative stress marker. These results provide new insights into the pathophysiological mechanisms for anti-inflammatory properties of ABO in vascular diseases associated with diabetes mellitus. (c) 2008 John Wiley & Sons, Ltd.

  2. Anti-Inflammatory effect of Buddleja officinalis on vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Moon, Mi Kyoung; Hwang, Sun Mi; Yoon, Jung Joo; Lee, So Min; Seo, Kwan Soo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-01-01

    Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1-10 microg/ml) for 18 hours dose-dependently inhibited TNF-alpha-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-alpha-induced ROS formation. Nuclear factor-kappa B (NF-kappaB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-kappaB to the nucleus. ABO inhibited the TNF-alpha-induced degradation of IkappaB-alpha, an inhibitor of NF-kappaB, by inhibiting the phosphorylation of IkappaB-alpha in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-kappaB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.

  3. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    International Nuclear Information System (INIS)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook; Kim, Sun Kyung; Jang, In Keun; Eom, Young-woo; Park, Joon Seong; Kim, Hugh C.; Song, Kye Yong; Park, Soon Cheol; Lim, Hwan Sub; Kim, Young Jin

    2007-01-01

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications

  4. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  5. A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood.

    Science.gov (United States)

    Monti, Manuela; Imberti, Barbara; Bianchi, Niccolò; Pezzotta, Anna; Morigi, Marina; Del Fante, Claudia; Redi, Carlo Alberto; Perotti, Cesare

    2017-09-01

    Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers. VSEL differentiative potential toward mesodermal lineage was further demonstrated in vitro upon exposure to an established inductive protocol, which induced the acquisition of renal progenitor cell phenotype. VSEL-derived renal progenitors showed regenerative potential in a cisplatin model of acute kidney injury by restoring renal function and tubular structure through induction of proliferation of endogenous renal cells. The data presented here foster the great debate that surrounds VSELs and, more in general, the existence of cells endowed with pluripotent features in adult tissues. In fact, the possibility to find and isolate subpopulations of cells that fully fit all the criteria utilized to define pluripotency remains, nowadays, almost unproven. Thus, efforts to better characterize the phenotype of these intriguing cells are crucial to understand their possible applications for regenerative and precision medicine purposes.

  6. Stimulation of tissue-type plasminogen activator gene expression by sodium butyrate and trichostatin A in human endothelial cells involves histone acetylation

    NARCIS (Netherlands)

    Arts, J.; Lansink, T.; Grimbergen, J.; Toet, K.H.; Kooistra, T.

    1995-01-01

    We have previously shown that the pleiotropic agent sodium butyrate strongly stimulates tissue-type plasminogen activator (t-PA) expression in human umbilical vein endothelial cells (HUVEC). Here we provide the following evidence that the butyrate-induced t-PA expression in HUVEC involves histone H4

  7. Effects of propofol and sevoflurane on isolated human umbilical arteries pre-contracted with dopamine, adrenaline and noradrenaline.

    Science.gov (United States)

    Gunduz, Ergun; Arun, Oguzhan; Bagci, Sengal Taylan; Oc, Bahar; Salman, Alper; Yilmaz, Setenay Arzu; Celik, Cetin; Duman, Ates

    2015-05-01

    To assess the effects of propofol and sevoflurane on the contraction elicited by dopamine, adrenaline and noradrenaline on isolated human umbilical arteries. Umbilical arteries were cut into endothelium-denuded spiral strips and suspended in organ baths containing Krebs-Henseleit solution bubbled with O2 +CO2 mixture. Control contraction to phenylephrine (10(-5)  M) was recorded. Response curves were obtained to 10(-5)  M dopamine, 10(-5)  M adrenaline or 10(-5)  M noradrenaline. Afterwards, either cumulative propofol (10(-6)  M, 10(-5)  M and 10(-4)  M) or cumulative sevoflurane (1.2%, 2.4% and 3.6%) was added to the organ bath, and the responses were recorded. Responses are expressed percentage of phenylephrine-induced contraction (mean ± standard deviation) (P adrenaline and noradrenaline (P adrenaline. High and highest concentrations of sevoflurane caused significantly higher relaxation compared with the high and highest concentrations of propofol on the contraction elicited by noradrenaline. Dopamine, adrenaline and noradrenaline elicit contractions in human umbilical arteries, and noradrenaline causes the highest contraction. Both propofol and sevoflurane inhibit these contractions in a dose-dependent manner. Propofol caused greater relaxation in the contractions elicited by dopamine and adrenaline while sevoflurane caused greater relaxation in the contraction elicited by noradrenaline. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  8. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  9. Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro

    Directory of Open Access Journals (Sweden)

    Emmrich Frank

    2008-02-01

    Full Text Available Abstract Background One of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood (HUCB cells that were already approved for therapeutic efficacy in vivo. However, complexity of animal models has thus far limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after stroke we established and employed a human in vitro model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y cells. These cells were incubated under an oxygen-reduced atmosphere (O2 Results Hypoxic cultivation of neurons initially induced a rate of 26% ± 13% of apoptosis. Hypoxia also caused an enhanced expression of Caspase-3 and cleaved poly(ADP-ribose polymerase (PARP. Necrosis was only detected in low amounts. Within the next three days rate of apoptosis in untreated hypoxic cultures cumulated to 85% ± 11% (p ≤ 0.001. Specific cytokine (VEGF patterns also suggest anti-apoptotic strategies of neuronal cells. Remarkably, the administration of MNC showed a noticeable reduction of apoptosis rates to levels of normoxic control cultures (7% ± 3%; p ≤ 0.001. In parallel, clustering of administered MNC next to axons and somata of neuronal cells was observed. Furthermore, MNC caused a pronounced increase of chemokines (CCL5; CCL3 and CXCL10. Conclusion We established an in vitro model of neuronal hypoxia that affords the possibility to investigate both, apoptotic neuronal cell death and neuroprotective therapies. Here we employed the therapeutic model to study neuroprotective properties of HUCB cells. We hypothesize that the neuroprotective effect of MNC was due to anti-apoptotic mechanisms related to direct cell-cell contacts with injured neuronal cells and distinct changes in neuroprotective, inflammatory cytokines as well as to the upregulation of chemokines within the co-cultures.

  10. Dengue Virus Induces Novel Changes in Gene Expression of Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Warke, Rajas V.; Xhaja, Kris; Martin, Katherine J.; Fournier, Marcia F.; Shaw, Sunil K.; Brizuela, Nathaly; de Bosch, Norma; Lapointe, David; Ennis, Francis A.; Rothman, Alan L.; Bosch, Irene

    2003-01-01

    Endothelial cells are permissive to dengue virus (DV) infection in vitro, although their importance as targets of DV infection in vivo remains a subject of debate. To analyze the virus-host interaction, we studied the effect of DV infection on gene expression in human umbilical vein endothelial cells (HUVECs) by using differential display reverse transcription-PCR (DD-RTPCR), quantitative RT-PCR, and Affymetrix oligonucleotide microarrays. DD identified eight differentially expressed cDNAs, including inhibitor of apoptosis-1, 2′-5′ oligoadenylate synthetase (OAS), a 2′-5′ OAS-like (OASL) gene, galectin-9, myxovirus protein A (MxA), regulator of G-protein signaling, endothelial and smooth muscle cell-derived neuropilin-like protein, and phospholipid scramblase 1. Microarray analysis of 22,000 human genes confirmed these findings and identified an additional 269 genes that were induced and 126 that were repressed more than fourfold after DV infection. Broad functional responses that were activated included the stress, defense, immune, cell adhesion, wounding, inflammatory, and antiviral pathways. These changes in gene expression were seen after infection of HUVECs with either laboratory-adapted virus or with virus isolated directly from plasma of DV-infected patients. Tumor necrosis factor alpha, OASL, and MxA and h-IAP1 genes were induced within the first 8 to 12 h after infection, suggesting a direct effect of DV infection. These global analyses of DV effects on cellular gene expression identify potentially novel mechanisms involved in dengue disease manifestations such as hemostatic disturbance. PMID:14557666

  11. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells.

    Science.gov (United States)

    Benachour, Nora; Séralini, Gilles-Eric

    2009-01-01

    We have evaluated the toxicity of four glyphosate (G)-based herbicides in Roundup formulations, from 10(5) times dilutions, on three different human cell types. This dilution level is far below agricultural recommendations and corresponds to low levels of residues in food or feed. The formulations have been compared to G alone and with its main metabolite AMPA or with one known adjuvant of R formulations, POEA. HUVEC primary neonate umbilical cord vein cells have been tested with 293 embryonic kidney and JEG3 placental cell lines. All R formulations cause total cell death within 24 h, through an inhibition of the mitochondrial succinate dehydrogenase activity, and necrosis, by release of cytosolic adenylate kinase measuring membrane damage. They also induce apoptosis via activation of enzymatic caspases 3/7 activity. This is confirmed by characteristic DNA fragmentation, nuclear shrinkage (pyknosis), and nuclear fragmentation (karyorrhexis), which is demonstrated by DAPI in apoptotic round cells. G provokes only apoptosis, and HUVEC are 100 times more sensitive overall at this level. The deleterious effects are not proportional to G concentrations but rather depend on the nature of the adjuvants. AMPA and POEA separately and synergistically damage cell membranes like R but at different concentrations. Their mixtures are generally even more harmful with G. In conclusion, the R adjuvants like POEA change human cell permeability and amplify toxicity induced already by G, through apoptosis and necrosis. The real threshold of G toxicity must take into account the presence of adjuvants but also G metabolism and time-amplified effects or bioaccumulation. This should be discussed when analyzing the in vivo toxic actions of R. This work clearly confirms that the adjuvants in Roundup formulations are not inert. Moreover, the proprietary mixtures available on the market could cause cell damage and even death around residual levels to be expected, especially in food and feed

  12. Galectin-3 binding protein in human preterm infant umbilical cord plasma.

    Science.gov (United States)

    Chan, C; Bode, L; Kim, J

    2015-01-01

    Galectin-3 binding protein (Gal3BP) is a glycoprotein isolated in colostrum that may be an immunologically active component with effects on the neonatal immune system. This compound has been found in the blood of term newborn infants, but has not been studied in preterm infants. Compare umbilical cord plasma Gal3BP concentration between preterm and term infants. Observational study of mother-infant pairs consented at UCSD Medical Center comparing umbilical cord plasma Gal3BP concentration in preterm and term infants. Umbilical cord plasma was collected at birth and stored at -80°C before Gal3BP analysis by ELISA. This study was powered to evaluate differences in preterm and term infant Gal3BP concentration. The secondary aim was to determine the effect of maternal and infant clinical factors on Gal3BP concentration. A total of 64 preterm and 30 term umbilical cord plasma samples were analyzed. By univariate analysis, Gal3BP concentration was elevated in the setting of prematurity, maternal diabetes, antenatal steroid exposure, and increasing maternal parity (p Umbilical cord plasma Gal3BP concentration is elevated in prematurity. This may reflect inflammatory states in infant and mother, but further study is warranted.

  13. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  14. Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2015-11-01

    Extraembryonic tissues, in particular, umbilical cord stroma are promising sources of multipotent mesenchymal stromal cells for regenerative medicine. In recent years, methods for isolation of mesenchymal stromal cells from different compartments of the umbilical cords based on enzymatic disaggregation of the tissue or on tissue explants have been proposed. Here we propose a protocol of isolation of multipotent mesenchymal stromal cells from the whole umbilical cord that combines the advantages of each approach and ensures sufficient cell yield for further experimental and clinical applications. A combination of short-term incubation of tissue fragments on cold collagenase solution followed by their culturing in the form of explants significantly increased the yield of cells with high proliferative activity, typical pluripotent mesenchymal stromal cell phenotype, and preserved differentiation capacity.

  15. Human Umbilical Cord Mesenchymal Stromal Cell Isolation, Expansion, Cryopreservation, and Characterization.

    Science.gov (United States)

    Smith, J Robert; Cromer, Adrienne; Weiss, Mark L

    2017-05-16

    Revised methods to derive, expand, and characterize mesenchymal stromal cells (MSCs) from the umbilical cord are provided. Several considerations are taken for GMP compliance including using a closed system isolation method and eliminating several xenogenic components. With this method cells are isolated using mechanical and enzymatic digestion and then expanded with high viabilities that retain >90% viability after cryopreservation. Lastly, characterization methods have been optimized to identify these cells as MSCs according to the ISCT minimal criteria. This method standardizes the process for isolating, expanding, cryopreserving, and characterizing MSCs from the umbilical cord. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  16. Cryopreserved human umbilical cord patch for in-utero spina bifida repair.

    Science.gov (United States)

    Papanna, R; Moise, K J; Mann, L K; Fletcher, S; Schniederjan, R; Bhattacharjee, M B; Stewart, R J; Kaur, S; Prabhu, S P; Tseng, S C G

    2016-02-01

    To identify a patch system to repair surgically created spina bifida in a sheep model for its efficacy in healing the skin defect, protecting the underlying spinal cord and reducing the Chiari II malformation. Spina bifida was created surgically in 16 fetuses from eight timed-pregnant sheep at gestational age of 75 days. Two fetuses did not survive the procedure. Repeat hysterotomy was performed at 95 days' gestation to cover the defect with either biocellulose film with underwater adhesive (BCF-adhesive) (n = 7) or human umbilical cord with suture (HUC-suture) (n = 7). Three fetuses without formation of the defect served as reference controls. The skin healing was examined by direct visualization after a planned Cesarean section at term, followed by histological analysis using hematoxylin and eosin and Masson's trichrome stains. Mid-sagittal sections of the fetal cranium and upper cervical spine were analyzed by a pediatric neuroradiologist who was blinded to the type of patch received. Three fetuses that received the BCF-adhesive and six fetuses that received the HUC-suture survived to term for final analysis. As a result of dislodgment of the BCF-adhesive, all spina bifida defects repaired using BCF-adhesive were not healed and showed exposed spinal cord with leakage of cerebrospinal fluid. In contrast, all spinal defects repaired by HUC-suture were healed with complete regrowth of epidermal, dermal and subdermal tissue components, with no exposed spinal cord. The maximal skin wound width was 21 ± 3.6 mm in the BCF-adhesive group but 3 ± 0.8 mm in the HUC-suture group (P bifida. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  17. Human Umbilical Cord Blood Cells or Estrogen may be Beneficial in Treating Heatstroke

    Directory of Open Access Journals (Sweden)

    Sheng-Hsien Chen

    2007-03-01

    Full Text Available This current review summarized animal models of heatstroke experimentation that promote our current knowledge of therapeutic effects on cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation with human umbilical cord blood cells (HUCBCs or estrogen in the setting of heatstroke. Accumulating evidences have demonstrated that HUCBCs provide a promising new therapeutic method against neurodegenerative diseases, such as stroke, traumatic brain injury, and spinal cord injury as well as blood disease. More recently, we have also demonstrated that postor pretreatment by HUCBCs may resuscitate heatstroke rats with by reducing circulatory shock, and cerebral nitric oxide overload and ischemic injury. Moreover, CD34+ cells sorted from HUCBCs may improve survival by attenuating inflammatory, coagulopathy, and multiorgan dysfunction during experimental heatstroke. Many researchers indicated pro(e.g. tumor necrosis factor-α [TNF-α] and anti-inflammatory (e.g. interleukin-10 [IL-10] cytokines in the peripheral blood stream correlate with severity of circulatory shock, cerebral ischemia and hypoxia, and neuronal damage occurring in heatstroke. It has been shown that intravenous administration of CD34+ cells can secrete therapeutic molecules, such as neurotrophic factors, and attenuate systemic inflammatory reactions by decreasing serum TNF-α but increasing IL-10 during heatstroke. Another line of evidence has suggested that estrogen influences the severity of injury associated with cerebrovascular shock. Recently, we also successfully demonstrated estrogen resuscitated heatstroke rats by ameliorating systemic inflammation. Conclusively, HUCBCs or estrogen may be employed as a beneficial therapeutic strategy in prevention and repair of cerebrovascular dysfunction, coagulopathy, and/or systemic inflammation during heatstroke.

  18. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  19. High glucose induced endothelial to mesenchymal transition in human umbilical vein endothelial cell.

    Science.gov (United States)

    Yu, Chun-Hong; Suriguga; Gong, Meng; Liu, Wen-Juan; Cui, Ning-Xuan; Wang, Ying; Du, Xin; Yi, Zong-Chun

    2017-06-01

    Studies have shown that endothelial-to-mesenchymal transition (EndMT) could contribute to the progression of diabetic nephropathy, diabetic renal fibrosis, and cardiac fibrosis. The aim of this study was to investigate the influence of high glucose and related mechanism of MAPK inhibitor or specific antioxidant on the EndMT. In vitro human umbilical vein endothelial cells (HUVEC) were cultured with 11mM, 30mM, 60mM and 120mM glucose for 0, 24, 48, 72 and 168h. Endothelial cell morphology was observed with microscope, and RT-PCR was used to detect mRNA expression of endothelial markers VE-cadherin and CD31, mesenchymal markers α-SMA and collagen I, and transforming growth factor TGF-β1. Immunofluorescence staining was performed to detect the expression of CD31 and α-SMA. The concentration of TGF-β1 in the supernatant was detected by ELISA. ERK1/2 phosphorylation level was detected by Western blot analysis. High glucose induced EndMT and increased the TGF-β1 level in HUVEC cells. Cells in high glucose for 7 days showed a significant decrease in mRNA expression of CD31 and VE-cadherin, and a significant increase in that of α-SMA and collagen I, while lost CD31 staining and acquired α-SMA staining. ERK signaling pathway blocker PD98059 significantly attenuated the high glucose-induced increase in the ERK1/2 phosphorylation level. PD98059 and NAC both inhibited high glucose-induced TGF-β1 expression and attenuated EndMT marker protein synthesis. High glucose could induce HUVEC cells to undergo EndMT. NAC and ERK signaling pathway may play important role in the regulation of the TGF-β1 biosynthesis during high glucose-induced EndMT. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. [Involvement of heme oxygenase in PM2.5-toxicity in human umbilical vein endothelial cells].

    Science.gov (United States)

    Yang, Jing-lu; Lü, Ji-yuan; Zhang, Ming-sheng; Qin, Gang; Li, Cai-ping

    2013-11-01

    To investigate the involvement of heme oxygenase (HO-1) in PM2.5 induced toxic responses in human umbilical vein endothelial cells (HUVECs). The experiment groups are as follows: (1) control group; (2) PM2.5 groups: the cells were cultured with various concentrations of PM2.5 (200, 400, 800 µg/ml) for 24 h and 400 µg/ml was chosen for the main study; (3) PM2.5+Trion group: the cells were pre-treated by 10 µmol/L Trion [a scavenger of reactive oxygen species(ROS)] for 1 h before PM2.5 (400 µg/ml) treatment for 24 h; (4) PM2.5+ZnPP group: the cells were pretreated by HO-1 inhibitor ZnPP (10 µmol/L) for 1 h before treatment with PM2.5 (400 µg/ml) for 24 h. MTT assay was used to detect cell viability. Reverse transcription polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay were used to determine the mRNA and protein expressions of HO-1. Fluorescence labeling probe method was used to measure intracellular ROS level and flow cytometry was used for cell apoptosis. Colorimetric assay was used to detect intracellular caspase-3 activity. Compared with control, PM2.5 significantly decreased cell viability, increased intracellular ROS, cell apoptosis and caspase-3 activity (all P ZnPP group (all P ZnPP group. PM2.5 could induce oxidative injury through increasing ROS production via modulating HO-1 mRNA and protein expressions, the injury could be aggravated with inhibition of the activity of HO-1 suggesting a potential protective role of HO-1 against PM2.5 induced oxidative stress in HUVECs.

  1. Neurorestorative Therapy of Stroke in Type two Diabetes Rats Treated with Human Umbilical Cord Blood Cells

    Science.gov (United States)

    Yan, Tao; Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Ning, Ruizhuo; Cui, Yisheng; Roberts, Cynthia; Kuzmin-Nichols, Nicole; Sanberg, Cyndy Davis; Chen, Jieli

    2015-01-01

    Background and Purpose Diabetes mellitus is a high risk factor for ischemic stroke. Diabetic stroke patients suffer worse outcomes, poor long term recovery, risk of recurrent strokes and extensive vascular damage. We investigated the neurorestorative effects and the underlying mechanisms of stroke treatment with human umbilical cord blood cells (HUCBCs) in Type two diabetes mellitus (T2DM) rats. Methods Adult male T2DM rats were subjected to 2 h of middle cerebral artery occlusion (MCAo). Three days after MCAo, rats were treated via tail-vein injection with: 1) phosphate-buffered-saline (PBS); 2) HUCBCs (5×106); n=10/group. Results HUCBC stroke treatment initiated 3 days after MCAo in T2DM rats did not significantly decrease blood-brain-barrier (BBB) leakage (p=0.1) and lesion volume (p=0.078), but significantly improved long term functional outcome and decreased brain hemorrhage (ptreatment significantly promoted white matter (WM) remodeling as indicated by increased expression of Bielschowsky silver (axons marker), Luxol fast blue (myelin marker), SMI-31 (neurofilament) and Synaptophysin in the ischemic border zone (IBZ). HUCBC promoted vascular remodeling, and significantly increased arterial and vascular density. HUCBC treatment of stroke in T2DM rats significantly increased M2 macrophage polarization (increased M2 macrophage CD163, CD 206; decreased M1 macrophage ED1 and iNOS expression) in the ischemic brain compared to PBS-treated T2DM-MCAo controls (ptreatment initiated 3 days after stroke significantly increased WM and vascular remodeling in the ischemic brain as well as decreased neuroinflammatory factor expression in the ischemic brain in T2DM rats and promoted M2 macrophage polarization. HUCBC reduction of neuroinflammation and increased vascular and WM-axonal remodeling may contribute to the HUCBC induced beneficial effects in T2DM stroke rats. PMID:26243222

  2. Intrathecal Injection of Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorates Neuropathic Pain in Rats.

    Science.gov (United States)

    Chen, Chunxiu; Chen, Fengfeng; Yao, Chengye; Shu, Shaofang; Feng, Juan; Hu, Xiaoling; Hai, Quan; Yao, Shanglong; Chen, Xiangdong

    2016-12-01

    Neuropathic pain (NP) is a clinically incurable disease with miscellaneous causes, complicated mechanisms and available therapies show poor curative effect. Some recent studies have indicated that neuroinflammation plays a vital role in the occurrence and promotion of NP and anti-inflammatory therapy has the potential to relieve the pain. During the past decades, mesenchymal stem cells (MSCs) with properties of multipotentiality, low immunogenicity and anti-inflammatory activity have showed excellent therapeutic effects in cell therapy from animal models to clinical application, thus aroused great attention. However there are no reports about the effect of intrathecal human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on NP which is induced by peripheral nerve injury. Therefore, in this study, intrathecally transplanted HUC-MSCs were utilized to examine the effect on neuropathic pain induced by a rat model with spinal nerve ligation (SNL), so as to explore the possible mechanism of those effects. As shown in the results, the HUC-MSCs transplantation obviously ameliorated SNL-induced mechanical allodynia and thermal hyperalgesia, which was related to the inhibiting process of neuroinflammation, including the suppression of activated astrocytes and microglia, as well as the significant reduction of pro-inflammatory cytokines Interleukin-1β (IL-1β) and Interleukin -17A (IL-17A) and the up-regulation of anti-inflammatory cytokine Interleukin -10 (IL-10). Therefore, through the effect on glial cells, pro-inflammatory and anti-inflammatory cytokine, the targeting intrathecal HUC-MSCs may offer a novel treatment strategy for NP.

  3. Human umbilical cord mesenchymal stem cell transplantation for the treatment of chronic discogenic low back pain.

    Science.gov (United States)

    Pang, Xiaodong; Yang, Hong; Peng, Baogan

    2014-01-01

    Chronic low back pain is one of the major causes of disability and thus has a major socioeconomic impact. Intervertebral disc degeneration is the main cause of chronic low back pain. Treatment for chronic discogenic low back pain has traditionally been limited to either conservative management or surgical fusion. If conservative treatment fails, then surgical fusion is commonly considered. Current treatments are limited to treat the symptoms and not the underlying biologic alterations of the disc. Human umbilical cord tissue-derived mesenchymal stem cells (HUC-MSCs) contain stem cells and possess the ability to regenerate degenerative discs. Based on the results of previous in vitro and animal experiments, we conducted a preliminary study to test the feasibility and safety and to obtain an early indication for the therapeutic value of HUC-MSC transplantation in patients with chronic discogenic low back pain. This is the first study involving treatment of chronic low back pain using HUC-MSC transplantation. The study was performed at a spine center in China. Two patients with chronic discogenic low back pain were treated with HUC-MSC transplantation. An 11-point visual analog scale (VAS, 0-10) and Oswestry Disability Index (ODI, 0-100) were used to assess the back pain symptoms and the lumbar function, respectively. After transplantation, the pain and function improved immediately in the 2 patients. The VAS and ODI scores decreased obviously during a 2-year follow-up period. The shortcoming of this study is that it is a preliminary study with only 2 patients. The clinical outcomes indicated that HUC-MSC transplantation is a favorable alternative method for the treatment of chronic discogenic low back pain.

  4. Experimental treatment of radiation pneumonitis with human umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Wang, Rui; Zhu, Chang-zheng; Qiao, Ping; Liu, Jian; Zhao, Qiang; Wang, Kui-jie; Zhao, Ting-bao

    2014-04-01

    To evaluate of the curative effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on rat acute radiation pneumonitis. Fourty rats were randomly divided into control group, radiation group, stem cell prevention group, stem cell treatment group and prednisone treatment group. All rats except those in the control group were radiated with X ray to establish the acute radiation pneumonitis damage model. The hUC-MSCs cultured in vitro was administrated to the rats of the prevention group via tail vein (1×10(6) cells/kg BW) 24 h before the radiation, while the same administration was performed in the rats of the treatment group 24 h after the radiation. After 24 h post the radiation, the rats in the radiation group were given 0.4 mL physiological saline, and those in the prednisone group were given 1 mg/kg prednisone. All rats were observed and executed 72 h after the radiation to detect lung histological changes. After the administration of hUC-MSCs, the survival status of the rats in the prevention group and treatment group was obviously better than that in the control group. As shown by the histological staining, the morphology, proliferation activity and bronchial state of lung tissues were better in the prevention group and treatment group than in the control group. The hUC-MSCs have definite therapeutic effects on acute radiation pneumonitis in rats. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Umbilical Hernia

    Science.gov (United States)

    ... 15, 2015. Umbilical hernia Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  6. Umbilical Hernia

    Science.gov (United States)

    ... creates a soft swelling or bulge near the navel (umbilicus). If your baby has an umbilical hernia, you ... doctor if you have a bulge near your navel. Seek emergency care if the bulge becomes painful ...

  7. Insulin-Increased L-Arginine Transport Requires A2A Adenosine Receptors Activation in Human Umbilical Vein Endothelium

    Science.gov (United States)

    Guzmán-Gutiérrez, Enrique; Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2012-01-01

    Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1). This process involves the activation of A2A adenosine receptors (A2AAR) in human umbilical vein endothelial cells (HUVECs). Insulin increases hCAT-1 activity and expression in HUVECs, and A2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C) in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor) and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR), and SLC7A1 (for hCAT-1) reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1−1606 or pGL3-hCAT-1−650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1−1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes. PMID:22844517

  8. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  9. Relationship between the telomerase activity and the growth kinetics of the human umbilical cord derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Leila Hosseinzadeh Anvar

    2016-08-01

    Full Text Available Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs with a self-renewal capacity are cells that can differentiate into various germ layer derivatives including neural cells and cardiomyocytes, and undergo biological changes during long-term cultivation. Hence, the passage number in which the cells expanded seems to be very important for proliferating and differentiating. This study was aimed at investigating the relationship between the telomerase activity and the growth rate of (hUC-MSCs at different passages. Methods: This experimental study was performed in Ardabil University of Medical Sciences, Iran, from March 2014 to December 2014. The umbilical cord samples were obtained from full-term neonate hospitalized in Alavi’s Hospital in Ardabil under sterile conditions. The umbilical vessels were clear off and the small pieces of the umbilical cord were cultured in Dulbecco's modified eagle's medium (DMEM supplemented with 20% fetal bovine serum (FBS. Then, the hUC-MSCs were harvested from passage one to three to calculate the population doubling time (PDT and extract proteins by using CHAPS lysis buffer. Finally, the telomerase activity of the cells at different passages was measured by telomeric repeat amplification protocol (TRAP and qRT-TRAP assays. Results: The hUC-MSCs population doubling time at passage from 1 to 3 were calculated as the average of 54.68±1.92, 55.03±1.71 and 69.41±2.54 hours, respectively, suggesting the higher cell passage number, the more extended PDT. The threshold cycles (CTs for the telomerase activity also showed 30.58±0.51, 27.24±0.74 and 32.13±0.75 for the cell passage from one to three

  10. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions

    Science.gov (United States)

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...

  11. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  12. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  13. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord.

    Science.gov (United States)

    Lim, Jezamine; Razi, Zainul Rashid Mohamad; Law, Jiaxian; Nawi, Azmawati Mohammed; Idrus, Ruszymah Binti Haji; Ng, Min Hwei

    2016-12-01

    Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared. Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed. hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation

  14. Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Megat Mohd Nordin Nor

    2011-04-01

    Full Text Available Abstract Background Aqueous extract of Piper sarmentosum (AEPS is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1, intracellular adhesion molecule-1 (ICAM-1 and E-selectin. NADPH oxidase 4 (Nox4 is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1, catalase (CAT and glutathione peroxidase (GPx are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs. Methods HUVECs were divided into four groups:- control; treatment with 180 μM hydrogen peroxide (H2O2; treatment with 150 μg/mL AEPS and concomitant treatment with AEPS and H2O2 for 24 hours. Total RNA was extracted from all the groups of HUVEC using TRI reagent. Subsequently, qPCR was carried out to determine the mRNA expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx. The specificity of the reactions was verified using melting curve analysis and agarose gel electrophoresis. Results When stimulated with H2O2, HUVECs expressed higher level of ICAM-1 (1.3-fold and Nox4 (1.2-fold mRNA expression. However, AEPS treatment led to a reduction in the mRNA expression of ICAM-1 (p 2O2-induced HUVECs. AEPS also upregulated the mRNA expression of SOD1 (p Conclusion The expressional suppression of ICAM-1 and Nox4 and induction of antioxidant enzymes might be an important component of the vascular protective effect of AEPS.

  15. Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

    OpenAIRE

    Lee, Min Ju; Yoon, Tae Gyoon; Kang, Moonkyu; Kim, Hyun Jeong; Kang, Kyung Sun

    2017-01-01

    In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC?transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model...

  16. Desflurane preconditioning induces oscillation of NF-κB in human umbilical vein endothelial cells.

    Directory of Open Access Journals (Sweden)

    Juan Yi

    Full Text Available BACKGROUND: Nuclear factor kappa B (NF-κB has been implicated in anesthetic preconditioning (APC induced protection against anoxia and reoxygenation (A/R injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis. METHODS: A human umbilical vein endothelial cells (HUVECs A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V-fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT assay. The cellular superoxide dismutases (SOD activitiy were tested by water-soluble tetrazolium salt (WST-1 assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα, NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1, B-cell leukemia/lymphoma 2 (Bcl-2, cysteine containing aspartate specific protease 3 (caspases-3 and second mitochondrial-derived activator of caspase (SMAC/DIABLO were determined by western blot. RESULTS: Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane. CONCLUSIONS: The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and

  17. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Tao, R; Sun, T-J; Han, Y-Q; Xu, G; Liu, J; Han, Y-F

    2014-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a novel source of seed cells for cell therapy and tissue engineering. However, in vitro labeling methods for hUCMSCs need to be optimized for better detection of transplanted cells. To identify the most stable and efficient method for labeling hUCMSCs in vitro. hUCMSCs were isolated using a modified enzymatic digestion procedure and cultured. hUCMSCs of passage three (P3) were then labeled with BrdU, PKH26, or lentivirus-GFP and passaged further. Cells from the first labeled passage (LP1), the fourth labeled passage (LP4) and later passages were observed using a fluorescence microscope. The differentiation potential of LP4 cells was assessed by induction with adipogenic and osteogenic medium. Flow cytometry was used to measure the percentage of labeled cells and the percentage of apoptotic or dead cells. The labeling efficiencies of the three hUCMSC-labeling methods were compared in vitro. BrdU, PKH26, and lentivirus-GFP all labeled LP1 cells with high intensity and clarity. However, the BrdU labeling of the LP4 cells was vague and not localized to the cell nuclei; LP9 cells were not detected under a fluorescence microscope. There was also a significant decrease in the fluorescence intensity of PKH26-labeled LP4 cells, and LP11 cells were not detected under a fluorescence microscope. However, the fluorescence of LP4 cells labeled with lentivirus-GFP remained strong, and cells labeled with lentivirus-GFP were detected up to LP14 under a fluorescence microscope. Statistical analyses indicated that percentages of LP1 cells labeled with PKH26 and lentivirus-GFP were significantly higher than that of cells labeled with BrdU (p 0.05) was observed between the death rates of labeled and unlabeled cells. Lentivirus-GFP is a valid method for long-term in vitro labeling, and it may be used as a long-term hUCMSC tracker following transplantation in vivo.

  18. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  19. A study on the role of apoptotic human umbilical cord mesenchymal stem cells in bleomycin-induced acute lung injury in rat models.

    Science.gov (United States)

    Liu, F-B; Lin, Q; Liu, Z-W

    2016-03-01

    We sought to determine whether normal human umbilical cord mesenchymal stem cells and apoptotic human umbilical cord mesenchymal stem cells play any role in the lung repair following bleomycin-induced lung injury in rat models. Umbilical cord mesenchymal stem cells were obtained from the umbilical cord following caesarian section from healthy normal babies. Plasmin deprivation method was used for culture of human umbilical cord mesenchymal stem cells and flow cytometry was used to identify cell surface antigen and activity of stem cells and apoptosis. The animal model of acute lung injury was established by a one-off intratracheal instillation of bleomycin (BLM) (5 mg/kg) and then normal stem cells and apoptotic stem cells were separately injected. Alveolar lavage fluid and lung tissue were collected for further analysis prior to the injury and at days 3, 7, 14 after administration of BLM. The number of neutrophils in the broncho alveolar lavage fluid (BALF) was counted; Bicinchoninic Acid (BCA) method was used for estimation of total protein content in alveolar lavage fluid; biochemical assay was used for estimation of myeloperoxidase (MPO) activity; hematoxylin and eosin (HE) staining of lung tissue was used for histopathology analysis; reverse transcription-polymerase chain reaction (RT-PCR) assay was used for the determination of interferon-gamma (INF-γ) and mRNA changes of interleukin-4 (IL-4) in lung tissue. Enzyme-linked immunosorbent assay (ELISA) was used for the determination of cytokines TNF-α in the lung tissue. Apoptotic human umbilical cord mesenchymal stem cells were more effective in reducing lung neutrophil infiltration and total protein leakage in rat models of acute lung injury (ALI). There was also an improvement in the degree of vascular permeability, reduction in the level of proinflammatory cytokines, INF-γ gene level and boost in anti-inflammatory cytokine IL-4 levels which also helps in more effectively reducing the degree of injury in

  20. IOP-lowering effects for the application of human umbilical vein in non-penetrating deep sclerostomy in rabbits.

    Science.gov (United States)

    Yang, Yang; Di, Yu; Gui, Dong-Mei; Liu, Zhi-Li; Liu, Xin; Gao, Dian-Wen

    2011-01-01

    To estimate the effects of human umbilical vein (HUV) implanted under the sclera of glaucoma model on intraocular pressure (IOP) lowering and to investigate its related mechanisms A total of 20 human umbilical veins (HUV) were collected from healthy fetus umbilical core. After the establishment of glaucoma model in rabbits, human freeze-dried umbilical vein was implanted under the sclera during NPDS, while for control group, sclerostomy was performed without implant. The formation of the filtration bleb and IOP were detected every 24 hours before surgery and on day 3, 7, 10 and 14 after surgery. Handheld pen-type Tono-pen II tonometer was used to measure IOP after topical anesthesia treatment. Each measurement has three duplicates. The incision recovery, filtration, conjunctiva congestion and anterior chamber inflammation were observed everyday after surgery. IOP was decreased dramatically with less inflammation than traditional sclerostomies with the application of HUV. The significant differences of IOP between the NPDS with and without HUV implant groups were shown up from 10 days after surgery. The average IOP in NPDS without HUV implant was 14.25mmHg, while for NPDS with HUV implant group, it was 12.30mmHg. This structure of filtration bleb, which allowed the aqueous humor to leave the eye, was formed for any type of surgery. However, 1-2 weeks later, filtration bleb was still existed in the group of sclerostomy with HUV implant and more stable than that of the surgery without HUV implant. Histological observations were performed on day 3, 7 and 14 after surgery. For the eyes under sclerostomy with HUV implant, HUV lumina was shown up on 3 days after surgery with few fibroblast cells near the sclera. On 7 days after surgery, HUV lumina was stably maintained but with obvious fibroblast cells and inflammatory cell. On 14 days after surgery, HUV lumina was still clearly observed but with scarring formation, which suggests that the IOP lowering effects might

  1. Human transient response under local thermal stimulation

    Directory of Open Access Journals (Sweden)

    Wang Lijuan

    2017-01-01

    Full Text Available Human body can operate physiological thermoregulation system when it is exposed to cold or hot environment. Whether it can do the same work when a local part of body is stimulated by different temperatures? The objective of this paper is to prove it. Twelve subjects are recruited to participate in this experiment. After stabilizing in a comfort environment, their palms are stimulated by a pouch of 39, 36, 33, 30, and 27°C. Subject’s skin temperature, heart rate, heat flux of skin, and thermal sensation are recorded. The results indicate that when local part is suffering from harsh temperature, the whole body is doing physiological thermoregulation. Besides, when the local part is stimulated by high temperature and its thermal sensation is warm, the thermal sensation of whole body can be neutral. What is more, human body is more sensitive to cool stimulation than to warm one. The conclusions are significant to reveal and make full use of physiological thermoregulation.

  2. Effect on radiosensitivity in human umbilical vein endothelial cells after transfection of pcDNA3.1 + Apel plasmid

    International Nuclear Information System (INIS)

    Tan Yonghong; Xiang Debing; Shi Xikai; Yin Xiaoling; Wang Dong

    2008-01-01

    Objective: To investigate the possible effects on radiosensitivity in human umbilical vein endothelial cells after transfection of pcDNA3.1 + Apel plasmid. Methods: The expressing vector pcDNA3.1 + Apel, the control vector pcDNA3.1 + or non-transfection cells was irradiated by 2, 4, 6, and 8 Gy photon beam at 48 h post-transfection. The value of initial and residual Oliver tail moment (OTM) under the alkaline single cell gelelectrophoresis assay and the colony forming test were utilized as the markers for the evaluation of cells intrinsic radiosensitivity. The effect on radiosensitivity in human umbilical vein endothelial cells after transfection of the expressing vector pcDNA3.1 + Apel was analyzed according to the radio-dose, compared to the empty vecor control and non-transfection cells. Results: The initial and residual OTM value of endothelial cells transfected by 3 μg pcDNA3.1 + Apel plasmid was lower significantly than ones of endothelial cells untransfected at 2 Gy irradiation (P 0.05), and SF 2 was higher remarkably in transfected cells than one in untransfected cells (P 4 , SF 6 and SF 8 were no significant differences (all of P>0.05). Conclusions: The transfection of pcDNA3.1 + Apel plasmid could enhance radioresistance of endothelial cells to the low-dose irradiation. (authors)

  3. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  4. Effect of human umbilical cord mesenchymal stem cells transplantation on nerve fibers of a rat model of endometriosis.

