WorldWideScience

Sample records for sterol carrier protein

  1. The Biological Activity of alpha-Mangostin, a Larvicidal Botanic Mosquito Sterol Carrier Protein-2 Inhibitor

    Science.gov (United States)

    2010-01-01

    it is known that esterase aids in the detoxiÞcation of or- ganophosphates ( Hemingway and Ransom 2000). In- terestingly, we found that -mangostin...Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J. Biol. Chem. 276: 48058Ð48065. Hemingway

  2. Binding of 7-dehydrocholesterol to sterol carrier protein and vitamin D3 effect

    International Nuclear Information System (INIS)

    Takase, Sachiko; Oizumi, Kumiko; Moriuchi, Sachiko; Hosoya, Norimasa

    1975-01-01

    It was confirmed that deltasup(5,7)-sterol delta 7 -reductase activity was suppressed by cholecalciferol (vitamin D 3 ) in the enzyme system consisted of microsomes and sterol carrier protein (SCP). The enzyme activity was significantly decreased in the combination with microsomes obtained from either vitamin D-deficient or vitamin D 3 -treated rat liver and with SCP obtained from vitamin D 3 -treated rat. It was also demonstrated by the binding assay of the dextran-charcoal technique that 7-dehydrocholesterol binding to SCP could be specifically displaced by vitamin D 3 . The inhibition of cholecalciferol on 7-dehydro-cholesterol binding to liver SCP was confirmed to be non-competitive inhibition. (auth.)

  3. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  4. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  5. The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition

    Directory of Open Access Journals (Sweden)

    Bond Charles S

    2011-03-01

    Full Text Available Abstract Background The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1. Results To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo. Conclusions Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.

  6. Distribution of sterol carrier protein2 (SCP2) in rat tissues and evidence for slow turnover in liver and adrenal cortex

    International Nuclear Information System (INIS)

    Kharroubi, A.; Chanderbhan, R.; Fiskum, G.; Noland, B.J.; Scallen, T.J.; Vahouny, G.V.

    1986-01-01

    Sterol carrier protein 2 (SCP 2 ) has been implicated in the regulation of the terminal stages of hepatic cholesterol biosynthesis, and in sterol utilization for adrenal steroid hormone and hepatic bile acid synthesis. In the present studies, a highly sensitive radioimmunoassay, using [ 125 I] SCP 2 , has been developed. Highest levels of SCP 2 were found in rat liver with progressively lower levels in intestinal mucosa, adrenal, kidney, lung and testis. SCP 2 levels were low or absent in heart, brain, skeletal muscle and serum. Liver SCP 2 was largely (44%) associated with the microsomal fraction, while in adrenal, 46% was associated with mitochondria, a distribution which is consistent with the proposed roles for SCP 2 in these tissues. Levels of SCP 2 in AS 30D hepatoma cells were only 5% of those in normal liver. In liver there was no indication of diurnal rhythm of SCP 2 in the cytosol and only slight variation of the microsomal SCP 2 levels. Fasting has only slight effects on SCP 2 concentration of rat liver microsomes and cytosol. Neither ACTH nor cycloheximide treatment of rats had a significant effect on SCP 2 distribution in the adrenal. In general, these findings indicate that SCP 2 has a low turn-over rate

  7. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  8. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  9. Co-suppression of sterol-regulatory element binding protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... In Arabidopsis,. At5g35220 gene being sterol regulatory element-binding protein site 2, protease and metalloendopeptidase activity were required for chloroplast development and play a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-.

  10. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols.

    Science.gov (United States)

    Harding, Scott V; Rideout, Todd C; Jones, Peter J H

    2010-07-01

    The effect of dietary plant sterols on cholesterol homeostasis has been well characterized in the intestine, but how plant sterols affect lipid metabolism in other lipid-rich tissues is not known. Changes in hepatic cholesterol homeostasis in response to high dietary intakes of plant sterols were determined in male golden Syrian hamsters fed hypercholesterolemia-inducing diets with and without 2% plant sterols (wt:wt; Reducol, Forbes Meditech) for 28 d. Plasma and hepatic cholesterol concentrations, cholesterol biosynthesis and absorption, and changes in the expression of sterol response element binding protein 2 (SREBP2) and liver X receptor-beta (LXRbeta) and their target genes were measured. Plant sterol feeding reduced plasma total cholesterol, non-HDL cholesterol, and HDL cholesterol concentrations 43% (P 6-fold (P = 0.029) and >2-fold (P sterol-fed hamsters compared with controls. Plant sterol feeding also increased fractional cholesterol synthesis >2-fold (P sterol feeding increased hepatic protein expression of cytosolic (inactive) SREBP2, decreased nuclear (active) SREBP2, and tended to increase LXRbeta (P = 0.06) and ATP binding cassette transporter G5, indicating a differential modulation of the expression of proteins central to cholesterol metabolism. In conclusion, high-dose plant sterol feeding of hamsters changes hepatic protein abundance in favor of cholesterol excretion despite lower hepatic cholesterol concentrations and higher cholesterol fractional synthesis.

  11. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  12. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  13. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    Science.gov (United States)

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  14. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    Science.gov (United States)

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  15. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  17. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    Science.gov (United States)

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  19. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    Science.gov (United States)

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  20. Co-suppression of sterol-regulatory element binding protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... protein mediates etiolation in Arabidopsis thaliana .... (A) The scheme of At5g35220 gene and pEGAD-At5g35220; .... stem length of 42-day-old plants; root length of 5-day-old seedlings grown on MS medium; fresh weight of ...

  1. Effects of sterol regulatory element-binding protein (SREBP in chickens

    Directory of Open Access Journals (Sweden)

    Alipour Fahimeh

    2012-02-01

    Full Text Available Abstract Sterol regulatory element binding protein- 1 and -2 (SREBP-1 and -2 are key transcription factors involved in the biosynthesis of cholesterol and fatty acids. The SREBP have mostly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, though, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. Since a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we review Size and Tissue expression Pattern of SREBP and role of this protein in chickens.

  2. Coordinate Regulation of Yeast Sterol Regulatory Element-binding Protein (SREBP) and Mga2 Transcription Factors.

    Science.gov (United States)

    Burr, Risa; Stewart, Emerson V; Espenshade, Peter J

    2017-03-31

    The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    Science.gov (United States)

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  4. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  5. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  6. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  7. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation.