    Science.gov (United States)

    Chen, Yan; Li, Dong; Zhang, Zhe; Takushige, Natsuko; Kong, Bei-Hua; Wang, Guo-Yun

    2015-01-01

    Endometriosis is a common, benign, oestrogen-dependent, chronic gynaecological disorder associated with pelvic pain and infertility. Some researchers have identified nerve fibers in endometriotic lesions in women with endometriosis. Mesenchymal stem cells (MSCs) have attracted interest for their possible use for both cell and gene therapies because of their capacity for self-renewal and multipotentiality of differentiation. We investigated how human umbilical cord-MSCs (hUC-MSCs) could affect nerve fibers density in endometriosis. In this experimental study, hUC-MSCs were isolated from fresh human umbilical cord, characterized by flow cytometry, and then transplanted into surgically induced endometriosis in a rat model. Ectopic endometrial implants were collected four weeks later. The specimens were sectioned and stained immunohistochemically with antibodies against neurofilament (NF), nerve growth factor (NGF), NGF receptor p75 (NGFRp75), tyrosine kinase receptor-A (Trk-A), calcitonin gene-related peptide (CGRP) and substance P (SP) to compare the presence of different types of nerve fibers between the treatment group with the transplantation of hUC-MSCs and the control group without the transplantation of hUC-MSCs. There were significantly less nerve fibers stained with specific markers we used in the treatment group than in the control group (pumbilical cord reduced nerve fiber density in the treatment group with the transplantation of hUC-MSCs.

  5. Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord.

    Science.gov (United States)

    Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena

    2017-05-01

    Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    Science.gov (United States)

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  7. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    International Nuclear Information System (INIS)

    Han, Yanfu; Chai, Jiake; Sun, Tianjun; Li, Dongjie; Tao, Ran

    2011-01-01

    Highlights: → Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. → Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. → We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. → Collagen type I and collagen type III mRNA level was higher in differentiated cells. → UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue-engineered dermis.

  8. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yanfu [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Chai, Jiake, E-mail: cjk304@126.com [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Sun, Tianjun; Li, Dongjie; Tao, Ran [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China)

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  9. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70−

    Science.gov (United States)

    Griffin, Daniel O.; Holodick, Nichol E.

    2011-01-01

    B1 cells differ in many ways from conventional B cells, most prominently in the production of natural immunoglobulin, which is vitally important for protection against pathogens. B1 cells have also been implicated in the pathogenesis of autoimmune dyscrasias and malignant diseases. It has been impossible to accurately study B1 cells during health and illness because the nature of human B1 cells has not been successfully defined. This has produced controversy regarding the existence of human B1 cells. Here, we determined the phenotype of human B1 cells by testing sort-purified B cell fractions for three fundamental B1 cell functions based on mouse studies: spontaneous IgM secretion, efficient T cell stimulation, and tonic intracellular signaling. We found that a small population of CD20+CD27+CD43+ cells present in both umbilical cord and adult peripheral blood fulfilled these criteria and expressed a skewed B cell receptor repertoire. These B cells express little or no surface CD69 and CD70, both of which are markedly up-regulated after activation of CD20+CD27−CD43− (naive) and CD20+CD27+CD43− (memory) B cells. This work identifies human B1 cells as CD20+CD27+CD43+CD70−. We determined that the proportion of B1 cells declines with age, which may contribute to disease susceptibility. Identification of human B1 cells provides a foundation for future studies on the nature and role of these cells in human disease. PMID:21220451

  10. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    Science.gov (United States)

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-04-01

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  11. Relationship between the tensile strengths and diameters of human umbilical cords.

    Science.gov (United States)

    Fernando, D M G; Gamage, S M K; Ranmohottige, S; Weerakkody, I; Abeyruwan, H; Parakrama, H

    2018-03-06

    Mothers of alleged infanticides might claim that umbilical cord broke during precipitate delivery causing injuries detected on baby at autopsy. There is paucity of evidence regarding this possibility. The objective of the study was to determine relationship between tensile strength and diameter or weight per unit length of cord. Diameters and weights per unit length of fresh umbilical cords were determined. Tensile strengths were measured by Hounsfield Testing Machine. Relationship between tensile strength versus cord diameter and weight per unit length were analyzed. Of 122 cords, average tensile strength, diameter and weight per centimeter were 50.4 N, 7.73 mm and 6.87 g respectively. The tensile strengths were directly proportional to diameter. There was no association between tensile strength and weight per centimeter. Measurement of the diameter of cord is important during autopsy to predict tensile strength and thereby to presume whether cord could have broken by the weight of the baby. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  12. Comparison of the effect of topical application of human milk and dry cord care on the bacterial colonization of umbilical cord in newborn infants

    Directory of Open Access Journals (Sweden)

    Fatemeh Abbaszadeh

    2014-04-01

    Full Text Available Background: Breast milk contains significant amounts of compounds that act as natural antimicrobial agents. This study was conducted to compare the effect of topical application of human milk and dry cord care on bacterial colonization in the umbilical cord of newborn infants. Methods: This clinical trial study was carried out on 174 infants in Kashan. The newborns were randomized to mother's milk group and dry cord care group from the birth. In group 1, the mother rubbed her own milk on the cord stump every 12 hours from 3 hours after birth to 2 days after the umbilical cord separation. In group 2, the mother was recommended not to use any material on the cord. Then, the cord samples were taken four times; 3hours after birth, at days 3 and 7, and 2 days after the umbilical cord separation. Results: The findings of the culture two days after umbilical cord separation indicated that low percentage of neonates in the breast milk (23.1% and dry cord care (28.8% groups had bacterial colonization. Moreover, no significant difference was found between the two groups in terms of growth of pathogenic organisms and normal flora of the skin (P>0.05. Conclusion: Given the low prevalence of pathogenic microorganisms in the two groups, it seems using breast milk and dry cord care are equally effective methods of taking care of umbilical cord.

  13. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  14. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    International Nuclear Information System (INIS)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu

    2007-01-01

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future

  15. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    International Nuclear Information System (INIS)

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M.

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro

  16. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Background. The functions of insulin in mesenchymal stem cells (MSC remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM cultured in serum-free media (SFM with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.

  17. Extracellular Signal-Regulated Kinase 5 is Required for Low-Concentration H2O2-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Jiang, Shan; Zhang, Dongxin; Huang, Hong; Lei, Yonghong; Han, Yan; Han, Weidong

    2017-01-01

    Background . The aim of this study was to assess the effects of low concentrations of H 2 O 2 on angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and explore the underlying mechanisms. Methods . HUVECs were cultured and stimulated with different concentrations of H 2 O 2 . Flow cytometric analysis was used to select an optimal concentration of H 2 O 2 for the following experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5 (CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5). Results . We found that low concentrations of H 2 O 2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in HUVECs was significantly activated by H 2 O 2 . Enhanced ERK5 activity significantly amplified the proangiogenic effects of H 2 O 2 ; in contrast, ERK5 knock-down abrogated the effects of H 2 O 2 . Conclusions . Our results confirmed that low concentrations of H 2 O 2 promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential therapeutic target for promoting angiogenesis and improving graft survival.

  18. Comparative Proteomic Profile of the Human Umbilical Cord Blood Exosomes between Normal and Preeclampsia Pregnancies with High-Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ruizhe Jia

    2015-07-01

    Full Text Available Background/Aims: Exosomes are extracellular vesicles that are involved in several biological processes. The roles of proteins from human umbilical cord blood exosomes in the pathogenesis of preeclampsia remains poorly understood. Methods: In this study, we used high-resolution LC-MS/MS technologies to construct a comparative proteomic profiling of human umbilical cord blood exosomes between normal and preeclamptic pregnancies. Results: A total of 221 proteins were detected in human umbilical cord blood exosomes, with 14 upregulated and 15 downregulated proteins were definitively identified between preeclamptic and control pregnancies. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed proteins correlate with enzyme regulator activity, binding, extracellular region, cell part, biological regulation, cellular process and complement and coagulation cascades occurring during pathological changes of preeclampsia. Conclusion: Our results show significantly altered expression profiles of proteins in human umbilical cord blood exosomes between normal and preeclampsia pregnancies. These proteins may be involved in the etiology of preeclampsia.

  19. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells on the radiation-induced GI syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Se Hwan; Jang, Won Suk; Lee, Sun Joo; Park, Eun Young; Kim, Youn Joo; Jin, Sung Ho; Park, Sun Hoo; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    The gastrointestinal (GI) tract is one of the most radiosensitive organ systems in the body. Radiation-induced GI injury is described as destruction of crypt cell, decrease in villous height and number, ulceration, and necrosis of intestinal epithelium. Studies show that mesenchymal stem cells (MSCs) treatment may be useful in the repair or regeneration of damaged organs including bone, cartilage, or myocardium. MSCs from umbilical cord blood (UCB) have many advantages because of the immature nature of newborn cells compared to bone marrow derived MSCs. Moreover, UCB-MSCs provide no ethical barriers for basic studies and clinical applications. In this study, we explore the regeneration capability of human UCB-MSCs after radiation-induced GI injury

  20. Manufacturing of Human Umbilical Cord Mesenchymal Stromal Cells on Microcarriers in a Dynamic System for Clinical Use

    Directory of Open Access Journals (Sweden)

    Florian Petry

    2016-01-01

    Full Text Available The great properties of human mesenchymal stromal cells (hMSCs make these cells an important tool in regenerative medicine. Because of the limitations of hMSCs derived from the bone marrow during isolation and expansion, hMSCs derived from the umbilical cord stroma are a great alternative to overcome these issues. For a large expansion of these cells, we performed a process transfer from static culture to a dynamic system. For this reason, a microcarrier selection out of five microcarrier types was made to achieve a suitable growth surface for the cells. The growth characteristics and metabolite consumption and production were used to compare the cells growth in 12-well plate and spinner flask. The goal to determine relevant process parameters to transfer the expansion process into a stirred tank bioreactor was achieved.

  1. Noninvasive Stimulation of the Human Brain

    DEFF Research Database (Denmark)

    Di Lazzaro, Vincenzo; Rothwell, John; Capogna, Marco

    2017-01-01

    Noninvasive brain stimulation methods, such as transcranial electric stimulation and transcranial magnetic stimulation are widely used tools for both basic research and clinical applications. However, the cortical circuits underlying their effects are poorly defined. Here we review the current...

  2. Evaluation of decellularized human umbilical vein (HUV) for vascular tissue engineering - comparison with endothelium-denuded HUV.

    Science.gov (United States)

    Mangold, Silvia; Schrammel, Siegfried; Huber, Georgine; Niemeyer, Markus; Schmid, Christof; Stangassinger, Manfred; Hoenicka, Markus

    2015-01-01

    Human umbilical vessels have been recognized as a valuable and widely available resource for vascular tissue engineering. Whereas endothelium-denuded human umbilical veins (HUVs) have been successfully seeded with a patient-derived neoendothelium, decellularized vessels may have additional advantages, due to their lower antigenicity. The present study investigated the effects of three different decellularization procedures on the histological, mechanical and seeding properties of HUVs. Vessels were decellularized by detergent treatment (Triton X-100, sodium deoxycholate, IGEPAL-CA630), osmotic lysis (3 m NaCl, distilled water) and peroxyacetic acid treatment. In all cases, nuclease treatments were required to remove residual nucleic acids. Decellularization resulted in a partial loss of fibronectin and laminin staining in the subendothelial layer and affected the appearance of elastic fibres. In addition to removing residual nucleic acids, nuclease treatment weakened all stainings and substantially altered surface properties, as seen in scanning electron micrographs, indicating additional non-specific effects. Detergent treatment and osmotic lysis caused failure stresses to decrease significantly. Although conditioned medium prepared from decellularized HUV did not severely affect endothelial cell growth, cells seeded on decellularized HUV did not remain viable. This may be attributed to the partial removal of essential extracellular matrix components as well as to changes of surface properties. Therefore, decellularized HUVs appear to require additional modifications in order to support successful cell seeding. Replacing the vessels' endothelium may thus be a superior alternative to decellularization when creating tissue-engineered blood vessels with non-immunogenic luminal interfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Functional Profiles of Human Umbilical Cord-Derived Adult Mesenchymal Stem Cells in Obese/Diabetic Versus Healthy Women.

    Science.gov (United States)

    Montanucci, Pia; Pescara, Teresa; Pennoni, Ilaria; Alunno, Alessia; Bistoni, Onelia; Torlone, Elisabetta; Luca, Giovanni; Gerli, Roberto; Basta, Giuseppe; Calafiore, Riccardo

    2016-06-28

    Adult human mesenchymal stem cells retrieved, from the post-partum human umbilical cord Wharton jelly (hUCMS), have recently gained growing interest due to their morphological and functional properties. The main purpose of our work was to examine morphology and functional properties of hUCMS retrieved from healthy women as compared to those with obesity, or gestational or type 2 diabetes mellitus, under fair metabolic control. Possible differences between groups could shed light into the potential use of these cells for the cell therapy of a variety of diseases, regardless of the obesity/diabetes status of the donor mothers. Additionally, information on how the maternal disease may affect the cord-derived stem cells, hence possibly newborn children would be important. We have studied obese/diabetic or normal donor post-partum umbilical cord-derived hUCMS, either in basal or during differentiation protocols into several cell phenotypes and the definitive endoderm. Immunomodulatory properties of these cells, in terms of inhibition of activated lymphocyte proliferation, also was examined. According to our preliminary results, there are functional differences, as assessed by cell and molecular assays, in terms of both, differentiation and immunomodulatory potential, between the cells derived from normal as compared to obese/diabetic mothers. The findings seemingly indicate that the uterine environment of obese/diabetic mothers is quite distant from normal, regardless of metabolic control. Hence hUCMS extracted from obese/diabetic mothers do not appear to be suitable for cell therapy clinical protocols but more studies are required.

  4. Transport and release of colloidal 3-mercaptopropionic acid-coated CdSe–CdS/ZnS core-multishell quantum dots in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Fontana JM

    2017-12-01

    Full Text Available Jacopo M Fontana,1 Huijuan Yin,1 Yun Chen,2 Ricardo Florez,1 Hjalmar Brismar,1 Ying Fu1 1Section of Cellular Biophysics, Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, Solna, 2Department of Molecular and Clinical Medicine/Clinical Physiology, The Sahlgrenska Academy and University Hospital, University of Gothenburg, Gothenburg, Sweden Abstract: Colloidal semiconductor quantum dots (QDs have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs. Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2 adenosine 5'-triphosphate-induced [Ca2+]i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3 fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA

  5. [Biologic effects of different concentrations of putrescine on human umbilical vein endothelial cells].

    Science.gov (United States)

    Chen, Jianxia; Rong, Xinzhou; Fan, Guicheng; Li, Songze; Zhang, Tao; Li, Qinghui

    2015-12-01

    To explore the effects of different concentrations of putrescine on proliferation, migration, and apoptosis of human umbilical vein endothelial cells (HUVECs). HUVECs were routinely cultured in vitro. The 3rd to the 5th passage of HUVECs were used in the following experiments. (1) Cells were divided into 500, 1 000, and 5 000 µg/mL putrescine groups according to the random number table (the same grouping method was used for following grouping), with 3 wells in each group, which were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h. Morphology of cells was observed by inverted optical microscope. (2) Cells were divided into 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups, and control group, with 4 wells in each group. Cells in the putrescine groups were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h, and cells in control group were cultured with complete culture solution with no additional putrescine for 24 h. Cell proliferation activity (denoted as absorption value) was measured by colorimetry. (3) Cells were divided (with one well in each group) and cultured as in experiment (2), and the migration ability was detected by transwell migration assay. (4) Cells were divided (with one flask in each group) and cultured as in experiment (2), and the cell apoptosis rate was determined by flow cytometer. Data were processed with one-way analysis of variance, Kruskal-Wallis test, and Dunnett test. (1) After 24-h culture, cell attachment was good in 500 µg/mL putrescine group, and no obvious change in the shape was observed; cell attachment was less in 1 000 µg/mL putrescine group and the cells were small and rounded; cells in 5 000 µg/mL putrescine group were in fragmentation without attachment. (2) The absorption values of cells in 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups

  6. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    Science.gov (United States)

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  7. The application of human umbilical cord blood mononuclear cells in the management of deep partial thickness burn

    Directory of Open Access Journals (Sweden)

    Yefta Moenadjat

    2013-05-01

    Full Text Available Background: Wound healing in burn is a complex process and early complete wound closure still enfaces many problems. Application of stem cells is found to be the future method of wound healing. Among the available sources of allogenic stem cells, umbilical cord blood is quite easy to be obtained, has less ethical issue, and contain multipotent stem cells, which are characterized by low immunogenicity. The study aims to evaluate the potential of human umbilical cord blood mononuclear cells (hUCBMNCs treatment in the management of deep partial thickness burns. Methods: Twenty patients with deep partial thickness burns were treated with topical application of 2 x 107 hUCBMNCs and silver sulfadiazine (SSD cream on the comparable wound size in the other sites. The treatments were applied for six times in every two consecutive days. Wound surface area was measured with Visitrak® on day 0, 7, and 11. Pain intensity was evaluated using Wong Baker’s faces scale on each wound dressing change. Histology examination was performed in some samples of collected skin biopsy of the newly re-epithelialized area of hUCBMNCs and SSD-treated wound at the end of treatment. HLA typing is used to evaluate the issue of safety. Wilcoxon signed rank test was used to compare the rate of wound healing. Results: Sixteen patients of hUCBMNCs-treated showed a significant wound closure in faster than SSD-treated; measured on day 7 (p = 0.041 and day 11 (p = 0.021. Number of patients with reduced pain intensity, from approximately scale 3 to 1/0 on day 7 and 11, were higher in hUCBMNCs-treated compared to SSD-treated wound. In spite of the HLA-mismatch, no allergic reaction, rejection, and infection found on hUCBMNCs-treated wound suggested the safety of this therapy. Histology examination found the formation of dermal-epidermal junction and rete ridges equal to the normal skin on hUCBMNCs-treated wounds. Conclusion: hUCBMNCs are effective and safe to promote re

  8. Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells

    Science.gov (United States)

    Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica

    2012-01-01

    Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134

  9. A Comparative Study to Evaluate Myogenic Differentiation Potential of Human Chorion versus Umbilical Cord Blood-derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bana, Nikoo; Sanooghi, Davood; Soleimani, Mansoureh; Hayati Roodbari, Nasim; Alavi Moghaddam, Sepideh; Joghataei, Mohammad Taghi; Sayahpour, Forough Azam; Faghihi, Faezeh

    2017-08-01

    Musculodegenerative diseases threaten the life of many patients in the world. Since drug administration is not efficient in regeneration of damaged tissues, stem cell therapy is considered as a good strategy to restore the lost cells. Since the efficiency of myogenic differentiation potential of human Chorion- derived Mesenchymal Stem Cells (C-MSCs) has not been addressed so far; we set out to evaluate myogenic differentiation property of these cells in comparison with Umbilical Cord Blood- derived Mesenchymal Stem Cells (UCB-MSCs) in the presence of 5-azacytidine. To do that, neonate placenta Umbilical Cord Blood were transferred to the lab. After characterization of the isolated cells using flowcytometry and multilineage differentiation capacity, the obtained Mesenchymal Stem Cells were cultured in DMEM/F12 supplemented with 2% FBS and 10μM of 5-azacytidine to induce myogenic differentiation. Real-time PCR and immunocytochemistry were used to assess the myogenic properties of the cells. Our data showed that C-MSCs and UCB-MSCs were spindle shape in morphology. They were positive for CD90, CD73 and CD44 antigens, and negative for hematopoietic markers. They also differentiated into osteoblast and adipoblast lineages. Real-time PCR results showed that the cells could express MyoD, desmin and α-MHC at the end of the first week (Pcells are potent to differentiate into myoblast- like cells. An upregulation in the expression of some myogenic markers (desmin, α- MHC) was observed in C-MSCs in comparison with UCB-MSCs. Copyright © 2017. Published by Elsevier Ltd.

  10. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  11. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongyong; Huo, Xia [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Wu, Kusheng [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Department of Preventive Medicine, Shantou University Medical College, Shantou (China); Liu, Junxiao; Zhang, Yuling [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Xu, Xijin, E-mail: xuxj@stu.edu.cn [Analytic Cytology Laboratory and the Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou (China)

    2012-06-15

    Unregulated electronic-waste recycling results in serious environmental pollution of polycyclic aromatic hydrocarbons (PAHs) in Guiyu, China. We evaluated the body burden of seven carcinogenic PAHs and potential health risks for neonates. Umbilical cord blood (UCB) samples were collected from Guiyu (n = 103), and the control area of Chaonan (n = 80), China. PAHs in UCB were determined by gas chromatography/mass spectrometry. The median N-Ary-Summation 7c-PAH concentration was 108.05 ppb in UCB samples from Guiyu, vs. 79.36 ppb in samples from Chaonan. Residence in Guiyu and longer cooking time of food during the gestation period were significant factors contributing to the N-Ary-Summation 7c-PAH level. Benzo[a]anthracene (BaA), chrysene (Chr), and benzo[a]pyrene (BaP) were found to correlate with reduced neonatal height and gestational age. Infants experiencing adverse birth outcomes, on the whole, displayed higher BaA, Chr, and BaP levels compared to those with normal outcomes. We conclude that maternal PAH exposure results in fetal accumulation of toxic PAHs, and that such prenatal exposure correlates with adverse effects on neonatal health.

  12. Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells.

    Science.gov (United States)

    Ewenstein, B M; Warhol, M J; Handin, R I; Pober, J S

    1987-05-01

    von Willebrand factor (VWF) is a large, adhesive glycoprotein that is biosynthesized and secreted by cultured endothelial cells (EC). Although these cells constitutively release VWF, they also contain a storage pool of this protein that can be rapidly mobilized. In this study, a dense organelle fraction was isolated from cultured umbilical vein endothelial cells by centrifugation on a self-generated Percoll gradient. Stimulation of EC by 4-phorbol 12-myristate 13-acetate (PMA) resulted in the disappearance of this organelle fraction and the synchronous loss of Weibel-Palade bodies as judged by immunoelectron microscopy. Electrophoretic and serologic analyses of biosynthetically labeled dense organelle fraction revealed that it is comprised almost exclusively of VWF and its cleaved pro sequence. These two polypeptides were similarly localized exclusively to Weibel-Palade bodies by ultrastructural immunocytochemistry. The identity of the dense organelle as the Weibel-Palade body was further established by direct morphological examination of the dense organelle fraction. The VWF derived from this organelle is distributed among unusually high molecular weight multimers composed of fully processed monomeric subunits and is rapidly and quantitatively secreted in unmodified form after PMA stimulation. These studies: establish that the Weibel-Palade body is the endothelial-specific storage organelle for regulated VWF secretion; demonstrate that in cultured EC, the VWF concentrated in secretory organelles is of unusually high molecular weight and that this material may be rapidly mobilized in unmodified form; imply that proteolytic processing of VWF involved in regulated secretion takes place after translocation to the secretory organelle; provide a basis for further studies of intracellular protein trafficking in EC.

  13. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    Science.gov (United States)

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  14. Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs model.

    Directory of Open Access Journals (Sweden)

    Jonica Campolo

    Full Text Available To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical (flow changes and/or mechanical (stent application stimuli to human endothelial cells in a laminar flow bioreactor (LFB system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial cells (HUVECs were submitted to low and physiological (1 and 10 dyne/cm(2 shear stress in absence (AS or presence (PS of stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based on one-way ANOVA analysis with p values 3 in modulus. Low shear stress was compared with physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus 10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in 1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely modulated by changes in flow (1 versus 10, independently of stent application. Low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunction.

  15. Monoclonal antibodies against human CD34 antigens do not cross-react with ovine umbilical cord blood cells

    Directory of Open Access Journals (Sweden)

    Maria Dattena

    2010-02-01

    Full Text Available CD34 is a cell surface glycoprotein expressed by hematopoietic progenitors and endothelial cells. It is widely used in the clinic for isolation of human hematopoietic stem cells. In recent years large animals are gaining increasing importance in biomedical research for the study and therapy of human diseases. Sheep has proved to be an useful experimental model for preclinical trials in transplantation procedures. Unfortunately, the lack of specie-specific monoclonal antibodies (MABS recognizing hemopoietic progenitor cells hampers the use of this animal in experimental hematology. The aim of this paper was to determine whether commercial monoclonal antibodies specific for human CD34 molecule could cross-react with hematopoietic progenitor cells (HPC present in sheep umbilical cord blood (UCB. Six antihuman CD34 MABS, recognizing the three different epitope classes, were tested in flow cytometry on purified mononuclear cells (MNC isolated from cord blood of both species. None of the MABS used in this trial seemed to be able to identify HPC from sheep UCB. These data suggest that the panel of monoclonal antibodies used for cross reactivity detection has to be expanded with recently produced reagents. Further studies should be directed towards the production of ovine specific anti CD34 MABS.

  16. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  17. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    González, Marcelo; Rojas, Susana; Avila, Pía; Cabrera, Lissette; Villalobos, Roberto; Palma, Carlos; Aguayo, Claudio; Peña, Eduardo; Gallardo, Victoria; Guzmán-Gutiérrez, Enrique; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2•–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2•– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4

  18. Human umbilical cord expresses several vasoactive peptides involved in the local regulation of vascular tone: protein and gene expression of Orphanin, Oxytocin, ANP, eNOS and iNOS

    Directory of Open Access Journals (Sweden)

    Aldo Gerbino

    2011-07-01

    Full Text Available Full-term human umbilical cord contains three blood vessels: two arteries coiled around a vein and surrounded by Wharton’s jelly, a mucous tissue with few mesenchymal stromal cells and abundant extracellular matrix. Umbilical vessels lack innervations, thus endothelial cells must play a role in the control of blood flow. The aim of this study was to investigate in human umbilical cord the expression of five peptides that could be involved in the regulation of vascular tone: Orphanin FQ, Oxytocin, Atrial Natriuretic Peptide (ANP, endothelial Nitric Oxide Synthase (eNOS and inducible Nitric Oxide Synthase (iNOS. The expression of these molecules in full-term human umbilical cord was investigated through immunohistochemistry and RT-PCR. Immunoreactivity for Orphanin FQ was detected in Wharton’s jelly, vessel musculature and endothelium; Oxytocin, ANP and eNOS were expressed by the umbilical epithelium, Wharton’s jelly and endothelium, whereas iNOS only by endothelial cells. RT-PCR analysis showed transcriptional expression of Oxytocin, ANP and eNOS mRNAs. The presence of Orphanin, Oxytocin, ANP, eNOS and iNOS proteins was identified in the human umbilical cord. mRNA expression for Oxytocin, ANP and eNOS suggest that these molecules are synthesized by umbilical cord cells themselves. The expression of these vasoactive molecules could be part of a general mechanism locally regulating vascular tone. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 211–218

  19. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase.

    Science.gov (United States)

    Park, Yong Seek; Kim, Jayoung; Misonou, Yoshiko; Takamiya, Rina; Takahashi, Motoko; Freeman, Michael R; Taniguchi, Naoyuki

    2007-06-01

    Acrolein, a known toxin in tobacco smoke, might be involved in atherogenesis. This study examined the effect of acrolein on expression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in endothelial cells. Cyclooxygenase (COX)-2 induction by acrolein and signal pathways were measured using Western blots, Northern blots, immunofluorescence, ELISA, gene silencing, and promoter assay. Colocalization of COX2 and acrolein-adduct was determined by immunohistochemistry. Here we report that the levels of COX-2 mRNA and protein are increased in human umbilical vein endothelial cells (HUVECs) after acrolein exposure. COX-2 was found to colocalize with acrolein-lysine adducts in human atherosclerotic lesions. Inhibition of p38 MAPK activity abolished the induction of COX-2 protein and PGE2 accumulation by acrolein, while suppression of extracellular signal-regulated kinase (ERK) and JNK activity had no effect on the induction of COX-2 expression in experiments using inhibitors and siRNA. Furthermore, rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), abrogated the upregulation of COX-2 at both protein and mRNA levels. These results provide that acrolein may play a role in progression of atherosclerosis and new information on the signaling pathways involved in COX-2 upregulation in response to acrolein and provide evidence that PKCdelta and p38 MAPK are required for transcriptional activation of COX-2.

  20. Clinical evaluation of haploidentical hematopoietic combined with human umbilical cord-derived mesenchymal stem cells in severe aplastic anemia.

    Science.gov (United States)

    Xu, Lixin; Liu, Zhouyang; Wu, Yamei; Yang, Xueliang; Cao, Yongbin; Li, Xiaohong; Yan, Bei; Li, Songwei; Da, Wanming; Wu, Xiaoxiong

    2018-03-01

    This study not only evaluated the clinical effects of treatment using haploidentical hematopoietic stem cells (haplo-HSCs) combined with human umbilical cord mesenchymal stem cells (UC-MSCs) in patients with severe aplastic anemia (SAA), but also investigated the factors related to graft versus host disease (GVHD). Cotransplantation of haplo-HSCs and UC-MSCs was performed in 24 SAA patients. The conditioning regimens consisted of rabbit anti-human T-lymphocyte immunoglobulin (ATG), cyclophosphamide, and fludarabine with or without busulfan. GVHD was prevented using cyclosporine A, ATG, anti-CD25 monoclonal antibody, and mycophenolate material. The incidence of acute GVHD was 50%. The incidence of severe acute GVHD was not related to gender, age, donor-recipient relations, and patient/donor pair, while patient/donor pair (r = 0.541, P = 0.022) was significantly correlated with incidence of chronic GVHD. Upon follow-up for a median of 13 months, 5 of the 24 patients (20.8%) were dead. The survival rates at 3 and 6 months in all patients were 87.5% (21/24) and 83.3% (20/24), respectively. Cotransplantation of haplo-HSCs combined with UC-MSCs was an effective and safe approach for the treatment of patients with SAA. The appropriate conditioning regimen and early treatment for infection also played a critical role in the success of HSCT.

  1. Harmine stimulates proliferation of human neural progenitors

    Directory of Open Access Journals (Sweden)

    Vanja Dakic

    2016-12-01

    Full Text Available Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A, which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY, and an irreversible selective inhibitor of monoamine oxidase (MAO but not DYRK1A (pargyline. INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

  2. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Kim

    Full Text Available Toll-like receptors (TLRs and Nod-like receptors (NLRs are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs, little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs. The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3CSK(4 for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2 led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3CSK(4 and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor restored osteogenic differentiation enhanced by Pam(3CSK(4. Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3CSK(4 and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.

  3. Rice Bioactive Peptide Binding with TLR4 To Overcome H2O2-Induced Injury in Human Umbilical Vein Endothelial Cells through NF-κB Signaling.

    Science.gov (United States)

    Liang, Ying; Lin, Qinlu; Huang, Ping; Wang, Yuqian; Li, Jiajia; Zhang, Lin; Cao, Jianzhong

    2018-01-17

    Reactive oxygen species-induced vessel endothelium injury is crucial in cardiovascular diseases progression. Rice-derived bran bioactive peptides (RBAP) might exert antioxidant effect through unknown mechanisms. Herein, we validated the antioxidant effect and mechanism of RBAP on H 2 O 2 -induced oxidative injury in human umbilical vein endothelial cells (HUVECs). Here, HUVECs were treated with RBAP under H 2 O 2 stimulation; the effects of RBAP on HUVECs oxidative injury were evaluated. H 2 O 2 injury-induced cell morphology changes were ameliorated by RBAP. The effect of H 2 O 2 - on HUVEC apoptosis (percentage of apoptotic cell: 38.00 ± 2.00 in H 2 O 2 group vs 21.07 ± 2.06 in RBAP + H 2 O 2 group, P = 0.0013 compared to H 2 O 2 group), the protein levels of cleaved caspase-3 (relative protein expression: 2.90 ± 0.10 in H 2 O 2 group vs 1.82 ± 0.09 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) and p-p65 (relative protein expression: 1.86 ± 0.09 in H 2 O 2 group vs 1.35 ± 0.08 in RBAP + H 2 O 2 group, P < 0.0001 compared to H 2 O 2 group) could be attenuated by RBAP. RBAP exerts its protective function through binding with Toll-like receptor 4 (TLR4). Taken together, RBAP protects HUVECs against H 2 O 2 -induced oxidant injury, which provided the theoretical basis for the molecular mechanism of rice deep processing and exploitation of functional peptides.

  4. Transport and release of colloidal 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots in human umbilical vein endothelial cells.

    Science.gov (United States)

    Fontana, Jacopo M; Yin, Huijuan; Chen, Yun; Florez, Ricardo; Brismar, Hjalmar; Fu, Ying

    2017-01-01

    Colloidal semiconductor quantum dots (QDs) have been extensively researched and developed for biomedical applications, including drug delivery and biosensing assays. Hence, it is pivotal to understand their behavior in terms of intracellular transport and toxicological effects. In this study, we focused on 3-mercaptopropionic acid-coated CdSe-CdS/ZnS core-multishell quantum dots (3MPA-QDs) converted from the as-grown octadecylamine-coated quantum dots (ODA-QDs) and their direct and dynamic interactions with human umbilical vein endothelial cells (HUVECs). Live cell imaging using confocal fluorescence microscopy showed that 3MPA-QDs first attached to and subsequently aggregated on HUVEC plasma membrane ~25 min after QD deposition. The aggregated QDs started being internalized at ~2 h and reached their highest internalization degree at ~24 h. They were released from HUVECs after ~48 h. During the 48 h period, the HUVECs responded normally to external stimulations, grew, proliferated and wound healed without any perceptible apoptosis. Furthermore, 1) 3MPA-QDs were internalized in newly formed LysoTracker-stained early endosomes; 2) adenosine 5'-triphosphate-induced [Ca 2+ ] i modulation caused a transient decrease in the fluorescence of 3MPA-QDs that were attached to the plasma membrane but a transient increase in the internalized 3MPA-QDs; and 3) fluorescence signal modulations of co-stained LysoTracker and QDs induced by the lysosomotropic agent Gly-Phe-β-naphthylamide were spatially co-localized and temporally synchronized. Our findings suggest that 3MPA-QDs converted from ODA-QDs are a potential nontoxic fluorescent probe for future use in clinical applications. Moreover, the photophysical strategy and techniques reported in this work are easily applicable to study of direct interactions between other nanoparticles and live cells; contributing to awareness and implementation of the safe applications of nanoparticles.

  5. Comparison of the effect of topical application of human milk and dry cord care on the bacterial colonization of umbilical cord in newborn infants

    OpenAIRE

    Fatemeh Abbaszadeh; zanab Hajizadeh; Mahboobeh Kafaei Atrian; Azam Bagheri; Nahid Sarafraz

    2014-01-01

    Background: Breast milk contains significant amounts of compounds that act as natural antimicrobial agents. This study was conducted to compare the effect of topical application of human milk and dry cord care on bacterial colonization in the umbilical cord of newborn infants. Methods: This clinical trial study was carried out on 174 infants in Kashan. The newborns were randomized to mother's milk group and dry cord care group from the birth. In group 1, the mother rubbed her own milk on ...

  6. BMP2 induced osteogenic differentiation of human umbilical cord stem cells in a peptide-based hydrogel scaffold

    Science.gov (United States)

    Lakshmana, Shruthi M.

    Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (p<0.05). Cells were encapsulated in 0.2% PuraMatrix(TM) at cell densities of 10x104, 20x104, 40x10 4 and 80x104. Cell viability with WST and proliferation with Live-Dead cell assays

  7. Isolation of human umbilical cord blood-derived osteoprogenitor cells: a promising candidate for cell-based therapy for bone repair

    Directory of Open Access Journals (Sweden)

    Igor Iuco Castro-Silva

    2011-12-01

    Full Text Available Objective: The aim of this study was to evaluate the osteogenic potential of human umbilical cord blood-derived osteoprogenitor cells and to prove its applicability as a promising candidate for cell-based therapeutics for bone repair. Methods: Primary cultures of human umbilical blood cord adherent cells were expanded in vitro until passage 2 and seeded for osteodifferentiation study. Morphological (light microscopy, cytochemical (Von Kossa’s method, and functional analyses (calcium level, alkaline phosphatase activity, and total protein content in cell culture were carried out 7, 14, 21, and 28 days after the osteoinduction protocol. Results: The proliferative step showed colony-forming units in 7 days. After osteoinduction, cuboidal cellular morphology similar to osteoblasts at 14 days and mineralization nodules and biochemical changes (increased alkaline phosphatase level and calcium deposits at 21 days confirmed the osteodifferentiation process. Conclusion: Cell culture of human umbilical blood cord is a reliable technique, constituting itself as an alternative source of osteoprogenitor cells for experimental needs. More animal tests and clinical trials must be carried out to validate its use and to establish quality control of future autologous or allogeneic cell-based therapy aimed at bone repair.

  8. Study on the therapeutic role of transplantation of human umbilical cord mesenchymal stem cells in NOD-SCID mouse model of gastrointestinal radiation damage

    International Nuclear Information System (INIS)

    Cao Xiaocang; Wang Bangmao; Zhao Hui; Du Liqing; Wang Yan; Li Jin; Wang Qin; Du Weiting; Liu Qiang; Han Zhongzhao; Fan Feiyue

    2010-01-01

    Objective: To explore the therapeutic role of transplantation of human umbilical cord mesenchymal stem cells (MSC) in NOD-SCID mouse model of gastrointestinal radiation damage and search for the reliable donator cell resource for the treatment of acute enter radiation disease. Methods: To observe the potential of multi-differentiation of huma umbilical cord MSC in vitro, transplant human umbilical cord MSC which were labeled with CM-DiI to the mouse model and study not only the pathological changed of entero-mucosa using histochemical stain but also the location of MSC in the entero-mucosa of mouse model using confocal microscopy. Results: The lesions in the mice treated with MSC were improved obviously compared with that of control mice.Many CM-DiI + MSCs derived cells were distributed in intestinal mucosa and submucosa of the recipient mice, which indicated that MSCs-derived cells were involved in regeneration of the gastrointestinal radiation damage. Conclusion: The data indicate that systemically administrated MSCs maybe accelerated tissue repair in mouse model and it is hopeful in the treatment of human acute enter radiation sickness in the future. (authors)

  9. Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Yan-Song; Li, Wen-Juan; Zhang, Xian-Yi; Yan, Yu-Xin; Nie, Shao-Ping; Gong, De-Ming; Tang, Xiao-Fang; He, Ming; Xie, Ming-Yong

    2017-05-01

    Ganoderma atrum polysaccharide (PSG-1), a main polysaccharide from Ganoderma atrum, possesses potent antioxidant capacity and cardiovascular benefits. The aim of this study was to investigate the role of PSG-1 in oxidative stress and apoptosis in human umbilical vein endothelial cells (HUVECs) under anoxia/reoxygenation (A/R) injury conditions. The results showed that exposure of HUVECs to A/R triggered cell death and apoptosis. Administration of PSG-1 significantly inhibited A/R-induced cell death and apoptosis in HUVECs. PSG-1-reduced A/R injury was mediated via mitochondrial apoptotic pathway, as evidenced by elevation of mitochondrial Bcl-2 protein and mitochondrial membrane potential, and attenuation of Bax translocation, cytochrome c release and caspases activation. Furthermore, PSG-1 enhanced the activities of superoxide dismutase, catalase and glutathione peroxidase and glutathione content, and concomitantly attenuated reactive oxygen species generation, lipid peroxidation and glutathione disulfide content. The antioxidant, N-acetyl-l-cysteine, significantly ameliorated all of these endothelial injuries caused by A/R, suggesting that antioxidant activities might play a key role in PSG-1-induced endothelial protection. Taken together, these findings suggested that PSG-1 could be as a promising adjuvant against endothelial dysfunction through ameliorating oxidative stress and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Cai, Guoping; Lai, Binbin; Hong, Huaxing; Lin, Peng; Chen, Weifu; Zhu, Zhong; Chen, Haixiao

    2017-07-01

    Cryopreservation is widely used in regenerative medicine for tissue preservation. In the present study, the effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells (HUVECs) were investigated. After 0, 4, 8, 12 or 24 weeks of cryopreservation in liquid nitrogen, the HUVECs were thawed. The excretory functions markers (endothelin‑1, prostaglandin E1, von Willebrand factor and nitric oxide) of HUVECs were measured by ELISA assay. The expression of intercellular adhesion molecule‑1 (ICAM‑1) in HUVECs was analyzed using flow cytometry. An angiogenesis assay was used to determine the angiogeneic capabilities of the thawed HUVECs. The results demonstrated that cryopreserved/thawed and recultivated HUVECs were unsuitable for tissue‑engineered microvascular construction. Specifically, the excretory function of the cells was significantly decreased in the post‑cryopreserved HUVECs at 24 weeks. In addition, the level of ICAM‑1 in HUVECs was significantly upregulated from the fourth week of cryopreservation. Furthermore, the tube‑like structure‑forming potential was weakened with increasing cryopreservation duration, and the numbers of lumen and the length of the pipeline were decreased in the thawed HUVECs, in a time‑dependent manner. In conclusion, the results of the present study revealed that prolonged cryopreservation may lead to HUVEC dysfunction and did not create stable cell lines for tissue‑engineered microvascular construction.

  11. Effects of Fluid Shear Stress on Expression of Smac/DIABLO in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Zhang, Feng; Zhang, Le; Sun, Liang-Liang; Meng, Xiang-Lan; Zhao, Yun; Jin, Xin

    2013-06-01

    To investigate the molecular mechanisms of laminar shear stress on inhibition of apoptosis in endothelial cells, human umbilical vein endothelial cells (HUVECs) were starved in medium containing 2% fetal bovine serum and 20 dyne/cm(2) shear stress. HUVECs were subjected to shear stress or incubated in a static condition and then Smac/DIABLO expression was quantified by reverse-transcription polymerase chain reaction, real-time PCR, and western blot. The effect of shear stress on the migration of Smac/DIABLO proteins was detected by immunofluorescence microscopy. Results demonstrated that 20 dyne/cm(2) shear stress inhibited the expression of Smac/DIABLO at both the mRNA and protein levels in cultured HUVECs. Furthermore, release of Smac/DIABLO from mitochondria was induced by removal of basic fibroblast growth factor and decrease of fetal bovine serum in the medium, whereas shear stress inhibited its release under the same conditions. These results suggest that down-regulation of Smac/DIABLO may contribute to the potent antiatherosclerotic effect of shear stress by preventing endothelial cells from entering apoptosis.

  12. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  13. Donepezil attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells through SIRT1 activation.

    Science.gov (United States)

    Zhang, Tao; Tian, Feng; Wang, Jing; Zhou, Shanshan; Dong, Xueqing; Guo, Kai; Jing, Jing; Zhou, Ying; Chen, Yundai

    2015-09-01

    Cellular senescence of endothelial cells is a damage and stress response which induces pro-inflammatory, pro-atherosclerotic, and pro-thrombotic phenotypes. Donepezil is a drug used for the treatment of mild to moderate dementia of the Alzheimer's disease (AD). The aim of the present study was to investigate the attenuation of endothelial cell senescence by donepezil and to explore the mechanisms underlying the anti-aging effects of donepezil. Our results indicated that high glucose (HG) markedly decreased cell viability of human umbilical vein endothelial cells (HUVECs), and this phenomenon was reversed by treatment with donepezil. Importantly, our results displayed that the frequency of senescent (SA-ß-gal-positive) cells and the expression level of senescence genes (PAI-1 and p21) were significantly higher in the HG group compared with the normal glucose (NG) group, and these changes were blocked by treatment with donepezil. Also, our results showed that donepezil inhibits the generation of reactive oxygen species (ROS), which promotes cellular senescence. Pretreatment with nicotinamide (NAM), a sirtuin 1 (SIRT1) inhibitor, inhibited the reduction in senescence associated with donepezil. Indeed, our results indicated that donepezil increased the SIRT1 enzyme activity. Therefore, these results show that donepezil delays cellular senescence that is promoted under HG condition via activation of SIRT1.

  14. Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ahn Jae

    2010-05-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP and brain-derived neurotropfic factor (BDNF plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells. Results Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83% and only minimal cell damage than when conventional liposome-based reagent (in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells. Conclusion Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.

  15. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

    Science.gov (United States)

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2015-10-01

    The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.

  16. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy.

    Science.gov (United States)

    Romanov, Yury A; Tarakanov, Oleg P; Radaev, Sergey M; Dugina, Tamara N; Ryaskina, Svetlana S; Darevskaya, Anna N; Morozova, Yana V; Khachatryan, William A; Lebedev, Konstantin E; Zotova, Nelli S; Burkova, Anna S; Sukhikh, Gennady T; Smirnov, Vladimir N

    2015-07-01

    The term "cerebral palsy" (CP) encompasses many syndromes that emerge from brain damage at early stages of ontogenesis and manifest as the inability to retain a normal body position or perform controlled movements. Existing methods of CP treatment, including various rehabilitation strategies and surgical and pharmacological interventions, are mostly palliative, and there is no specific therapy focused on restoring injured brain function. During a post-registration clinical investigation, the safety and efficacy of intravenous infusion of allogeneic human leukocyte antigen (HLA)-unmatched umbilical cord blood (UCB) cells were studied in 80 pediatric patients with cerebral palsy and associated neurological complications. Patients received up to 6 intravenous infusions of AB0/Rh-identical, red blood cell-depleted UCB cells at an average dose of 250 × 10(6) viable cells per infusion. Patients were followed for 3-36 months, and multiple cell infusions did not cause any adverse effects. In contrast, in most patients who received four or more UCB cell infusions, positive dynamics related to significant improvements in neurological status and/or cognitive functions were observed. The results confirm that multiple intravenous infusions of allogeneic AB0/Rh-identical UCB cells may be a safe and effective procedure and could be included in treatment and rehabilitation programs for juvenile patients with cerebral palsy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Brazilin Ameliorates High Glucose-Induced Vascular Inflammation via Inhibiting ROS and CAMs Production in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Thanasekaran Jayakumar

    2014-01-01

    Full Text Available Vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Recent studies have shown that brazilin exhibits antihepatotoxic, antiplatelet, cancer preventive, or anti-inflammatory properties. Thus, we investigated whether brazilin suppresses vascular inflammatory process induced by high glucose (HG in cultured human umbilical vein endothelial cells (HUVEC. HG induced nitrite production, lipid peroxidation, and intracellular reactive oxygen species formation in HUVEC cells, which was reversed by brazilin. Western blot analysis revealed that brazilin markedly inhibited HG-induced phosphorylation of endothelial nitric oxide synthase. Besides, we investigated the effects of brazilin on the MAPK signal transduction pathway because MAPK families are associated with vascular inflammation under stress. Brazilin blocked HG-induced phosphorylation of extracellular signal-regulated kinase and transcription factor NF-κB. Furthermore, brazilin concentration-dependently attenuated cell adhesion molecules (ICAM-1 and VCAM-1 expression induced by various concentrations of HG in HUVEC. Taken together, the present data suggested that brazilin could suppress high glucose-induced vascular inflammatory process, which may be closely related with the inhibition of oxidative stress, CAMs expression, and NF-κB activation in HUVEC. Our findings may highlight a new therapeutic intervention for the prevention of vascular diseases.

  18. Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis.

    Science.gov (United States)

    Chang, Ye; Li, Yuan; Ye, Ning; Guo, Xiaofan; Li, Zhao; Sun, Guozhe; Sun, Yingxian

    2016-09-01

    This study was aimed to evaluate lysosomes-mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs.

  19. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy

    Directory of Open Access Journals (Sweden)

    Howard R. Seay

    2017-03-01

    Full Text Available Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR. Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.

  20. Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats.

    Science.gov (United States)

    Lee, Min Ju; Yoon, Tae Gyoon; Kang, Moonkyu; Kim, Hyun Jeong; Kang, Kyung Sun

    2017-03-01

    In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (ppain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.

  1. Therapeutic efficacy of human umbilical cord mesenchymal stem cells transplantation against renal ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Fahmy, Sohair R; Soliman, Amel M; El Ansary, Mervat; Elhamid, Samah Abd; Mohsen, Heba

    2017-06-01

    Acute kidney injury (AKI) is a common clinical problem raising the urgent needs to develop new strategies for treatment. The present study investigated the therapeutic potential of human umbilical cord - mesenchymal stem cells (HUC-MSCs) transplantation against renal ischemia/reperfusion injury (IRI) in rats. Twenty four male Wistar rats were assigned into two main groups, sham group (control group) and I/R group. I/R group was injected in the tail vein with either phosphate buffer saline (PBS) or HUC-MSCs. The HUC-MSCs improved kidney injury induced by I/R as demonstrated by enhancement of the kidney function via decreasing serum levels of creatinine, urea and uric acid. The therapeutic efficacy of HUC-MSCs were found to be mediated through anti-oxidant activity as indicated by significant reduction in total malondialdehyde (MDA) and significant increment in the levels of reduced glutathione (GSH), catalase (CAT) and glutathione-S-transferase (GST). The present work suggests that HUC-MSCs may be an effective therapeutic agent against renal IRI. The recorded data showed improvement of renal functions and urine albumin in HUC-MSCs than IRI group with positive antioxidant efficacy of HUC-MSCs through scavenging free radicals and supporting the antioxidant enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  3. Effects of Intravenous Administration of Human Umbilical Cord Blood Stem Cells in 3-Acetylpyridine-Lesioned Rats

    Directory of Open Access Journals (Sweden)

    Lucía Calatrava-Ferreras

    2012-01-01

    Full Text Available Cerebellar ataxias include a heterogeneous group of infrequent diseases characterized by lack of motor coordination caused by disturbances in the cerebellum and its associated circuits. Current therapies are based on the use of drugs that correct some of the molecular processes involved in their pathogenesis. Although these treatments yielded promising results, there is not yet an effective therapy for these diseases. Cell replacement strategies using human umbilical cord blood mononuclear cells (HuUCBMCs have emerged as a promising approach for restoration of function in neurodegenerative diseases. The aim of this work was to investigate the potential therapeutic activity of HuUCBMCs in the 3-acetylpyridine (3-AP rat model of cerebellar ataxia. Intravenous administered HuUCBMCs reached the cerebellum and brain stem of 3-AP ataxic rats. Grafted cells reduced 3-AP-induced neuronal loss promoted the activation of microglia in the brain stem, and prevented the overexpression of GFAP elicited by 3-AP in the cerebellum. In addition, HuUCBMCs upregulated the expression of proteins that are critical for cell survival, such as phospho-Akt and Bcl-2, in the cerebellum and brain stem of 3-AP ataxic rats. As all these effects were accompanied by a temporal but significant improvement in motor coordination, HuUCBMCs grafts can be considered as an effective cell replacement therapy for cerebellar disorders.

  4. Effect of Buddleja officinalis on high-glucose-induced vascular inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Yun Jung; Kang, Dae Gill; Kim, Jin Sook; Lee, Ho Sub

    2008-06-01

    In this study, we aimed to investigate whether an aqueous extract of Buddleja officinalis (ABO) suppresses high-glucose-induced vascular inflammatory processes in the primary cultured human umbilical vein endothelial cells (HUVEC). The high-glucose-induced increase in expression of cell adhesion molecules (CAMs) such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) was significantly attenuated by pretreatment with ABO in a dose-dependent manner. Enhanced cell adhesion caused by high glucose in co-cultured U937 and HUVEC was also blocked by pretreatment with ABO. Pretreatment with ABO also blocked formation of high-glucose-induced reactive oxygen species (ROS). In addition, ABO suppressed the transcriptional activity of NF-kappaB and IkappaB phosphorylation under high-glucose conditions. Pretreatment with N(G)-nitro-l-arginine methyl ester (L-NAME), an endothelial nitric oxide (NO) synthase inhibitor, attenuated the protective action of ABO on high-glucose-induced CAM expression, suggesting a potential role of NO signaling. The present data suggest that ABO could suppress high-glucose-induced vascular inflammatory processes, and ABO may be closely related with the inhibition of ROS and NF-kappaB activation in HUVEC.

  5. Caspase pathway of elaidic acid (9t-C18:1)-induced apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Qiu, Bin; Hu, Jiang-Ning; Liu, Rong; Fan, Ya-Wei; Li, Jing; Li, Yu; Deng, Ze-Yuan

    2012-03-01

    Although TFAs (trans fatty acids) do have effects on many endothelial functions, systemic inflammation and immune disorders, only limited experimental evidence is available that TFAs participate in the pathogenesis of endothelial cell apoptosis. HUVEC (human umbilical vein endothelial cells) were grown in medium with elaidic acid (9t-C18:1) at 50, 100, 200 and 400 μmol/l for 24 h. Apoptosis was measured by flow cytometry, and caspase 3, 8 and 9 activities by colorimetric assay and their mRNA expression by qRT-PCR (quantitative real-time PCR). Results showed that 9t-C18:1 induced apoptosis of HUVEC in a dose-dependent manner. The activities and mRNA expression of caspases 8, 9 and 3 were significantly increased compared with that of the control. Z-IETD-FMK and Z-LEHD-FMK inhibited the activation of caspase 3 and apoptosis induced by 9t-C18:1. Also Z-IETD-FMK inhibited the activation of caspase 9. mRNA expressions of Bid and Smac (second mitochondria-derived activator of caspase)/DIABLO [direct IAP (inhibitor of apoptosis)-binding protein with low pI] were also significantly elevated. We conclude that 9t-C18:1 induces apoptosis of HUVEC through activating caspases 8, 9 and 3. The death receptor pathway and the mitochondrial pathway both participated in the apoptosis course induced by 9t-C18:1.

  6. Atorvastatin protects the proliferative ability of human umbilical vein endothelial cells inhibited by angiotensin II by changing mitochondrial energy metabolism.

    Science.gov (United States)

    Chang, Ye; Li, Yuan; Ye, Ning; Guo, Xiaofan; Li, Zhao; Sun, Guozhe; Sun, Yingxian

    2018-01-01

    This study aimed to explore whether angiotensin II (Ang II) inhibits the proliferation of human umbilical vein endothelial cells (HUVECs) by changing mitochondrial energy metabolism, and whether atorvastatin has a protective role via restoration of endothelial function. HUVECs were treated with 1 µM Ang II alone or with 10 µM atorvastatin for 24 h. Proliferation was detected by MTT assay, cell counting, 5‑ethynyl‑2'‑deoxyuridine assay and real‑time cell analyzer. Mitochondrial energy metabolism including oxygen consumption rate and extracellular acidification rate were measured using a Seahorse metabolic flux analyzer. Mitochondrial membrane potential was detected under fluorescence microscope following staining with tetramethylrhodamine. Respiratory chain complexes I‑V were detected using western blotting. The current study showed that Ang II inhibits the proliferation of HUVECs. Results from the Seahorse metabolic flux analyzer indicated that Ang II decreased basal oxygen consumption, maximal respiration capacity, spare respiration capacity, adenosine triphosphate‑linked respiration and non‑mitochondrial respiration. By contrast, Ang II increased the proton leak. Additionally, Ang II increased glycolysis, glycolytic capacity and non‑glycolytic acidification. Furthermore, these effects were all suppressed by atorvastatin. The results indicated that atorvastatin prevents cellular energy metabolism switching from oxidative phosphorylation to glycolysis induced by Ang II and protected the proliferative ability of HUVECs.

  7. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold

    Directory of Open Access Journals (Sweden)

    RS Nirmal

    2013-11-01

    Full Text Available Stem cell based tissue engineering has emerged as a promising strategy for articular cartilage regeneration. Foetal derived mesenchymal stem cells (MSCs with their ease of availability, pluripotency and high expansion potential have been demonstrated to be an attractive cell source over adult MSCs. However, there is a need for optimisation of chondrogenic signals to direct the differentiation of these multipotent MSCs to chondrogenic lineage. In this study we have demonstrated the in vitro chondrogenesis of human umbilical cord matrix MSCs in three dimensional PVA-PCL (polyvinyl alcohol-polycaprolactone scaffolds in the presence of the individual growth factors TGFβ1, TGFβ3, IGF, BMP2 and their combination with BMP2. Gene expression, histology and immunohistology were evaluated after 28 d culture. The induced cells showed the feature of chondrocytes in their morphology and expression of typical chondrogenic extracellular matrix molecules. Moreover, the real-time PCR assay has shown the expression of gene markers of chondrogenesis, SOX9, collagen type II and aggrecan. The expression of collagen type I and collagen type X was also evaluated. This study has demonstrated the successful chondrogenic induction of human umbilical cord MSCs in 3D scaffolds. Interestingly, the growth factor combination of TGF-β3 and BMP-2 was found to be more effective for chondrogenesis as shown by the real-time PCR studies. The findings of this study suggest the importance of using growth factor combinations for successful chondrogenic differentiation of umbilical cord MSCs.

  8. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.

    Science.gov (United States)

    Roh, Dae-Hyun; Seo, Min-Soo; Choi, Hoon-Seong; Park, Sang-Bum; Han, Ho-Jae; Beitz, Alvin J; Kang, Kyung-Sun; Lee, Jang-Hern

    2013-01-01

    Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.

  9. Potential of Human Nucleus Pulposus-Like Cells Derived From Umbilical Cord to Treat Degenerative Disc Disease.

    Science.gov (United States)

    Perez-Cruet, Mick; Beeravolu, Naimisha; McKee, Christina; Brougham, Jared; Khan, Irfan; Bakshi, Shreeya; Chaudhry, G Rasul

    2018-02-26

    Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment. To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model. NPCs differentiated from MSCs were characterized using quantitative real-time reverse transcription polymerase chain reaction and immunocytochemical analysis. MSCs and NPCs were labeled with fluorescent dye, PKH26, and transplanted into degenerated IVDs of a rabbit model of DDD (n = 9 each). Magnetic resonance imaging of the IVDs was performed before and after IVD degeneration, and following cell transplantation. IVDs were extracted 8 wk post-transplantation and analyzed by various biochemical, immunohistological, and molecular techniques. NPC derivatives of MSCs expressed known NP-specific genes, SOX9, ACAN, COL2, FOXF1, and KRT19. Transplanted cells survived, dispersed, and integrated into the degenerated IVDs. IVDs augmented with NPCs showed significant improvement in the histology, cellularity, sulfated glycosaminoglycan and water contents of the NP. In addition, expression of human genes, SOX9, ACAN, COL2, FOXF1, KRT19, PAX6, CA12, and COMP, as well as proteins, SOX9, ACAN, COL2, and FOXF1, suggest NP biosynthesis due to transplantation of NPCs. Based on these results, a molecular mechanism for NP regeneration was proposed. The findings of this study demonstrating feasibility and efficacy of NPCs to regenerate NP should spur interest for clinical studies to treat DDD using cell therapy.

  10. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area.

    Science.gov (United States)

    Li, Minghui; Huo, Xia; Pan, Yukui; Cai, Haoxing; Dai, Yifeng; Xu, Xijin

    2018-02-01

    Parental exposure to polybrominated diphenyl ethers (PBDEs) is associated with adverse birth outcomes. This study aims to examine differentially-expressed protein profiles in umbilical cord tissue, derived from mothers exposed to PBDEs, and investigate candidate biomarkers to reveal the underlying molecular mechanisms. Umbilical cord samples were obtained from women residing in an electronic waste (e-waste) recycling area (Guiyu) and reference area (Haojiang) in China. The concentration of PBDEs in umbilical cord tissue was determined by gas chromatography and mass spectrometry (GC/MS). Isobaric tagging for relative and absolute quantification (iTRAQ)-based proteomic technology was conducted to analyze differentially-expressed protein profiles. The total PBDE concentration was approximately five-fold higher in umbilical cords from Guiyu than from Haojiang (median 71.92ng/g vs. 15.52ng/g lipid, Pe-waste-exposed group compared with the reference group. The differentially-expressed proteins were principally involved in antioxidant defense, apoptosis, cell structure and metabolism. Among them, catalase and glutathione S-transferase omega-1, were down-regulated, and cytochrome c was found to be up-regulated, changes which were further verified by enzyme-linked immunosorbent assays. These results suggest that an antioxidant imbalance and cell apoptosis in the umbilical cord following PBDE exposure is associated with neonatal birth outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cytotoxicity Assessment of Copper Nanoparticles (40nm on the Human Umbilical Vein Endothelial Cells Viability

    Directory of Open Access Journals (Sweden)

    Sanaz Alizadeh

    2017-04-01

    Full Text Available Abstract Background: Copper nanoparticles (Cu NPs induced angiogenesis, has been adapted to respond the most important challenging in wound healing. But due to the toxicity of nanoparticles, the nontoxic concentrations is important. The aim of this study was to determine the concentration and size of copper nanoparticles for investigating the effect of its cytotoxicity on the endothelial cell. Materials and Methods: In this study, we exposed Cu NPs (40nm with concentrations of 1, 10, 100 μM and 1 ,10 mM to endothelial cells and evaluate its viability effect after 24, 48 and 72 hours, according to the MTS Methy Thiazol Tetrazolium (assay. Its optical density was determined using an ELISA reader and then was recorded. Results: The findings demonstrated that Cu NPs was significantly (p<0.05 cytotoxic in concentration higher than 100 μM and cell viability was significantly increased following 48 and 72 hours in all concentrations, so that, the most difference was seen in 100 µM concentration. The IC50 values of Cu NPs at incubation time 24, 48 and 72 hours were 31.44, 36.67 and 29.38 μM. Conclusion: The results showed that different concentration of Cu NPs in the 48 and 72 hours didn’t cause any cytotoxicity effect, but it stimulated endothelial cell proliferation. Therefore, Cu NPs with dose and time dependent effect has been increased endothelial cell proliferation.

  12. Pilot social feasibility study for the establishment of a public human umbilical cord blood stem cell bank in South Africa.

    Science.gov (United States)

    Meissner-Roloff, Madelein; Young, Wendy; Rangaka, Isabella; Lombaard, Hennie; Dhai, Ames; Tsotsi, Norma; Pepper, Michael S

    2012-12-01

    There is a large unmet need in South Africa for bone marrow transplantation. Umbilical cord blood (UCB) is an important source of stem cells for the treatment of haematological and non-haematological diseases. Access to the two existing private umbilical cord blood stem cell banks (UCB SCBs) in South Africa is limited to individuals that can afford it, which further aggravates the ever increasing divide between families from different socio-economic classes. The problem is compounded by a severe global shortage of genetically compatible samples, representative of the South African demographics. Establishing a public human UCB SCB in South Africa would provide more South Africans with access to previously unavailable treatment in the form of affordable, genetically compatible stem cells for bone marrow transplantation. A public UCB SCB has many facets to consider, one of which is public preparedness and support for the bank. This was assessed in a social feasibility pilot study which is reported here. In addition to the findings of this social feasibility study, other important considerations for establishing a public human UCB SCB in SA include; (a) testing the samples for HIV and other infectious diseases (required for compliance with international regulatory standards); (b) flow cytometric analysis for enumeration of CD34+ UCB stem cells; (c) mapping of HLA genotypes/alleles; and (d) a study of the economic feasibility of this endeavour.The social feasibility study was conducted to gauge public preparedness and support for a public SCB through patient interviews and questionnaires. The process was dynamic due to its novel nature for interviewers and interviewees alike. Many obstacles were met and dealt with which lead to the compilation of results discussed here in the form of a pilot social feasibility study.In the South African context, we are faced with unique and rich challenges relating to cultural and religious differences that are further augmented by

  13. Characterization of Influenza Virus-Induced Leukocyte Adherence to Human Umbilical Vein Endothelial Cell Monolayers

    Science.gov (United States)

    1993-07-01

    with other viruses. HL-60 cell adherence to endothelial cell virus type A, which did not infect human venous or bovine monolayers was modulated by...LEUCOCYTE ADHERENC:E TO [NDOTIIELIL (FS1% A. B reawsd on parainfluenza virus-infected airway epithelial Poiy-iiysine Codled IPLC) Wells PLC.Wells cells...an antibody against ICAN1- I has no significant effect PLC Wells Virus on parainfluenza -induced neutrophil adherence (58). In 25 *HSV-intected HUVEC

  14. Infusion of human umbilical cord‑derived mesenchymal stem cells effectively relieves liver cirrhosis in DEN‑induced rats.

    Science.gov (United States)

    Hong, Jingxin; Jin, Huajun; Han, Junling; Hu, Huanzhang; Liu, Jian; Li, Linfang; Huang, Yao; Wang, Dandan; Wu, Mengchao; Qiu, Lugui; Qian, Qijun

    2014-04-01

    Cirrhosis is the long‑term outcome of chronic hepatic injury and no effective therapy is currently available for this disease. Mesenchymal stromal cells (MSCs) are multipotent cells that are easily acquired and amplified, and may be potential candidates for cell therapy against cirrhosis. This study aimed to determine the therapeutic effects of human umbilical cord‑derived MSCs (hUCMSCs) for the treatment of liver cirrhosis and identify an effective method for engrafting MSCs. The model of liver cirrhosis was established by induction of diethylnitrosamine (DEN) in rats. The isolated hUCMSCs were identified by morphology, flow cytometry and multilineage differentiation; they were injected into the vein of DEN‑induced rats at varied cell doses and infusion times. Biochemical analyses of the serum and histopathological analysis of the liver tissues were performed to evaluate the therapeutic effects of hUCMSCs in all treatment groups. The results indicated that isolated hUCMSCs were capable of self‑replication and differentiated into multiple lineages, including osteoblast‑, adipocyte‑ and hepatocyte‑like cells. Compared with the control group, administration of hUCMSCs at different cell doses and infusion times relieved DEN‑induced cirrhosis to varying degrees. The therapeutic effects of hUCMSCs on liver cirrhosis gradually improved with increased cell dose and infusion times. The improvement of cirrhosis was due to the capacity of hUCMSCs to breakdown collagen fibers in the liver. It was demonstrated that infusion of hUCMSCs effectively relieved liver cirrhosis by facilitating the breakdown of collagen fibers in a dose‑dependent manner and multiple infusions caused a relatively greater improvement in cirrhosis compared with a single infusion of hUCMSCs.

  15. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment

    Directory of Open Access Journals (Sweden)

    Che Zhang MD

    2015-03-01

    Full Text Available Background. Cerebral palsy (CP is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88. Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  16. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton

    Science.gov (United States)

    Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.

    2001-01-01

    Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.

  17. Unrestricted somatic stem cells from human umbilical cord blood grow in serum-free medium as spheres

    Directory of Open Access Journals (Sweden)

    Ang Haozhi

    2009-12-01

    Full Text Available Abstract Background Human umbilical cord blood-derived unrestricted somatic stem cells (USSCs, which are capable of multilineage differentiation, are currently under investigation for a number of therapeutic applications. A major obstacle to their clinical use is the fact that in vitro expansion is still dependent upon fetal calf serum, which could be a source of pathogens. In this study, we investigate the capacity of three different stem cell culture media to support USSCs in serum-free conditions; HEScGRO™, PSM and USSC growth mediumACF. Our findings demonstrate that USSCs do not grow in HEScGRO™ or PSM, but we were able to isolate, proliferate and maintain multipotency of three USSC lines in USSC growth mediumACF. Results For the first one to three passages, cells grown in USSC growth mediumACF proliferate and maintain their morphology, but with continued passaging the cells form spherical cell aggregates. Upon dissociation of spheres, cells continue to grow in suspension and form new spheres. Dissociated cells can also revert to monolayer growth when cultured on extracellular matrix support (fibronectin or gelatin, or in medium containing fetal calf serum. Analysis of markers associated with pluripotency (Oct4 and Sox2 and differentiation (FoxA2, Brachyury, Goosecoid, Nestin, Pax6, Gata6 and Cytokeratin 8 confirms that cells in the spheres maintain their gene expression profile. The cells in the spheres also retain the ability to differentiate in vitro to form cells representative of the three germline layers after five passages. Conclusions These data suggest that USSC growth mediumACF maintains USSCs in an undifferentiated state and supports growth in suspension. This is the first demonstration that USSCs can grow in a serum- and animal component-free medium and that USSCs can form spheres.

  18. Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord

    Directory of Open Access Journals (Sweden)

    Naimisha Beeravolu

    2016-05-01

    Full Text Available Human umbilical cord (hUC blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs. While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored. We dissected the hUC into its discrete sites and isolated hUC cells from the cord placenta junction (CPJ, cord tissue (CT, and Wharton's jelly (WJ. Isolated cells displayed fibroblastoid morphology, and expressed CD29, CD44, CD73, CD90, and CD105, and showed evidence of differentiation into multiple lineages in vitro. They also expressed low levels of pluripotency genes, OCT4, NANOG, SOX2 and KLF4. Passaging markedly affected cell proliferation with concomitant decreases in the expression of pluripotency and other markers, and an increase in chondrogenic markers. Microarray analysis further revealed the differences in the gene expression of CPJ-, CT- and WJ-hUC cells. Five coding and five lncRNA genes were differentially expressed in low vs. high passage hUC cells. Only MAEL was expressed at high levels in both low and high passage CPJ-hUC cells. They displayed a greater proliferation limit and a higher degree of multi-lineage differentiation in vitro and warrant further investigation to determine their full differentiation capacity, and therapeutic and regenerative medicine potential.

  19. Cigarette smoke extract induces prolonged endoplasmic reticulum stress and autophagic cell death in human umbilical vein endothelial cells.

    Science.gov (United States)

    Csordas, Adam; Kreutmayer, Simone; Ploner, Christian; Braun, Peter R; Karlas, Alexander; Backovic, Aleksandar; Wick, Georg; Bernhard, David

    2011-10-01

    Consumption of cigarette smoke (CS) is a well-known risk factor for early atherosclerosis; yet, the underlying mechanisms of smoking-associated atherosclerosis are poorly understood. Based on the previous results indicating that CS-induced endothelial cell death neither shows typical features of apoptosis nor of necrosis, we investigated the role of autophagy in CS extract (CSE)-induced cell death of human umbilical vein endothelial cells (HUVECs). Here, we demonstrate that overexpression of the classical apoptosis inhibitor BCL-XL had no protective effect on CSE-induced cell death, whereas the autophagy inhibitor 3-methyladenin and an shRNAi-mediated knockdown of the autophagy mediator ATG5 significantly delayed cell death. Our results indicate that CSE induces an excess accumulation of misfolded proteins in the endoplasmic reticulum (ER) and consequently the onset of the unfolded protein response. We provide evidence that the ER-resident kinase PERK is a major transducer of ER stress leading to phosphorylation of eIF2α and attenuation of protein synthesis. Finally, we show that prolonged ER stress in cells subjected to CS is followed by activation of an autophagic programme. CSE-induced autophagy is characterized by an increase in LC3 II/I ratio and activation ATG12. The autophagic signalling pathway via energy depletion and consequent activation AMP-activated protein kinase could be excluded. Our results confirm and extend previous findings reporting on the induction of autophagy by CSE in the lung. We show that protein damage caused by CSE activates autophagy, ultimately resulting in necrotic death of HUVECs. Via this mechanism, cigarette smoking may contribute to the deterioration of vascular endothelial function and the initiation of atherosclerosis.

  20. Intra-arterial transplantation of human umbilical cord blood mononuclear cells in neonatal hypoxic-ischemic rats.

    Science.gov (United States)

    Greggio, Samuel; de Paula, Simone; Azevedo, Pâmella Nunes; Venturin, Gianina Teribele; Dacosta, Jaderson Costa

    2014-02-06

    Based on preclinical findings, cellular therapy has become a promising therapeutic approach for neonatal hypoxia-ischemia (HI). However, before translation into the clinical setting, new and effective routes of cell delivery must be determined. Intra-arterial (IA) delivery is an attractive route of cellular administration but has never been used in neonatal HI rats. In this study, we investigated the feasibility of IA transplantation of human umbilical cord blood (HUCB) mononuclear cells for the treatment of long-term behavior dysfunction and brain lesion after neonatal HI. Seven-day-old rats were subjected to a HI model and the animals received HUCB mononuclear cells into the left common carotid artery 24 h after HI insult. At 9 weeks post-HI, intra-arterially transplanted HUCB mononuclear cells significantly improved learning and long-term spatial memory impairments when evaluated by the Morris water maze paradigm. There was no effect of neonatal HI insult or IA procedure on body weight and on motor coordination and balance when evaluated by the accelerating rotarod test. Cellular transplantation by the IA route did not restore neonatal HI-induced brain damage according to stereological volume assessment. Furthermore, HUCB mononuclear cells were tracked in the injured brain and peripheral organs of HI transplanted-rats by nested polymerase chain reaction analysis at different time points. Our findings contribute to the translational knowledge of cell based-therapy in neonatal HI and demonstrate for the first time that IA transplantation into rat pups is a feasible route for cellular delivery and prevents long-term cognitive deficits induced by experimental neonatal HI. © 2013.

  1. Assessment of in vivo anti-tumor activity of human umbilical vein endothelial cell vaccines prepared by various antigen forms.

    Science.gov (United States)

    Zhou, Ling; Si, Chunfeng; Li, Defang; Lu, Meiyu; Zhong, Weilan; Xie, Zeping; Guo, Lin; Zhang, Shumin; Xu, Maolei

    2018-03-01

    Human umbilical vein endothelial cell (HUVEC) vaccine has been proved as an effective whole-cell vaccine, but the modest therapeutic anti-tumor efficiency limits its clinical use. Various antigen forms, including paraformaldehyde-fixed HUVEC, glutaraldehyde-fixed HUVEC, HUVEC lysate and live HUVEC, have been intensively used in HUVEC vaccine preparation, however, the most effective antigen form has not yet been identified. In the present study, these four commonly used antigen forms were used to prepare vaccines named Para-Fixed-EC, Glu-Fixed-EC, Lysate-EC, and Live-EC respectively, and the anti-tumor efficacy of these four vaccines was investigated. Results showed that Live-EC exhibited the most favorable anti-tumor growth and metastasis effects among the four vaccines in both H22 hepatocellular carcinoma and Lewis lung cancer models. High titer anti-HUVEC antibodies were detected in Live-EC immunized mice sera, and the immune sera of Live-EC group could significantly inhibit HUVEC proliferation and tube formation. Moreover, T cells isolated from Live-EC immunized mice exhibited strong cytotoxicity against HUVEC cells, with an increasing IFN-γ and decreasing Treg production in Live-EC immunized mice. Finally, CD31 immunohistochemical analysis of the excised tumors verified a significant reduction in vessel density after Live-EC vaccination, which was in accordance with the anti-tumor efficiency. Taken together, all the results proved that live HUVEC was the most effective antigen form to induce robust HUVEC specific antibody and CTL responses, which could lead to the significant inhibition of tumor growth and metastasis. We hope the present findings would provide a rationale for the further optimization of HUVEC vaccine. Copyright © 2017. Published by Elsevier B.V.

  2. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    International Nuclear Information System (INIS)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-01-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  3. Protection effect of [Gly14]-Humanin from apoptosis induced by high glucose in human umbilical vein endothelial cells.

    Science.gov (United States)

    Xie, Ying; Liu, Zhi-Hua; Li, Xiao-Yun; Zhou, Yan-de; Xu, Xingshun; Hu, Li-Fang; Zhang, Yan-Lin; Liu, Chun-Feng

    2014-12-01

    Humanin (HN) is known for its anti-apoptotic functions in neuronal cells. In this study, we sought to investigate the protective effect of [Gly14]-Humanin (HNG) in high glucose (HG)-induced apoptosis of human umbilical vein endothelial cells (HUVECs). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to examine cell viability, DNA chromatin morphology was assessed using Hoechst 33342 staining, and the generation of intracellular reactive oxygen species (ROS) was assessed using the fluorescent probe dichlorofluorescein diacetate (DCFH-DA). The expression of poly ADP-ribose polymerase (PARP), the pro-apoptotic protein bax and the anti-apoptotic protein bcl-2 were examined using western blot analysis. The mRNA level of bax and bcl-2 were detected by quantitative Real-Time PCR. Compared with treatment with HG 72h, pretreatment with HNG for 3h significantly increased cell viability (P<0.001), reduced nuclear fluorescence of HUVECs (P<0.05), the levels of cleaved PARP (P<0.05), ROS formation (P<0.05) and the ratio of bax/bcl-2 (P<0.05) compared with treatment with HG for 72h. Quantitative Real-Time PCR showed that mRNA level of bax reduced (P<0.05) and mRNA level of bcl-2 increased (P<0.05) after pretreatment with HNG. Our results imply that HNG can protect HUVECs from apoptosis induced by HG through the bax/bcl-2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-02-01

    Full Text Available We aimed to investigate the effect of advanced glycation end products (AGEs on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3 II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  5. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  6. Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells.