    Science.gov (United States)

    Currie, Erin; Guo, Xiuling; Christiano, Romain; Chitraju, Chandramohan; Kory, Nora; Harrison, Kenneth; Haas, Joel; Walther, Tobias C; Farese, Robert V

    2014-07-01

    Accurate protein inventories are essential for understanding an organelle's functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    Science.gov (United States)

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  9. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  10. Pathogenic mutations of the human mitochondrial citrate carrier SLC25A1 lead to impaired citrate export required for lipid, dolichol, ubiquinone and sterol synthesis.

    Science.gov (United States)

    Majd, Homa; King, Martin S; Smith, Anthony C; Kunji, Edmund R S

    2018-01-01

    Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes. Copyright © 2017. Published by Elsevier B.V.

  11. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    Science.gov (United States)

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  12. Sterol regulatory element binding protein 2 overexpression is associated with reduced adipogenesis and ectopic fat accumulation in transgenic spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Trnovská, J.; Kazdová, L.; Pravenec, Michal

    2014-01-01

    Roč. 63, č. 5 (2014), s. 587-590 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12061 Institutional support: RVO:67985823 Keywords : sterol regulatory element binding protein 2 * transgenic * spontaneously hypertensive rat * lipid metabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.293, year: 2014

  13. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts

    DEFF Research Database (Denmark)

    Berzina, Zane; Solanko, Lukasz M; Mehadi, Ahmed S

    2018-01-01

    /LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous...... but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM...

  14. Efficacy of Food Proteins as Carriers for Flavonoids

    NARCIS (Netherlands)

    Bohin, M.C.; Vincken, J.P.; Hijden, H.T.W.M.; Gruppen, H.

    2012-01-01

    Enrichment of flavonoids in food is often limited by their off-tastes, which might be counteracted by the use of food proteins as carriers of flavonoids. Various milk proteins, egg proteins, and gelatin hydrolysates were compared for their binding characteristics to two flavan-3-ols. Among the

  15. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB.

    Science.gov (United States)

    Roussel, Benoit D; Newton, Timothy M; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E; Burr, Marian L; Lehner, Paul J; Crowther, Damian C; Marciniak, Stefan J; Lomas, David A

    2013-11-15

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.

  16. Regulation of steroid 5-{alpha} reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young-Kyo [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States); Zhu, Bing [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0144 (United States); Jeon, Tae-Il [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States); Osborne, Timothy F., E-mail: tfosborn@uci.edu [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States)

    2009-11-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  17. Regulation of steroid 5-α reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    International Nuclear Information System (INIS)

    Seo, Young-Kyo; Zhu, Bing; Jeon, Tae-Il; Osborne, Timothy F.

    2009-01-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  18. Glycogen Synthase Kinase 3 Inactivation Induces Cell Senescence through Sterol Regulatory Element Binding Protein 1-Mediated Lipogenesis in Chang Cells.

    Science.gov (United States)

    Kim, You-Mie; Song, Insun; Seo, Yong-Hak; Yoon, Gyesoon

    2013-12-01

    Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence. We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2. In this model of stress-induced cell senescence using DFO and H2O2, the phosphorylation profile of glycogen synthase kinase 3α (GSK3α) and β corresponded closely to the expression profile of the mature form of SREBP-1 protein. Inhibition of GSK3 with a subcytotoxic concentration of the selective GSK3 inhibitor SB415286 significantly increased mature SREBP1 expression, as well as lipogenesis and organellar mass. In addition, GSK3 inhibition was sufficient to induce senescence in Chang cells. Suppression of GSK3 expression with siRNAs specific to GSK3α and β also increased mature SREBP1 expression and induced senescence. Finally, blocking lipogenesis with fatty acid synthase inhibitors (cerulenin and C75) and siRNA-mediated silencing of SREBP1 and ATP citrate lyase (ACL) significantly attenuated GSK3 inhibition-induced senescence. GSK3 inactivation is an important upstream event that induces SREBP1-mediated lipogenesis and consequent cell senescence.

  19. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  20. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium.

    Science.gov (United States)

    Rudolph, Michael C; Monks, Jenifer; Burns, Valerie; Phistry, Meridee; Marians, Russell; Foote, Monica R; Bauman, Dale E; Anderson, Steven M; Neville, Margaret C

    2010-12-01

    The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase (Fasn), insulin-induced gene 1 (Insig1), mitochondrial citrate transporter (Slc25a1), and stearoyl-CoA desaturase 2 (Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α (Acaca) and ATP citrate lyase (Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.

  1. Identifying molecular effects of diet through systems biology: influence of herring diet on sterol metabolism and protein turnover in mice.

    Directory of Open Access Journals (Sweden)

    Intawat Nookaew

    Full Text Available BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD. This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/- mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity.

  2. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia.

    Science.gov (United States)

    Li, J N; Mahmoud, M A; Han, W F; Ripple, M; Pizer, E S

    2000-11-25

    Endogenous fatty acid synthesis has been observed in certain rapidly proliferating normal and neoplastic tissues. Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate the expression of lipogenic genes including fatty acid synthase (FAS), the major biosynthetic enzyme for fatty acid synthesis. We have previously shown that SREBP-1, FAS, and Ki-67, a proliferation marker, colocalized in the crypts of the fetal gastrointestinal tract epithelium. This study sought to determine whether SREBP-1 participates in the regulation of proliferation-associated fatty acid synthesis in colorectal neoplasia. An immunohistochemical analysis of SREBP-1, FAS, and Ki-67 expression in 25 primary human colorectal carcinoma specimens showed colocalization in 22 of these. To elucidate a functional linkage between SREBP-1 activation and proliferation-associated FA synthesis, SREBP-1 and FAS content were assayed during the adaptive response of cultured HCT116 colon carcinoma cells to pharmacological inhibition of FA synthesis. Cerulenin and TOFA each inhibited the endogenous synthesis of fatty acids in a dose-dependent manner and each induced increases in both precursor and mature forms of SREBP-1. Subsequently, both the transcriptional activity of the FAS promoter in a luciferase reporter gene construct and the FAS expression increased. These results demonstrate that tumor cells recognize and respond to a deficiency in endogenous fatty acid synthesis by upregulating both SREBP-1 and FAS expression and support the model that SREBP-1 participates in the transcriptional regulation of lipogenic genes in colorectal neoplasia. Copyright 2000 Academic Press.

  3. Speed Limits for Nonvesicular Intracellular Sterol Transport.

    Science.gov (United States)

    Dittman, Jeremy S; Menon, Anant K

    2017-02-01

    Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by nonvesicular mechanisms requiring sterol transport proteins (STPs). Here we examine the idea that transport is enhanced at membrane contact sites where the ER is closely apposed to the PM. We conclude that sterol desorption from the membrane, rather than STP-mediated diffusion, is rate limiting in the cellular context, so there is no apparent kinetic benefit to having STP-mediated sterol transfer occur at contact sites. Contact sites may instead compartmentalize lipid synthesis or transport machinery, providing opportunities for regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Characterization of chicken riboflavin carrier protein gene structure ...

    Indian Academy of Sciences (India)

    The chicken riboflavin carrier protein (RCP) is an estrogen induced egg yolk and white protein. Eggs from hens which have a splice mutation in RCP gene fail to hatch, indicating an absolute requirement of RCP for the transport of riboflavin to the oocyte. In order to understand the mechanism of regulation of this gene by ...

  5. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  6. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsil; Ha, Hye-Jeong [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, Sujin [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Choi, Ah-Reum [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Sook-Jeong [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Hoe, Kwang-Lae, E-mail: kwanghoe@cnu.ac.kr [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Dong-Uk, E-mail: kimdongu@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-25

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.

  7. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells.

    Directory of Open Access Journals (Sweden)

    Christine Rauer

    Full Text Available Sterol regulatory element-binding proteins (SREBPs-1c and -2, which were initially discovered as master transcriptional regulators of lipid biosynthesis and uptake, were recently identified as novel transcriptional regulators of the sodium-iodide symporter gene in the thyroid, which is essential for thyroid hormone synthesis. Based on this observation that SREBPs play a role for thyroid hormone synthesis, we hypothesized that another gene involved in thyroid hormone synthesis, the thyroid peroxidase (TPO gene, is also a target of SREBP-1c and -2. Thyroid epithelial cells treated with 25-hydroxycholesterol, which is known to inhibit SREBP activation, had about 50% decreased mRNA levels of TPO. Similarly, the mRNA level of TPO was reduced by about 50% in response to siRNA mediated knockdown of both, SREBP-1 and SREBP-2. Reporter gene assays revealed that overexpression of active SREBP-1c and -2 causes a strong transcriptional activation of the rat TPO gene, which was localized to an approximately 80 bp region in the intron 1 of the rat TPO gene. In vitro- and in vivo-binding of both, SREBP-1c and SREBP-2, to this region in the rat TPO gene could be demonstrated using gel-shift assays and chromatin immunoprecipitation. Mutation analysis of the 80 bp region of rat TPO intron 1 revealed two isolated and two overlapping SREBP-binding elements from which one, the overlapping SRE+609/InvSRE+614, was shown to be functional in reporter gene assays. In connection with recent findings that the rat NIS gene is also a SREBP target gene in the thyroid, the present findings suggest that SREBPs may be possible novel targets for pharmacological modulation of thyroid hormone synthesis.

  8. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  9. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials.

    Science.gov (United States)

    Pichichero, Michael E

    2013-12-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.

  10. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9.

    Directory of Open Access Journals (Sweden)

    Xinwei Liu

    Full Text Available Oxysterol binding protein (OSBP and OSBP-related proteins (ORPS have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE were poor ligands for OSBP. In contrast, both long (ORP9L and short (ORP9S variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  11. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    Science.gov (United States)

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  12. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. DISP3, a sterol-sensing domain-containing protein that links thyroid hormone action and cholesterol metabolism

    Czech Academy of Sciences Publication Activity Database

    Zíková, Martina; Corlett, Alicia; Bendová, Zdeňka; Pajer, Petr; Bartůněk, Petr

    2009-01-01

    Roč. 23, č. 4 (2009), s. 520-528 ISSN 0888-8809 R&D Projects: GA AV ČR IAA500520705 Grant - others:EC(XE) LSHM-CT-2005-018652 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : thyroid hormone receptor * cholesterol metabolism * sterol-sensing domain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.257, year: 2009

  14. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  15. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  16. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    International Nuclear Information System (INIS)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-01-01

    Research highlights: → A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. → HCV-3a NS5A increases mature SREBP-1c protein level. → HCV-3a NS5A activates SREBP-1c transcription. → Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. → Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  17. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells.

    Science.gov (United States)

    Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R

    2016-11-01

    The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the

  18. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein

    NARCIS (Netherlands)

    Asojo, Oluwatoyin A.; Darwiche, Rabih; Gebremedhin, Selam; Smant, Geert; Lozano-Torres, Jose L.; Drurey, Claire; Pollet, Jeroen; Maizels, Rick M.; Schneiter, Roger; Wilbers, Ruud H.P.

    2018-01-01

    Heligmosomoides polygyrus bakeri is a model parasitic hookworm used to study animal and human helminth diseases. During infection, the parasite releases excretory/secretory products that modulate the immune system of the host. The most abundant protein family in excretory/secretory products

  19. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    Science.gov (United States)

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Quality of deli-style turkey enriched with plant sterols.

    Science.gov (United States)

    Grasso, S; Brunton, N P; Lyng, J G; Harrison, S M; Monahan, F J

    2016-12-01

    Low-fat meat products could be excellent carriers for plant sterols, known for their cholesterol-lowering properties. In this study, we developed a protocol for the manufacture of a deli-style turkey enriched with plant sterols (S) at a level sufficient to deliver the maximum plant sterols amount recommended for cholesterol reduction by the European Food Safety Authority (3 g of plant sterols per day) in a 70 g portion. We investigated the stability of the plant sterols and the effects of their addition on the product quality. Plant sterols remained stable during the seven-day storage period. The addition of plant sterols significantly affected some texture parameters, shear force, lipid oxidation, L values and water-holding capacity compared with control (C). Sensory analysis was carried out by an untrained panel (32) using the difference-from-control test between C and S samples to evaluate first the extent of the overall sensory difference and then the extent of sensory difference on colour, texture and flavour. Results indicated that panellists considered the intensity of the difference between C and S samples to be 'small'. Plant sterols could be used as a potential health-promoting meat ingredient with no effect on plant sterol stability but with some effects on texture and sensory characteristics. © The Author(s) 2016.

  1. The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study

    DEFF Research Database (Denmark)

    Kohut, Peter; Wüstner, Daniel; Hronska, L

    2011-01-01

    of sterol molecules into plasma membrane is not spontaneous but requires assistance of two ABC (ATP-binding cassette) pumps--Aus1p or Pdr11p. DHE taken up by uptake-competent hem1ΔAUS1PDR11 cells could be directly visualized by UV-sensitive wide field fluorescence microscopy. HPLC analysis of sterols......Uptake of external sterols in the yeast Saccharomyces cerevisiae is a multistep process limited to anaerobiosis or heme deficiency. It includes crossing the cell wall, insertion of sterol molecules into plasma membrane and their internalization and integration into intracellular membranes. We...... applied the fluorescent ergosterol analog dehydroergosterol (DHE) to monitor the initial steps of sterol uptake by three independent approaches: fluorescence spectroscopy, fluorescence microscopy and sterol quantification by HPLC. Using specific fluorescence characteristics of DHE we showed that the entry...