    Science.gov (United States)

    Caron-Beaudoin, Élyse; Denison, Michael S; Sanderson, J Thomas

    2016-01-01

    The enzyme aromatase (CYP19; cytochrome P450 19) in humans undergoes highly tissue- and promoter-specific regulation. In hormone-dependent breast cancer, aromatase is over-expressed via several normally inactive promoters (PII, I.3, I.7). Aromatase biosynthesizes estrogens, which stimulate breast cancer cell proliferation. The placenta produces estrogens required for healthy pregnancy and the major placental CYP19 promoter is I.1. Exposure to certain pesticides, such as atrazine, is associated with increased CYP19 expression, but little is known about the effects of neonicotinoid insecticides on CYP19. We developed sensitive and robust RT-qPCR methods to detect the promoter-specific expression of CYP19 in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells, and determined the potential promoter-specific disruption of CYP19 expression by atrazine and the commonly used neonicotinoids imidacloprid, thiacloprid, and thiamethoxam. In H295R cells, atrazine concentration-dependently increased PII- and I.3-mediated CYP19 expression and aromatase catalytic activity. Thiacloprid and thiamethoxam induced PII- and I.3-mediated CYP19 expression and aromatase activity at relatively low concentrations (0.1-1.0 µM), exhibiting non-monotonic concentration-response curves with a decline in gene induction and catalytic activity at higher concentrations. In HUVEC cells, atrazine slightly induced overall (promoter-indistinct) CYP19 expression (30 µM) and aromatase activity (≥ 3 µM), without increasing I.1 promoter activity. None of the neonicotinoids increased CYP19 expression or aromatase activity in HUVEC cells. Considering the importance of promoter-specific (over)expression of CYP19 in disease (breast cancer) or during sensitive developmental periods (pregnancy), our newly developed RT-qPCR methods will be helpful tools in assessing the risk that neonicotinoids and other chemicals may pose to exposed women. © The Author 2015

  7. Nicotine promotes vascular endothelial growth factor secretion by human trophoblast cells under hypoxic conditions and improves the proliferation and tube formation capacity of human umbilical endothelial cells.

    Science.gov (United States)

    Zhao, Hongbo; Wu, Lanxiang; Wang, Yahui; Zhou, Jiayi; Li, Ruixia; Zhou, Jiabing; Wang, Zehua; Xu, Congjian

    2017-04-01

    Pre-eclampsia, characterized as defective uteroplacental vascularization, remains the major cause of maternal and fetal mortality and morbidity. Previous epidemiological studies demonstrated that cigarette smoking reduced the risk of pre-eclampsia. However, the molecular mechanism remains elusive. In the present study, it is demonstrated that a low dose of nicotine decreased soluble vascular endothelial growth factor receptor 1 (sFlt1) secretion in human trophoblast cells under hypoxic conditions. Nicotine was then observed to promote vascular endothelial growth factor (VEGF) secretion by reducing sFlt1 secretion and increasing VEGF mRNA transcription. Further data showed that nicotine enhanced hypoxia-mediated hypoxia-inducible factor-1α (HIF-1α) expression and HIF-1α small interfering RNA abrogated nicotine-induced VEGF secretion, indicating that HIF-1α may be responsible for nicotine-mediated VEGF transcription under hypoxic conditions. Moreover, conditioned medium from human trophoblast cells treated with nicotine under hypoxic conditions promoted the proliferation and tube formation capacity of human umbilical endothelial cells (HUVEC) by promoting VEGF secretion. These findings indicate that nicotine may promote VEGF secretion in human trophoblast cells under hypoxic conditions by reducing sFlt1 secretion and up-regulating VEGF transcription and improve the proliferation and tube formation of HUVEC cells, which may contribute to elucidate the protective effect of cigarette smoking against pre-eclampsia. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Interference with follicle stimulating hormone regulation of human ovarian function

    NARCIS (Netherlands)

    B.C.J.M. Fauser (Bart)

    1996-01-01

    textabstractThis review summarizes observations on the background and potential clinical significance of interference with follicle stimulating hormone (FSH) regulation of human ovarian function. This interference may occur at the level of the pituitary by the secretion

  9. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury

    Directory of Open Access Journals (Sweden)

    Burra Patrizia

    2012-07-01

    Full Text Available Abstract Background Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs, a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. Methods Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion. To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification. Data were analyzed by Mann–Whitney U-test, Kruskal-Wallis test and Cuzick’s test followed by Bonferroni correction for multiple comparisons. Results We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However

  10. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    International Nuclear Information System (INIS)

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  11. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  12. Thyrotropin-releasing hormone selectively stimulates human hair follicle pigmentation.

    Science.gov (United States)

    Gáspár, Erzsébet; Nguyen-Thi, Kim T; Hardenbicker, Celine; Tiede, Stephan; Plate, Christian; Bodó, Eniko; Knuever, Jana; Funk, Wolfgang; Bíró, Tamás; Paus, Ralf

    2011-12-01

    In amphibians, thyrotropin-releasing hormone (TRH) stimulates skin melanophores by inducing secretion of α-melanocyte-stimulating hormone in the pituitary gland. However, it is unknown whether this tripeptide neurohormone exerts any direct effects on pigment cells, namely, on human melanocytes, under physiological conditions. Therefore, we have investigated whether TRH stimulates pigment production in organ-cultured human hair follicles (HFs), the epithelium of which expresses both TRH and its receptor, and/or in full-thickness human skin in situ. TRH stimulated melanin synthesis, tyrosinase transcription and activity, melanosome formation, melanocyte dendricity, gp100 immunoreactivity, and microphthalmia-associated transcription factor expression in human HFs in a pituitary gland-independent manner. TRH also stimulated proliferation, gp100 expression, tyrosinase activity, and dendricity of isolated human HF melanocytes. However, intraepidermal melanogenesis was unaffected. As TRH upregulated the intrafollicular production of "pituitary" neurohormones (proopiomelanocortin transcription and ACTH immunoreactivity) and as agouti-signaling protein counteracted TRH-induced HF pigmentation, these pigmentary TRH effects may be mediated in part by locally generated melanocortins and/or by MC-1 signaling. Our study introduces TRH as a novel, potent, selective, and evolutionarily highly conserved neuroendocrine factor controlling human pigmentation in situ. This physiologically relevant and melanocyte sub-population-specific neuroendocrine control of human pigmentation deserves clinical exploration, e.g., for preventing or reversing hair graying.

  13. Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: implications for smoke angiopathy.

    Science.gov (United States)

    Misonou, Yoshiko; Asahi, Michio; Yokoe, Shunichi; Miyoshi, Eiji; Taniguchi, Naoyuki

    2006-03-01

    Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be

  14. Induction of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells by defined microRNAs.

    Science.gov (United States)

    Zhou, Xia; Cui, Lina; Zhou, Xinmin; Yang, Qiong; Wang, Lu; Guo, Guanya; Hou, Yu; Cai, Weile; Han, Zheyi; Shi, Yongquan; Han, Ying

    2017-05-01

    Generating functional hepatocyte-like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio-artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord-derived MSCs by overexpressing seven microRNAs (HLC-7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT-PCR, periodic acid-Schiff (PAS) staining and low-density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR-30a and miR-1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR-122, miR-148a, miR-424, miR-542-5p and miR-1246) are essential for this process, because omitting any one from the five-miRNA combination prevented hepatic trans-differentiation. We found that HLCs trans-differentiated from five microRNAs (HLC-5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC-5 into nude mice with CCl 4 -induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC-5 functioned similar to HLC-7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven-miRNA combination, a simplified five-miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC-derived HLCs that may serve as an attractive cell alternative for BALSS. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaozhen [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Zhou, Long; Chen, Xi [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Tao [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pan, Guoqing; Cui, Wenguo; Li, Mao; Luo, Zong-Ping [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pei, Ming [Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506 (United States); Yang, Huilin [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Gong, Yihong, E-mail: gongyih@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); He, Fan, E-mail: fanhe@suda.edu.cn [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2016-04-01

    Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have attracted great interest in clinical application because of their regenerative potential and their lack of ethical issues. Our previous studies showed that decellularized cell-deposited extracellular matrix (ECM) provided an in vivo-mimicking microenvironment for MSCs and facilitated in vitro cell expansion. This study was conducted to analyze the cellular response of UC-MSCs when culturing on the ECM, including reactive oxygen species (ROS), intracellular antioxidative enzymes, and the resistance to exogenous oxidative stress. After decellularization, the architecture of cell-deposited ECM was characterized as nanofibrous, collagen fibrils and the matrix components were identified as type I and III collagens, fibronectin, and laminin. Compared to tissue culture polystyrene (TCPS) plates, culturing on ECM yielded a 2-fold increase of UC-MSC proliferation and improved the percentage of cells in the S phase by 2.4-fold. The levels of intracellular ROS and hydrogen peroxide (H{sub 2}O{sub 2}) in ECM-cultured cells were reduced by 41.7% and 82.9%, respectively. More importantly, ECM-cultured UC-MSCs showed enhanced expression and activity of intracellular antioxidative enzymes such as superoxide dismutase and catalase, up-regulated expression of silent information regulator type 1, and suppressed phosphorylation of p38 mitogen-activated protein kinase. Furthermore, a continuous treatment with exogenous 100 μM H{sub 2}O{sub 2} dramatically inhibited osteogenic differentiation of UC-MSCs cultured on TCPS, but culturing on ECM retained the differentiation capacity for matrix mineralization and osteoblast-specific marker gene expression. Collectively, by providing sufficient cell amounts and enhancing antioxidant capacity, decellularized ECM can be a promising cell culture platform for in vitro expansion of UC-MSCs. - Highlights: • Decellularization preserved the architecture and components of cell

  16. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    Directory of Open Access Journals (Sweden)

    Jong Suk Lee

    Full Text Available Nelumbo nucifera Gaertn (Nymphaeaceae has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1, and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1 and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1, respectively. N. nucifera leaf extracts (10-100 μg ml(-1 exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs

  17. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    Science.gov (United States)

    Lee, Jong Suk; Shukla, Shruti; Kim, Jung-Ae; Kim, Myunghee

    2015-01-01

    Nelumbo nucifera Gaertn (Nymphaeaceae) has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs) by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS) in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1), and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1) and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1), respectively. N. nucifera leaf extracts (10-100 μg ml(-1)) exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs, confirming

  18. Hydroxytyrosol contributes to cell proliferation and inhibits apoptosis in pulsed electromagnetic fields treated human umbilical vein endothelial cells in vitro

    Science.gov (United States)

    Cheng, Yong; Qu, Zhiwei; Fu, Ximeng; Jiang, Qi; Fei, Jianfeng

    2017-01-01

    A variety of pulsed electromagnetic fields (PEMFs) have been experimentally and clinically used in an effort to promote wound healing, although the mechanisms involved remain unknown. The aim of the present study was to investigate the action of a novel protocol of co-treatment with PEMFs and hydroxytyrosol (HTY) on the proliferation and differentiation potential of human umbilical vein endothelial cells (HUVECs). The HUVECs were assigned randomly into three groups: Control, PEMF-treated and PEMF + HT-treated. The intensity of the electromagnetic field used in this protocol was 2.25 mT, the frequency of the bursts was 50 Hz and the application time was 15 min. A Cell Counting kit-8 (CCK-8) assay was used to assess cell proliferation, and cell apoptosis was analyzed by TUNEL apoptosis assay kit and calcein-acetoxymethyl/propidium iodide dual-staining assay. In addition, protein and mRNA expression levels of protein kinase B (Akt), mechanistic target of rapamycin (mTOR), transforming growth factor (TGF)-β1 and p53 were determined by western blotting and reverse transcription-quantitative polymerase chain reaction assays, respectively. The CCK-8 assay demonstrated that HTY contributed to HUVEC proliferation mediated by PEMFs in a time-dependent manner. The Transwell assay and scratch wound results demonstrated that co-treatment of HTY and PEMFs could increase HUVEC migration. Furthermore, the levels of apoptotic cells were reversed by pre-incubation with HTY in the PEMF treatment group, while PEMF treatment alone had no such effect. The proteins and mRNA expression levels of Akt, mTOR, TGF-β1 were elevated in co-treatment of HTY and PEMFs, whereas there was no effect on levels of p53. Therefore, the results indicated that combined exposure of HUVECs to PEMFs and HTY exerted protective effects in HUVECs by promoting cell proliferation and inhibiting apoptosis. In conclusion, to the best of our knowledge, the present study was the first to demonstrate the beneficial

  19. CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration.

    Directory of Open Access Journals (Sweden)

    Wing Pui Tsang

    Full Text Available The human umbilical cord perivascular cells (HUCPVCs have been considered as an alternative source of mesenchymal progenitors for cell based regenerative medicine. However, the biological properties of these cells remain to be well characterized. In the present study, HUCPVCs were isolated and sorted by CD146(+ pericyte marker. The purified CD146(+ HUCPVCs were induced to differentiate efficiently into osteoblast, chondrocyte and adipocyte lineages in vitro. Six weeks following subcutaneous transplantation of CD146(+ HUCPVCs-Gelfoam-alginate 3D complexes in severe combined immunodeficiency (SCID mice, newly formed bone matrix with embedded osteocytes of donor origin was observed. The functional engraftment of CD146(+ HUCPVCs in the new bone regenerates was further confirmed in a critical-sized bone defect model in SCID mice. Hypoxic conditions suppressed osteogenic differentiation while increased cell proliferation and colony-forming efficiency of CD146(+ HUCPVCs as compared to that under normoxic conditions. Re-oxygenation restored the multi-differentiation potential of the CD146(+ HUCPVCs. Western blot analysis revealed an upregulation of HIF-1α, HIF-2α, and OCT-4 protein expression in CD146(+ HUCPVCs under hypoxia, while there was no remarkable change in SOX2 and NANOG expression. The gene expression profiles of stem cell transcription factors between cells treated by normoxia and hypoxic conditions were compared by PCR array analysis. Intriguingly, PPAR-γ was dramatically downregulated (20-fold in mRNA expression under hypoxia, and was revealed to possess a putative binding site in the Hif-2α gene promoter region. Chromatin immunoprecipitation assays confirmed the binding of PPAR-γ protein to the Hif-2α promoter and the binding was suppressed by hypoxia treatment. Luciferase reporter assay showed that the Hif-2α promoter activity was suppressed by PPAR expression. Thus, PPAR-γ may involve in the regulation of HIF-2α for stemness

  20. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    Science.gov (United States)

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  1. Incidence of human herpes virus-6 and human cytomegalovirus infections in donated bone marrow and umbilical cord blood hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Behzad-Behbahani A

    2008-01-01

    Full Text Available This study examined the incidence of human herpes virus-6 (HHV-6 and human cytomegalovirus (HCMV infections that are potentially transmitted to haematopoietic stem cells (HSC transplant recipients via bone marrow (BM or umbilical cord blood (UCB. Bone marrow progenitor cells were collected from 30 allogenic BM donors. UCB HSC were collected from 34 subjects. The extracted DNA was then processed using nested polymerase chain reaction (nPCR technique. HCMV and HHV-6 serological status were determined by enzyme immunoassay (EIA. Nested PCR identified HCMV in 22 (73% of 30 samples of BM progenitor cells but in only eight (23.5% of 34 samples of UBC HSC ( P = 0.001. HHV-6 DNA was detected in 11 (36.6% of 30 BM progenitor cells and in only one (2.9% of 34 UBC cells ( P = 0.002. Both HHV-6 and HCMV infections were determined in nine (26.5% of 34 bone marrow samples. The results indicate that, the risk of HCMV and HHV-6 via BM progenitor cells is higher than transmission by UCB cells ( P= 0.04.

  2. SIRT1 prevents replicative senescence of normal human umbilical cord fibroblast through potentiating the transcription of human telomerase reverse transcriptase gene.

    Science.gov (United States)

    Yamashita, Shuntaro; Ogawa, Kaori; Ikei, Takahiro; Udono, Miyako; Fujiki, Tsukasa; Katakura, Yoshinori

    2012-01-06

    SIRT1, the mammalian homolog of sirtuins, has emerged as a mediator of the beneficial effects of calorie restriction. Among them, we focused on the SIRT1-induced prevention of cellular senescence, and tried to reveal the molecular mechanisms that define the effects of SIRT1. Firstly in this study, we observed that overexpression of SIRT1 resulted in the prevention of cellular senescence of normal human umbilical cord fibroblast HUC-F2 cells. Here, we focused on the human telomerase reverse transcriptase (hTERT) gene as a target of the SIRT1-induced prevention of cellular senescence. Results showed that SIRT1, SIRT1 activator, resveratrol, and SIRT1 activating condition, starved condition, increased the transcription of hTERT in HUC-F2 cells. Next, we found that SIRT1 increased hTERT transcription in a c-MYC-dependent manner, triggered the transcription of the c-MYC gene and increased the amount of c-MYC recruited to the hTERT promoter. Further, SIRT1 increased the transcriptional activation ability of c-MYC and correspondingly increased the amount of acetylated H4 histone at the hTERT promoter. All of these results indicated that SIRT1 activates hTERT transcription through the involvement of c-MYC, and suggested that this SIRT1-induced augmentation of hTERT transcription resulted in the extension of the cellular life span of HUC-F2 cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Human abuse liability evaluation of CNS stimulant drugs.

    Science.gov (United States)

    Romach, Myroslava K; Schoedel, Kerri A; Sellers, Edward M

    2014-12-01

    Psychoactive drugs that increase alertness, attention and concentration and energy, while also elevating mood, heart rate and blood pressure are referred to as stimulants. Despite some overlapping similarities, stimulants cannot be easily categorized by their chemical structure, mechanism of action, receptor binding profile, effects on monoamine uptake, behavioral pharmacology (e.g., effects on locomotion, temperature, and blood pressure), therapeutic indication or efficacy. Because of their abuse liability, a pre-market assessment of abuse potential is required for drugs that show stimulant properties; this review article focuses on the clinical aspects of this evaluation. This includes clinical trial adverse events, evidence of diversion or tampering, overdoses and the results of a human abuse potential study. While there are different types of human experimental studies that can be employed to evaluate stimulant abuse potential (e.g., drug discrimination, self-administration), only the human abuse potential study and clinical trial adverse event data are required for drug approval. The principal advances that have improved human abuse potential studies include using study enrichment strategies (pharmacologic qualification), larger sample sizes, better selection of endpoints and measurement strategies and more carefully considered interpretation of data. Because of the methodological advances, comparisons of newer studies with historical data is problematic and may contribute to a biased regulatory framework for the evaluation of newer stimulant-like drugs, such as A2 antagonists. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  5. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Directory of Open Access Journals (Sweden)

    Z.H. Wang

    2014-04-01

    Full Text Available SRY-related high-mobility-group box 9 (Sox9 gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs. After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  6. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    International Nuclear Information System (INIS)

    Wang, Z.H.; Li, X.L.; He, X.J.; Wu, B.J.; Xu, M.; Chang, H.M.; Zhang, X.H.; Xing, Z.; Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y.

    2014-01-01

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering

  7. Study of Topical Human Umbilical Cord Blood Serum in the Treatment of Alkaline Corneal Epithelial Wounds in Rabbit Model

    Directory of Open Access Journals (Sweden)

    B Sharifi

    2011-04-01

    Full Text Available Introduction & Objective: One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Ocular surface failure which follows a variety of endogenous and exogenous precipitating factors, the most common being: chemical trauma, infection, alkaline burn, inflammation and hereditary conditions, lid or lash abnormalities, tear deficiency or reduced sensation. The core principal underpinning management strategy for ocular surface failure is establishing or promoting new growth of healthy conjunctiva and corneal epithelium. This process is mediated by many proteins that are inducers of corneal cell migration, proliferation, and differentiation. The current study was performed to investigate the efficacy of umbilical cord serum on alkaline corneal epithelial wound healing in the rabbit model. Materials & Methods: In this study conducted at Yasuj University of Medical Sciences in 2010, thirty two rabbits were randomly assigned into two equal groups. Central corneal alkali wound was formed in one eye of the rabbits by applying a 6-mm round filter paper, soaked in 1 N NaOH, for 60 seconds. Group one of animals received umbilical cord blood serum and group two received Sno*Tear in the eyes. The treatment was dosed 4 times a day with the eye drops, and epithelial wound closure was recorded using slit lamp. The data were analyzed to determine the rate of wound closure. Results: The mean wound radius closure rate was 0.77 mm/day (SD=0.013 for umbilical cord blood serum-treated eyes, 0.73 mm/day (SD=0.018 for artificial tear-treated eyes. Conclusion: This study shows that alkali-injured corneal epithelial wound heal faster when treated with umbilical cord blood serum than with artificial tear in rabbit model.

  8. Mercury concentrations in human placenta, umbilical cord, cord blood and amniotic fluid and their relations with body parameters of newborns

    International Nuclear Information System (INIS)

    Kozikowska, Iwona; Binkowski, Łukasz J.; Szczepańska, Katarzyna; Sławska, Helena; Miszczuk, Katarzyna; Śliwińska, Magdalena; Łaciak, Tomasz; Stawarz, Robert

    2013-01-01

    Studies were conducted on samples taken from giving birth women (n = 40) living in Poland, representing three age groups: 19–25, 26–30 and 31–38 years old. Mercury concentrations were measured with CV-AAS in placenta, umbilical cord, cord blood and amniotic fluid. The placentas weight did not exceed the 750 g value and was heavier than 310 g. Mean values of Hg concentrations in blood, placenta and umbilical cord were similar (c.a. 9 μg/g). High levels of mercury were noted in cord blood which in 75% of all observations exceeded (up to 17 μg/L) the safe dose set by US EPA (5.8 μg/L). No statistically significant differences in medium level of Hg in all the studied tissues among age groups of women were observed. Positive correlations between Hg concentrations in placenta and umbilical cord and cord blood were revealed as well as some negative ones between mercury concentrations and pregnancy parameters. -- Highlights: •Concentrations of mercury in cord blood exceed the safety threshold level. •Maternal age was not an influential factor of Hg concentrations in studied samples. •Positive correlations between Hg levels in different tissues were observed. •Negative correlation between Hg concentrations and pregnancy parameters were noted. -- Maternal age was not an influential factor of mercury concentrations in studied samples. 75% of cord blood samples exceeded the Hg threshold concentration

  9. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study.

    Science.gov (United States)

    Danner, Simon M; Hofstoetter, Ursula S; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen

    2011-03-01

    Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation, and movement. The human lumbar cord has become a target for modification of motor control by epidural and, more recently, by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large-diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are coactivated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Generator for electrotherapy and stimulation of human nerve centers

    Directory of Open Access Journals (Sweden)

    Babelyuk V. E.

    2017-04-01

    Full Text Available A generator for electrotherapy and stimulation of human VEB-1 nerve centers has been developed. The device's robots are based on stimulation of the patient by current pulses. Frequency beat method is used. The accuracy of maintaining the stimulation frequency is not more than 0.001 Hz. The carrier frequency of the working current pulses corresponds to the 32th harmonic of the frequency of the frequency pulse of the operating pulses. The clinical tests of the VEB-1 generator were carried out, showing the ego efficiency in twenty characteristic health indicators.

  11. Umbilical cord and preeclampsia.

    Science.gov (United States)

    Olaya-C, M; Salcedo-Betancourt, J; Galvis, S H; Ortiz, A M; Gutierrez, S; Bernal, J E

    2016-01-01

    Preeclampsia is associated with abnormalities in the umbilical cord in several ways: morphological, biochemical and functional. Alteration in blood vessels of the placenta, decidua and circulatory system of the fetus might be related to factors that cause preeclampsia and may be associated with alterations of the umbilical cord. This study aimed to analyze the relationship between each type of umbilical cord abnormality and the different subtypes of hypertensive gestational disorders. We conducted a prospective study on consecutive autopsies and its placentas, looking for abnormalities in the umbilical cord's features and their clinical associations. Umbilical cord abnormalities including length, diameter, insertion, entanglements, knots and coils were associated with maternal gestational hypertension. In women with gestational hypertension, umbilical cord abnormalities are associated with fetal and neonatal consequences.

  12. Human umbilical cord-derived mesenchymal stem cells inhibit proliferation but maintain survival of Jurkat leukemia cells in vitro by activating Notch signaling.

    Science.gov (United States)

    Yuan, Yin; Chen, Danliang; Chen, Xuan; Shao, Hongwei; Huang, Shulin

    2014-04-01

    To investigate the effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on the proliferation and survival of Jurkat leukemia cells in vitro and explore the possible mechanism. Jurkat leukemia cells were co-cultured with hUC-MSCs isolated from human umbilical cord tissues by plastic adherence at a ratio of 10:1. The proliferation and survival of the co-cultured Jurkat cells, separated by immunomagnetic bead cell sorting on day 4, were evaluated by flow cytometry. Western blotting was performed to evaluate the activation of Notch signaling in the co-cultured Jurkat cells. Jurkat leukemia cells co-cultured with hUC-MSCs for 4 days showed a lowered proliferation rate and cell cycle arrest at G0/G1 phase with a reduction in the cell apoptotic rate. Notch signaling pathway was activated in the co-cultured Jurkat cells as evidenced by an increased cellular expression of HES-1. Co-culture with hUC-MSCs can inhibit the proliferation of Jurkat leukemia cells in vitro and protect the cells from apoptosis by activating Notch signaling, indicating a potential shielding effect of MSCs on leukemia cells.

  13. Human umbilical cord-derived mesenchymal stem cells differentiate into epidermal-like cells using a novel co-culture technique.

    Science.gov (United States)

    Li, Dongjie; Chai, Jiake; Shen, Chuanan; Han, Yanfu; Sun, Tianjun

    2014-08-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) isolated from human umbilical Wharton's Jelly are a population of primitive and pluripotent cells. In specific conditions, hUCMSCs can differentiate into various cells, including adipocytes, osteoblasts, chondrocytes, neurocytes, and endothelial cells. However, few studies have assessed their differentiation into epidermal cells in vitro. To assess the potential of hUCMSCs to differentiate into epidermal cells, a microporous membrane-based indirect co-culture system was developed in this study. Epidermal stem cells (ESCs) were seeded on the bottom of the microporous membrane, and hUCMSCs were seeded on the top of the microporous membrane. Cell morphology was assessed by phase contrast microscopy, and the expression of early markers of epidermal cell lineage, P63, cytokeratin19 (CK19), and β1-integrin, was determined by immunofluorescence, Western blot, and quantitative real-time PCR (Q-PCR) analyses. hUCMSC morphology changed from spindle-like to oblate or irregular with indirect co-culture with ESCs; they also expressed greater levels P63, CK19, and β1-integrin mRNA and protein compared to the controls (p cultures, indirect co-culture expressed significantly greater CK19 protein (p culture model.

  14. Evaluation of Energy Balance on Human Telomerase Reverse Transcriptase (hTERT) Alternative Splicing by Semi-quantitative RT-PCR in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Behjati, Mohaddeseh; Hashemi, Mohammad; Kazemi, Mohammad; Salehi, Mansoor; Javanmard, Shaghayegh Haghjooy

    2017-01-01

    Decreased high-energy phosphate level is involved in endothelial cell injury and dysfunction. Reduced telomerase activity in endothelial cells in parallel with reduced energy levels might be due to altered direction of alternative splicing machine as a complication of depleted energy during the process of atherosclerosis. Isolated human umbilical vein endothelial cells (HUVECs) were treated for 24 hours by oligomycine (OM) and 2-deoxy glucose (2-DG). After 24 hours, the effect of energy depletion on telomerase splicing pattern was evaluated using RT-PCR. Indeed, in both treated and untargeted cells, nitric oxide (NO) and von Willebrand factor (vWF) were measured. ATP was depleted in treated cells by 43.9% compared with control group. We observed a slight decrease in NO levels ( P = 0.09) and vWF ( P = 0.395) in the setting of 49.36% ATP depletion. In both groups, no telomerase gene expression was seen. Telomerase and housekeeping gene expression were found in positive control group (colon cancer tissue) and sample tissue. The absence of telomerase gene expression in HUVECs might be due to the mortality of these cells or the low level of telomerase gene expression in these cells under normal circumstances.

  15. Human resource management practices stimulating knowledge sharing

    Directory of Open Access Journals (Sweden)

    Matošková Jana

    2017-12-01

    Full Text Available The major goal of the paper was to develop a theoretical framework that conceptualizes the indirect impact on human resource management practice on knowledge sharing in the organization. In the current competitive environment, the ability to use knowledge assets and to continuously renovate it is required for organizational success. Therefore, the field of human resource management should dedicate great effort to understanding how to enhance the knowledge flows within the organization. Theoretical indications were provided about HRM practices that influence the quality and quantity of knowledge sharing within an organization. Further, a conceptual model of relations between HRM practices and factors influencing knowledge sharing within an organization was introduced. It is supposed that HRM practices have direct impacts on personality traits of employees, organizational culture, characteristics of managers, and instruments used for knowledge sharing. Subsequently, these factors have direct effects on the perceived intensity of knowledge sharing. The paper offers 12 testable propositions for the indirect relation between HRM practices and knowledge sharing in the organization. The suggested model could assist future research to examine the influence of HRM practices upon managing knowledge is a more complex way. Via a theoretical contribution to the debate on the influence on HRM practices upon managing knowledge, the study contributes to further research development in this field.

  16. Estradiol stimulation of inositolphospholipid metabolism in human endometrial fibroblasts

    International Nuclear Information System (INIS)

    Iida, K.; Imai, A.; Tamaya, T.

    1989-01-01

    Stimulated inositolphospholipid turnover has been proposed to constitute a signal-transducing mechanism in many cell types. To determine the inositolphospholipid turnover during stimulation by 17 beta-estradiol, the turnover kinetics of phospholipids was investigated in human endometrial fibroblasts. In cells incubated with [ 32 P] phosphate for 1 h, estradiol rapidly and persisitently (for at least 30 min) enhanced the rate of 32 P-labeling of phosphatidic acid (PA). On the other hand, after a lag time of 5 min, 32 P-labeling of phosphatidylinositol (PI) was also increased also. These sequential 32 P-labeling of PA and PI demonstrated that inositolphospholipid turnover was stimulated in fibroblasts exposed to estradiol. The rapid estrogen-stimulated inositolphospholipid turnover may not be through the mechanism associated with classical action of estrogen

  17. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood.

    Science.gov (United States)

    Schira, Jessica; Gasis, Marcia; Estrada, Veronica; Hendricks, Marion; Schmitz, Christine; Trapp, Thorsten; Kruse, Fabian; Kögler, Gesine; Wernet, Peter; Hartung, Hans-Peter; Müller, Hans Werner

    2012-02-01

    Stem cell therapy is a potential treatment for spinal cord injury and different stem cell types have been grafted into animal models and humans suffering from spinal trauma. Due to inconsistent results, it is still an important and clinically relevant question which stem cell type will prove to be therapeutically effective. Thus far, stem cells of human sources grafted into spinal cord mostly included barely defined heterogeneous mesenchymal stem cell populations derived from bone marrow or umbilical cord blood. Here, we have transplanted a well-defined unrestricted somatic stem cell isolated from human umbilical cord blood into an acute traumatic spinal cord injury of adult immune suppressed rat. Grafting of unrestricted somatic stem cells into the vicinity of a dorsal hemisection injury at thoracic level eight resulted in hepatocyte growth factor-directed migration and accumulation within the lesion area, reduction in lesion size and augmented tissue sparing, enhanced axon regrowth and significant functional locomotor improvement as revealed by three behavioural tasks (open field Basso-Beattie-Bresnahan locomotor score, horizontal ladder walking test and CatWalk gait analysis). To accomplish the beneficial effects, neither neural differentiation nor long-lasting persistence of the grafted human stem cells appears to be required. The secretion of neurite outgrowth-promoting factors in vitro further suggests a paracrine function of unrestricted somatic stem cells in spinal cord injury. Given the highly supportive functional characteristics in spinal cord injury, production in virtually unlimited quantities at GMP grade and lack of ethical concerns, unrestricted somatic stem cells appear to be a highly suitable human stem cell source for clinical application in central nervous system injuries.

  18. Explants-isolated human placenta and umbilical cord cells share characteristics of both epithelial and mesenchymal stem cells.

    Science.gov (United States)

    Anastasiu, Diana Maria; Cean, Ada; Bojin, Maria Florina; Gluhovschi, Adrian; Panaitescu, Carmen; Păunescu, Virgil; Tănăsie, Gabriela

    2016-01-01

    In recent years, identification of new sources of adult stem cells developed rapidly, pursuing to find easily available tissues, which will give rise to homogenous stem cells populations. Up to present, bone marrow-derived mesenchymal stem cells (BM-MSCs) are unanimously considered to fulfill the criteria for being used in clinical settings, but adipose stem cells, placental and umbilical cord stem cells, and other tissue-derived stem cells are making their way to being used at least in autologous transplantation. We isolated cellular populations from placental tissue and umbilical cord using the explants method. The placental (PL) and umbilical cord (UC)-derived cells were cultured and expanded in appropriate conditions for generation of stem cells. We assessed the stemness characteristics of the tissue-isolated cells and compared them to an established MSCs line. For this purpose, we determined the immunophenotype, morphological and ultrastructural characteristics, as well as functional abilities of PL- and UC-derived cells. Flow cytometric evaluation of cells revealed presence of CD90, CD73, and CD105 stem cells markers, while the cells were negative for CD34, CD45 and HLA-DR. Immunocytochemical staining showed that 100% of PL- and UC-derived cells are positive for vimentin and CD105 expression, while cytokeratin was revealed in less than 10% in both tissue-isolated cells. Morphological and ultrastructural characteristics of cells exposed analogous cellular size and intracellular organization, similar to MSCs, but detailed view of UC-derived cells by transmission electron microscopy (TEM) demonstrated presence of intercellular junctions-desmosomes, similar to epithelial cells. Both PL- and UC-derived cells confirmed their trilineage potential, being able to differentiate into adipocytes, osteoblasts, and chondrocytes in different proportions. Flow chamber in vitro assay was used to determine to what extent PL- and UC-derived cells are able to adhere to

  19. Side-by-Side Comparison of the Biological Characteristics of Human Umbilical Cord and Adipose Tissue-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Hu

    2013-01-01

    Full Text Available Both human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs have been explored as attractive mesenchymal stem cells (MSCs sources, but very few parallel comparative studies of these two cell types have been made. We designed a side-by-side comparative study by isolating MSCs from the adipose tissue and umbilical cords from mothers delivering full-term babies and thus compared the various biological aspects of ASCs and UC-MSCs derived from the same individual, in one study. Both types of cells expressed cell surface markers characteristic of MSCs. ASCs and UC-MSCs both could be efficiently induced into adipocytes, osteoblasts, and neuronal phenotypes. While there were no significant differences in their osteogenic differentiation, the adipogenesis of ASCs was more prominent and efficient than UC-MSCs. In the meanwhile, ASCs responded better to neuronal induction methods, exhibiting the higher differentiation rate in a relatively shorter time. In addition, UC-MSCs exhibited a more prominent secretion profile of cytokines than ASCs. These results indicate that although ASCs and UC-MSCs share considerable similarities in their immunological phenotype and pluripotentiality, certain biological differences do exist, which might have different implications for future cell-based therapy.

  20. Differentiation of Human Umbilical Cord Matrix Mesenchymal Stem Cells into Neural-Like Progenitor Cells and Maturation into an Oligodendroglial-Like Lineage

    Science.gov (United States)

    Leite, Cristiana; Silva, N. Tatiana; Mendes, Sandrine; Ribeiro, Andreia; de Faria, Joana Paes; Lourenço, Tânia; dos Santos, Francisco; Andrade, Pedro Z.; Cardoso, Carla M. P.; Vieira, Margarida; Paiva, Artur; da Silva, Cláudia L.; Cabral, Joaquim M. S.; Relvas, João B.; Grãos, Mário

    2014-01-01

    Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes. PMID:25357129

  1. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells.

    Science.gov (United States)

    Dehghani Soltani, Samereh; Babaee, Abdolreza; Shojaei, Mohammad; Salehinejad, Parvin; Seyedi, Fatemeh; JalalKamali, Mahshid; Nematollahi-Mahani, Seyed Noureddin

    2016-02-01

    Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm(2). Irradiation of the hUCM cells shows a significant (p green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.

  2. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.

    Science.gov (United States)

    Stanko, Peter; Kaiserova, Katarina; Altanerova, Veronika; Altaner, Cestmir

    2014-09-01

    Our aims were to characterize human mesenchymal stem cells isolated from various tissues by pluripotent stem cells gene expression profile. Four strains of dental pulp stem cells (DP-MSCs) were isolated from dental pulp tissue fragments adhered to plastic tissue culture dishes. Mesenchymal stem cells derived from umbilical cord tissue (UBC-MSCs) were isolated with the same technique. Bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated from nucleated cells of bone marrow obtained by density gradient centrifugation. Human mesenchymal stem cells from adipose tissue (AT-MSCs) were isolated by collagenase digestion. All kinds of MSCs used in this study were cultivated in low glucose DMEM containing 5% or human platelet extract. All stem cell manipulation was performed in GMP conditions. Expression of 15 pluripotent stem cells genes on the level of proteins was measured by Proteome Profiler Human Pluripotent Stem Cell Array. Induction of MSCs to in vitro differentiation to adipocytes, osteoblasts, chondroblasts was achieved by cultivation of cells in appropriate differentiation medium. All MSCs tested were phenotypically similar and of fibroblastoid morphology. DP-MSCs and UBC-MSCs were more proliferative than bone marrow BM-MSCs and AT-MSCs. Protein expression of 15 genes typical for pluripotent stem cells distinguished them into two groups. While the gene expression profiles of BM-MSC, AT-MSCs and UBC-MSCs were similar, DP-MSCS differed in relative gene expression on the level of their products in several genes. Dental pulp mesenchymal stem cells cultivated in vitro under the same conditions as MSCs from bone marrow, adipose tissue and umbilical cord tissue can be distinguished by pluripotent stem cell gene expression profile.

  3. Dynamics of force and muscle stimulation in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken

  4. Cholera toxin stimulation of human mammary epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  5. Human RECQL5beta stimulates flap endonuclease 1

    DEFF Research Database (Denmark)

    Speina, Elzbieta; Dawut, Lale; Hedayati, Mohammad

    2010-01-01

    devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5beta, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5beta...... dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5beta and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4's stimulation of FEN1, suggests...

  6. Stromal Interaction Molecule 1 (STIM1) and Orai1 Mediate Histamine-evoked Calcium Entry and Nuclear Factor of Activated T-cells (NFAT) Signaling in Human Umbilical Vein Endothelial Cells*

    Science.gov (United States)

    Zhou, Meng-Hua; Zheng, Hongying; Si, Hongjiang; Jin, Yixin; Peng, Jasmine M.; He, Lian; Zhou, Yubin; Muñoz-Garay, Carlos; Zawieja, David C.; Kuo, Lih; Peng, Xu; Zhang, Shenyuan L.

    2014-01-01

    Histamine is an important immunomodulator involved in allergic reactions and inflammatory responses. In endothelial cells, histamine induces Ca2+ mobilization by releasing Ca2+ from the endoplasmic reticulum and eliciting Ca2+ entry across the plasma membrane. Herein, we show that histamine-evoked Ca2+ entry in human umbilical vein endothelial cells (HUVECs) is sensitive to blockers of Ca2+ release-activated Ca2+ (CRAC) channels. RNA interference against STIM1 or Orai1, the activating subunit and the pore-forming subunit of CRAC channels, respectively, abolishes this histamine-evoked Ca2+ entry. Furthermore, overexpression of dominant-negative CRAC channel subunits inhibits while co-expression of both STIM1 and Orai1 enhances histamine-induced Ca2+ influx. Interestingly, gene silencing of STIM1 or Orai1 also interrupts the activation of calcineurin/nuclear factor of activated T-cells (NFAT) pathway and the production of interleukin 8 triggered by histamine in HUVECs. Collectively, these results suggest a central role of STIM1 and Orai1 in mediating Ca2+ mobilization linked to inflammatory signaling of endothelial cells upon histamine stimulation. PMID:25190815

  7. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K

    2013-01-01

    Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1...... (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species...