  2. Self-assembling bubble carriers for oral protein delivery.

    Science.gov (United States)

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Protein-based nanostructures as carriers for photo-physically active molecules in biosystems

    OpenAIRE

    Delcanale, Pietro

    2017-01-01

    In nature, many proteins function as carriers, being able to bind, transport and possibly release a ligand within a biological system. Protein-based carriers are interesting systems for drug delivery, with the remarkable advantage of being water-soluble and, as inherent components of biosystems, highly bio-compatible. This work focuses on the use of protein-based carriers for the delivery of hydrophobic photo-physically active molecules, whose structure and chemical properties lead to spontan...

  4. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism.

    Science.gov (United States)

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-02-12

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  6. Gender-related difference in altered gene expression of a sterol regulatory element binding protein, SREBP-2, by lead nitrate in rats: correlation with development of hypercholesterolemia.

    Science.gov (United States)

    Kojima, Misaki; Degawa, Masakuni

    2006-01-01

    Changes in gene expression levels of hepatic sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) after a single i.v. injection of lead nitrate (LN, 100 micromol kg(-1) body weight) were examined comparatively by real time reverse transcriptase-polymerase chain reaction (RT-PCR) in male and female rats. Significant increases in the gene expression level of SREBP-2, a transcription factor for the HMGR gene, occurred at 6-12 h in male and at 24-36 h in female rats after LN-treatment. The gene expression level of HMGR, a rate-limiting enzyme for cholesterol biosynthesis, significantly increased at 3-48 h in male rats and 12-48 h in female rats. Subsequently, significant increases in the amount of hepatic total cholesterol in male and female rats were also observed at 3-48 h and 24-48 h, respectively. The present findings demonstrate that increases in gene expressions of hepatic SREBP-2 and HMGR and the amount of hepatic total cholesterol by LN occur earlier in male rats than in the females, and that increases in the gene expression level of HMGR and the amount of hepatic total cholesterol occur prior to the increase in the gene expression level of SREBP-2 in either sex of rats. Copyright (c) 2006 John Wiley & Sons, Ltd.

  7. Association between single nucleotide polymorphisms of sterol regulatory element binding protein-2 gene and risk of knee osteoarthritis in a Chinese Han population.

    Science.gov (United States)

    Qiu, Xiao-Ming; Jin, Cheng-Tao; Wang, Wei

    2014-04-01

    To investigate associations between single nucleotide polymorphisms (SNPs) rs2228314 and rs2267443 in the sterol regulatory element binding protein-2 gene (SREBP-2) and knee osteoarthritis (OA) susceptibility in a Chinese Han population. SREBP-2 rs2228314 and rs2267443 polymorphisms were genotyped in patients with knee OA and age- and sex-matched OA-free controls from a Chinese Han population. A total of 402 patients with knee OA and 410 controls were enrolled in the study. GC and CC genotypes of rs2228314, and variant C, were associated with a significantly increased risk of knee OA. On stratification analysis, the association between the risk of OA and rs2228314 GC heterozygotes compared with GG homozygotes was stronger in females and those aged >65 years. In contrast, the GA and AA genotypes of rs2267443 were not significantly associated with the risk of knee OA, even after further stratification analysis according to age or sex. SREBP-2 rs2228314 G to C change and variant C genotype may contribute to knee OA risk in a Chinese Han population.

  8. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  9. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer.

    Science.gov (United States)

    Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung

    2018-01-12

    O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

  10. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert

    2013-01-01

    in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase......Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown...... to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...

  11. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    Science.gov (United States)

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  12. Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase activities are differentially influenced by ferredoxin.

    Science.gov (United States)

    Schultz, D J; Suh, M C; Ohlrogge, J B

    2000-10-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.

  13. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    Science.gov (United States)

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  14. Honokiol reverses alcoholic fatty liver by inhibiting the maturation of sterol regulatory element binding protein-1c and the expression of its downstream lipogenesis genes

    International Nuclear Information System (INIS)

    Yin Huquan; Kim, Youn-Chul; Chung, Young-Suk; Kim, Young-Chul; Shin, Young-Kee; Lee, Byung-Hoon

    2009-01-01

    Ethanol induces hepatic steatosis via a complex mechanism that is not well understood. Among the variety of molecules that have been proposed to participate in this mechanism, the sterol regulatory element (SRE)-binding proteins (SREBPs) have been identified as attractive targets for therapeutic intervention. In the present study, we evaluated the effects of honokiol on alcoholic steatosis and investigated its possible effect on the inhibition of SREBP-1c maturation. In in vitro studies, H4IIEC3 rat hepatoma cells developed increased lipid droplets when exposed to ethanol, but co-treatment with honokiol reversed this effect. Honokiol inhibited the maturation of SREBP-1c and its translocation to the nucleus, the binding of nSREBP-1c to SRE or SRE-related sequences of its lipogenic target genes, and the expression of genes for fatty acid synthesis. In contrast, magnolol, a structural isomer of honokiol, had no effect on nSREBP-1c levels. Male Wistar rats fed with a standard Lieber-DeCarli ethanol diet for 4 weeks exhibited increased hepatic triglyceride and decreased hepatic glutathione levels, with concomitantly increased serum alanine aminotransferase and TNF-α levels. Daily administration of honokiol (10 mg/kg body weight) by gavage during the final 2 weeks of ethanol treatment completely reversed these effects on hepatotoxicity markers, including hepatic triglyceride, hepatic glutathione, and serum TNF-α, with efficacious abrogation of fat accumulation in the liver. Inhibition of SREBP-1c protein maturation and of the expression of Srebf1c and its target genes for hepatic lipogenesis were also observed in vivo. A chromatin immunoprecipitation assay demonstrated inhibition of specific binding of SREBP-1c to the Fas promoter by honokiol in vivo. These results demonstrate that honokiol has the potential to ameliorate alcoholic steatosis by blocking fatty acid synthesis regulated by SREBP-1c

  15. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form.

    Science.gov (United States)

    Yao, Chaoqun; Wilson, Mary E

    2016-04-12

    The Leishmania spp. protozoa, the causative agents of the "neglected" tropical disease leishmaniasis, are transmitted to mammals by sand fly vectors. Within the sand fly, parasites transform from amastigotes to procyclic promastigotes, followed by development of virulent (metacyclic) promastigote forms. The latter are infectious to mammalian hosts. Biochemical components localized in the parasite plasma membrane such as proteins and sterols play a pivotal role in Leishmania pathogenesis. Leishmania spp. lack the enzymes for cholesterol synthesis, and the dynamics of sterol acquisition and biosynthesis in parasite developmental stages are not understood. We hypothesized that dynamic changes in sterol composition during metacyclogenesis contribute to the virulence of metacyclic promastigotes. Sterols were extracted from logarithmic phase or metacyclic promastigotes grown in liquid culture with or without cholesterol, and analyzed qualitatively and quantitatively by gas chromatograph-mass spectrometry (GC-MS). TriTrypDB was searched for identification of genes involved in Leishmania sterol biosynthetic pathways. In total nine sterols were identified. There were dynamic changes in sterols during promastigote metacyclogenesis. Cholesterol in the culture medium affected sterol composition in different parasite stages. There were qualitative and relative quantitative differences between the sterol content of virulent versus avirulent parasite strains. A tentative sterol biosynthetic pathway in Leishmania spp. promastigotes was identified. Significant differences in sterol composition were observed between promastigote stages, and between parasites exposed to different extracellular cholesterol in the environment. These data lay the foundation for further investigating the role of sterols in the pathogenesis of Leishmania spp. infections.

  16. Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway.

    Science.gov (United States)

    Ding, Lili; Li, Jinmei; Song, Baoliang; Xiao, Xu; Huang, Wendong; Zhang, Binfeng; Tang, Xiaowen; Qi, Meng; Yang, Qiming; Yang, Qiaoling; Yang, Li; Wang, Zhengtao

    2014-11-01

    Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acids, and triglycerides. We investigated the effect of the specific SREBP suppressor andrographolide, a natural compound isolated from Andrographis paniculata, on the regulation of SREBP signaling by use of Western blot, reporter gene assay, and quantitative real-time polymerase chain reaction analysis. In addition, the antiobesity effects of andrographolide were evaluated in C57BL/6 mice with high-fat diet (HFD)-induced obesity. Our results showed that andrographolide downregulated the expressions of SREBPs target genes and decreased cellular lipid accumulation in vitro. Further, andrographolide (100 mg/kg per day) attenuated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin or glucose sensitivity in HFD-induced obese mice. Andrographolide effectively suppressed the respiratory quotient, energy expenditure, and oxygen consumption, which may have contributed to the decreased body-weight gain of the obese mice fed with a HFD. Consistently, andrographolide regulated SREBP target genes and metabolism-associated genes in liver or brown adipose tissue, which may have directly contributed to the lower lipid levels and enhanced insulin sensitivity. Taken together, our results indicated that andrographolide ameliorated lipid metabolism and improved glucose use in mice with HFD-induced obesity. Andrographolide has potential as a leading compound in the prevention or treatment of obesity and insulin resistance. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Expression of Sterol Regulatory Element-Binding Proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: preliminary study

    Science.gov (United States)

    Pérez-Belmonte, Luis M.; Moreno-Santos, Inmaculada; Cabrera-Bueno, Fernando; Sánchez-Espín, Gemma; Castellano, Daniel; Such, Miguel; Crespo-Leiro, María G; Carrasco-Chinchilla, Fernando; Alonso-Pulpón, Luis; López-Garrido, Miguel; Ruiz-Salas, Amalio; Becerra-Muñoz, Víctor M.; Gómez-Doblas, Juan J.; de Teresa-Galván, Eduardo; Jiménez-Navarro, Manuel

    2017-01-01

    Objectives: Sterol regulatory element-binding proteins (SREBP) genes are crucial in lipid biosynthesis and cardiovascular homeostasis. Their expression in epicardial adipose tissue (EAT) and their influence in the development of coronary artery disease (CAD) and type-2 diabetes mellitus remain to be determined. The aim of our study was to evaluate the expression of SREBP genes in EAT in patients with CAD according to diabetes status and its association with clinical and biochemical data. Methods: SREBP-1 and SREBP-2 mRNA expression levels were measured in EAT from 49 patients with CAD (26 with diabetes) and 23 controls without CAD or diabetes. Results: Both SREBPs mRNA expression were significantly higher in patients with CAD and diabetes (pcardiovascular risk factor for coronary artery disease in patients with type-2 diabetes (SREBP-1: OR 1.7, 95%CI 1.1-2.5, p=0.02; SREBP-2: OR 1.6, 95%CI 1.2-3, p=0.02) and were independently associated with the presence of multivessel CAD, left main and anterior descending artery stenosis, and higher total and LDL cholesterol levels, and lower HDL cholesterol levels, in patients with CAD and diabetes. Conclusions: SREBP genes are expressed in EAT and were higher in CAD patients with diabetes than those patients without CAD or diabetes. SREBP expression was associated as cardiovascular risk factor for the severity of CAD and the poor lipid control. In this preliminary study we suggest the importance of EAT in the lipid metabolism and cardiovascular homeostasis for coronary atherosclerosis of patients with diabetes and highlight a future novel therapeutic target. PMID:28367087

  18. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  19. Detection of carriers and genetic counseling in duchenne muscular dystrophy by ribosomal protein synthesis.

    Science.gov (United States)

    Ionasescu, V; Zellweger, H; Burmeister, L

    1976-11-01

    The in vitro protein synthesis by polyribosomes extracted from biopsied muscle (vastus lateralis) was studied in 47 known carriers, 87 possible carriers and in 60 normal females. A significant increase in specific activity of monomeric ribosomes, total polyribosomes and collagen synthesis was found in 46 (97.8 per cent) known carriers and 47 (54 per cent) possible carriers of Duchenne muscular dytrophy. The latter showed an increase in ribosomal protein synthesis in 10 (52.6 per cent) of 19 mothers of isolated cases, 31 (53.3 per cent) of 58 sisters, and 6 (60 per cent) of other female relatives. Serum creatine phosphokinase was increased in 30 (63.8 per cent) of 47 known carriers.