  8. [Impact of sera from children with active Henoch-Schönlein purpura on human umbilical venous endothelial cells (HUVECs) and protective effects of methylprednisolone against HUVECs injury].

    Science.gov (United States)

    Wu, Lin; Yuan, Li-Ping; Fei, Wen-Jun; Deng, Fang; Zhang, Qin; Hu, Bo; Lu, Ling

    2012-01-01

    To observe the changes of human umbilical venous endothelial cells (HUVECs) induced by the sera from children with active Henoch-Sch-nlein purpura (HSP) and the protective effects of methylprednisolone against HUVECs injury. HUVECs were divided into four groups based on the culture conditions: blank control group, normal serum group, HSP serum group, and HSP serum plus methylprednisolone group. The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-8 in the supernatants of each group were detected using ELISA and the nitric oxide (NO) level by nitrate reductase determination. Moreover, the expressions of nuclear factor-kappa B (NF-κB) and Fractalkine in HUVECs were examined by semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. The levels of IL-8, TNF-α, and NO in the HSP serum group were significantly higher than those in the blank control and normal serum groups (Pinflamation.

  9. Influence of Genetically Modified Human Umbilical Cord Blood Mononuclear Cells on the Expression of Schwann Cell Molecular Determinants in Spinal Cord Injury.

    Science.gov (United States)

    Galieva, L R; Mukhamedshina, Y O; Akhmetzyanova, E R; Gilazieva, Z E; Arkhipova, S S; Garanina, E E; Rizvanov, A A

    2018-01-01

    Spinal cord injury (SCI) unavoidably results in death of not only neurons but also glial cells. In particular, the death of oligodendrocytes leads to impaired nerve impulse conduction in intact axons. However, after SCI, the Schwann cells (SCs) are capable of migrating towards an area of injury and participating in the formation of functional myelin. In addition to SCI, cell-based therapy can influence the migration of SCs and the expression of their molecular determinants. In a number of cases, it can be explained by the ability of implanted cells to secrete neurotrophic factors (NTFs). Genetically modified stem and progenitor cells overexpressing NTFs have recently attracted special attention of researchers and are most promising for the purposes of regenerative medicine. Therefore, we have studied the effect of genetically modified human umbilical cord blood mononuclear cells on the expression of SC molecular determinants in SCI.

  10. Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC)

    International Nuclear Information System (INIS)

    Chen, J.Y.; Leng, Y.X.; Zhang, X.

    2006-01-01

    In this work, we synthesized titanium oxide thin films containing different tantalum using magnetron sputtering to meet the challenge of enhanced biocompatibility. The structure characteristics of the films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The biological behavior of human umbilical vein endothelial cells (HUVECs) on the film surface was investigated by in vitro cell culture. Study of cultured HUVEC onto films revealed that the growth and proliferation behavior of EC were varied significantly due to the different Ta content which resulting the characterization of films is different. The adherence, growth, shape and proliferation of EC on Ti-O film with high Ta content and smoother surface was excellent

  11. Fentanyl Suppresses the Survival of CD4+ T Cells Isolated from Human Umbilical Cord Blood through Inhibition of IKKs-mediated NF-κB Activation.

    Science.gov (United States)

    Ma, K; Ma, P; Lu, H; Liu, S; Cao, Q

    2017-05-01

    The aim of this study was to investigate the effects and the underlying mechanisms of fentanyl anaesthetic on T lymphocytes isolated from human umbilical cord blood in vitro. The percentages of CD4 + , CD8 + and regulatory T (Treg) cells in human umbilical cord blood mononuclear cells (UBMC) treated with fentanyl in vitro were analysed by flow cytometry. The levels of cytokines IFN-γ, IL-2, IL-4 and IL-17 secreted by activated CD4 + T cells were measured by ELISA assays. Expressions of MAPK and NF-κB signalling pathway proteins were determined by Western blotting. Effects of fentanyl on IKK and p65 expression promoter activities were analysed by luciferase assay. Fentanyl decreased the percentages and amounts of CD4 + , CD8 + and Foxp3 + Treg T lymphocyte subsets in UBMCs in a dose-dependent manner. Fentanyl inhibited the proliferation and induced apoptosis of activated CD4 + T cells dose dependently. Fentanyl could not reverse the increase of cell proliferation in activated groups to be equivalent with those in inactivated group. Secretions of IFN-γ, IL-2 and IL-4 cytokines were significantly decreased by moderate to high dose of fentanyl compared with controls. No significant differences were observed in protein expressions of MAPK pathway. In addition, fentanyl suppressed the IKKs-mediated activation of NF-κB. This study demonstrates that fentanyl exerts immunosuppressive effects on T lymphocytes obtained from UBMCs. Thus, the clinical application of fentanyl would not only relieve pain caused by surgery but regulate immune responses post-operation possibly through inhibition of IKKs-mediated NF-κB activation. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  12. Transcranial focused ultrasound stimulation of human primary visual cortex

    Science.gov (United States)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  13. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-04-01

    Full Text Available Chao Chen,1,* Jing Duan,1,* Aifang Shen,2,* Wei Wang,1 Hao Song,1 Yanming Liu,1 Xianjie Lu,1 Xiaobing Wang,2 Zhiqing You,1 Zhongchao Han,3,4 Fabin Han1 1Center for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 2Department of Gynecology and Obstetrics, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 3The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Peking Union of Medical College, Tianjin, People's Republic of China; 4National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., TEDA, Tianjin, People's Republic of China*These authors contributed equally to this workAbstract: Human umbilical cord blood-derived mononuclear cells (hUCB-MNCs were reported to have neurorestorative capacity for neurological disorders such as stroke and traumatic brain injury. This study was performed to explore if hUCB-MNC transplantation plays any therapeutic effects for Parkinson's disease (PD in a 6-OHDA-lesioned rat model of PD. hUCB-MNCs were isolated from umbilical cord blood and administered to the striatum of the 6-OHDA-lesioned rats. The apomorphine-induced locomotive turning-overs were measured to evaluate the improvement of motor dysfunctions of the rats after administration of hUCB-MNCs. We observed that transplanted hUCB-MNCs significantly improve the motor deficits of the PD rats and that grafted hUCB-MNCs integrated to the host brains and differentiated to neurons and dopamine neurons in vivo after 16 weeks of transplantation. Our study provided evidence that transplanted hUCB-MNCs play therapeutic effects in a rat PD model by differentiating to neurons and dopamine neurons. Keywords: hUCB-MNCs, Parkinson's disease, transplantation

  15. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights

    Science.gov (United States)

    Williams, John C.; Entcheva, Emilia

    2015-01-01

    Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current—a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation

  16. Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Huaijuan Ren

    2016-01-01

    Full Text Available Although mesenchymal stem cells (MSCs based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC, dental pulp (DP, and menstrual blood (MB are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.

  17. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  18. Estradiol stimulates vasodilatory and metabolic pathways in cultured human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Agua Sobrino

    2009-12-01

    Full Text Available Vascular effects of estradiol are being investigated because there are controversies among clinical and experimental studies. DNA microarrays were used to investigate global gene expression patterns in cultured human umbilical vein endothelial cells (HUVEC exposed to 1 nmol/L estradiol for 24 hours. When compared to control, 187 genes were identified as differentially expressed with 1.9-fold change threshold. Supervised principal component analysis and hierarchical cluster analysis revealed the differences between control and estradiol-treated samples. Physiological concentrations of estradiol are sufficient to elicit significant changes in HUVEC gene expression. Notch signaling, actin cytoskeleton signaling, pentose phosphate pathway, axonal guidance signaling and integrin signaling were the top-five canonical pathways significantly regulated by estrogen. A total of 26 regulatory networks were identified as estrogen responsive. Microarray data were confirmed by quantitative RT-PCR in cardiovascular meaning genes; cyclooxygenase (COX1, dimethylarginine dimethylaminohydrolase (DDAH2, phospholipase A2 group IV (PLA2G4 B, and 7-dehydrocholesterol reductase were up-regulated by estradiol in a dose-dependent and estrogen receptor-dependent way, whereas COX2, DDAH1 and PLA2G4A remained unaltered. Moreover, estradiol-induced COX1 gene expression resulted in increased COX1 protein content and enhanced prostacyclin production. DDAH2 protein content was also increased, which in turn decreased asymmetric dimethylarginine concentration and increased NO release. All stimulated effects of estradiol on gene and protein expression were estrogen receptor-dependent, since were abolished in the presence of the estrogen receptor antagonist ICI 182780. This study identifies new vascular mechanisms of action by which estradiol may contribute to a wide range of biological processes.

  19. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis.

    Science.gov (United States)

    Fan, Yu-Pei; Hsia, Ching-Chih; Tseng, Kuang-Wen; Liao, Chih-Kai; Fu, Tz-Win; Ko, Tsui-Ling; Chiu, Mei-Miao; Shih, Yang-Hsin; Huang, Pei-Yu; Chiang, Yi-Chia; Yang, Chih-Ching; Fu, Yu-Show

    2016-02-01

    A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively

  20. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton’s Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis

    Science.gov (United States)

    Fan, Yu-Pei; Hsia, Ching-Chih; Tseng, Kuang-Wen; Liao, Chih-Kai; Fu, Tz-Win; Ko, Tsui-Ling; Chiu, Mei-Miao; Shih, Yang-Hsin; Huang, Pei-Yu; Chiang, Yi-Chia

    2016-01-01

    A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton’s jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco’s modified Eagle’s medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively

  1. Increased sensitivity for detecting malaria parasites in human umbilical cord blood using scaled-up DNA preparation.

    Science.gov (United States)

    Polley, Spencer D; Sutherland, Colin J; Regan, Fiona; Hassan, Maha; Chiodini, Peter L

    2012-03-05

    All mothers donating umbilical cord blood units to the NHS cord blood bank undergo an assessment for the likelihood of prior exposure to malaria infection. Those deemed at risk due to a history of travel to, or residence in, malaria endemic regions are screened serologically to detect anti-malaria antibodies. A positive result excludes the use of the cord blood for transplant therapy unless a risk assessment can ensure that malaria transmission is extremely unlikely. This paper details the screening of cord blood units from malaria serology positive mothers to detect malaria parasite DNA using a highly sensitive nested PCR. Uninfected blood from a healthy volunteer was spiked with known quantities of malaria parasites and 5 millilitre and 200 microlitre aliquots were subjected to DNA extraction using QIAamp DNA maxi and DNA mini kits respectively. Nested PCR, to detect malarial SSU rRNA sequences, was performed on the purified DNA samples to determine the limit of detection for this assay with both extraction methodologies. Following assay validation, 54 cord blood units donated by mothers who were positive for anti-malaria antibodies were screened by this approach. When DNA was purified from 5 millilitres of blood it was possible to routinely detect as few as 50 malaria parasites per millilitre using nested PCR. This equates to a significant increase in the sensitivity of the current gold standard nucleic acid amplification technique used to detect malaria parasites (routinely performed from > 200 microlitre volumes of blood). None of the 54 donated cord blood units from serology positive mothers tested positive for malaria parasites using this scaled up DNA preparation method. Serological testing for malaria parasites may be overly conservative, leading to unnecessary rejection of cord blood donations that lack malaria parasites and which are, therefore, safe for use in stem cell therapy.

  2. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    Science.gov (United States)

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  4. Stimulation of human trophoblast invasion by placental growth hormone.

    Science.gov (United States)

    Lacroix, Marie-Christine; Guibourdenche, Jean; Fournier, Thierry; Laurendeau, Ingrid; Igout, Ahmed; Goffin, Vincent; Pantel, Jacques; Tsatsaris, Vassilis; Evain-Brion, Daniele

    2005-05-01

    A critical step in establishment of human pregnancy is the invasion of the uterus wall by the extravillous cytotrophoblast (EVCT), a process regulated by multiple autocrine and paracrine factors. Hormones belonging to the GH/prolactin family are expressed at the maternofetal interface. Because they are involved in cell motility in various models, we examined the possible regulatory role of human placental GH (hPGH) in EVCT invasiveness. By using an in vitro invasion model, we found that EVCT isolated from first-trimester chorionic villi and cultured on Matrigel secreted hPGH and expressed human GH receptor (hGHR). These data were confirmed by in situ immunohistochemistry. EVCT expressed the full-length and truncated forms of hGHR, and the Janus kinase-2/signal transducer and activator of transcription factor-5 signaling pathway was activated in EVCT by hPGH treatment. Strong hPGH and hGHR expression was observed when EVCT invaded Matrigel and moved through the pores of the filter on which they were cultured. hPGH stimulated EVCT invasiveness, and this effect was inhibited by a Janus kinase-2 inhibitor. Interestingly, hPGH was more efficient than pituitary GH in stimulating EVCT invasiveness. These results offer the first evidence for a placental role of hPGH and suggest an autocrine/paracrine role of hPGH in the regulation of trophoblast invasion.

  5. Gene expression profiles of cryopreserved CD34{sup +} human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Kazuhiro [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan); Yasuda, Jun, E-mail: yasuda-jun@umin.ac.jp [Omics Science Center, RIKEN, Yokohama (Japan); Department of Cell Biology, The JFCR-Cancer Institute (Japan); Nakamura, Yukio, E-mail: yukionak@brc.riken.jp [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan)

    2010-07-09

    Human umbilical cord blood (UCB) cells are an alternative source of hematopoietic stem cells for treatment of leukemia and other diseases. It is very difficult to assess the quality of UCB cells in the clinical situation. Here, we sought to assess the quality of UCB cells by transplantation to immunodeficient mice. Cryopreserved CD34{sup +} UCB cells from twelve different human donors were transplanted into sublethally irradiated NOD/shi-scid Jic mice. In parallel, the gene expression profiles of the UCB cells were determined from oligonucleotide microarrays. UCB cells from three donors failed to establish an engraftment in the host mice, while the other nine succeeded to various extents. Gene expression profiling indicated that 71 genes, including HOXB4, C/EBP-{beta}, and ETS2, were specifically overexpressed and 23 genes were suppressed more than 2-fold in the successful UCB cells compared to those that failed. Functional annotation revealed that cell growth and cell cycle regulators were more abundant in the successful UCB cells. Our results suggest that hematopoietic ability may vary among cryopreserved UCB cells and that this ability can be distinguished by profiling expression of certain sets of genes.

  6. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  7. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities.

    Science.gov (United States)

    Kargozar, Saeid; Lotfibakhshaiesh, Nasrin; Ai, Jafar; Mozafari, Masoud; Brouki Milan, Peiman; Hamzehlou, Sepideh; Barati, Mahmood; Baino, Francesco; Hill, Robert G; Joghataei, Mohammad Taghi

    2017-08-01

    Designing and developing new biomaterials to accelerate bone healing are currently under progress. In this study, we attempted to promote osteogenesis using strontium- and cobalt-substituted bioactive glasses (BGs) seeded with human umbilical cord perivascular cells (HUCPVCs) in a critical size defect in the distal femur of rabbit animal model. The BG particles were successfully synthesized in the form of granules using the melt-derived route. After being isolated, HUCPVCs were expanded and then characterized to use during in vitro and in vivo procedures. The in vitro effects of the synthesized glasses on the isolated HUCPVCs as well as on cell lines SaOS-2 (selected for screening the osteogenetic potential) and HUVEC (selected for screening the angiogenic potential) were assessed by analyzing cytotoxicity, cell attachment, bone-like nodule formation, and real time PCR. The results of in vitro tests indicated cytocompatibility of the synthesized BG particles. For in vivo study, the HUCPVCs-seeded BGs were implanted into the animal's body. Radiographic imaging, histology and immunohistology staining were performed on the harvested specimens at 4 and 12weeks post-surgery. The in vivo evaluation of the samples showed that all the cell/glass constructs accelerated bone healing process in comparison with blank controls. The best in vitro and in vivo results were associated to the BGs containing both strontium and cobalt ions. This group of bioactive glasses is able to promote both osteogenesis and angiogenesis and can therefore be highly suitable for the development of advanced functional bone substitutes. Bone regeneration is considered as an unmet clinical need. The most recent researches focused on incorporation of strontium (Sr 2+ ) and cobalt (Co 2+ ) ions into bioactive glasses structure. Strontium is an alkaline earth metal which is currently used in the treatment of osteoporosis. Also, cobalt is considered as another promising element in the bone regeneration

  8. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae

    2016-04-01

    Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required

  9. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-01-01

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  10. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  11. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  12. Umbilical artery tone in maternal obesity

    Directory of Open Access Journals (Sweden)

    Glavey Siobhan V

    2009-01-01

    Full Text Available Abstract Background The increasing prevalence of obesity constitutes a major health problem in obstetrics with implications for feto-maternal growth and wellbeing. This study investigated and compared the contractile properties of umbilical arteries excised from obese women, with those excised from women with a normal body mass index (BMI. Methods Sections of umbilical artery were obtained from umbilical cord samples immediately after delivery and mounted for isometric recording in organ tissue baths under physiological conditions. Cumulative additions of 5-Hydroxytryptamine (5-HT and Prostaglandin F-2alpha (PgF2alpha were added in the concentration range of 1 nmol/L to 10 micromol/L. Control vessels were exposed to Krebs physiological salt solution (PSS only. The resultant effects of each drug addition were measured using the Powerlab hardware unit. Results 5-HT exerted a significant effect on human umbilical artery tone at concentrations of 100 nmol/L, 1 micromol/L, and 10 micromol/L in normal (n = 5; P 0.05. Conclusion These findings support the hypothesis that endogenous regulation of umbilical artery tone is altered in association with maternal obesity. This may be linked to the cardiovascular effects of secretory products of adipose tissue, with implications for the feto-maternal circulation.

  13. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  14. Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model.

    Science.gov (United States)

    Li, Wen; Li, Kai; Gao, Jing; Yang, Zhuo

    2018-01-15

    Recent studies have shown that autophagy plays a central role in mesenchymal stem cells (MSCs), and many studies have shown that human umbilical cord MSCs (huMSCs) can treat Alzheimer's disease (AD) through a variety of mechanisms. However, no studies have looked at the effects of autophagy on neuroprotective function of huMSCs in the AD mouse model. Thus, in this study we investigated whether inhibition of autophagy could weaken or block the function of huMSCs through in vitro and in vivo experiments. In vitro we examined huMSC migration and neuronal differentiation by inhibiting or activating autophagy; in vivo autophagy of huMSCs was inhibited by knocking down Beclin 1, and these huMSCs were transplanted into the APP/PS1 transgenic mouse. A series of related indicators were detected by T-maze task, electrophysiological experiments, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), and Western blotting. We demonstrated that regulation of autophagy can affect huMSC migration and their neuronal differentiation. Moreover, inhibition of autophagy in huMSCs could not realize neuroprotective effects via anti-apoptosis or promoting neurogenesis and synapse formation compared with those of control huMSCs. These findings indicate that autophagy is required for huMSCs to maintain their function and improve cognition impairment in APP/PS1 transgenic mice.

  15. Buyang Huanwu Decoction attenuates H2O2-induced apoptosis by inhibiting reactive oxygen species-mediated mitochondrial dysfunction pathway in human umbilical vein endothelial cells.

    Science.gov (United States)

    Shen, Jian; Zhu, Yu; Huang, Kaiyuan; Jiang, Hao; Shi, Chengzhang; Xiong, Xiaoxing; Zhan, Renya; Pan, Jianwei

    2016-05-31

    Apoptosis of endothelial cells caused by reactive oxygen species plays an important role in ischemia/reperfusion injury after cerebral infarction. Buyang Huanwu Decoction (BYHWD) has been used to treat stroke and stroke-induced disability, however, the mechanism for this treatment remains unknown. In this study, we investigated whether BYHWD can protect human umbilical vein endothelial cells (HUVECs) from H2O2-induced apoptosis and explored the underlying mechanisms. To investigate the effect of BYHWD on the apoptosis of HUVECs, we established a H2O2-induced oxidative stress model and detected apoptosis by Hoechst 33342 and propidium iodide staining. JC-1 and DCFH-DA assays,western blotting and electron microscopy were used to examine the mechanism of BYHWD on apoptosis. Pretreatment with BYHWD significantly inhibited H2O2-induced apoptosis and protein caspase-3 expression in a concentration-dependent manner. In addition, BYHWD reduced reactive oxygen species production and promoted endogenous antioxidant defenses. Furthermore, loss of mitochondrial membrane potential and structural disruption of mitochondria were both rescued by BYHWD. BYHWD protects HUVECs from H2O2-induced apoptosis by inhibiting oxidative stress damage and mitochondrial dysfunction. These findings indicate that BYHWD is a promising treatment for cerebral ischemia diseases.

  16. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges

    Directory of Open Access Journals (Sweden)

    Tangni Gómez-Leduc

    2017-09-01

    Full Text Available Umbilical cord blood (UCB is an attractive alternative to bone marrow for isolation of mesenchymal stem cells (MSCs to treat articular cartilage defects. Here, we set out to determine the growth factors (bone morphogenetic protein 2 (BMP-2 and transforming growth factor-β (TGF-β1 and oxygen tension effects during chondrogenesis of human UCB-MSCs for cartilage engineering. Chondrogenic differentiation was induced using 3D cultures in type I/III collagen sponges with chondrogenic factors in normoxia (21% O2 or hypoxia (<5% O2 for 7, 14 and 21 days. Our results show that UCB-MSCs can be committed to chondrogenesis in the presence of BMP-2+TGF-β1. Normoxia induced the highest levels of chondrocyte-specific markers. However, hypoxia exerted more benefit by decreasing collagen X and matrix metalloproteinase-13 (MMP13 expression, two chondrocyte hypertrophy markers. However, a better chondrogenesis was obtained by switching oxygen conditions, with seven days in normoxia followed by 14 days in hypoxia, since these conditions avoid hypertrophy of hUCB-MSC-derived chondrocytes while maintaining the expression of chondrocyte-specific markers observed in normoxia. Our study demonstrates that oxygen tension is a key factor for chondrogenesis and suggests that UBC-MSCs 3D-culture should begin in normoxia to obtain a more efficient chondrocyte differentiation before placing them in hypoxia for chondrocyte phenotype stabilization. UCB-MSCs are therefore a reliable source for cartilage engineering.

  17. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles.

    Science.gov (United States)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter

    2013-03-01

    Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.

  18. Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Xing-Wei; Li, Wei-Fen; Li, Wei-Wei; Ren, Kan-Han; Fan, Chao-Ming; Chen, Ying-Ying; Shen, Yue-Liang

    2011-03-01

     Scutellaria baicalensis Georgi (Labiatae) (SbG), one of the fifty fundamental herbs of Chinese herbology, has been reported to have anti-asthmatic, antifungal, antioxidative, and anti-inflammatory activities.  This study was designed to determine the protective effects of the extract of SbG against the acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells (HUVEC).  The MTT reduction assay was employed to determine cell viability. The total cellular glutathione (GSH) level was detected using a colorimetric GSH assay kit. Cellular GSH production was conducted by detecting the mRNA expression levels of γ-glutamylcysteine ligase catalytic subunit and modifier subunit.  Concentration-dependent cytotoxic effects of acrolein were observed while SbG could effectively protect the acrolein-induced oxidative damage. The protective mechanism was investigated, showing that the increased GSH content in the SbG-incubated HUVE cells was associated with the protective effects of SbG-treated cells. Further RT-PCR data confirmed the elevated mRNA expressions of GSH synthesis enzymes.  The current study strongly indicated that SbG could be a potential antioxidant against oxidative stress in treating cardiovascular diseases.

  19. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy

    Directory of Open Access Journals (Sweden)

    Yoon Sun Yang

    2013-09-01

    Full Text Available Various source-derived mesenchymal stem cells (MSCs have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM, adipose tissue (AT, and umbilical cord blood-derived MSCs (UCB-MSCs for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α, IL-6, and IL-8 via angiopoietin-1 (Ang-1. Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA, we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.

  20. 10-Hydroxy-2-decenoic Acid, a Major Fatty Acid from Royal Jelly, Inhibits VEGF-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Izuta

    2009-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is reported to be a potent pro-angiogenic factor that plays a pivotal role in both physiological and pathological angiogenesis. Royal jelly (RJ is a honeybee product containing various proteins, sugars, lipids, vitamins and free amino acids. 10-Hydroxy-2-decenoic acid (10HDA, a major fatty acid component of RJ, is known to have various pharmacological effects; its antitumor activity being especially noteworthy. However, the mechanism underlying this effect is unclear. We examined the effect of 10HDA on VEGF-induced proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs. Our findings showed that, 10HDA at 20 µM or more significantly inhibited such proliferation, migration and tube formation. Similarly, 10 µM GM6001, a matrix metalloprotease inhibitor, prevented VEGF-induced migration and tube formation. These findings indicate that 10HDA exerts an inhibitory effect on VEGF-induced angiogenesis, partly by inhibiting both cell proliferation and migration. Further experiments will be needed to clarify the detailed mechanism.

  1. Cellular Metabolomics Revealed the Cytoprotection of Amentoflavone, a Natural Compound, in Lipopolysaccharide-Induced Injury of Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Weifeng Yao

    2016-09-01

    Full Text Available Amentoflavone is one of the important bioactive flavonoids in the ethylacetate extract of “Cebaiye”, which is a blood cooling and hematostatic herb in traditional Chinese medicine. The previous work in our group has demonstrated that the ethylacetate extract of Cebaiye has a notable antagonistic effect on the injury induced by lipopolysaccharide (LPS to human umbilical vein endothelial cells (HUVECs. The present investigation was designed to assess the effects and possible mechanism of cytoprotection of amentoflavone via metabolomics. Ultra-performance liquid chromatography/quadrupole time of flight-mass spectrometry (UPLC/QTOF-MS coupled with multivariate data analysis was used to characterize the variations in the metabolites of HUVECs in response to exposure to LPS and amentoflavone treatment. Seven putative metabolites (glycine, argininosuccinic acid, putrescine, ornithine, spermidine, 5-oxoproline and dihydrouracil were discovered in cells incubated with LPS and/or amentoflavone. Functional pathway analysis uncovered that the changes of these metabolites related to various significant metabolic pathways (glutathione metabolism, arginine and proline metabolism, β-alanine metabolism and glycine, serine and threonine metabolism, which may explain the potential cytoprotection function of amentoflavone. These findings also demonstrate that cellular metabolomics through UPLC/QTOF-MS is a powerful tool for detecting variations in a range of intracellular compounds upon toxin and/or drug exposure.

  2. Ethanolic extract of Ficus carica leave Suppresses Angiogenesis by Regulating VEGF-A and Integrin β3 mRNA Expression in Human umbilical vein endothelial cells.

    Science.gov (United States)

    Ghambarali, Zahra; Bidmeshkipouri, Ali; Akrami, Hassan; Azadbakht, Mehri; Rabzia, Arezo

    2014-01-01

    In the present study, we investigated the anti-angiogenic effects of the ethanol extract of Ficus carica leave on human umbilical vein endothelial cells (HUVECs). HUVECs were used in this study. The cells were cultured in DMEM medium and then incubated with different concentrations of ethanolic extract of Ficus carica leave (0-25 μg\\ml) in the presence or absence of the extract for 24 hours. Cell viability was analyzed using neutral red assay. Endothelial cell tube formation was measured with the Matrigel basement membrane matrix. The level of VEGF and Integrin β3 mRNA expression in the HUVECs was measured with reverse-transcription quantitative real-time polymerase chain reaction (RT-q real time PCR). We observed that the extract dose dependently inhibited the tube formation of HUVECs. Furthermore, the extract significantly decreased mRNA expression levels of VEGF-A and Integrin β3 in HUVECs at 20 μg\\ml concentration of the extract compared to untreated control cells (P Ficus carica leave contains anti-angiogenic activities and could be a candidate as a potential agent for the prevention of angiogenesis related disorders.

  3. Human umbilical cord and dental pulp-derived mesenchymal stem cells: biological characteristics and potential roles in vitro and in vivo.

    Science.gov (United States)

    Cui, Xiaoyan; Chen, Lei; Xue, Ting; Yu, Jing; Liu, Jie; Ji, Yazhong; Cheng, Liming

    2015-05-01

    Mesenchymal stem/stromal cells (MSCs) have a wide application in cell‑based therapies and tissue engineering. In the present study, the differentiation, survivin (SVV)‑modified effects and molecular basis of human umbilical cord‑derived MSCs (HUMSCs) and dental pulp‑derived stem cells (DPSCs) were investigated. The HUMSCs were found to differentiate into adipocytes more readily than the DPSCs and the HUMSCs and DPSCs were each able to differentiate into osteoblasts and chondroblasts. Following modification of the MSCs by SVV, the secretion of SVV in the modified HUMSCs was significantly higher compared with that in the modified DPSCs. In vivo, survival of the SVV‑modified DPSCs was observed at 4 and 14 days after intrastriatal transplantation, as was the expression of SVV and differentiation into astrocytes. The gene expression profiles of the control and modified HUMSCs and DPSCs were compared using RNA sequencing and an association was observed between gene expression and variability in cell line function. These findings provide novel information regarding the differences between HUMSCs and DPSCs and insight into optimal cell sources for therapeutic applications.

  4. Lysophosphatidic Acid Up-regulates MT1-MMP Expression through a Gi –dependent Pathway in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Po-Wei Lin

    2009-11-01

    Full Text Available Lysophosphatidic acid (LPA is a low molecular weight lysophospholipid (LPL. Through binding to its specific G protein-coupled receptor family, LPA regulates various cellular functions, including proliferation, migration, invasion, and differentiation. Matrix-metalloproteinases (MMPs are zinc-dependent protease and play important roles in regulating the interaction between cells and extracellular matrix (ECM. Among these MMPs, membrane type 1-metalloproteinase (MT1-MMP not only degrades ECM protein but also activates metalloproteinase-2 (MMP-2, Gelatinase A, which are important to endothelial cell migration. Our previous study showed that LPA enhances MMP-2 expression and activity in human umbilical vein endothelial cells (HUVECs. In this study, we further revealed that LPA also induce MT1-MMP mRNA and protein expressions in HUVECs through real-time PCR and Western blotting, respectively. Furthermore, by applying chemical inhibitors, we found that LPA-induced MT1-MMP expression is mainly through a Gi- and partially through a Gq-dependent pathway. Our results provide new evidence that LPA might modulate ECM through regulating the expression of MT1-MMP.

  5. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    Directory of Open Access Journals (Sweden)

    Juan Bayo

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs and human umbilical cord perivascular cells (HUCPVCs towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2 and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.

  6. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  7. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation.

    Science.gov (United States)

    Sypecka, Joanna; Ziemka-Nalecz, Małgorzata; Dragun-Szymczak, Patrycja; Zalewska, Teresa

    2017-05-01

    Oligodendrocyte progenitors (OPCs) are ranked among the most likely candidates for cell-based strategies aimed at treating neurodegenerative diseases accompanied by dys/demyelination of the central nervous system (CNS). In this regard, different sources of stem cells are being tested to elaborate xeno-free protocols for efficient generation of OPCs for clinical applications. In the present study, neural stem cells of human umbilical cord blood (HUCB-NSCs) have been used to derive OPCs and subsequently to differentiate them into mature, GalC-expressing oligodendrocytes. Applied components of the extracellular matrix (ECM) and the analogues of physiological substances known to increase glial commitment of neural stem cells have been shown to significantly increase the yield of the resulting OPC fraction. The efficiency of ECM components in promoting oligodendrocyte commitment and differentiation prompted us to investigate the potential role of gelatinases in those processes. Subsequently, endogenous and ECM metalloproteinases (MMPs) activity has been compared with that detected in primary cultures of rat oligodendrocytes in vitro, as well as in rat brains in vivo. The data indicate that gelatinases are engaged in gliogenesis both in vitro and in vivo, although differently, which presumably results from distinct extracellular conditions. In conclusion, the study presents an efficient xeno-free method of deriving oligodendrocyte from HUCB-NSCs and analyses the engagement of MMP-2/MMP-9 in the processes of cell commitment and maturation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  9. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    International Nuclear Information System (INIS)

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-01-01

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis

  10. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  11. A new methodological sequence to expand and transdifferentiate human umbilical cord blood derived CD133+ cells into a cardiomyocyte-like phenotype.

    Science.gov (United States)

    Cui, Yu-Xin; Kafienah, Wael; Suleiman, M-S; Ascione, Raimondo

    2013-06-01

    Transplantation of antigenic-separated stem cells for human cardiovascular diseases such as myocardial infarction needs to be supported by experimental studies that allow refinement of the procedure. In this study we investigated optimising a protocol for the expansion and subsequent differentiation of human umbilical cord blood (HUCB) derived CD133(+) stem cells into a cardiomyocyte-like lineage. CD133(+) cells from HUCB were selected first by immunomagnetic separation and their purity was confirmed by flow cytometry analysis. For expansion and differentiation we developed a novel culture medium recipe that involves sequential signalling factors. Briefly, CD133(+) cells were expanded for 6 days under optimal serum-free conditions in combination with fibronectin and assessed by microscopy and AlamarBlue proliferation assay. Expanded CD133(+) cells were then plated in a cardiac differentiation promoting medium and cultured up to 4 weeks. With this protocol HUCB-CD133(+) cells can be regularly expanded in serum-free medium to obtain recovery and growth in vitro up to 6 folds. The addition of recombinant human thrombopoietin to the remaining factors of the expanding medium was associated with larger cell expansion. Expanded UCB CD133(+) cells showed a cardiomyocyte-like phenotype following differentiation in vitro through expressing intracellular cardiac specific markers including cardiac-specific α-actin, myosin heavy chain and troponin I. This change in phenotype was associated with the expression of cardiac-specific transcription factors Gata-4 and MEF2C. In addition, the change in phenotype was associated with an upregulation of nuclear receptor transcription factors including PPAR α, PPARγ, RXR α and RXRβ. We believe our protocol represents a significant advancement and overcome the technical hurdle of deriving cardiomyogenic-like cells from HUCB CD133(+) stem cells. In addition, it has the required attributes of simplicity and consistency. This will

  12. Xylazine as a Drug of Abuse and Its Effects on the Generation of Reactive Species and DNA Damage on Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Luz Silva-Torres

    2014-01-01

    Full Text Available Human xylazine (XYL abuse among addicts has received great interest due to its potential toxic effects upon addicts and the need to understand the mechanism of action associated with the potential health effects. XYL is an alpha-2 agonist restricted to veterinarian applications, without human medical applications. Our previous work demonstrated that XYL and its combination with cocaine (COC and/or 6-monoacetylmorphine (6-MAM induce cell death through an apoptotic mechanism. The aim of this study was to determine the effect of xylazine on the generation of reactive oxygen species (ROS and reactive nitrogen species (RNS as well as DNA damage on endothelial cell. Human umbilical vein endothelial cells (HUVEC were treated with XYL (60 μM, COC (160 μM, 6-MAM (160 μM, camptothecin (positive control, 50 μM, XYL/COC (50 μM, XYL/6-MAM (50 μM, and XYL/COC/6-MAM (40 μM for a period of 24 hours. Generation of intracellular ROS, RNS, and DNA fragmentation were analyzed using a fluorometric assay. Results reveal that XYL and 6-MAM increase levels of ROS; no induction of RNS production was observed. The combination of these drugs shows significant increase in DNA fragmentation in G2/M phase, while XYL, COC, and 6-MAM, without combination, present higher DNA fragmentation in G0/G1 phase. These findings support that these drugs and their combination alter important biochemical events aligned with an apoptotic mechanism of action in HUVEC.

  13. A novel monoclonal antibody of human stem cell factor inhibits umbilical cord blood stem cell ex vivo expansion

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2012-12-01

    Full Text Available Abstract Stem cell factor (SCF activates hematopoietic stem cell (HSC self-renewal and is being used to stimulate the ex vivo expansion of HSCs. The mechanism by which SCF supports expansion of HSCs remains poorly understood. In cord blood ex vivo expansion assays, a newly produced anti-SCF monoclonal antibody (clone 23C8 was found to significantly inhibit the expansion of CD34+ cells. This antibody appears to bind directly to a part of SCF that is critical for biological activity toward expansion of CD34+ cells, which is located in the first 104 amino acids from the NH2-terminus.

  14. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  15. Therapeutic touch stimulates the proliferation of human cells in culture.

    Science.gov (United States)

    Gronowicz, Gloria A; Jhaveri, Ankur; Clarke, Libbe W; Aronow, Michael S; Smith, Theresa H

    2008-04-01

    Our objective was to assess the effect of Therapeutic Touch (TT) on the proliferation of normal human cells in culture compared to sham and no treatment. Several proliferation techniques were used to confirm the results, and the effect of multiple 10-minute TT treatments was studied. Fibroblasts, tendon cells (tenocytes), and bone cells (osteoblasts) were treated with TT, sham, or untreated for 2 weeks, and then assessed for [(3)H]-thymidine incorporation into the DNA, and immunocytochemical staining for proliferating cell nuclear antigen (PCNA). The number of PCNA-stained cells was also quantified. For 1 and 2 weeks, varying numbers of 10-minute TT treatments were administered to each cell type to determine whether there was a dose-dependent effect. TT administered twice a week for 2 weeks significantly stimulated proliferation of fibroblasts, tenocytes, and osteoblasts in culture (p = 0.04, 0.01, and 0.01, respectively) compared to untreated control. These data were confirmed by PCNA immunocytochemistry. In the same experiments, sham healer treatment was not significantly different from the untreated cultures in any group, and was significantly less than TT treatment in fibroblast and tenocyte cultures. In 1-week studies involving the administration of multiple 10-minute TT treatments, four and five applications significantly increased [(3)H]-thymidine incorporation in fibroblasts and tenocytes, respectively, but not in osteoblasts. With different doses of TT for 2 weeks, two 10-minute TT treatments per week significantly stimulated proliferation in all cell types. Osteoblasts also responded to four treatments per week with a significant increase in proliferation. Additional TT treatments (five per week for 2 weeks) were not effective in eliciting increased proliferation compared to control in any cell type. A specific pattern of TT treatment produced a significant increase in proliferation of fibro-blasts, osteoblasts, and tenocytes in culture. Therefore, TT may

  16. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival.

    OpenAIRE

    Lopez, A F; Williamson, D J; Gamble, J R; Begley, C G; Harlan, J M; Klebanoff, S J; Waltersdorph, A; Wong, G; Clark, S C; Vadas, M A

    1986-01-01

    A purified recombinant human granulocyte-macrophage colony stimulating factor (rH GM-CSF) was a powerful stimulator of mature human eosinophils and neutrophils. The purified rH GM-CSF enhanced the cytotoxic activity of neutrophils and eosinophils against antibody-coated targets, stimulated phagocytosis of serum-opsonized yeast by both cell types in a dose-dependent manner, and stimulated neutrophil-mediated iodination in the presence of zymosan. In addition, rH GM-CSF enhanced N-formylmethion...