  20. SUPLEMENTASI STEROL LEMBAGA GANDUM (Triticum sp. PADA MARGARIN (Supplementation of Margarine with Wheat Germ Sterol

    Directory of Open Access Journals (Sweden)

    Sri Anna Marliyati1*

    2010-06-01

    Full Text Available Margarine is a water in oil (w/o emulsion product which is widely used for household cooking and baking industry. Consuming of margarine, which contains trans fatty acid may cause health problem due to the increase of LDL cholesterol. Since margarine is also a good carrier of phytosterol which prevent the absorption of cholesterol, there is a possibility to formulate a healthier margarine. In this research formulation and characteristics of products was investigated. The research work consisted of two steps: (1 supplementation of wheat germ sterol into margarine (two methods and (2 analysis of physical, chemical characteristics and hedonic score. Parameters of physical characteristics were melting point and emulsion stability, whereas chemical characteristics were water and oil contents. The hedonic test was carried out based on product’s color, odor, taste, texture, and spreadability. Results showed that method II of supplementation produced better margarine than method I, in which the concentration of sterol in the margarine was higher with a melting point similar to that of control, better emulsion stability, and higher hedonic score. Supplementation process was carried out by mixing sterol into fat phase melted at 50 0C, followed by mixing with aqueous phase at 4 0C. Sterol used for method II was extracted using mixed solvent of hexane and ethanol at the ratio of 1:2 (v/v, which was resulted from previous experimentation.

  1. Sterol Synthesis in Diverse Bacteria

    OpenAIRE

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identifie...

  2. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann

    2014-01-01

    Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs w...

  3. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  4. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  5. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  6. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  7. Dsc E3 ligase localization to the Golgi requires the ATPase Cdc48 and cofactor Ufd1 for activation of sterol regulatory element-binding protein in fission yeast.

    Science.gov (United States)

    Burr, Risa; Ribbens, Diedre; Raychaudhuri, Sumana; Stewart, Emerson V; Ho, Jason; Espenshade, Peter J

    2017-09-29

    Sterol regulatory element-binding proteins (SREBPs) in the fission yeast Schizosaccharomyces pombe regulate lipid homeostasis and the hypoxic response under conditions of low sterol or oxygen availability. SREBPs are cleaved in the Golgi through the combined action of the Dsc E3 ligase complex, the rhomboid protease Rbd2, and the essential ATPases associated with diverse cellular activities (AAA + ) ATPase Cdc48. The soluble SREBP N-terminal transcription factor domain is then released into the cytosol to enter the nucleus and regulate gene expression. Previously, we reported that Cdc48 binding to Rbd2 is required for Rbd2-mediated SREBP cleavage. Here, using affinity chromatography and mass spectrometry experiments, we identified Cdc48-binding proteins in S. pombe , generating a list of many previously unknown potential Cdc48-binding partners. We show that the established Cdc48 cofactor Ufd1 is required for SREBP cleavage but does not interact with the Cdc48-Rbd2 complex. Cdc48-Ufd1 is instead required at a step prior to Rbd2 function, during Golgi localization of the Dsc E3 ligase complex. Together, these findings demonstrate that two distinct Cdc48 complexes, Cdc48-Ufd1 and Cdc48-Rbd2, are required for SREBP activation and low-oxygen adaptation in S. pombe . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Updates on smart polymeric carrier systems for protein delivery.

    Science.gov (United States)

    El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi

    2017-10-01

    Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.

  9. Mitochondrial carrier protein biogenesis: role of the chaperones Hsc70 and Hsp90.

    Science.gov (United States)

    Zara, Vincenzo; Ferramosca, Alessandra; Robitaille-Foucher, Philippe; Palmieri, Ferdinando; Young, Jason C

    2009-04-15

    Metabolite carrier proteins of the mitochondrial inner membrane share homology in their transmembrane domains, which also carries their targeting information. In addition, some carriers have cleavable presequences which are not essential for targeting, but have some other function before import. The cytosolic chaperones Hsc70 (heat-shock cognate 70) and Hsp90 (heat-shock protein 90) complex with carrier precursors and interact specifically with the Tom (translocase of the mitochondrial outer membrane) 70 import receptor to promote import. We analysed how the presequences of the PiC (phosphate carrier) and CIC (citrate carrier) relate to the mechanisms of chaperone-mediated import. Deletion of the PiC presequence reduced the efficiency of import but, notably, not by causing aggregation. Instead, binding of the protein to Hsc70 was reduced, as well as the dependence on Hsc70 for import. Hsp90 binding and function in import was not greatly affected, but it could not entirely compensate for the lack of Hsc70 interaction. Deletion of the presequence from CIC was shown to cause its aggregation, but had little effect on the contribution to import of either Hsc70 or Hsp90. The presequence of PiC, but not that of CIC, conferred Hsc70 binding to dihydrofolate reductase fusion proteins. In comparison, OGC (oxoglutarate carrier) lacks a presequence and was more soluble, though it is still dependent on both Hsc70 and Hsp90. We propose that carrier presequences evolved to improve targeting competence by different mechanisms, depending on physical properties of the precursors in the cytosolic targeting environment.

  10. Development of a stealth carrier system for structural studies of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial carriers that mimic the native bilayer environment allows for the handling of membrane proteins in solution and enables the use of small-angle scattering techniques for fast...... and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly non-trivial fashion, making subsequent data analysis challenging. This thesis presents the development of a specifically deuterated, stealth nanodisc system...

  11. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    International Nuclear Information System (INIS)

    Allen, C. Leigh; Gulick, Andrew M.

    2014-01-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins

  12. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. Leigh; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, Buffalo, NY 14203 (United States)

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  13. Studies on the relation between thyroid hormones and their carrier proteines

    International Nuclear Information System (INIS)

    Doepp, M.; Medau, H.J.; Grebe, S.F.

    1976-01-01

    This study represents a confrontation between TBG, TBPA and albumen on one hand, and T 4 , T 3 , RT 3 U, total-balance of free thyroid hormones and basal-TSH on the other. Women receiving contraceptive drugs show increased values for all parameters, pat, suffering from chronic hepatitis increased TBG among the carrier proteins, nephrotic pat, decreased TBG combined with increased TBPA. It is concluded that alterations of carrier proteins are concordant when initialized exogenously whereas discordant when caused by endogenous diseases. This implies different influences on the feedback mechanism. The relation between ST 3 U and TBG is displayed with good correlation. The signifiance of TBPA as T 4 -carrier is stressed to be similar to TBG. Thus direct measurement of TBG is not advantageous for clinical routine work. (orig.) [de

  14. Riboflavin carrier protein-targeted fluorescent USPIO for the assessment of vascular metabolism in tumors

    NARCIS (Netherlands)

    Jayapaul, J.; Arns, S.; Lederle, W.; Lammers, Twan Gerardus Gertudis Maria; Comba, P.; Gätjens, J.; Kiessling, F.

    2012-01-01

    Abstract Riboflavin (Rf) and its metabolic analogs flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential for normal cellular growth and function. Their intracellular transport is regulated by the riboflavin carrier protein (RCP), which has been shown to be over-expressed by

  15. Transient isotachophoresis in carrier ampholyte-based capillary electrophoresis for protein analysis

    Czech Academy of Sciences Publication Activity Database

    Busnel, J. M.; Descroix, S.; Godfrin, D.; Hennion, M. C.; Kašička, Václav; Peltre, G.

    2006-01-01

    Roč. 27, č. 18 (2006), s. 3591-3598 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z40550506 Keywords : carrier ampholyte-based capillary electrophoresis * transient isotachophoresis * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.101, year: 2006

  16. A Rational Approach to Identify Inhibitors of Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase

    Czech Academy of Sciences Publication Activity Database

    Chhabria, M. T.; Parmar, K. B.; Brahmkshatriya, Pathik

    2013-01-01

    Roč. 19, č. 21 (2013), s. 3878-3883 ISSN 1381-6128 Institutional support: RVO:61388963 Keywords : mycobacterium tuberculosis * enoyl acyl carrier protein reductase * pharmacophore modeling * molecular docking * binding interactions Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.288, year: 2013

  17. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.

    OpenAIRE

    Zinser, E; Paltauf, F; Daum, G

    1993-01-01

    Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergostero...

  18. Building Synthetic Sterols Computationally - Unlocking the Secrets of Evolution?

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pöyry, Sanja; Vattulainen, Ilpo

    2015-01-01

    Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on chole......Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent...

  19. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  20. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.

    Science.gov (United States)

    Wriessnegger, Tamara; Pichler, Harald

    2013-07-01

    Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sterol glycosyltransferases--the enzymes that modify sterols.

    Science.gov (United States)

    Chaturvedi, Pankaj; Misra, Pratibha; Tuli, Rakesh

    2011-09-01

    Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.

  2. Genetic effects of sterol regulatory element binding proteins and fatty acid-binding protein4 on the fatty acid composition of Korean cattle (Hanwoo

    Directory of Open Access Journals (Sweden)

    Dong-Yep Oh

    2017-02-01

    Full Text Available Objective This study identifies single-nucleotide polymorphisms (SNP or gene combinations that affect the flavor and quality of Korean cattle (Hanwoo by using the SNP Harvester method. Methods Four economic traits (oleic acid [C18:1], saturated fatty acids, monounsaturated fatty acids, and marbling score were adjusted for environmental factors in order to focus solely on genetic effects. The SNP Harvester method was used to investigate gene combinations (two-way gene interactions associated with these economic traits. Further, a multifactor dimensionality reduction method was used to identify superior genotypes in gene combinations. Results Table 3 to 4 show the analysis results for differences between superior genotypes and others for selected major gene combinations using the multifactor dimensionality reduction method. Environmental factors were adjusted for in order to evaluate only the genetic effect. Table 5 shows the adjustment effect by comparing the accuracy before and after correction in two-way gene interactions. Conclusion The g.3977-325 T>C and (g.2988 A>G, g.3977-325 T>C combinations of fatty acid-binding protein4 were the superior gene, and the superior genotype combinations across all economic traits were the CC genotype at g.3977-325 T>C and the AACC, GACC, GGCC genotypes of (g.2988 A>G, g.3977-325 T>C.

  3. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins.

    Science.gov (United States)

    Palmieri, Ferdinando; Agrimi, Gennaro; Blanco, Emanuela; Castegna, Alessandra; Di Noia, Maria A; Iacobazzi, Vito; Lasorsa, Francesco M; Marobbio, Carlo M T; Palmieri, Luigi; Scarcia, Pasquale; Todisco, Simona; Vozza, Angelo; Walker, John

    2006-01-01

    The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.

  4. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  5. An overview on the delivery of antitumor drug doxorubicin by carrier proteins.

    Science.gov (United States)

    Agudelo, D; Bérubé, G; Tajmir-Riahi, H A

    2016-07-01

    Serum proteins play an increasing role as drug carriers in the clinical settings. In this review, we have compared the binding modalities of anticancer drug doxorubicin (DOX) to three model carrier proteins, human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (β-LG) in order to determine the potential application of these model proteins in DOX delivery. Molecular modeling studies showed stronger binding of DOX with HSA than BSA and β-LG with the free binding energies of -10.75 (DOX-HSA), -9.31 (DOX-BSA) and -8.12kcal/mol (DOX-β-LG). Extensive H-boding network stabilizes DOX-protein conjugation and played a major role in drug-protein complex formation. DOX complexation induced major alterations of HSA and BSA conformations, while did not alter β-LG secondary structure. The literature review shows that these proteins can potentially be used for delivery of DOX in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  7. Induction of the lac carrier and an associated membrane protein in Escherichia coli

    International Nuclear Information System (INIS)

    Lagarias, D.M.

    1985-01-01

    Induction of the lac operon in wild type Escherichia coli strains results in synthesis of a 16 kilodalton inner membrane protein in addition to the known products of the lacZ, lacY and lacA genes. Cells carrying the lacY gene on a plasmid over produce this 16 kilodalton polypeptide as well as the Lac carrier, the membrane protein product of the lacY gene. However, [ 35 S]methionine labeling of minicells carrying the lacY plasmid shows that the 16 kDa protein is not synthesized from the plasmid DNA. The 16 kDa protein was purified and partially characterized. It is an acidic membrane protein of apparent molecular weight 15,800 whose amino terminal sequence (NH 2 -Met-Arg-Asn-Phe-Asp-Leu-) does not correspond to any nucleotide sequence known in lac operon DNA. Using antibody prepared to the purified 16 kDa protein, a quantitative analysis of conditions under which this protein is made was accomplished, and reveals that the amount of 16 kDa protein which appears in the membrane is proportional to lac operon expression. Hybridization of a synthetic oligonucleotide probe complementary to the 5' end of 16 kDa protein mRNA shows that its synthesis is regulated at the level of transcription. A description of attempts to clone this gene is given. Possible functional roles for the 16 kDa protein are discussed

  8. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems.

    Science.gov (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R

    2018-02-01

    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  9. TM6SF2 and MAC30, new enzyme homologues in sterol metabolism and common metabolic disease.