  17. Reproducible microtechnique for measuring stimulation of human lymphocytes by phytohemagglutinin

    International Nuclear Information System (INIS)

    Willard, K.E.; Lloyd, E.L.

    1977-01-01

    Methods based on tritiated thymidine incorporation were used for studies on the blastogenic transformation of human lymphocytes by phytohemagglutinin (PHA) in vitro. A stimulation index was calculated as the ratio of the radioactivity measured in lymphocytes to which PHA had been added to that in similar samples from which PHA was omitted. The stimulation indices have been shown to be reproducible to within 10 percent for the same individuals sampled at different times. The maximum mitotic indices for normal control subjects varied from 249 to 340. Seven to 11 different concentrations of PHA were used with each blood sample tested. The maximum index occurred, for most samples, at concentrations of PHA between 0.0625 μl and 1.0 μl/well. A systematic decrease in the maximum mitotic indices was found with increasing age in the range tested (19 to 58 years). Measurements of the single radium case 03 to 416, aged 70, with a residual body burden of 1.0 μCi 226 Ra gave a maximum value for the mitotic index of 44 at a concentration of 0.25 μl/well. This was a factor of 5 less than the value expected from our normal control subjects

  18. Jagged1 contributes to the drug resistance of Jurkat cells in contact with human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Yuan, Yin; Lu, Xin; Chen, Xuan; Shao, Hongwei; Huang, Shulin

    2013-10-01

    Notch signaling, which is driven by the Notch1 receptor, plays an essential role in the pathogenesis and stroma-mediated drug resistance of T-cell acute lymphoblastic leukemia (T-ALL). However, little is known about the roles of Notch ligands in the survival or drug resistance of T-ALL cells. In the present study, isolated mesenchymal stem cells (MSCs) from human umbilical cord (hUC) samples, termed hUC-MSCs, were used as stromal cells for the Jurkat T-ALL cell line. The role of the Notch ligand, Jagged1, was assessed in the survival of Jurkat T-ALL cells using this co-culture system. hUC-MSCs and Jurkat cells were observed to express Jagged1. Furthermore, co-culture with hUC-MSCs led to a significant upregulation of Jagged1 and a more significant overexpression of its receptor, Notch1, in the Jurkat cells, indicating that the receptor and ligand pair may play a role in the reciprocal or autonomous activation of the Notch pathway. In addition, a higher level of CD28 expression was observed in the Jurkat cells that were co-cultured with hUC-MSCs. Blocking Jagged1 expression using neutralizing antibodies restored drug-induced apoptosis in the Jurkat cells that were co-cultured with hUC-MSCs, and also increased the drug sensitivity of the Jurkat cells that were cultured alone. By contrast, direct incubation with exogenously recombinant Jagged1 produced the same protective effects in Jurkat cells as those induced by hUC-MSCs. These results indicate a significant role for Jagged1 in hUC-MSC-induced survival and the self-maintenance of the Jurkat T-ALL cell line, making it a potential target for the treatment of human T-ALL.

  19. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells.

    Science.gov (United States)

    Watanabe, Takahiro; Sugaya, Makoto; Atkins, April M; Aquilino, Elisabeth A; Yang, Aparche; Borris, Debra L; Brady, John; Blauvelt, Andrew

    2003-06-01

    Tumor spindle cells in all clinical types of Kaposi's sarcoma (KS) are infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Although KSHV contains more than 80 genes, only a few are expressed in tumor spindle cells, including latency-associated nuclear antigen (LANA) and k-cyclin (kCYC). To assess the oncogenic potential of LANA and kCYC, primary human umbilical vein endothelial cells (HUVEC) and murine NIH 3T3 cells were stably transduced by using recombinant retroviruses expressing these genes or the known viral oncogene simian virus 40 large T antigen (LTAg). Interestingly, LANA-transduced HUVEC proliferated faster and demonstrated a greatly prolonged life span (mean +/- standard deviation, 38.3 +/- 11.0 passages) than untransduced cells and vector-transduced cells (<20 passages). By contrast, kCYC-transduced HUVEC did not proliferate faster or live longer than control cells. LANA- and kCYC-transduced HUVEC, but not LTAg-transduced HUVEC, retained the ability to form normal vessel-like structures in an in vitro model of angiogenesis. In cellular assays of transformation, LANA- and kCYC-transduced NIH 3T3 cells demonstrated minimal or no anchorage-independent growth in soft agar and no tumorigenicity when injected into nude mice, unlike LTAg-transduced NIH 3T3 cells. Lastly, gene expression profiling revealed down-regulation, or silencing, of a number of genes within LANA-transduced HUVEC. Taken together, these results suggest that KSHV LANA is capable of inducing prolonged life span, but not transformation, in primary human cells. These findings may explain why LANA-expressing spindle cells proliferate within KS tumors, yet most often do not demonstrate biologic characteristics of transformation or true malignant conversion.

  20. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells.

    Science.gov (United States)

    de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L

    2017-05-01

    Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO TM , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO TM -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO TM -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Tomonori [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)]. E-mail: tomo@rerf.or.jp; Hayashi, Ikue [Central Research Laboratory, Hiroshima University Faculty of Dentistry, Hiroshima (Japan); Shinohara, Tomoko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Morishita, Yukari [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Nagamura, Hiroko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kusunoki, Yoichiro [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kyoizumi, Seishi [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Seyama, Toshio [Yasuda Women' s University, Hiroshima (Japan); Nakachi, Kei [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)

    2004-11-22

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34{sup +}/CD38{sup -}, CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34{sup +}/CD38{sup -} cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34{sup +}/CD38{sup -} cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34{sup +}/CD38{sup -} stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells and that its intracellular pH declines at an early phase in the apoptosis process.

  2. Tentacle extract from the jellyfish Cyanea capillata increases proliferation and migration of human umbilical vein endothelial cells through the ERK1/2 signaling pathway.

    Science.gov (United States)

    Wang, Beilei; Liu, Dan; Wang, Chao; Wang, Qianqian; Zhang, Hui; Liu, Guoyan; He, Qian; Zhang, Liming

    2017-01-01

    Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions.

  3. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment.

    Science.gov (United States)

    Fong, Chui-Yee; Subramanian, Arjunan; Gauthaman, Kalamegam; Venugopal, Jayarama; Biswas, Arijit; Ramakrishna, Seeram; Bongso, Ariff

    2012-03-01

    The current treatments used for osteoarthritis from cartilage damage have their disadvantages of donor site morbidity, complicated surgical interventions and risks of infection and graft rejection. Recent advances in tissue engineering have offered much promise in cartilage repair but the best cell source and in vitro system have not as yet been optimised. Human bone marrow mesenchymal stem cells (hBMSCs) have thus far been the cell of choice. However, we derived a unique stem cell from the human umbilical cord Wharton's jelly (hWJSC) that has properties superior to hBMSCs in terms of ready availability, prolonged stemness characteristics in vitro, high proliferation rates, wide multipotency, non-tumorigenicity and tolerance in allogeneic transplantation. We observed enhanced cell attachment, cell proliferation and chondrogenesis of hWJSCs over hBMSCs when grown on PCL/Collagen nanoscaffolds in the presence of a two-stage sequential complex/chondrogenic medium for 21 days. Improvement of these three parameters were confirmed via inverted optics, field emission scanning electron microscopy (FESEM), MTT assay, pellet diameters, Alcian blue histology and staining, glycosaminglycans (GAG) and hyaluronic acid production and expression of key chondrogenic genes (SOX9, Collagen type II, COMP, FMOD) using immunohistochemistry and real-time polymerase chain reaction (qRT-PCR). In separate experiments we demonstrated that the 16 ng/ml of basic fibroblast growth factor (bFGF) present in the complex medium may have contributed to driving chondrogenesis. We conclude that hWJSCs are an attractive stem cell source for inducing chondrogenesis in vitro when grown on nanoscaffolds and exposed sequentially first to complex medium and then followed by chondrogenic medium.

  4. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells.

    Science.gov (United States)

    Lo Vasco, Vincenza Rita; Leopizzi, Martina; Di Maio, Valeria; Di Raimo, Tania; Cesa, Stefania; Masci, Alessandra; Rocca, Carlo Della

    2017-12-01

    Endothelial cells (EC) act as leading actors in angiogenesis. Understanding the complex network of signal transduction pathways which regulate angiogenesis might offer insights in the regulation of normal and pathological events, including tumours, vascular, inflammatory and immune diseases. The effects of olive oil and of Blueberry extracts upon the phosphoinositide (PI)-specific phospholipase C (PLC) enzymes were evaluated both in quiescent and inflammatory stimulated human umbilical vein EC (HUVEC) using molecular biology (multiliquid bioanalysis) and immunofluorescence techniques. Oleuropein significantly increased the number of surviving HUVEC compared to untreated controls, suggesting that it favours the survival and proliferation of EC. Our results suggest that Oleuropein might be useful to induce EC proliferation, an important event during angiogenesis, with special regard to wound healing. Blueberry extracts increased the number of surviving HUVEC, although the comparison to untreated controls did not result statistically significant. Lipopolysaccharide (LPS) administration significantly reduced the number of live HUVEC. LPS can also modify the expression of selected PLC genes. Adding Blueberry extracts to LPS treated HUVEC cultures did not significantly modify the variations of PLC expression induced by LPS. Oleuropein increased or reduced the expression of PLC genes, and statistically significant results were identified for selected PLC isoforms. Oleuropein also modified the effects of LPS upon PLC genes' expression. Thus, our results corroborate the hypothesis that Oleuropein owns anti-inflammatory activity. The intracellular localization of PLC enzymes was modified by the different treatments we used. Podosome-like structures were observed in differently LPS treated HUVEC.

  5. Acrolein generation stimulates hypercontraction in isolated human blood vessels.

    Science.gov (United States)

    Conklin, D J; Bhatnagar, A; Cowley, H R; Johnson, G H; Wiechmann, R J; Sayre, L M; Trent, M B; Boor, P J

    2006-12-15

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H(2)O(2) exposure (1 microM-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 microM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca(2+) to hypercontraction. Acrolein or allylamine but not H(2)O(2), benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca(2+)-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension.

  6. Acrolein generation stimulates hypercontraction in isolated human blood vessels

    International Nuclear Information System (INIS)

    Conklin, D.J.; Bhatnagar, A.; Cowley, H.R.; Johnson, G.H.; Wiechmann, R.J.; Sayre, L.M.; Trent, M.B.; Boor, P.J.

    2006-01-01

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H 2 O 2 exposure (1 μM-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 μM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca 2+ to hypercontraction. Acrolein or allylamine but not H 2 O 2 , benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca 2+ -free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension

  7. Successful hematopoietic reconstitution with transplantation of erythrocyte-depleted allogeneic human umbilical cord blood cells in a child with leukemia.

    Science.gov (United States)

    Pahwa, R N; Fleischer, A; Than, S; Good, R A

    1994-05-10

    Cord blood, a potent source of hematopoietic stem cells, has been shown to successfully reconstitute hematopoiesis following allogeneic transplantation in a variety of disorders. A major drawback of cord blood has been the risk of transfusion reactions in ABO blood group incompatibility and drastic reduction in the stem cell pool if the cord blood is manipulated to remove red cells prior to cryopreservation or after thawing. This report describes an erythrocyte depletion method employing 3% gelatin-induced erythrocyte sedimentation for the selective removal of red cells from cord blood. The red cell-depleted fraction was shown to be enriched in progenitor cells and in cells secreting hematopoietic cytokines interleukin 3, granulocyte/macrophage colony-stimulating factor, and interleukin 6; a major source for cytokines was from cord T cells. This preparative technique was employed to separate out red cells from cord blood of an infant delivered by cesarean section who had an 8-year-old sibling with leukemia. Histocompatibility testing of cord cells revealed complete matching with the patient. A cord cell transplant of cryopreserved and thawed cells consisting of 4 x 10(7) nucleated cells per kg was administered to the patient following myeloablative chemotherapy. The patient's quick hematologic recovery and 9-month disease-free period to date suggest that 3% gelatin separation of erythrocytes is a simple method that can be successfully used for transplanting cord cells for malignant/nonmalignant diseases.

  8. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  9. Human umbilical cord blood-derived mesenchymal stem cells in the cultured rabbit intervertebral disc: a novel cell source for disc repair.

    Science.gov (United States)

    Anderson, D Greg; Markova, Dessislava; An, Howard S; Chee, Ana; Enomoto-Iwamoto, Motomi; Markov, Vladimir; Saitta, Biagio; Shi, Peng; Gupta, Chander; Zhang, Yejia

    2013-05-01

    Back pain associated with symptomatic disc degeneration is a common clinical condition. Intervertebral disc (IVD) cell apoptosis and senescence increase with aging and degeneration. Repopulating the IVD with cells that could produce and maintain extracellular matrix would be an alternative therapy to surgery. The objective of this study was to determine the potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) as a novel cell source for disc repair. In this study, we intended to confirm the potential for hUCB-MSCs to differentiate and display a chondrocyte-like phenotype after culturing in micromass and after injection into the rabbit IVD explant culture. We also wanted to confirm hUCB-MSC survival after transplantation into the IVD explant culture. This study consisted of micromass cultures and in vitro rabbit IVD explant cultures to assess hUCB-MSC survival and differentiation to display chondrocyte-like phenotype. First, hUCB-MSCs were cultured in micromass and stained with Alcian blue dye. Second, to confirm cell survival, hUCB-MSCs were labeled with an infrared dye and a fluorescent dye before injection into whole rabbit IVD explants (host). IVD explants were then cultured for 4 wks. Cell survival was confirmed by two independent techniques: an imaging system detecting the infrared dye at the organ level and fluorescence microscopy detecting fluorescent dye at the cellular level. Cell viability was assessed by staining the explant with CellTracker green, a membrane-permeant tracer specific for live cells. Human type II collagen gene expression (from the graft) was assessed by polymerase chain reaction. We have shown that hUCB-MSCs cultured in micromass are stained blue with Alcian blue dye, which suggests that proteoglycan-rich extracellular matrix is produced. In the cultured rabbit IVD explants, hUCB-MSCs survived for at least 4 wks and expressed the human type II collagen gene, suggesting that the injected hUCB-MSCs are

  10. Autocrine VEGF and IL-8 Promote Migration via Src/Vav2/Rac1/PAK1 Signaling in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Ju, Li; Zhou, Zhiwen; Jiang, Bo; Lou, Yue; Guo, Xirong

    2017-01-01

    Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases. © 2017 The Author(s)Published by S. Karger AG, Basel.

  11. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22{sup phox} expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaoyun; He, Yanhao [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Department of Pharmacology, Xi' an Jiaotong University School of Medicine, Key Laboratory of Environment and Genes Related to Disease, Ministry of Education, Xi' an, Shaanxi 710061 (China); Yang, Ming; Sun, Hongliu; Zhang, Shuping [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Wang, Chunhua, E-mail: chunhuawang2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-15

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22{sup phox}, increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22{sup phox}. • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression.

  12. Human Umbilical Cord Mesenchymal Stem Cells: Subpopulations and Their Difference in Cell Biology and Effects on Retinal Degeneration in RCS Rats.

    Science.gov (United States)

    Wang, L; Li, P; Tian, Y; Li, Z; Lian, C; Ou, Q; Jin, C; Gao, F; Xu, J-Y; Wang, J; Wang, F; Zhang, J; Zhang, J; Li, W; Tian, H; Lu, L; Xu, G-T

    2017-01-01

    Human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential candidates for treating retinal degeneration (RD). To further study the biology and therapeutic effects of the hUC-MSCs on retinal degeneration. Two hUC-MSC subpopulations, termed hUC-MSC1 and hUC-MSC2, were isolated by single-cell cloning method and their therapeutic functions were compared in RCS rat, a RD model. Although both subsets satisfied the basic requirements for hUC-MSCs, they were significantly different in morphology, proliferation rate, differentiation capacity, phenotype and gene expression. Furthermore, only the smaller, fibroblast-like, faster growing subset hUC-MSC1 displayed stronger colony forming potential as well as adipogenic and osteogenic differentiation capacities. When the two subsets were respectively transplanted into the subretinal spaces of RCS rats, both subsets survived, but only hUC-MSC1 expressed RPE cell markers Bestrophin and RPE65. More importantly, hUC-MSC1 showed stronger rescue effect on the retinal function as indicated by the higher b-wave amplitude on ERG examination, thicker retinal nuclear layer, and decreased apoptotic photoreceptors. When both subsets were treated with interleukin-6, mimicking the inflammatory environment when the cells were transplanted into the eyes with degenerated retina, hUC-MSC1 expressed much higher levels of trophic factors in comparison with hUC-MSC2. The data here, in addition to prove the heterogeneity of hUC-MSCs, confirmed that the stronger therapeutic effects of hUC-MSC1 were attributed to its stronger anti-apoptotic effect, paracrine of trophic factors and potential RPE cell differentiation capacity. Thus, the subset hUC-MSC1, not the other subset or the ungrouped hUC-MSCs should be used for effective treatment of RD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process.

    Science.gov (United States)

    Wu, Hao; Shang, Yupan; Zhang, Jiaqing; Cheang, Lek Hang; Zeng, Xiaoli; Tu, Mei

    2017-10-01

    Physical properties of extracellular matrix, including elasticity and microstructure, have been considered as important factors inducing stem cell differentiation. This study developed a novel type of liquid crystal-based matrix by combining the elastic property of polyurethane with viscoelastic liquid crystal to generate a soft elastic response resembling physical microenvironment of stem cell niche, and explored the mechano-driving cell behaviors. Addition of varying liquid crystal concentration (10 wt%, 30 wt% and 50 wt%) had great effects on surface morphology and elastic modulus of liquid crystal/ polyurethane composite substrates. Changes in microstructure and elastic modulus of the substrates could cause intense cell responses that influenced cell properties, including proliferation, adhesion, and osteogenic differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) cultured on both liquid crystal-10/polyurethane and liquid crystal-30/polyurethane substrates exhibited higher viability, more actin filament, and larger spreading area while liquid crystal-50/polyurethane substrates seemed not to favor cell attachment and spreading. Alkaline phosphatase activity and calcium deposition were significantly improved with hUC-MSCs on both liquid crystal-10/ polyurethane and liquid crystal-30/ polyurethane substrates, and the maximal alkaline phosphatase activity was observed in liquid crystal-10/ polyurethane while the lowest in liquid crystal-50/ polyurethane. Osteopontin was upregulated to a high level in both liquid crystal-10/ polyurethane and liquid crystal-30/ polyurethane groups after 14 days culturing; the maximal expression of osteocalcin and related transcription factor 2 were found in liquid crystal-10/ polyurethane group on day 21. Our findings revealed that hUC-MSCs could intensely sense the bioactive patterns and soft-matter feature of liquid crystal domains and subsequently modulated cell behaviors, which may prove useful in

  14. Electrophysiological, Morphological, and Ultrastructural Features of the Injured Spinal Cord Tissue after Transplantation of Human Umbilical Cord Blood Mononuclear Cells Genetically Modified with the VEGF and GDNF Genes.

    Science.gov (United States)

    Mukhamedshina, Y O; Gilazieva, Z E; Arkhipova, S S; Galieva, L R; Garanina, E E; Shulman, A A; Yafarova, G G; Chelyshev, Y A; Shamsutdinova, N V; Rizvanov, A A

    2017-01-01

    In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement in H (latency period, LP) and M( A max ) waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement in A max of M wave and LP of both the M and H waves. The ratio between A max of the H and M waves (H max /M max ) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold, P > 0.01) in the main corticospinal tract compared to the nontransduced ones. HNA + cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP + host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs.

  15. Electrophysiological, Morphological, and Ultrastructural Features of the Injured Spinal Cord Tissue after Transplantation of Human Umbilical Cord Blood Mononuclear Cells Genetically Modified with the VEGF and GDNF Genes

    Science.gov (United States)

    Gilazieva, Z. E.; Arkhipova, S. S.; Galieva, L. R.; Garanina, E. E.; Shulman, A. A.; Yafarova, G. G.; Chelyshev, Y. A.; Shamsutdinova, N. V.

    2017-01-01

    In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement in H (latency period, LP) and M(Amax) waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement in Amax of M wave and LP of both the M and H waves. The ratio between Amax of the H and M waves (Hmax/Mmax) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold, P > 0.01) in the main corticospinal tract compared to the nontransduced ones. HNA+ cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP+ host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs. PMID:28421147

  16. Effect of fresh apple extract on glycated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells in vitro.

    Science.gov (United States)

    Nishigaki, Ikuo; Rajkapoor, Balasubramanian; Rajendran, Peramaiyan; Venugopal, Ramachandran; Ekambaram, Ganapathy; Sakthisekaran, Dhanapal; Nishigaki, Yutaka

    2010-04-01

    Consumption of fruits and vegetables has been associated with a low incidence of cardiovascular and other chronic diseases. The present study was aimed at evaluating the protective effects of fresh apple extract (AE) on human umbilical vein endothelial cells (HUVEC) exposed to cytotoxic glycated protein (GFBS)/iron (FeCl(3)) chelate. The experimental design comprised 10 groups with 5 flasks in each group. Group I was treated with 15% foetal bovine serum (FBS). Groups II, III and IV were treated with GFBS (70 microM), FBS + FeCl(3) (20 microM), and GFBS + FeCl(3), respectively. The other six groups were as follows: Group V, GFBS + AE (100 microg); Group VI, FBS + FeCl(3) + AE (100 microg); Group VII, GFBS + FeCl(3) + AE (100 microg); Group VIII, GFBS + AE (250 microg); Group IX, FBS + FeCl(3) + AE (250 microg); and Group X, GFBS + FeCl(3) + AE (250 microg). After 24 h incubation, cells were collected from all the experimental groups and assessed for lipid peroxidation (LPO) and activities of the antioxidant enzymes cytochrome c reductase and glutathione S-transferase (GST). HUVEC incubated with glycated protein (GFBS) either alone or combined with iron chelate showed a significant (p reductase (GR), in addition to increased microsomal cytochrome c reductase and decreased GST activities. Treatment of GFBS- or GFBS + FeCl(3)-exposed HUVEC with AE at 100 or 250 microg significantly decreased the level of LPO and returned the levels of antioxidants cytochrome c reductase and GST to near normal in a dose-dependent manner. The extracts recovered viability of HUVEC damaged by GFBS-iron treatment in a concentration-dependent manner. These findings suggest a protective effect of AE on HUVEC against glycated protein/iron chelate-induced toxicity, which suggests that AE could exert a beneficial effect by preventing diabetic angiopathies.

  17. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22phox expression

    International Nuclear Information System (INIS)

    Wang, Chaoyun; He, Yanhao; Yang, Ming; Sun, Hongliu; Zhang, Shuping; Wang, Chunhua

    2013-01-01

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22 phox , increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22 phox . • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression

  18. Cell-based regenerative strategies for treatment of diabetic skin wounds, a comparative study between human umbilical cord blood-mononuclear cells and calves' blood haemodialysate.

    Directory of Open Access Journals (Sweden)

    Hala O El-Mesallamy

    Full Text Available BACKGROUND: Diabetes-related foot problems are bound to increase. However, medical therapies for wound care are limited; therefore, the need for development of new treatment modalities to improve wound healing in diabetic patients is essential and constitutes an emerging field of investigation. METHODS: Animals were randomly divided into 8 groups (I-VIII (32 rats/group, all were streptozotocin (STZ-induced diabetics except groups III and VIII were non-diabetic controls. The study comprised two experiments; the first included 3 groups. Group I injected with mononuclear cells (MNCs derived from human umbilical cord blood (HUCB, group II a diabetic control group (PBS i.v. The second experiment included 5 groups, groups IV, V, and VI received topical HUCB-haemodialysate (HD, calves' blood HD, and solcoseryl, respectively. Group VII was the diabetic control group (topical saline. Standard circular wounds were created on the back of rats. A sample of each type of HD was analyzed using the high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS system. Wound area measurement and photography were carried out every 4 days. Plasma glucose, catalase (CAT, malondialdehyde (MDA, nitric oxide (NO and platelets count were assessed. Wound samples were excised for hydroxyproline (HP and histopathological study. RESULTS: Treatment with HUCB MNCs or HUCB-HD resulted in wound contraction, increased CAT, NO, platelets count, body weights, and HP content, and decreased MDA and glucose. CONCLUSION: Systemic administration of HUCB MNCs and topical application of the newly prepared HUCB-HD or calves' blood HD significantly accelerated the rate of diabetic wound healing and would open the possibility of their future use in regenerative medicine.

  19. Cell-based regenerative strategies for treatment of diabetic skin wounds, a comparative study between human umbilical cord blood-mononuclear cells and calves' blood haemodialysate.

    Science.gov (United States)

    El-Mesallamy, Hala O; Diab, Mohamed R; Hamdy, Nadia M; Dardir, Sarah M

    2014-01-01

    Diabetes-related foot problems are bound to increase. However, medical therapies for wound care are limited; therefore, the need for development of new treatment modalities to improve wound healing in diabetic patients is essential and constitutes an emerging field of investigation. Animals were randomly divided into 8 groups (I-VIII) (32 rats/group), all were streptozotocin (STZ)-induced diabetics except groups III and VIII were non-diabetic controls. The study comprised two experiments; the first included 3 groups. Group I injected with mononuclear cells (MNCs) derived from human umbilical cord blood (HUCB), group II a diabetic control group (PBS i.v). The second experiment included 5 groups, groups IV, V, and VI received topical HUCB-haemodialysate (HD), calves' blood HD, and solcoseryl, respectively. Group VII was the diabetic control group (topical saline). Standard circular wounds were created on the back of rats. A sample of each type of HD was analyzed using the high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) system. Wound area measurement and photography were carried out every 4 days. Plasma glucose, catalase (CAT), malondialdehyde (MDA), nitric oxide (NO) and platelets count were assessed. Wound samples were excised for hydroxyproline (HP) and histopathological study. Treatment with HUCB MNCs or HUCB-HD resulted in wound contraction, increased CAT, NO, platelets count, body weights, and HP content, and decreased MDA and glucose. Systemic administration of HUCB MNCs and topical application of the newly prepared HUCB-HD or calves' blood HD significantly accelerated the rate of diabetic wound healing and would open the possibility of their future use in regenerative medicine.

  20. Anti-fibrotic potential of human umbilical cord mononuclear cells and mouse bone marrow cells in CCl4- induced liver fibrosis in mice.

    Science.gov (United States)

    Elmahdy, Nageh Ahmed; Sokar, Samia Salem; Salem, Mohamed Labib; Sarhan, Naglaa Ibrahim; Abou-Elela, Sherin Hamed

    2017-05-01

    Liver fibrosis is the consequence of hepatocyte injury that leads to the activation of hepatic stellate cells (HSC). The treatment of choice is Liver transplantation; however, it has many problems such as surgery-related complications, immunological rejection and high costs associated with the procedure. Stem cell-based therapy would be a potential alternative, so the aim of this study is to investigate the therapeutic potential of human umbilical cord mononuclear cells (MNC) and mouse bone marrow cells (BMC) against carbon tetrachloride (CCl 4 ) induced liver fibrosis in mice and compare it with that of silymarin. In the present study, male albino mice (N=60) were divided into six groups (10 mice each), the first group served as the normal control group while the remaining five groups were rendered fibrotic by intraperitoneal injections of CCl 4 and being left for 6 weeks to develop hepatic fibrosis. Thereafter, the mice were divided into CCl 4 group, CCl 4 group receiving MNC or BMC or silymarin or MNC and silymarin combination. After the specified treatment period, animals were then euthanized, blood and tissue samples were collected for measurement of alanine aminotransferase(ALT), aspartate aminotransferase(AST), malondialdehyde(MDA), reduced glutathione(GSH), collagen, Laminin, transforming growth factor β1(TGFβ1), tumor necrosis factor alpha(TNFα). MNC, BMC, and the combination therapy showed a significant decrease in ALT, AST, MDA, collagen, Laminin, TGFβ1, and TNFα and a significant increase in GSH. The data displayed a similar regression of fibrosis with the histological and immunohistological parameters. In conclusion, MNC, BMC and the combination therapy showed a potential therapeutic effect against liver fibrosis via reducing oxidative stress, inflammatory mediators, and fibrogenic markers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-09-17

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  2. Functional characterization of S100A8 and S100A9 in altering monolayer permeability of human umbilical endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liqun Wang

    Full Text Available S100A8, S100A9 and S100A8/A9 complexes have been known as important endogenous damage-associated molecular pattern (DAMP proteins. But the pathophysiological roles of S100A8, S100A9 and S100A8/A9 in cardiovascular diseases are incompletely explained. In this present study, the effects of homo S100A8, S100A9 and their hetero-complex S100A8/A9 on endothelial barrier function were tested respectively in cultured human umbilical venous endothelial cells (HUVECs. The involvement of TLR4 and RAGE were observed by using inhibitor of TLR4 and blocking antibody of RAGE. The clarification of different MAPK subtypes in S100A8/A9-induced endothelial response was implemented by using specific inhibitors. The calcium-dependency was detected in the absence of Ca2+ or in the presence of gradient-dose Ca2+. The results showed that S100A8, S100A9 and S100A8/A9 could induce F-actin and ZO-1 disorganization in HUVECs and evoked the increases of HUVEC monolayer permeability in a dose- and time-dependent manner. The effects of S100A8, S100A9 and S100A8/A9 on endothelial barrier function depended on the activation of p38 and ERK1/2 signal pathways through receptors TLR4 and RAGE. Most importantly, we revealed the preference of S100A8 on TLR4 and S100A9 on RAGE in HUVECs. The results also showed the calcium dependency in S100A8- and S100A9-evoked endothelial response, indicating that calcium dependency on formation of S100A8 or A9 dimmers might be the prerequisite for this endothelial functional alteration.

  3. The angiogenic behaviors of human umbilical vein endothelial cells (HUVEC) in co-culture with osteoblast-like cells (MG-63) on different titanium surfaces.

    Science.gov (United States)

    Shi, Bin; Andrukhov, Oleh; Berner, Simon; Schedle, Andreas; Rausch-Fan, Xiaohui

    2014-08-01

    Interaction between osteogenesis and angiogenesis plays an important role in implant osseointegration. In the present study we investigated the influence of titanium surface properties on the angiogenic behaviors of endothelial cells grown in direct contact co-culture with osteoblasts. Human umbilical vein endothelial cells (HUVECs) and osteoblast-like cells (MG-63 cells) were grown in direct co-culture on the following titanium surfaces: acid-etched (A), hydrophilic A (modA), coarse-gritblasted and acid-etched (SLA) and hydrophilic SLA (SLActive). Cell proliferation was evaluated by cell counting combined with flow cytometry. The expression of von Willebrand Factor (vWF), thrombomodulin (TM), endothelial cell protein C receptor (EPCR), E-Selectin, as well as vascular endothelial growth factor (VEGF) receptors Flt-1 and KDR in HUVECs and VEGF in MG-63 were measured by qPCR. The dynamic behavior of endothelial cells was recorded by time-lapse microscopy. Proliferation of HUVECs was highest on A, followed by SLA, modA and SLActive surfaces. The expression of vWF, TM, EPCR, E-Selectin and Flt-1 in HUVECs was significantly higher on A than on all other surfaces. The expression of KDR in HUVECs grown on A surface was below detection limit. VEGF expression in MG-63 cells was significantly higher on SLActive vs SLA and modA vs A surfaces. Time-lapse microscopy revealed that HUVECs moved quickest and formed cell clusters earlier on A surface, followed by SLA, modA and SLActive surface. In co-culture conditions, proliferation and expression of angiogenesis associated genes in HUVECs are promoted by smooth hydrophobic Ti surface, which is in contrast to previous mono-culture studies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    Directory of Open Access Journals (Sweden)

    Suhaila Muid

    2016-07-01

    Full Text Available Background: Tocotrienols (TCTs are more potent antioxidants than α-tocopherol (TOC. However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims: 1 To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS. 2 To identify the two most potent TCT isomers in stimulated human endothelial cells. 3 To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods: Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM, together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α, adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin, eNOS, and NFκB. Results: δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM but exhibits neutral effects at lower concentrations. Conclusion: δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence

  5. Human umbilical cord stem cell conditioned medium versus serum-free culture medium in the treatment of cryopreserved human ovarian tissues in in-vitro culture: a randomized controlled trial.

    Science.gov (United States)

    Jia, Yingxian; Shi, Xiaohan; Xie, Yidong; Xie, Xiaochuan; Wang, Yan; Li, Shangwei

    2017-06-24

    To reduce young female fertility loss, the in-vitro culture of cryopreserved ovarian cortical tissues (OCTs) is considered an effective approach without delaying treatment and undergoing stimulation medicine. However, ischemic damage and follicular loss during the in-vitro culture of OCTs are major technical challenges. Human umbilical cord stem cells (HUMSCs) and their conditioned medium (HUMSC-CM) have been considered to be potential resources for regeneration medicine because they secrete cytokines and enhance cell survival and function. The aim of this study was to determine whether HUMSC-CM improves the development of frozen-thawed in-vitro cultured ovarian tissues compared with a serum-free culture medium (SF-CM). The thawed OCTs (n = 68) were cultivated in HUMSC-CM and SF-CM in vitro for 8 days, and the ovarian tissues were processed and analyzed by a classical histological evaluation. The microvessel density (MVD) and apotosis detection during in-vitro culture of OCTs were also performed. A significant difference in the rate of morphologically normal primordial follicles in the HUMSC-CM group was observed compared to that in the SF-CM group (group C) from days 2 to 4 (day 2: group B 58.0 ± 2.45% vs group C 32.0 ± 5.83%, p = 0.002; day 3: group B 55.5 ± 4.20% vs group C 21.0 ± 9.80%, p = 0.048; day 4: group B 52.0 ± 4.08% vs group C 21.5 ± 8.19%, p = 0.019). The microvessel density (MVD) detection showed a time-dependent increase and peaked on day 4. There was a significant difference between groups B (49.33 ± 0.58) and C (24.33 ± 3.79) (p = 0.036). The percentage of apoptotic follicles in group B was lower than that in group C on day 1 (13.75 ± 2.50% vs 27.0 ± 10.10%, p = 0.003), day 5 (11.75 ± 1.50% vs 51.0 ± 10.5%, p = 0.019) and day 7 (15.0 ± 5.10% vs 46.5 ± 21.75%, p = 0.018). These data have provided the first experimental evidence of the effect of

  6. Striatal Transplantation of Human Dopaminergic Neurons Differentiated From Induced Pluripotent Stem Cells Derived From Umbilical Cord Blood Using Lentiviral Reprogramming.

    Science.gov (United States)

    Effenberg, Anna; Stanslowsky, Nancy; Klein, Alexander; Wesemann, Maike; Haase, Alexandra; Martin, Ulrich; Dengler, Reinhard; Grothe, Claudia; Ratzka, Andreas; Wegner, Florian

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) are promising sources for regenerative therapies like the replacement of dopaminergic neurons in Parkinson's disease. They offer an unlimited cell source that can be standardized and optimized to produce applicable cell populations to gain maximal functional recovery. In the present study, human cord blood-derived iPSCs (hCBiPSCs) were differentiated into dopaminergic neurons utilizing two different in vitro protocols for neural induction: (protocol I) by fibroblast growth factor (FGF-2) signaling, (protocol II) by bone morphogenetic protein (BMP)/transforming growth factor (TGF-β) inhibition. After maturation, in vitro increased numbers of tyrosine hydroxylase (TH)-positive neurons (7.4% of total cells) were observed by protocol II compared to 3.5% in protocol I. Furthermore, 3 weeks after transplantation in hemiparkinsonian rats in vivo, a reduced number of undifferentiated proliferating cells was achieved with protocol II. In contrast, proliferation still occurred in protocol I-derived grafts, resulting in tumor-like growth in two out of four animals 3 weeks after transplantation. Protocol II, however, did not increase the number of TH(+) cells in the striatal grafts of hemiparkinsonian rats. In conclusion, BMP/TGF-β inhibition was more effective than FGF-2 signaling with regard to dopaminergic induction of hCBiPSCs in vitro and prevented graft overgrowth in vivo.

  7. Comparison of the osteogenic differentiation potential of mesenchymal cells isolated from human bone marrow, umbilical cord blood and placenta derived stem cells

    Directory of Open Access Journals (Sweden)

    Shymaa Maher

    2015-03-01

    Full Text Available Bone marrow has been considered for long time as the main source for mesenchymal stem cells. However, bone marrow aspiration is an invasive process that can be associated with morbidity as well as few numbers of obtained cells. Umbilical cord blood and placental tissues are other potential sources for the same type of cells. These sources are abundant, accessible and associated with no harm to the donor. This study aimed at determining the differentiation of the three cell types towards the osteogenic lineage in short term culture and in classical osteogenic conditions. The gene expression profile showed that bone marrow derived cells were the most responsive to the culture conditions while umbilical cord blood derived cells were next, as shown by the expression by the osteogenic key transcription factors ‘Runx-2’ and osterix. At the meantime, umbilical cord blood and placenta derived cells showed significant enhancement of the gene expression over the study course, which denoted potential response of the cells. Based on these results and the availability of these two sources, umbilical cord blood and placenta should still be considered as potential sources for mesenchymal stem cells in osteogenic research program. However their differentiation potential will need further enhancement.

  8. Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach

    NARCIS (Netherlands)

    Zeisberger, Steffen M.; Zoller, Stefan; Riegel, Mariluce; Chen, Shuhua; Krenning, Guido; Harmsen, Martin C.; Sachinidis, Agapios; Zisch, Andreas H.

    Establishment of fetal bovine serum (FBS)-free cell culture conditions is essential for transplantation therapies. Blood-derived endothelial colony-forming cells (ECFCs) are potential candidates for regenerative medicine applications. ECFCs were isolated from term umbilical cord blood units and

  9. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  10. Thermal Stimulation Alters Cervical Spinal Cord Functional Connectivity in Humans.

    Science.gov (United States)

    Weber, Kenneth A; Sentis, Amy I; Bernadel-Huey, Olivia N; Chen, Yufen; Wang, Xue; Parrish, Todd B; Mackey, Sean

    2018-01-15

    The spinal cord has an active role in the modulation and transmission of the neural signals traveling between the body and the brain. Recent advancements in functional magnetic resonance imaging (fMRI) have made the in vivo examination of spinal cord function in humans now possible. This technology has been recently extended to the investigation of resting state functional networks in the spinal cord, leading to the identification of distinct patterns of spinal cord functional connectivity. In this study, we expand on the previous work and further investigate resting state cervical spinal cord functional connectivity in healthy participants (n = 15) using high resolution imaging coupled with both seed-based functional connectivity analyses and graph theory-based metrics. Within spinal cord segment functional connectivity was present between the left and right ventral horns (bilateral motor network), left and right dorsal horns (bilateral sensory network), and the ipsilateral ventral and dorsal horns (unilateral sensory-motor network). Functional connectivity between the spinal cord segments was less apparent with the connectivity centered at the region of interest and spanning spinal cord functional network was demonstrated to be state-dependent as thermal stimulation of the right ventrolateral forearm resulted in significant disruption of the bilateral sensory network, increased network global efficiency, and decreased network modularity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  12. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice

    Directory of Open Access Journals (Sweden)

    Yun Sang Lee

    2017-03-01

    Full Text Available Mesenchymal stem cells (MSCs inhibit the proliferation or activation of lymphocytes, and their inhibitory effects do not require human leukocyte antigen (HLA-matching because MSCs express low levels of HLA molecules. Therefore, MSCs may be able to regulate immune responses. In this study, we determined whether MSCs could inhibit psoriasis-like skin inflammation in mice. After induction of psoriasis-like skin inflammation using intradermal injection of IL-23 or topical application of imiquimod with or without treatment with MSC, mouse skins were collected, and H&E staining and real-time PCR were performed. IL-23-induced skin inflammation was inhibited when MSCs were injected on day −1 and day 7. The expression of proinflammatory cytokines such as IL-6, IL-17, and TNF-α was inhibited by MSC injection, and the expression of chemokines such as CCL17, CCL20, and CCL27 was also decreased in mouse skin. We also determined whether MSCs could not only prevent but also treat psoriasis-like skin inflammation in mice. Furthermore, in vitro experiments also showed anti-inflammatory effects of MSCs. Dendritic cells which are co-cultured with MSCs suppressed CD4+ T cell activation and differentiation, which are important for the pathogenesis of psoriasis. These results suggest that MSCs could be useful for treating psoriasis.

  13. Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors.

    Directory of Open Access Journals (Sweden)

    Prapot Tanthaisong

    Full Text Available Articular cartilage is an avascular, alymphatic, and aneural system with very low regeneration potential because of its limited capacity for self-repair. Mesenchymal stem cells (MSCs are the preferred choice for cell-based therapies. Glycogen synthase kinase 3 (GSK-3 inhibitors are compounds that can induce the Wnt signaling pathway, which is involved in chondrogenesis and cartilage development. Here, we investigated the influence of lithium chloride (LiCl and SB216763 synergistically with TGF-β3 on chondrogenic differentiation in human mesenchymal stem cells derived from Wharton's jelly tissue (hWJ-MSCs. hWJ-MSCs were cultured and chondrogenic differentiation was induced in monolayer and pellet experiments using chondrogenic medium, chondrogenic medium supplemented with LiCl, or SB216763 for 4 weeks. After in vitro differentiation, cultured cells were examined for the expression of Sox9, ACAN, Col2a1, and β-catenin markers. Glycosaminoglycan (GAG accumulation was also examined by Alcian blue staining. The results indicated that SB216763 was more effective than LiCl as evidenced by a higher up-regulation of the expression of cartilage-specific markers, including Sox9, ACAN, Col2a1 as well as GAG accumulation. Moreover, collagen type II expression was strongly observed in cells cultured in the chondrogenic medium + SB216763 as evidenced by western blot analysis. Both treatments appeared to mediate the Wnt signaling pathway by up-regulating β-catenin gene expression. Further analyses showed that all treatments suppressed the progression of chondrocyte hypertrophy, determined by decreased expression of Col10a1 and Runx2. These results indicate that LiCl and SB216763 are potential candidates for further in vivo therapeutic trials and would be of great importance for cartilage regeneration.

  14. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    Full Text Available The hematopoietic inductive microenvironment (HIM is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood-derived stromal cells (HUCBSCs and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34(+ cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were "homed in" to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.

  15. Development of a flow cytometric assay to quantify lymphocyte adhesion to cytokine-stimulated human endothelial and biliary epithelial cells.

    Science.gov (United States)

    Korlipara, L V; Leon, M P; Rix, D A; Douglas, M S; Gibbs, P; Bassendine, M F; Kirby, J A

    1996-05-27

    The adhesive interaction between T lymphocytes and parenchymal cells is of importance for many processes of the cellular immune response. This adhesion is regulated by the activation status of the T cell and by cytokines in the microenvironment which can alter adhesion molecule expression by endothelial and epithelial cells. In this study results from an isotopic adhesion assay were compared with those from a flow cytometric assay in order to determine which was most appropriate for the investigation of lymphocyte adhesion to human umbilical vein endothelial cells (HUVEC) and intrahepatic biliary epithelial cells (HIBEC). Treatment of both these cell types with the proinflammatory cytokines interferon-gamma (IFN-gamma) or tumour necrosis factor-alpha (TNF-alpha) significantly upregulated expression of intercellular adhesion molecule-1 (ICAM-1). Treatment with TNF-alpha also induced endothelial cells to express vascular cell adhesion molecule-1 (VCAM-1). The isotopic assay demonstrated increased adhesion of lymphoblasts to HUVEC which had been stimulated with cytokines for 15 h but failed to detect major changes in adhesion following 72 h of cytokine treatment of HUVEC or HIBEC. However, the flow cytometric assay reproducibly demonstrated increased adhesion following cytokine treatment for both these time periods; these increases corresponded with the changes in adhesion molecule expression by cytokine-stimulated HUVEC and HIBEC targets. The differences in apparent adhesion measured by the two assays after cytokine stimulation for 72 h may be explained by cytokine-induced changes in the morphology and confluency of cultured cells. Results of the isotopic assay are proportional to the total number of lymphoid cells bound by the cultured target cells and will be distorted by changes in effective target cell area. The flow cytometric assay measures the mean number of lymphoid cells bound by each target cell and is independent of the total binding area. It is concluded

  16. Improving human plateaued motor skill with somatic stimulation.

    Directory of Open Access Journals (Sweden)

    Shintaro Uehara

    Full Text Available Procedural motor learning includes a period when no substantial gain in performance improvement is obtained even with repeated, daily practice. Prompted by the potential benefit of high-frequency transcutaneous electrical stimulation, we examined if the stimulation to the hand reduces redundant motor activity that likely exists in an acquired hand motor skill, so as to further upgrade stable motor performance. Healthy participants were trained until their motor performance of continuously rotating two balls in the palm of their right hand became stable. In the series of experiments, they repeated a trial performing this cyclic rotation as many times as possible in 15 s. In trials where we applied the stimulation to the relaxed thumb before they initiated the task, most reported that their movements became smoother and they could perform the movements at a higher cycle compared to the control trials. This was not possible when the dorsal side of the wrist was stimulated. The performance improvement was associated with reduction of amplitude of finger displacement, which was consistently observed irrespective of the task demands. Importantly, this kinematic change occurred without being noticed by the participants, and their intentional changes of motor strategies (reducing amplitude of finger displacement never improved the performance. Moreover, the performance never spontaneously improved during one-week training without stimulation, whereas the improvement in association with stimulation was consistently observed across days during training on another week combined with the stimulation. The improved effect obtained in stimulation trials on one day partially carried over to the next day, thereby promoting daily improvement of plateaued performance, which could not be unlocked by the first-week intensive training. This study demonstrated the possibility of effectively improving a plateaued motor skill, and pre-movement somatic stimulation

  17. ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro.

    Science.gov (United States)

    Ding, Rui; Zhang, Chao; Zhu, Xiaoxia; Cheng, Han; Zhu, Furong; Xu, Yachun; Liu, Ying; Wen, Longping; Cao, Jiyu

    2017-12-01

    Cooking oil fumes-derived PM 2.5 (COFs-derived PM 2.5 ) exposure can induce oxidative stress and cytotoxic effects. Here we investigated the role of ROS-AKT-mTOR axis in COFs-derived PM 2.5 -induced autophagy in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with different concentrations of COFs-derived PM 2.5 , together with or without N-acetyl-L-cysteine (NAC, a radical scavenger) or 3-methyladenine (3-MA, an autophagy inhibitor). Cell viability was assessed with MTT assay, and ROS level was measured with DCFH-DA assay after the treatment. Transmission electron microscopy (TEM) was used to evaluate the formation of autophagosomes, while immunofluorescent assay and western blot were used to assess the expression of LC3-I/II and beclin 1. Proteins involved in the PI3K-AKT-mTOR signaling pathway were measured with western blot. The results showed that the treatment of COFs-derived PM 2.5 dose-dependently reduced the viability of HUVECs and increased the ROS levels in the cells. Both immunofluorescent assay and western blot showed that treatment with COFs-derived PM 2.5 significantly increased LC3-II and beclin 1 levels, as well as the ratio of LC3-II/LC3-I, which could be rescued by the co-incubation with NAC or 3-MA. TEM also confirmed the increased formation of autophagosomes in the cells treated with COFs-derived PM 2.5 , while co-treatment with NAC evidently decreased autophagosomes formation. In addition, western blot also showed that the phosphorylation of PI3K, AKT, and mTOR all decreased by the treatment of COFs-derived PM 2.5 , which was effectively rescued by the co-treatment with NAC. These findings demonstrate ROS-AKT-mTOR axis plays a critical role in HUVECs autophagy induced by COFs-derived PM 2.5 . Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia.

    Science.gov (United States)

    de Paula, S; Greggio, S; Marinowic, D R; Machado, D C; DaCosta, J Costa

    2012-05-17

    Despite the beneficial effects of cell-based therapies on brain repair shown in most studies, there has not been a consensus regarding the optimal dose of human umbilical cord blood cells (HUCBC) for neonatal hypoxia-ischemia (HI). In this study, we compared the long-term effects of intravenous administration of HUCBC at three different doses on spatial memory and brain morphological changes after HI in newborn Wistar rats. In addition, we tested whether the transplanted HUCBC migrate to the injured brain after transplantation. Seven-day-old animals underwent right carotid artery occlusion and were exposed to 8% O(2) inhalation for 2 h. After 24 h, randomly selected animals were assigned to four different experimental groups: HI rats administered with vehicle (HI+vehicle), HI rats treated with 1×10(6) (HI+low-dose), 1×10(7) (HI+medium-dose), and 1×10(8) (HI+high-dose) HUCBC into the jugular vein. A control group (sham-operated) was also included in this study. After 8 weeks of transplantation, spatial memory performance was assessed using the Morris water maze (MWM), and subsequently, the animals were euthanized for brain morphological analysis using stereological methods. In addition, we performed immunofluorescence and polymerase chain reaction (PCR) analyses to identify HUCBC in the rat brain 7 days after transplantation. The MWM test showed a significant spatial memory recovery at the highest HUCBC dose compared with HI+vehicle rats (P<0.05). Furthermore, the brain atrophy was also significantly lower in the HI+medium- and high-dose groups compared with the HI+vehicle animals (P<0.01; 0.001, respectively). In addition, HUCBC were demonstrated to be localized in host brains by immunohistochemistry and PCR analyses 7 days after intravenous administration. These results revealed that HUCBC transplantation has the dose-dependent potential to promote robust tissue repair and stable cognitive improvement after HI brain injury. Copyright © 2012 IBRO. Published by

  19. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system

    Science.gov (United States)

    2013-01-01

    Introduction Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) – originating from the Wharton’s jelly – remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system. Methods HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture. Results Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin

  20. The caspase pathway of linoelaidic acid (9t, 12t-c18:2)-induced apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Bin, Qiu; Rao, Huan; Hu, Jiang-Ning; Liu, Rong; Fan, Ya-Wei; Li, Jing; Deng, Ze-Yuan; Zhong, Xianfeng; Du, Fang-Ling

    2013-02-01

    Trans fatty acids (TFA) are reported to contribute to inflammation and coronary heart disease. The study aim was to investigate the proapoptotic effects of two double bond TFA (TDTFA) on human umbilical vein endothelial cells (HUVEC). The HUVEC were grown in media supplied with linoelaidic acid (9t,12t-C18:2) at 50, 100, 200, 400 μmol/l for 24 or 48 h to examine the effects of TDTFA on the viability and apoptosis of these cells. Flow cytometry analysis and confocal scanning were used to measure apoptosis, cell binding of Annexin V and propidium iodide uptake. Colorimetric assay and RT-PCR were used to analyze enzyme activities and mRNA expression of caspase-3, -8 and -9 in HUVEC. Results showed that 9t,12t-C18:2 inhibited the viability of HUVEC in a dose-dependent and time-dependent manner. The percentages of 9t,12t-C18:2 induced apoptotic and necrotic cells significantly increased compared with that of the control. The activities and mRNA expression of caspase-8, -9 and -3 were significantly increased in 9t,12t-C18:2 treated cells compared to that of the control. Addition of specific inhibitors of caspase-8 (z-IETD-fmk) and caspase-9 (z-LEHD-fmk) to HUVEC was found to completely inhibit 9t,12t-C18:2-induced activation of caspase-3, and z-IETD-fmk inhibited the activation of caspase-9. Meanwhile, it was found that mRNA expression of Bid, Smac/DIABLO and the release of mitochondrial cytochrome c were significantly elevated by 9t,12t-C18:2 treatment. These results suggest that 9t,12t-C18:2 may induce apoptosis of HUVEC through activating caspase-8, -9 and -3. Both the death receptor pathway and the mitochondrial pathway may be involved in the apoptosis induced by 9t,12t-C18:2.

  1. Regulation of NF-κB activation through a novel PI-3K-independent and PKA/Akt-dependent pathway in human umbilical vein endothelial cells.

    Directory of Open Access Journals (Sweden)

    Sakshi Balwani

    Full Text Available The transcription factor NF-κB regulates numerous inflammatory diseases, and proteins involved in the NF-κB-activating signaling pathway are important therapeutic targets. In human umbilical vein endothelial cells (HUVECs, TNF-α-induced IκBα degradation and p65/RelA phosphorylation regulate NF-κB activation. These are mediated by IKKs (IκB kinases viz. IKKα, β and γ which receive activating signals from upstream kinases such as Akt. Akt is known to be positively regulated by PI-3K (phosphoinositide-3-kinase and differentially regulated via Protein kinase A (PKA in various cell types. However, the involvement of PKA/Akt cross talk in regulating NF-κB in HUVECs has not been explored yet. Here, we examined the involvement of PKA/Akt cross-talk in HUVECs using a novel compound, 2-methyl-pyran-4-one-3-O-β-D-2',3',4',6'-tetra-O-acetyl glucopyranoside (MPTAG. We observed that MPTAG does not directly inhibit IKK-β but prevents TNF-α-induced activation of IKK-β by blocking its association with Akt and thereby inhibits NF-κB activation. Interestingly, our results also revealed that inhibitory effect of MPTAG on Akt and NF-κB activation was unaffected by wortmannin, and was completely abolished by H-89 treatment in these cells. Thus, MPTAG-mediated inhibition of TNF-α-induced Akt activation was independent of PI-3K and dependent on PKA. Most importantly, MPTAG restores the otherwise repressed activity of PKA and inhibits the TNF-α-induced Akt phosphorylation at both Thr308 and Ser473 residues. Thus, we demonstrate for the first time the involvement of PKA/Akt cross talk in NF-κB activation in HUVECs. Also, MPTAG could be useful as a lead molecule for developing potent therapeutic molecules for diseases where NF-κB activation plays a key role.

  2. Tracking of In-111-labeled human umbilical tissue-derived cells (hUTC) in a rat model of cerebral ischemia using SPECT imaging

    International Nuclear Information System (INIS)

    Arbab, Ali S; Chopp, Michael; Thiffault, Christine; Navia, Bradford; Victor, Stephen J; Hong, Klaudyne; Zhang, Li; Jiang, Quan; Varma, Nadimpalli RS; Iskander, ASM

    2012-01-01

    In order to increase understanding of how infused cells work, it becomes important to track their initial movement, localization, and engraftment efficiency following transplantation. However, the available in vivo cell tracking techniques are suboptimal. The study objective was to determine the biodistribution of intravenously administered Indium-111 (In-111) oxine labeled human umbilical tissue-derived cells (hUTC) in a rat model of transient middle cerebral occlusion (tMCAo) using single photon emission computed tomography (SPECT). Rats received 3 million In-111 labeled hUTC (i.v.) 48 hrs after tMCAo. Following the administration of either hUTC or equivalent dose of In-111-oxine (18.5 MBq), animals underwent SPECT imaging on days 0, 1, and 3. Radioactivity in various organs as well as in the stroke area and contralateral hemisphere was determined, decay corrected and normalized to the total (whole body including head) radioactivity on day 0. Immunohistochemical analysis was also performed to confirm the beneficial effects of hUTC on vascular and synaptic density, and apoptosis. Most of the radioactivity (43.36±23.07% on day 0) trafficked to the lungs immediately following IV administration of In-111 labeled hUTC (day 0) and decreased drastically to 8.81±7.75 and 4.01±4.52% on days 1 and 3 post-injection, respectively. In contrast, radioactivity measured in the lung of animals that received In-111-oxine alone remained relatively unchanged from day 0 to day 1 (18.38±5.45% at day 0 to 12.59±5.94%) and decreased to 8.34±4.25% on day 3. Significantly higher radioactivity was observed in stroke areas of animals that received In-111 labeled hUTC indicating the presence of cells at the site of injury representing approximately 1% of total administered dose. In addition, there was significant increase in vascular and synaptophysin immunoreactivity in stroke areas of rats that received In-111 labeled hUTC. The present studies showed the tracking of In-111 labeled h

  3. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunge [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Qian, Yufeng [Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway, Austin, TX 78712 (United States); Zhao, Shuang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Yin, Yuji, E-mail: yinyuji@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Li, Junjie, E-mail: li41308@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850 (China)

    2016-07-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. - Graphical abstract: Alginate/PEG IPN microcarriers can support the attachment and expansion of hUCB-MSCs. More importantly, the expanded cells can be harvested

  4. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Chunge; Qian, Yufeng; Zhao, Shuang; Yin, Yuji; Li, Junjie

    2016-01-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. - Graphical abstract: Alginate/PEG IPN microcarriers can support the attachment and expansion of hUCB-MSCs. More importantly, the expanded cells can be harvested

  5. Mucus secretion-stimulating activity in human lymphoblastoid cells.

    Science.gov (United States)

    Kulemann-Kloene, H; Krag, S S; Bang, F B

    1982-08-20

    Two fractions isolated from cultured lymphoblastoid cells stimulated mucus secretion from the urn cell complex of the marine invertebrate Sipunculus nudus. The activity detected in the nuclear fraction was trypsin-sensitive, and it increased in response to specific nucleotides.

  6. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model

    OpenAIRE

    Yousefifard, Mahmoud; Nasirinezhad, Farinaz; Shardi Manaheji, Homa; Janzadeh, Atousa; Hosseini, Mostafa; Keshavarz, Mansoor

    2016-01-01

    Background Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. Methods A compression model was used to induce SCI in a rat model. A w...

  7. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  8. [Effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells and ciprofloxacin onStaphylococcus aureusin vitro].

    Science.gov (United States)

    Zhou, B; Tu, H L; Ba, T; Wang, L F; Wang, S J; Nie, S Y

    2017-06-20

    Objective: To explore the effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells (hUCMSCs) and ciprofloxacin on Staphylococcus aureus (SA) in vitro. Methods: hUCMSCs were isolated from umbilical cord tissue of full-term healthy fetus after cesarean section and cultured. Cells in the third passage were used in the experiments after identification. SA strains isolated from wounds of burn patients in our burn wards were used in the experiments. Cells were divided into 0, 10, 100, and 1 000 ng/mL lipopolysaccharide (LPS) groups according to the random number table (the same dividing method below). Cells were cultured with culture medium of mesenchymal stem cells (MSCs) after being treated with medium containing the corresponding mass concentrations of LPS for 12 h. At post culture hour (PCH) 6, 12, and 24, 6 wells of culture supernatant of cells in each group were obtained to measure the content of LL-37 with enzyme-linked immunosorbent assay. Ninety blood agar plates were divided into ciprofloxacin control group (CC), ciprofloxacin+ supernatant group (CS), and ciprofloxacin+ supernatant+ LL-37 antibody group (CSL), with 30 blood agar plates in each group. Blood agar plates in group CC were coated with 1.5×10(8) colony forming unit (CFU)/mL bacteria solution prepared with normal saline. Blood agar plates in group CS were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline and culture supernatant of hUCMSCs (cultured by culture medium of MSCs, the same below) in double volume of normal saline. Blood agar plates in group CSL were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline, culture supernatant of hUCMSCs in double volume of normal saline, and 2.6 μL LL-37 antibody in the concentration of 2 μg/mL. At PCH 12, 24, and 48, 10 blood agar plates of each group were harvested to observe the distribution of SA colony on blood agar plate and to measure the diameter of

  9. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  10. The effect of a stimulation pattern on force and fatigue of paralyzed human quadriceps

    NARCIS (Netherlands)

    Franken, Henry M.; Franken, H.M.; van Harn, Andre; Veltink, Petrus H.; Thomsen, M.; Thomsen, Morten; Boom, H.B.K.

    1993-01-01

    The effects of several stimulation patterns at constant duty cycle on isometric and isokinetic knee torque development and fatigue-induced torque decline in electrically stimulated paralyzed human quadriceps were studied. The benefit of optimizing the interpulse intervals (PISi)n comparison to a

  11. Variability of flow rate when collecting stimulated human parotid saliva

    NARCIS (Netherlands)

    Burlage, FR; Pijpe, J; Coppes, RP; Hemels, MEW; Meertens, H; Canrinus, A; Vissink, A

    2005-01-01

    The aim of this study was to estimate the accuracy and reproducibility of citric-acid-stimulated parotid saliva sampling. In healthy volunteers a strong correlation (r(2) = 0.79) between flow rates from the left and right parotid gland was observed. In patients with Sjogren's syndrome this

  12. Phase Synchronization in Human EEG During Audio-Visual Stimulation

    Czech Academy of Sciences Publication Activity Database

    Teplan, M.; Šušmáková, K.; Paluš, Milan; Vejmelka, Martin

    2009-01-01

    Roč. 28, - (2009), s. 80-84 ISSN 1536-8378 Grant - others:Bilateral project between Slovak AS and AS CR(CZ-SK) Modern methods for evaluation of electrophysiological signals Source of funding: V - iné verejné zdroje Keywords : synchronization * EEG * wavelet * audio- visual stimulation Subject RIV: FH - Neurology Impact factor: 0.729, year: 2009

  13. Hypoxia stimulates invasion and migration of human cervical cancer ...

    Indian Academy of Sciences (India)

    Here we show that hypoxiaincreases tumour cell invasion and migration by the modulation of Rab11, an important molecule for vesicular trafficking.In our study, we found that Rab11, together with the activation of Rac1, could stimulate invasion and migration of cervicalcancer cell lines HeLa/SiHa in hypoxia. Activation of ...

  14. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    International Nuclear Information System (INIS)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-01

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation

  15. Insulin rapidly stimulates L-arginine transport in human aortic endothelial cells via Akt.

    Science.gov (United States)

    Kohlhaas, Christine F; Morrow, Valerie A; Jhakra, Neelam; Patil, Vrushali; Connell, John M C; Petrie, John R; Salt, Ian P

    2011-09-09

    Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Insulin rapidly stimulates l-arginine transport in human aortic endothelial cells via Akt

    Science.gov (United States)

    Kohlhaas, Christine F.; Morrow, Valerie A.; Jhakra, Neelam; Patil, Vrushali; Connell, John M.C.; Petrie, John R.; Salt, Ian P.

    2011-01-01

    Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions. PMID:21871446

  17. Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo.

    Science.gov (United States)

    Leckie, Steven K; Sowa, Gwendolyn A; Bechara, Bernard P; Hartman, Robert A; Coelho, Joao Paulo; Witt, William T; Dong, Qing D; Bowman, Brent W; Bell, Kevin M; Vo, Nam V; Kramer, Brian C; Kang, James D

    2013-03-01

    Patients often present to spine clinic with evidence of intervertebral disc degeneration (IDD). If conservative management fails, a safe and effective injection directly into the disc might be preferable to the risks and morbidity of surgery. To determine whether injecting human umbilical tissue-derived cells (hUTC) into the nucleus pulposus (NP) might improve the course of IDD. Prospective, randomized, blinded placebo-controlled in vivo study. Skeletally mature New Zealand white rabbits. Degree of IDD based on magnetic resonance imaging (MRI), biomechanics, and histology. Thirty skeletally mature New Zealand white rabbits were used in a previously validated rabbit annulotomy model for IDD. Discs L2-L3, L3-L4, and L4-L5 were surgically exposed and punctured to induce degeneration and then 3 weeks later the same discs were injected with hUTC with or without a hydrogel carrier. Serial MRIs obtained at 0, 3, 6, and 12 weeks were analyzed for evidence of degeneration qualitatively and quantitatively via NP area and MRI Index. The rabbits were sacrificed at 12 weeks and discs L4-L5 were analyzed histologically. The L3-L4 discs were fixed to a robotic arm and subjected to uniaxial compression, and viscoelastic displacement curves were generated. Qualitatively, the MRIs demonstrated no evidence of degeneration in the control group over the course of 12 weeks. The punctured group yielded MRIs with the evidence of disc height loss and darkening, suggestive of degeneration. The three treatment groups (cells alone, carrier alone, or cells+carrier) generated MRIs with less qualitative evidence of degeneration than the punctured group. MRI Index and area for the cell and the cell+carrier groups were significantly distinct from the punctured group at 12 weeks. The carrier group generated MRI data that fell between control and punctured values but failed to reach a statistically significant difference from the punctured values. There were no statistically significant MRI

  18. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.

    2012-01-01

    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts for reflect......This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...

  19. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues

    Czech Academy of Sciences Publication Activity Database

    Kočí, Zuzana; Výborný, Karel; Dubišová, Jana; Vacková, Irena; Jäger, Aleš; Lunov, Oleg; Jiráková, Klára; Kubinová, Šárka

    2017-01-01

    Roč. 23, č. 6 (2017), s. 333-345 ISSN 1937-3384 R&D Projects: GA ČR(CZ) GA15-01396S; GA MŠk(CZ) LO1309; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EF15_003/0000419 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378041 ; RVO:68378271 Keywords : extracellular matrix * hydrogel * umbilical cord Subject RIV: FH - Neurology; EB - Genetics ; Molecular Biology (FZU-D) OBOR OECD: Neurosciences (including psychophysiology; Biophysics (FZU-D)

  20. Umbilical hernia repair - series (image)

    Science.gov (United States)

    ... from the mother during development penetrate the fetal abdominal wall. ... Umbilical hernias are fairly common. They are obvious at birth and are ... (lining of the abdominal cavity) to protrude, and push ...

  1. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    Science.gov (United States)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  2. Angiomyxoma of the Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Hung-Pin Cheng

    2006-12-01

    Conclusion: Angiomyxoma is a rare tumor of the umbilical cord and should be considered when using prenatal ultrasound for detection of cystic lesion. Color Doppler imaging can easily and instantly detect perfusion through the umbilical vessels and assess cardiac function. In our case, application of color Doppler imaging for monitoring the relationship between the tumor and the adjacent vessels allowed the fetus to be delivered at term with a favorable outcome.

  3. Angiomyxoma of the Umbilical Cord

    OpenAIRE

    Cheng, Hung-Pin; Hsu, Chin-Yuan; Chen, Chih-Ping; Su, Tsung-Hsien

    2006-01-01

    Objective: Angiomyxoma is a rare tumor of the umbilical cord and is associated with increased perinatal morbidity and mortality. However, the management of these pregnancies in the third trimester is not clearly defined. We present a case of an angiomyxoma of the umbilical cord diagnosed in the second trimester, and highlight the contribution of color Doppler imaging to the early diagnosis of cord anomalies. Case Report: A 29 year-old, gravida 3, para 1, woman had elevated maternal serum a...

  4. Modulation of human time processing by subthalamic deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Lars Wojtecki

    Full Text Available Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS of the subthalamic nucleus (STN is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-production of the 15-second interval and a significant enhancement of this under(re-production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.

  5. Post training REMs coincident auditory stimulation enhances memory in humans.

    Science.gov (United States)

    Smith, C; Weeden, K

    1990-06-01

    Sleep activity was monitored in 20 freshman college students for two consecutive nights. Subjects were assigned to 4 equal groups and all were asked to learn a complex logic task before bed on the second night. Two groups of subjects learned the task with a constant clicking noise in the background (cued groups), while two groups simply learned the task (non cued). During the night, one cued and one non cued group were presented with auditory clicks during REM sleep such as to coincide with all REMs of at least 100 microvolts. The second cued group was given auditory clicks during REM sleep, but only during the REMs "quiet" times. The second non-cued control group was never given any nighttime auditory stimulations. The cued REMs coincident group showed a significant 23% improvement in task performance when tested one week later. The non cued REMs coincident group showed only an 8.8% improvement which was not significant. The cued REMs quiet and non-stimulated control groups showed no change in task performance when retested. The results were interpreted as support for the idea that the cued auditory stimulation induced a "recall" of the learned material during the REM sleep state in order for further memory processing to take place.

  6. Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Rymaszewski, Z.; Cohen, R.M.; Chomczynski, P.

    1991-01-01

    Growth hormone (GH) has been implicated in the pathogenesis of proliferative diabetic retinopathy. The authors sought to determine whether this could be mediated by an effect of GH on proliferation of endothelial cells, and, for this purpose, established long-term cultures of human retinal microvascular endothelial cells (hREC) from normal postmortem human eyes. High-purity hREC preparations were selected for experiments, based on immunogluorescence with acetylated low density lipoprotein (LDL) and anti-factor VIII-related antigen. Growth requirements for these cells were complex, including serum for maintenance at slow growth rates and additional mitogens for more rapid proliferation. Exposure of hREC to physiologic doses of human GH (hGH) resulted in 100% greater cell number vs. control but could be elicited only in the presence of serum. When differing serum conditions were compared, hGH stimulated [ 3 H]thymidine incorporation up to 1.6- to 2.2-fold under each condition and increased DNA content significantly in the presence of human, horse, and fetal calf serum. In summary, hREC respond to physiologic concentrations of hGH in vitro with enhanced proliferation. This specific effect of GH on retinal microvascular endothelial cells supports the hypothesis of role for GH in endothelial cell biology

  7. The presence of B-cell activating factor (BAFF) in umbilical cord blood in both healthy and pre-eclamptic pregnancies and in human breast milk.

    Science.gov (United States)

    Bienertova-Vasku, Julie; Zlamal, Filip; Tomandl, Josef; Hodicka, Zuzana; Novak, Jan; Splichal, Zbynek; Ventruba, Pavel; Thon, Vojtech; Vasku, Anna

    2015-06-01

    B-cell activating factor (BAFF) is an important immune regulator that was recently reported to be secreted by placenta. The aim of the study was to investigate the presence of BAFF in umbilical cord blood, maternal serum, and breast milk in normal and in pre-eclamptic pregnancies. Pairs of maternal serum/umbilical cord blood were obtained from 12 pre-eclamptic and 34 physiological pregnancies. Another cohort of 10 healthy lactating women was established that was followed up for 6 months following delivery to investigate BAFF levels in breast milk. BAFF levels in maternal peripheral blood were significantly higher in physiological pregnancies than in pre-eclamptic pregnancies (p BAFF in breast milk during the 6-month post-partum period of breastfeeding. In this study, we demonstrate that BAFF levels are significantly lower in maternal peripheral blood in pre-eclamptic pregnancies. We also report the consistent presence of BAFF in breast milk in healthy women. More research into the role of BAFF in pregnancy, and during breastfeeding, is imperative. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide...... generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  9. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    Science.gov (United States)

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects

    DEFF Research Database (Denmark)

    Taylor, Janet L; Petersen, Nicolas Caesar; Butler, Jane E

    2002-01-01

    was designed to determine whether the two stimuli activate the same descending axons. Responses to transcranial magnetic stimuli paired with electrical transmastoid stimuli were examined in biceps brachii in human subjects. Twelve interstimulus intervals (ISIs) from -6 ms (magnet before transmastoid) to 5 ms...

  11. Acrolein generation stimulates hypercontraction in isolated human blood vessels

    OpenAIRE

    Conklin, D.J.; Bhatnagar, A.; Cowley, H.R.; Johnson, G.H.; Wiechmann, R.J.; Sayre, L.M.; Trent, M.B.; Boor, P.J.

    2006-01-01

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension—all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontra...

  12. Human milk proresolving mediators stimulate resolution of acute inflammation.

    Science.gov (United States)

    Arnardottir, Hildur; Orr, Sarah K; Dalli, Jesmond; Serhan, Charles N

    2016-05-01

    Human milk contains nutrients and bioactive products relevant to infant development and immunological protection. Here, we investigated the proresolving properties of milk using human milk lipid mediator isolates (HLMIs) and determined their impact on resolution programs in vivo and with human macrophages. HLMIs reduced the maximum neutrophil numbers (14.6±1.2 × 10(6)-11.0±1.0 × 10(6) cells per exudate) and shortened the resolution interval (Ri; 50% neutrophil reduction) by 54% compared with peritonitis. Using rigorous liquid-chromatography tandem-mass spectrometry (LC-MS-MS)-based lipid mediator (LM) metabololipidomics, we demonstrated that human milk possesses a proresolving LM-specialized proresolving mediator (LM-SPM) signature profile, containing SPMs (e.g. resolvins (Rv), protectins (PDs), maresins (MaRs), and lipoxins (LXs)) at bioactive levels (pico-nanomolar concentrations) that enhanced human macrophage efferocytosis and bacterial containment. SPMs identified in human milk included D-series Rvs (e.g., RvD1, RvD2, RvD3, AT-RvD3, and RvD4), PD1, MaR1, E-series Rvs (e.g. RvE1, RvE2, and RvE3), and LXs (LXA4 and LXB4). Of the SPMs identified in human milk, RvD2 and MaR1 (50 ng per mouse) individually shortened Ri by ∼75%. Milk from mastitis gave higher leukotriene B4 and prostanoids and lower SPM levels. Taken together, these findings provide evidence that human milk has proresolving actions via comprehensive LM-SPM profiling, describing a potentially novel mechanism in maternal-infant biochemical imprinting.

  13. THE EFFECTS OF NATURAL STIMULANTS ON THE HUMAN ORGANISM

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2012-09-01

    Full Text Available The modern lifestyle of today's man imposes the need to return to nature, which is the primordial and evolutionary related. Man's desire for an increase of leisure timespent in an environment that suits their biological characteristics, is in part genetically determined, while is strongly related to the existence of awareness of the importance of staying active in nature. It has long been known that physical activity in nature is one of the best ways to preserve and promote health. Through regular stimulation and guiding the natural environment one can produce positive changes in structure and function of the organism. The collective life of camping and outdoor activities significantly affect the formation of personality. It develops comradeship, solidarity,self-sacrifice. The constant activities and obligations arising from them accountable to their colleagues, result in forming solid personalities.

  14. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates.

    Science.gov (United States)

    Mueller, Jerel K; Grigsby, Erinn M; Prevosto, Vincent; Petraglia, Frank W; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V; Sommer, Marc A; Egner, Tobias; Platt, Michael L; Grill, Warren M

    2014-08-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.

  15. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    Science.gov (United States)

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  16. Retracted: Sirt3 activation attenuated oxidized low-density lipoprotein-induced human umbilical vein endothelial cells' apoptosis by sustaining autophagy by Luo, X, Yang, Z, Zheng, S, Cao, Y and Wu, Y.

    Science.gov (United States)

    2017-08-01

    The above article, published online on 05 May 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1002/cbin.10291/full), has been retracted by agreement between the authors, the journal Editor, Sergio Schenkman, and John Wiley & Sons Ltd. The retraction has been agreed because the authors discovered that the results of section 3 in this paper were irreproducible. In addition, Zhiqiang Yang, a co-author, states conflict of interest in this paper. The authors and publisher apologize for any inconvenience. Reference Luo X, Yang Z, Zheng S, Cao Y, Wu Y (2014) Sirt3 activation attenuated oxidized low-density lipoprotein induced human umbilical vein endothelial cells' apoptosis by sustaining autophagy. Cell Biol Int, https://doi.org/10.1002/cbin.10291. © 2017 International Federation for Cell Biology.

  17. Glycated human serum albumin induces NF-κB activation and endothelial nitric oxide synthase uncoupling in human umbilical vein endothelial cells.

    Science.gov (United States)

    Rodiño-Janeiro, Bruno K; Paradela-Dobarro, Beatriz; Raposeiras-Roubín, Sergio; González-Peteiro, Mercedes; González-Juanatey, José R; Álvarez, Ezequiel

    2015-01-01

    Non-enzymatic glycated proteins could mediate diabetes vascular complications, but the molecular mechanisms are unknown. Our objective was to find new targets involved in the glycated human serum albumin (gHSA)-enhanced extracellular reactive oxygen species (ROS) production in human endothelial cells. Some nuclear factors and phosphorylation cascades were analysed. gHSA activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which up-regulated NOX4 and P22PHOX and enhanced ROS production. Pharmacological inhibition of NF-κB reversed gHSA-enhanced NOX4 expression and decreased gHSA-induced ROS production in extra- and intracellular spaces. The inhibition of activator protein-1 (AP-1) induced a rise in NOX4 and P22PHOX subunit expression and a down-regulation of endothelial nitric oxide synthase (eNOS). AP-1 inhibition also enhanced extracellular ROS production in the presence of serum albumin, but not with gHSA. These results were explained by the eNOS uncoupling induced by gHSA, also demonstrated in this study. Phosphatidylinositol 3-kinase or mitogen-activated protein kinase kinase 1/2 did not show to be involved in gHSA-induced ROS production. All together, the results suggested that gHSA-enhanced ROS production in endothelium is mediated by: 1) NF-κB activation and subsequence up-regulation of NADPH oxidase, 2) eNOS uncoupling. AP-1, although is not directly affected by gHSA, is another target for regulating NADPH oxidase and eNOS expression in endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects

    Science.gov (United States)

    Ling, Leo; Nie, Kaibao; Jameyson, Elyse; Phillips, Christopher M.; Nowack, Amy L.; Golub, Justin S.; Rubinstein, Jay T.

    2015-01-01

    Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0–400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear. PMID:25652917

  19. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    Science.gov (United States)

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    OpenAIRE

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally per...

  1. [The effect of reactive oxygen species regulation of expression of Bcl-2 and Bax in apoptosis of human umbilical vein endothelial cell induced by heat stress].

    Science.gov (United States)

    Li, Li; Gu, Zhengtao; Liu, Zhifeng; Su, Lei

    2014-07-01

    To observe the effect of heat stress-induced reactive oxygen species (ROS) burst on the regulation of expression of Bcl-2 and Bax in human umbilical vein endothelial cell (HUVEC) apoptosis induced by heat stress, and explore the pathogenesis of vascular endothelial damage caused by severe heat stroke. HUVEC heat stress model was reproduced. Cells of heat stress group were incubated at either 39, 41, or 43 centigrade for 2 hours, then all the cells were further incubated at 37 centigrade and 5% CO2 for 24 hours. Before heat stress, cells of 43 centigrade heat stress group were pretreated with 10 μmol/L MnTMPyP, which was a specific scavenger of ROS, for 1 hour. Cells of control group were incubated at 37 centigrade and 5% CO2. The amount of ROS was assayed with 2', 7'-dichlorofluorescin diacetate (DCFH-DA) and dihydroethidium (DHE) staining. Apoptosis was determined by using staining with Hoechst33258. The mRNA expressions of Bcl-2 and Bax were determined by reverse transcription-polymerase chain reaction (RT-PCR). The protein levels of Bcl-2, Bax, caspase-3 were analyzed by Western Blot. In addition, the effect of MnTMPyP on heat stress-induced apoptosis was also studied. Compared with control group, there was no obvious change in cells after 39 centigrade heat stress. With the increase in heat stress temperature up to 41 centigrade and 43 centigrade, viability of cells showed a lowering trend, with a burst of ROS, and an increase of mRNA and protein of Bax, and the protein of caspase-3 was significantly increased, the mRNA and protein of Bcl-2 were significantly decreased in a temperature-dependent manner. These changes were marked in 43 centigrade heat stress group as compared with those of the control group [cell viability: (46.00±4.00)% vs. (96.33±1.53)%, t=20.164, P=0.001; ROS (fluorescence relative value): 400.67±12.10 vs. 99.33±4.04, t=32.909, P=0.001; Bax mRNA (A value): 3.03±0.15 vs. 1.00±0.00, t=23.056, P=0.001; Bax protein (gray value): 3.97±0

  2. Ovarian response to recombinant human follicle-stimulating hormone

    DEFF Research Database (Denmark)

    Arce, Joan-Carles; Andersen, Anders Nyboe; Fernández-Sánchez, Manuel

    2014-01-01

    OBJECTIVE: To evaluate the dose-response relationship of a novel recombinant human FSH (rhFSH; FE 999049) with respect to ovarian response in patients undergoing IVF/intracytoplasmic sperm injection treatment; and prospectively study the influence of initial antimüllerian hormone (AMH) concentrat......OBJECTIVE: To evaluate the dose-response relationship of a novel recombinant human FSH (rhFSH; FE 999049) with respect to ovarian response in patients undergoing IVF/intracytoplasmic sperm injection treatment; and prospectively study the influence of initial antimüllerian hormone (AMH...

  3. Transcranial alternating current stimulation enhances individual alpha activity in human EEG.

    Directory of Open Access Journals (Sweden)

    Tino Zaehle

    Full Text Available Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity.The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.

  4. Stimulation of butyrate absorption in the human rectum in vivo

    DEFF Research Database (Denmark)

    Holtug, K; Hove, H; Mortensen, P B

    1995-01-01

    the change in fluid composition. RESULTS: Sodium absorption was highest (24 +/- 8 mumol/cm2 h) in the presence of chloride and lowest (16 +/- 2 mumol/cm2 h) in the presence of bicarbonate and butyrate. Butyrate (70 mmol/l) was absorbed at a high rate of 7.1 +/- 2.2 mumol/cm2 h, independent on the presence...... of chloride, and was accompanied by increased bicarbonate secretion. Butyrate absorption increased to 9.6 +/- 1.8 mumol/cm2 h in sodium-free high-potassium media containing bicarbonate. CONCLUSION: The results show that it is possible to increase butyrate uptake by manipulation of the electrolyte composition......BACKGROUND: Models of short-chain fatty acid absorption have focused on the stimulation of sodium absorption, an effect mainly located in the proximal colon of man. With the present efforts to utilize butyrate enemas as a treatment of ulcerative colitis, it seemed important to assess the transport...

  5. Ultrasound, color - normal umbilical cord (image)

    Science.gov (United States)

    ... is a normal color Doppler ultrasound of the umbilical cord performed at 30 weeks gestation. The cord is ... the cord, two arteries and one vein. The umbilical cord is connected to the placenta, located in the ...

  6. Percutaneous umbilical cord blood sampling - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100196.htm Percutaneous umbilical cord blood sampling - series—Normal anatomy To use the ... or blood disorder, your doctor may recommend percutaneous umbilical cord blood sampling (PUBS), which is performed at 18 ...

  7. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.

    Science.gov (United States)

    Chen, Wenchuan; Liu, Xian; Chen, Qianmin; Bao, Chongyun; Zhao, Liang; Zhu, Zhimin; Xu, Hockin H K

    2017-01-18

    Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p cells increased with time (p  0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Self-Assembled Matrix by Umbilical Cord Stem Cells

    Directory of Open Access Journals (Sweden)

    Biagio Saitta

    2011-09-01

    Full Text Available Corneal integrity is critical for vision. Corneal wounds frequently heal with scarring that impairs vision. Recently, human umbilical cord mesenchymal stem cells (cord stem cells have been investigated for tissue engineering and therapy due to their availability and differentiation potential. In this study, we used cord stem cells in a 3-dimensional (3D stroma-like model to observe extracellular matrix organization, with human corneal fibroblasts acting as a control. For 4 weeks, the cells were stimulated with a stable Vitamin C (VitC derivative ±TGF-b1. After 4 weeks, the mean thickness of the constructs was ~30 mm; however, cord stem cell constructs had 50% less cells per unit volume, indicating the formation of a dense matrix. We found minimal change in decorin and lumican mRNA, and a significant increase in perlecan mRNA in the presence of TGF-b1. Keratocan on the other hand decreased with TGF-b1 in both cell lineages. With both cell types, the constructs possessed aligned collagen fibrils and associated glycosaminoglycans. Fibril diameters did not change with TGF-b1 stimulation or cell lineage; however, highly sulfated glycosaminoglycans associated with the collagen fibrils significantly increased with TGF-b1. Overall, we have shown that cord stem cells can secrete their own extracellular matrix and promote the deposition and sulfation of various proteoglycans. Furthermore, these cells are at least comparable to commonly used corneal fibroblasts and present an alternative for the 3D in vitro tissue engineered model.

  9. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Jane M. [University Hospital of Zurich, Institute of Neuroradiology, Zurich (Switzerland); University of Manitoba, Department of Physiology, Winnipeg, Manitoba (Canada); Stroman, Patrick W. [Queen' s University, Department of Diagnostic Radiology, Kingston, Ontario (Canada); Kollias, Spyros S. [University Hospital of Zurich, Institute of Neuroradiology, Zurich (Switzerland)

    2008-03-15

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements. (orig.)

  10. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes

    International Nuclear Information System (INIS)

    Lawrence, Jane M.; Stroman, Patrick W.; Kollias, Spyros S.

    2008-01-01

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements. (orig.)

  11. The umbilical coiling index in normal pregnancy

    NARCIS (Netherlands)

    van Diik, C. C.; Franx, A.; de Laat, M. W. M.; Bruinse, H. W.; Visser, G. H. A.; Nikkels, P. G. J.

    2002-01-01

    To provide reference values for the umbilical coiling index in uncomplicated pregnancy. Umbilical cords were collected from livebom singleton infants born after uncomplicated pregnancies. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in

  12. The umbilical coiling index in complicated pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; van Alderen, Elise D.; Franx, Arie; Visser, Gerard H. A.; Bots, Michiel L.; Nikkels, Peter G. J.

    2007-01-01

    To evaluate umbilical cord coiling in pregnancies with adverse outcome. Umbilical cords and hospital records of 565 consecutive cases with an indication for histological examination of the placenta were studied. The umbilical coiling index (UCI) was determined as the number of complete coils divided

  13. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound.

    Science.gov (United States)

    Lee, Wonhye; Chung, Yong An; Jung, Yujin; Song, In-Uk; Yoo, Seung-Schik

    2016-10-26

    Transcranial focused ultrasound (FUS) is gaining momentum as a novel non-invasive brain stimulation method, with promising potential for superior spatial resolution and depth penetration compared to transcranial magnetic stimulation or transcranial direct current stimulation. We examined the presence of tactile sensations elicited by FUS stimulation of two separate brain regions in humans-the primary (SI) and secondary (SII) somatosensory areas of the hand, as guided by individual-specific functional magnetic resonance imaging data. Under image-guidance, acoustic stimulations were delivered to the SI and SII areas either separately or simultaneously. The SII areas were divided into sub-regions that are activated by four types of external tactile sensations to the palmar side of the right hand-vibrotactile, pressure, warmth, and coolness. Across the stimulation conditions (SI only, SII only, SI and SII simultaneously), participants reported various types of tactile sensations that arose from the hand contralateral to the stimulation, such as the palm/back of the hand or as single/neighboring fingers. The type of tactile sensations did not match the sensations that are associated with specific sub-regions in the SII. The neuro-stimulatory effects of FUS were transient and reversible, and the procedure did not cause any adverse changes or discomforts in the subject's mental/physical status. The use of multiple FUS transducers allowed for simultaneous stimulation of the SI/SII in the same hemisphere and elicited various tactile sensations in the absence of any external sensory stimuli. Stimulation of the SII area alone could also induce perception of tactile sensations. The ability to stimulate multiple brain areas in a spatially restricted fashion can be used to study causal relationships between regional brain activities and their cognitive/behavioral outcomes.

  14. Vestibular stimulation-induced facilitation of cervical premotoneuronal systems in humans.

    Directory of Open Access Journals (Sweden)

    Shinya Suzuki

    Full Text Available It is unclear how descending inputs from the vestibular system affect the excitability of cervical interneurons in humans. To elucidate this, we investigated the effects of galvanic vestibular stimulation (GVS on the spatial facilitation of motor-evoked potentials (MEPs induced by combined pyramidal tract and peripheral nerve stimulation. To assess the spatial facilitation, electromyograms were recorded from the biceps brachii muscles (BB of healthy subjects. Transcranial magnetic stimulation (TMS over the contralateral primary motor cortex and electrical stimulation of the ipsilateral ulnar nerve at the wrist were delivered either separately or together, with interstimulus intervals of 10 ms (TMS behind. Anodal/cathodal GVS was randomly delivered with TMS and/or ulnar nerve stimulation. The combination of TMS and ulnar nerve stimulation facilitated BB MEPs significantly more than the algebraic summation of responses induced separately by TMS and ulnar nerve stimulation (i.e., spatial facilitation. MEP facilitation significantly increased when combined stimulation was delivered with GVS (p < 0.01. No significant differences were found between anodal and cathodal GVS. Furthermore, single motor unit recordings showed that the short-latency excitatory peak in peri-stimulus time histograms during combined stimulation increased significantly with GVS. The spatial facilitatory effects of combined stimulation with short interstimulus intervals (i.e., 10 ms indicate that facilitation occurred at the premotoneuronal level in the cervical cord. The present findings therefore suggest that GVS facilitates the cervical interneuron system that integrates inputs from the pyramidal tract and peripheral nerves and excites motoneurons innervating the arm muscles.

  15. True Umbilical Cord Knot Leading to Fetal Demise

    African Journals Online (AJOL)

    Ikechebelu, et al.: True umbilical cord knot. 156. Annals of Medical and Health Sciences Research | Jul-Aug 2014 | Vol 4 | Special Issue 2 | non‑reactive. She tested negative to Human immune‑deficiency virus I and II. The fasting blood sugar and 2 h post prandial were normal. She received two courses, each of intermittent.

  16. Assessment of motor pathways by magnetic stimulation in human and veterinary medicine.

    Science.gov (United States)

    Van Soens, Iris; Van Ham, Luc M

    2011-02-01

    Magnetic stimulation is a non-invasive and painless technique for studying the motor pathways in medical neurology. A time-varying magnetic field induces an electrical field in conducting objects, such as nervous tissue. The technique can be applied to nerve roots and peripheral nerves or to the motor cortex of the brain in human and veterinary medicine. In this review, the basic principles, applications and risk factors of peripheral nerve and motor cortex stimulation in human and veterinary medicine are discussed. Copyright © 2009 Elsevier Ltd. All rights reserved.

  17. Interleukin-6 stimulates lipolysis and fat oxidation in humans

    DEFF Research Database (Denmark)

    van Hall, Gerrit; Steensberg, Adam; Sacchetti, Massimo

    2003-01-01

    Although IL-6 is a key modulator of immune function, it also plays a role in regulating substrate metabolism. To determine whether IL-6 affects lipid metabolism, 18 healthy men were infused for 3 h with saline (Con; n = 6) or a high dose (High-rhIL6; n = 6) or a low dose (Low-rhIL6; n = 6) of rec...... in adrenaline, insulin, or glucagon, and no adverse side effects were observed. In conclusion, the data identify IL-6 as a potent modulator of fat metabolism in humans, increasing fat oxidation and FA reesterification without causing hypertriacylglyceridemia....

  18. Autocrine Human Growth Hormone Stimulates Oncogenicity of Endometrial Carcinoma Cells

    OpenAIRE

    Pandey, Vijay; Perry, Jo K.; Mohankumar, Kumarasamypet M.; Kong, Xiang-Jun; Liu, Shu-Min; Wu, Zheng-Sheng; Mitchell, Murray D.; Zhu, Tao; Lobie, Peter E.

    2008-01-01

    Recent published data have demonstrated elevated levels of human GH (hGH) in endometriosis and endometrial adenocarcinoma. Herein, we demonstrate that autocrine production of hGH can enhance the in vitro and in vivo oncogenic potential of endometrial carcinoma cells. Forced expression of hGH in endometrial carcinoma cell lines RL95-2 and AN3 resulted in an increased total cell number through enhanced cell cycle progression and decreased apoptotic cell death. In addition, autocrine hGH express...

  19. Maximum human objectively measured pharmacologically stimulated accommodative amplitude

    Directory of Open Access Journals (Sweden)

    Grzybowski A

    2018-01-01

    Full Text Available Andrzej Grzybowski,1,2 Ronald A Schachar,3 Magdalena Gaca-Wysocka,2 Ira H Schachar,4 Barbara K Pierscionek5 1Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, 2Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland; 3Department of Physics, University of Texas, Arlington, TX, 4Byers Eye Institute of Stanford University, Palo Alto, CA, USA; 5School of Science and Technology, Nottingham Trent University, Nottingham, UK Purpose: To measure the maximum, objectively measured, accommodative amplitude, produced by pharmacologic stimulation.Methods: Thirty-seven healthy subjects were enrolled, with a mean age of 20.2±1.1 years, corrected visual acuity of 20/20, and mean spherical equivalent refraction (SER =–0.83±1.60 diopters. For each subject, the right pupil was dilated with phenylephrine 10%. After 30 minutes, the pupil was measured, the left eye was patched, and the right eye was autorefracted. Pilocarpine 4% was then instilled in the right eye, followed by phenylephrine. At 45 minutes after the pilocarpine, autorefraction and pupil size were again measured.Results: Mean pupil size pre- and postpilocarpine was 8.0±0.8 mm and 4.4±1.9 mm, respectively. Pre- and postpilocarpine, the mean SER was –0.83±1.60 and –10.55±4.26 diopters, respectively. The mean pilocarpine-induced accommodative amplitude was 9.73±3.64 diopters. Five subjects had accommodative amplitudes ≥14.00 diopters. Accommodative amplitude was not significantly related to baseline SER (p-value =0.24, pre- or postpilocarpine pupil size (p-values =0.13 and 0.74, or change in pupil size (p-value =0.37. Iris color did not statistically significantly affect accommodative amplitude (p-value =0.83.Conclusion: Following topically applied pilocarpine, the induced objectively measured accommodation in the young eye is greater than or equal to the reported subjectively measured voluntary maximum accommodative

  20. Anatomical and functional characteristics of carotid sinus stimulation in humans

    Science.gov (United States)

    Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Secher, N. H.; Raven, P. B.

    2001-01-01

    Transmission characteristics of pneumatic pressure to the carotid sinus were evaluated in 19 subjects at rest and during exercise. Either a percutaneous fluid-filled (n = 12) or balloon-tipped catheter (n = 7) was placed at the carotid bifurcation to record internal transmission of external neck pressure/neck suction (NP/NS). Sustained, 5-s pulses, and rapid ramping pulse protocols (+40 to -80 Torr) were recorded. Transmission of pressure stimuli was less with the fluid-filled catheter compared with that of the balloon-tipped catheter (65% vs. 82% negative pressure, 83% vs. 89% positive pressure; P NP/NS was higher than previously recorded in humans, and anatomical variation of carotid sinus location and equipment design can affect transmission results.

  1. Detection of codeine, morphine, 6-monoacetylmorphine, and meconin in human umbilical cord tissue: method validation and evidence of in utero heroin exposure.

    Science.gov (United States)

    Jones, Joseph T; Jones, Mary; Jones, Brian; Sulaiman, Kristin; Plate, Charles; Lewis, Douglas

    2015-02-01

    Heroin abuse is a significant public health issue and is on the rise because of the unintended consequences of strengthening controls for nonmedical use of prescription pain killers. Included in this trend is an increase in opiate exposed newborns that are particularly vulnerable to a number of negative health outcomes. After presenting a fully validated liquid chromatography-tandem mass spectrometric method for codeine, morphine, 6-monoacetylmorphine, and meconin, a metabolite of the heroin contaminant noscapine, we compared the outcome of 46 authentic umbilical specimens with the results generated using a previous less sensitive method that did not include meconin. Additionally, we provided a summary of opiate finding from a year-long survey of specimens received into a commercial reference laboratory. The limits of detection for all 4 compounds were 0.1 ng/g, the limit of quantitation was 0.2 ng/g, and the assay was linear from 0.2 to 10.0 ng/g. Of the 46 comparative specimens, this method improved the identification of heroin exposure from 2 to 5, and the year-long survey identified 86 heroin-exposed newborns with 11 of them identified by the sole identification of meconin. This study demonstrated that a more sensitive analytical platform and the inclusion of meconin in the opiates assay improved the ability to distinguish between in utero heroin exposure and maternal administration of codeine or morphine.

  2. Is umbilical coiling genetically determined?

    Science.gov (United States)

    Ayala, Nina K; Ernst, Linda M; Miller, Emily S

    2018-02-21

    Abnormal umbilical cord coiling is associated with adverse perinatal outcomes; however, the etiology of the umbilical coiling pattern is poorly understood. Retrospective cohort of all twin deliveries >20 weeks in 2014. Pregnancies were dichotomized by chorionicity and the umbilical coiling index (UCI) and placental cord insertion location were compared. In cases with one or both cords hypercoiled, the direction and pattern of coiling were compared by chorionicity. A similar analysis was performed stratified by zygosity. Three hundred sisty two twin pairs were included; 26 (7.2%) monochorionic and 174 (87.0%) definitively dizygotic. Concordance in the UCI and coiling category were similar between dichorionic and monochorionic as well as dizygous and monozygous gestations, (73.2% vs 80.8%, p = 0.399 and 71.4% vs 80.8%, p = 0.399, respectively). Analyses of the coiling direction and pattern also demonstrated no difference by chorionicity or zygosity. These data do not support a genetic basis for umbilical cord coiling.

  3. Some biological properties of human chorionic follicle stimulating hormone

    International Nuclear Information System (INIS)

    Tojo, Shimpei; Ashitaka, Yoshihiko; Maruo, Takeshi; Nishimoto, Hiroyuki

    1975-01-01

    The biological properties of human chorionic FSH (hCFSH) for rat ovaries were investigated. Highly purified hCFSH had similar response to the ovarian augmentation test as bovine FSH and significantly enhanced 3 H-thymidine uptake by granulosa cells and theca cells in the ovary of hypophysectomized rat. In contrast, highly purified hCG little responded to the ovarian augmentation test and had no effect on 3 H-thymidine uptake by the ovary. These results indicate that hCFSH may promote the follicular growth of ovary resulting from granulosa cell proliferation and its enlargement. In addition, freshly harvested porcine granulosa cells were employed in an in vitro system to investigate specific binding of hCFSH to ovarian receptor. Radioiodinated hCFSH ( 125 I-hCFSH) and hCG ( 125 I-hCG) were respectively incubated with cell suspensions. Binding of these hormone preparations was proportional to the cell number and increased with the time of incubation through 120 minutes. The binding ability of 125 I-hCFSH to the cells was greater than that of 125 I-hCG. Increasing concentrations of unlabeled hCFSH in the incubation mixture progressively inhibited the uptake of 125 I-hCFSH by granulosa cells. Unlabeled hCG was not able to compete with 125 I-hCFSH binding. The similar phenomenon to inhibit the binding of 125 I-hCG to the cells was also recognized in the presence of unlabeled hCG. These findings suggest that granulosa cell has at least two different types of receptor sites: one for hCFSH and the other for hCG. (auth.)

  4. Do anabolic nutritional supplements stimulate human growth hormone secretion in elderly women with heart failure?

    NARCIS (Netherlands)

    Smeets, Ellen T.H.C.; Schutzler, Scott E.; Wei, Jeanne Y.; Azhar, Gohar; Wolfe, Robert R.

    2017-01-01

    Growth hormone treatment has gained attention over the past decade as a treatment for heart failure. Human growth hormone (HGH) must be administered by injections (usually daily), so there is considerable advantage to stimulation of endogenous secretion by amino acid-based nutritional

  5. Effect of the human follicle-stimulating hormone-binding inhibitor ...

    Indian Academy of Sciences (India)

    The follicle-stimulating hormone (FSH)-binding inhibitor (FSHBI), purified by our laboratory from human ovarian follicular fluid, has been shown to suppress ovulation and induce follicular atresia/apoptosis in mice as well as impair fertility in marmosets, the new world monkeys. The octapeptide, a peptide corresponding to ...

  6. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  7. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction.

    Science.gov (United States)

    Sparing, Roland; Mottaghy, Felix M

    2008-04-01

    Noninvasive stimulation of the brain by means of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) has driven important discoveries in the field of human memory functions. Stand-alone or in combination with other brain mapping techniques noninvasive brain stimulation can assess issues such as location and timing of brain activity, connectivity and plasticity of neural circuits and functional relevance of a circumscribed brain area to a given cognitive task. In this emerging field, major advances in technology have been made in a relatively short period. New stimulation protocols and, especially, the progress in the application of tDCS have made it possible to obtain longer and much clearer inhibitory or facilitatory effects even after the stimulation has ceased. In this introductory review, we outline the basic principles, discuss technical limitations and describe how noninvasive brain stimulation can be used to study human memory functions in vivo. Though improvement of cognitive functions through noninvasive brain stimulation is promising, it still remains an exciting challenge to extend the use of TMS and tDCS from research tools in neuroscience to the treatment of neurological and psychiatric patients.

  8. Human growth hormone binding and stimulation of insulin biosynthesis in cloned rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, Nils

    1985-01-01

    Binding of 125I labelled human growth hormone to cloned insulin producing RIN-5AH cells is described. Binding was specific for somatotropic hormones since both human and rat growth hormone could compete for binding sites, whereas much higher concentrations of lactogenic hormones were needed to in...... to inhibit binding. Culture of RIN-5AH cells in the presence of hGH stimulated insulin biosynthesis by 85%....

  9. In Vitro Antibacterial Activity, Gas Chromatography-Mass Spectrometry Analysis of Woodfordia fruticosa Kurz. Leaf Extract and Host Toxicity Testing With In Vitro Cultured Lymphocytes From Human Umbilical Cord Blood.

    Science.gov (United States)

    Dubey, Debasmita; Patnaik, Rajashree; Ghosh, Goutam; Padhy, Rabindra N

    2014-10-01

    To locate a plant with suitable phytochemicals for use as antimicrobial agents to control multidrug-resistant (MDR) bacteria as a complementary medicine, without host toxicity as monitored through cultured lymphocytes from human umbilical cord blood. The methanol crude leaf extract of the plant Woodfordia fruticosa was subjected to antimicrobial assay in vitro with nine pathogenic MDR bacteria from clinical samples. This was followed by bioassay-guided fractionation with seven non-polar to polar solvents, gas chromatography-mass spectrometry analysis of the n-butanol fraction, and monitoring of the host toxicity of the leaf extract with in vitro grown lymphocytes from human umbilical cord blood. The leaf extract of W. fruticosa had a controlling capacity for MDR bacteria. The minimum inhibitory concentration and minimum bactericidal concentration of the n-butanol fraction were < 1.89 mg/mL extract and 9.63 mg/mL extract, respectively. The gas chromatography-mass spectrometry spectrum of the n-butanol fraction confirmed the presence of 13 peaks of different compounds with retention times of 9.11 minutes, 9.72 minutes, 10.13 minutes, 10.78 minutes, 12.37 minutes, 12.93 minutes, 18.16 minutes, 21.74 minutes, 21.84 minutes, 5.96 minutes, 12.93 minutes, 24.70 minutes, and 25.76 minutes. The six leading compounds were: diethyl phthalate: IUPAC name: diethyl benzene-1,2-dicarboxylate; 5-methyl-2-(1-methylethyl) phenol: IUPAC name: 5-methyl-2-propan-2-ylphenol; (E )-3,7-dimethylocta-2,6-diene-1-thiol: IUPAC name: (2Z)-3,7-dimethylocta-2,6-diene-1-thiol; 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E ): IUPAC name: 2,6,10-dodecatrien-1-ol; 3,7,11-trimethyl-, (E,E); 2-methoxy-4-(2-propenyl) phenol: IUPAC name: 2-methoxy-4-[(1E)-prop-1-en-1-yl]phenol; hexadecanoic acid: IUPAC name: hexadecanoic acid. The presence of antimicrobial compounds that are therapeutically potent against MDR bacteria was confirmed in W. fruticosa. The crude leaf extract showed no host toxicity

  10. Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Hao

    2015-08-01

    Full Text Available Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC in a human bronchial epithelial cell line (16HBE14o-, and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172, but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS, Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.

  11. Nanosecond UV lasers stimulate transient Ca2+elevations in human hNT astrocytes.

    Science.gov (United States)

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  12. Functional magnetic resonance imaging of the human primary visual cortex during visual stimulation

    International Nuclear Information System (INIS)

    Miki, Atsushi; Abe, Haruki; Nakajima, Takashi; Fujita, Motoi; Watanabe, Hiroyuki; Kuwabara, Takeo; Naruse, Shoji; Takagi, Mineo.

    1995-01-01

    Signal changes in the human primary visual cortex during visual stimulation were evaluated using non-invasive functional magnetic resonance imaging (fMRI). The experiments were performed on 10 normal human volunteers and 2 patients with homonymous hemianopsia, including one who was recovering from the exacerbation of multiple sclerosis. The visual stimuli were provided by a pattern generator using the checkerboard pattern for determining the visual evoked potential of full-field and hemifield stimulation. In normal volunteers, a signal increase was observed on the bilateral primary visual cortex during the full-field stimulation and on the contra-lateral cortex during hemifield stimulation. In the patient with homonymous hemianopsia after cerebral infarction, the signal change was clearly decreased on the affected side. In the other patient, the one recovering from multiple sclerosis with an almost normal visual field, the fMRI was within normal limits. These results suggest that it is possible to visualize the activation of the visual cortex during visual stimulation, and that there is a possibility of using this test as an objective method of visual field examination. (author)

  13. Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells.

    Science.gov (United States)

    Codispoti, Bruna; Rinaldo, Nicola; Chiarella, Emanuela; Lupia, Michela; Spoleti, Cristina Barbara; Marafioti, Maria Grazia; Aloisio, Annamaria; Scicchitano, Stefania; Giordano, Marco; Nappo, Giovanna; Lucchino, Valeria; Moore, Malcolm A S; Zhou, Pengbo; Mesuraca, Maria; Bond, Heather Mandy; Morrone, Giovanni

    2017-07-04

    Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery.Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes.

  14. The influence of BDNF on human umbilical cord blood stem/progenitor cells: implications for stem cell-based therapy of neurodegenerative disorders.

    Science.gov (United States)

    Paczkowska, Edyta; Łuczkowska, Karolina; Piecyk, Katarzyna; Rogińska, Dorota; Pius-Sadowska, Ewa; Ustianowski, Przemysław; Cecerska, Elżbieta; Dołęgowska, Barbara; Celewicz, Zbigniew; Machaliński, Bogusław

    2015-01-01

    Umbilical cord blood (UCB)-derived stem/progenitor cells (SPCs) have demonstrated the potential to improve neurologic function in different experimental models. SPCs can survive after transplantation in the neural microenvironment and indu ce neuroprotection, endogenous neurogenesis by secreting a broad repertoire of trophic and immunomodulatory cytokines. In this study, the influence of brain-derived neurotrophic factor (BDNF) pre-treatment was comprehensively evaluated in a UCB-derived lineage-negative (Lin-) SPC population. UCB-derived Lin- cells were evaluated with respect to the expression of (i) neuronal markers using immunofluorescence staining and (ii) specific (TrkB) receptors for BDNF using flow cytometry. Next, after BDNF pre-treatment, Lin- cells were extensively assessed with respect to apoptosis using Western blotting and proliferation via BrdU incorporation. Furthermore, NT-3 expression levels in Lin- cells using RQ PCR and antioxidative enzyme activities were assessed. We demonstrated neuronal markers as well as TrkB expression in Lin- cells and the activation of the TrkB receptor by BDNF. BDNF pre-treatment diminished apoptosis in Lin- cells and influenced the proliferation of these cells. We observed significant changes in antioxidants as well as in the increased expression of NT-3 in Lin- cells following BDNF exposure. Complex global miRNA and mRNA profiling analyses using microarray technology and GSEA revealed the differential regulation of genes involved in the proliferation, gene expression, biosynthetic processes, translation, and protein targeting. Our results support the hypothesis that pre-treatment of stem/progenitor cells could be beneficial and may be used as an auxiliary strategy for improving the properties of SPCs.

  15. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model.

    Science.gov (United States)

    Yousefifard, Mahmoud; Nasirinezhad, Farinaz; Shardi Manaheji, Homa; Janzadeh, Atousa; Hosseini, Mostafa; Keshavarz, Mansoor

    2016-03-08

    Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. A compression model was used to induce SCI in a rat model. A week after SCI, about 1 million cells were transplanted into the spinal cord. Behavioral tests, including motor function recovery, mechanical allodynia, cold allodynia, mechanical hyperalgesia, and thermal hyperalgesia, were carried out every week for 8 weeks after SCI induction. A single unit recording and histological evaluation were then performed. We show that BM-MSC and UC-MSC transplantations led to improving functional recovery, allodynia, and hyperalgesia. No difference was seen between the two cell groups regarding motor recovery and alleviating the allodynia and hyperalgesia. These cells survived in the tissue at least 8 weeks and prevented cavity formation due to SCI. However, survival rate of UC-MSC was significantly higher than BM-MSC. Electrophysiological evaluations showed that transplantation of UC-MSC brings about better results than BM-MSCs in wind up of wide dynamic range neurons. The results of the present study show that BM-MSC and UC-MSC transplantations alleviated the symptoms of neuropathic pain and resulted in subsequent motor recovery after SCI. However, survival rate and electrophysiological findings of UC-MSC were significantly better than BM-MSC.

  16. A Modified Ficoll-Paque Gradient Method for Isolating Mononuclear Cells from the Peripheral and Umbilical Cord Blood of Humans for Biobanks and Clinical Laboratories.

    Science.gov (United States)

    Jia, Yanjuan; Xu, Hui; Li, Yonghong; Wei, Chaojun; Guo, Rui; Wang, Fang; Wu, Yu; Liu, Jing; Jia, Jing; Yan, Junwen; Qi, Xiaoming; Li, Yuanting; Gao, Xiaoling

    2017-12-12

    Although the Ficoll-Paque method is classically used to isolate peripheral blood mononuclear cells (PBMCs), modifications in this method are required for a more rapid and economic output for biobanks and clinical laboratories, particularly in developing countries. In this study, we addressed this issue by modifying the Ficoll-Paque method for the isolation of PBMCs or mononuclear cells from the peripheral and the umbilical cord blood of healthy and diseased (infected, anemic, and chronic obstructive pulmonary disease) adult individuals. In the modified method, we initiated the cell isolation process from the buffy coat layer, which appears in the interface between the plasma and sediments after centrifugation, instead of using the whole blood as described in the classic method. Although the PBMC yield by the modified method was about 12% less than in the classic method, the number of PBMCs isolated by the modified method was more than one million, which is enough for different research/diagnostic purposes, such as multi-omics detection. Assessment of cell viability and purity by hematology analyzer and trypan blue showed no significant difference between the viability and purity of the PBMCs isolated by these two methods in almost all groups, except samples from the infected and cord blood groups, where lower PBMC purity with higher granulocyte contamination were observed. In addition, at delayed processing time points, all parameters for the two methods were decreased in a time-dependent manner, especially at 8, 12, or 24 hours after the sample collection. In summary, the performance of PBMC isolation by the classic and modified methods mainly relies on the PBMC ratio in original samples. The modified method could be preferred for PBMC isolation because of its time and cost savings, especially for the biobanks and clinical laboratories in developing countries.

  17. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans.

    Science.gov (United States)

    Sverrisdóttir, Yrsa B; Green, Alexander L; Aziz, Tipu Z; Bahuri, Nor Faizal A; Hyam, Jonathan; Basnayake, Shanika D; Paterson, David J

    2014-05-01

    Targeted electric deep brain stimulation in midbrain nuclei in humans alters cardiovascular parameters, presumably by modulating autonomic and baroreflex function. Baroreflex modulation of sympathetic outflow is crucial for cardiovascular regulation and is hypothesized to occur at 2 distinct brain locations. The aim of this study was to evaluate sympathetic outflow in humans with deep brain stimulating electrodes during ON and OFF stimulation of specific midbrain nuclei known to regulate cardiovascular function. Multiunit muscle sympathetic nerve activity was recorded in 17 patients undergoing deep brain stimulation for treatment of chronic neuropathic pain (n=7) and Parkinson disease (n=10). Sympathetic outflow was recorded during ON and OFF stimulation. Arterial blood pressure, heart rate, and respiratory frequency were monitored during the recording session, and spontaneous vasomotor and cardiac baroreflex sensitivity were assessed. Head-up tilt testing was performed separately in the patients with Parkinson disease postoperatively. Stimulation of the dorsal most part of the subthalamic nucleus and ventrolateral periaqueductal gray resulted in improved vasomotor baroreflex sensitivity, decreased burst frequency and blood pressure, unchanged burst amplitude distribution, and a reduced fall in blood pressure after tilt. Stimulation of the dorsolateral periaqueductal gray resulted in a shift in burst amplitude distribution toward larger amplitudes, decreased spontaneous beat-to-beat blood pressure variability, and unchanged burst frequency, baroreflex sensitivity, and blood pressure. Our results indicate that a differentiated regulation of sympathetic outflow occurs in the subthalamic nucleus and periaqueductal gray. These results may have implications in our understanding of abnormal sympathetic discharge in cardiovascular disease and provide an opportunity for therapeutic targeting.

  18. Mechanical Stimulation Protocols of Human Derived Cells in Articular Cartilage Tissue Engineering - A Systematic Review.

    Science.gov (United States)

    Khozoee, Baktash; Mafi, Pouya; Mafi, Reza; Khan, Wasim S

    2017-01-01

    Mechanical stimulation is a key factor in articular cartilage generation and maintenance. Bioreactor systems have been designed and built in order to deliver specific types of mechanical stimulation. The focus has been twofold, applying a type of preconditioning in order to stimulate cell differentiation, and to simulate in vivo conditions in order to gain further insight into how cells respond to different stimulatory patterns. Due to the complex forces at work within joints, it is difficult to simulate mechanical conditions using a bioreactor. The aim of this review is to gain a deeper understanding of the complexities of mechanical stimulation protocols by comparing those employed in bioreactors in the context of tissue engineering for articular cartilage, and to consider their effects on cultured cells. Allied and Complementary Medicine 1985 to 2016, Ovid MEDLINE[R] 1946 to 2016, and Embase 1974 to 2016 were searched using key terms. Results were subject to inclusion and exclusion criteria, key findings summarised into a table and subsequently discussed. Based on this review it is overwhelmingly clear that mechanical stimulation leads to increased chondrogenic properties in the context of bioreactor articular cartilage tissue engineering using human cells. However, given the variability and lack of controlled factors between research articles, results are difficult to compare, and a standardised method of evaluating stimulation protocols proved challenging. With improved standardisation in mechanical stimulation protocol reporting, bioreactor design and building processes, along with a better understanding of joint behaviours, we hope to perform a meta-analysis on stimulation protocols and methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Upcycling umbilical cords: bridging regenerative medicine with neonatology.

    Science.gov (United States)

    Moreira, Alvaro; Alayli, Yasmeen; Balgi, Saloni; Winter, Caitlyn; Kahlenberg, Samuel; Mustafa, Shamimunisa; Hornsby, Peter

    2017-11-27

    Preterm birth is a major health concern that affects 10% of all worldwide deliveries. Many preterm infants are discharged from the hospital with morbidities that lead to an increased risk for neurodevelopmental impairment, recurrent hospitalizations, and life-long conditions. Unfortunately, the treatment of these conditions is palliative rather than curative, which calls for novel and innovative strategies. Progress in regenerative medicine has offered therapeutic options for many of these conditions. Specifically, human umbilical cord mesenchymal stem cells (MSCs) and cord blood (UCB) cells have shown promise in treating adult-onset diseases. Unlike bone-marrow and embryonic derived stem cells, umbilical cord-derived cells are easily and humanely obtained, have low immunogenicity, and offer the potential of autologous therapy. While there are several studies to uphold the efficacy of umbilical cord MSCs in adult therapies, there remains an unmet need for the investigation of its use in treating neonates. The purpose of this review is to provide a summary of current information on the potential therapeutic benefits and clinical applicability of umbilical cord MSCs and UCB cells. Promising preclinical studies have now led to a research movement that is focusing on cell-based therapies for preterm infants.

  20. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    Science.gov (United States)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  1. Labelling of human follicle stimulant hormone with 125I, for radioimmunoassay

    International Nuclear Information System (INIS)

    Pinto, H.; Werner, R.S.; Lerario, A.C.; Toledo e Souza, I.T. de; Wajchenberg, B.L.; Pieroni, R.R.

    1976-01-01

    An efficient labeling of human Follicle Stimulant Harmone is essential to development of sensitive radioimmunoassays. Iodination by Chloramine T method frequently is subject to severe iodination damage and some preparations are unaccetable for radioimmunoassays. Modifications to the Hunter method, changing incubation time, reaction temperature and reducing Chloramine T amount used in the reaction, were performed in obtaining a more effective labeling. FSH-125 I fraction obtained from Sephadex G-75 column purification presented excellent immunoreactivity and quality control of the steps of the reaction demonstrated a high percentage (90%) of intact Follicle Stimulant Hormone [pt

  2. Effect of Rat Medicated Serum Containing Zuo Gui Wan and/or You Gui Wan on the Differentiation of Stem Cells Derived from Human First Trimester Umbilical Cord into Oocyte-Like Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Hu

    2015-01-01

    Full Text Available Zuo Gui Wan (ZGW and You Gui Wan (YGW are two classic formulas used in clinical treatment of infertility in traditional Chinese medicine (TCM. However, the actions of the formulas remain to be proven at the cellular and molecular levels. In this study, we investigate whether the two formulas have any effect on germ cell formation and differentiation by culturing rat medicated serums containing YGW or ZGW with stem cells derived from human first trimester umbilical cord. Our results showed that while the normal rat serums had no significant effects, the rat medicated serums had significant effects on the differentiation of the stem cells into oocyte-like cells (OLCs based on (1 cell morphological changes that resembled purative cumulus-oocyte complexes (COCs; (2 expressions of specific markers that were indicative of germ cell formation and oocyte development; and (3 estradiol production