    Directory of Open Access Journals (Sweden)

    Luis eSanchez-Pulido

    2014-12-01

    Full Text Available Carriers of the Glu167Lys coding variant in the TM6SF2 gene have recently been identified as being more susceptible to non-alcoholic fatty liver disease (NAFLD, yet exhibit lower levels of circulating lipids and hence are protected against cardiovascular disease. Despite the physiological importance of these observations, the molecular function of TM6SF2 remains unknown, and no sequence similarity with functionally characterised proteins has been identified. In order to trace its evolutionary history and to identify functional domains, we embarked on a computational protein sequence analysis of TM6SF2. We identified a new domain, the EXPERA domain, which is conserved among TM6SF, MAC30/TMEM97 and EBP (D8,D7 sterol isomerase protein families. EBP mutations are the cause of chondrodysplasia punctata 2 X-linked dominant (CDPX2, also known as Conradi-Hünermann-Happle syndrome, a defective cholesterol biosynthesis disorder. Our analysis of evolutionary conservation among EXPERA domain-containing families and the previously suggested catalytic mechanism for the EBP enzyme, indicate that TM6SF and MAC30/TMEM97 families are both highly likely to possess, as for the EBP family, catalytic activity as sterol isomerases. This unexpected prediction of enzymatic functions for TM6SF and MAC30/TMEM97 is important because it now permits detailed experiments to investigate the function of these key proteins in various human pathologies, from cardiovascular disease to cancer.

  10. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Aaron M.; Culbertson, Sannie J.; Shogren-Knaak, Michael A.; Barb, Adam W.

    2017-11-01

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05 and 4.10 Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a KD = 62 ± 13 nM, followed by the binding of two more equivalents of holo-ACPP with KD = 1.2 ± 0.2 μM. Cooperativity was not observed for apo-ACPP which bound with KD = 2.4 ± 0.1 μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis.

  11. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex.

    Science.gov (United States)

    Marcella, Aaron M; Culbertson, Sannie J; Shogren-Knaak, Michael A; Barb, Adam W

    2017-11-24

    The Escherichia coli holo-(acyl carrier protein) synthase (ACPS) catalyzes the coenzyme A-dependent activation of apo-ACPP to generate holo-(acyl carrier protein) (holo-ACPP) in an early step of fatty acid biosynthesis. E. coli ACPS is sufficiently different from the human fatty acid synthase to justify the development of novel ACPS-targeting antibiotics. Models of E. coli ACPS in unliganded and holo-ACPP-bound forms solved by X-ray crystallography to 2.05and 4.10Å, respectively, revealed that ACPS bound three product holo-ACPP molecules to form a 3:3 hexamer. Solution NMR spectroscopy experiments validated the ACPS binding interface on holo-ACPP using chemical shift perturbations and by determining the relative orientation of holo-ACPP to ACPS by fitting residual dipolar couplings. The binding interface is organized to arrange contacts between positively charged ACPS residues and the holo-ACPP phosphopantetheine moiety, indicating product contains more stabilizing interactions than expected in the enzyme:substrate complex. Indeed, holo-ACPP bound the enzyme with greater affinity than the substrate, apo-ACPP, and with negative cooperativity. The first equivalent of holo-ACPP bound with a K D =62±13nM, followed by the binding of two more equivalents of holo-ACPP with K D =1.2±0.2μM. Cooperativity was not observed for apo-ACPP which bound with K D =2.4±0.1μM. Strong product binding and high levels of holo-ACPP in the cell identify a potential regulatory role of ACPS in fatty acid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  13. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate......-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin...... ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  14. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Halavaty, Andrei S. [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Kim, Youngchang [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States); Zhou, Min [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Onopriyenko, Olena; Skarina, Tatiana [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N. [Center for Structural Genomics of Infectious Diseases, (United States); J. Craig Venter Institute, Rockville, MD 20850 (United States); Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); University of Chicago, Chicago, IL 60637 (United States); Savchenko, Alexei [Center for Structural Genomics of Infectious Diseases, (United States); University of Toronto, Toronto, Ontario M5G 1L6 (Canada); Anderson, Wayne F., E-mail: wf-anderson@northwestern.edu [Center for Structural Genomics of Infectious Diseases, (United States); Northwestern University, Chicago, IL 60611 (United States)

    2012-10-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.

  15. Structural characterization and comparison of three acyl-carrier-protein synthases from pathogenic bacteria

    International Nuclear Information System (INIS)

    Halavaty, Andrei S.; Kim, Youngchang; Minasov, George; Shuvalova, Ludmilla; Dubrovska, Ievgeniia; Winsor, James; Zhou, Min; Onopriyenko, Olena; Skarina, Tatiana; Papazisi, Leka; Kwon, Keehwan; Peterson, Scott N.; Joachimiak, Andrzej; Savchenko, Alexei; Anderson, Wayne F.

    2012-01-01

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS SA ), Vibrio cholerae (AcpS VC ) and Bacillus anthracis (AcpS BA ) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS BA is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS BA may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP

  16. Electrospun fish protein fibers as a biopolymer-based carrier – implications for oral protein delivery

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming

    2014-01-01

    Purpose: Protein-based electrospun fibers have emerged as novel nanostructured materials for tissue engineering and drug delivery due to their unique structural characteristics, biocompatibility and biodegradability. The aim of this study was to explore the use of electrospun fibers based on fish...... sarcoplasmic proteins as an oral delivery platform for biopharmaceuticals, using insulin as a model protein. Methods: Fish sarcoplasmic proteins (FSP) were isolated from fresh cod and electrospun into nanomicrofibers using insulin as a model payload. The morphology of FSP fibers was characterized using...... differentiated Caco-2 cell monolayers was followed by RP-HPLC and ELISA, and the transepithelial electrical resistance (TEER) was measured before and after the experiment. Cell viability was assessed by the MTS/PMS assay. Results: Insulin was encapsulated in the electrospun FSP fibers with high efficiency, high...

  17. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  18. Rescuing the Rescuer: On the Protein Complex between the Human Mitochondrial Acyl Carrier Protein and ISD11.

    Science.gov (United States)

    Herrera, María Georgina; Pignataro, María Florencia; Noguera, Martín Ezequiel; Cruz, Karen Magalí; Santos, Javier

    2018-05-16

    Iron-sulfur clusters are essential cofactors in many biochemical processes. ISD11, one of the subunits of the protein complex that carries out the cluster assembly in mitochondria, is necessary for cysteine desulfurase NFS1 stability and function. Several authors have recently provided evidence showing that ISD11 interacts with the acyl carrier protein (ACP). We carried out the coexpression of human mitochondrial ACP and ISD11 in E. coli. This work shows that ACP and ISD11 form a soluble, structured, and stable complex able to bind to the human NFS1 subunit modulating its activity. Results suggest that ACP plays a key-role in ISD11 folding and stability in vitro. These findings offer the opportunity to study the mechanism of interaction between ISD11 and NFS1.

  19. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.

    Science.gov (United States)

    Krauss, Ulrich; Jäger, Vera D; Diener, Martin; Pohl, Martina; Jaeger, Karl-Erich

    2017-09-20

    Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    Science.gov (United States)

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  2. Depot sterols in comparisons with structural sterols in Cancer pagurus and Eriocheir sinensis

    NARCIS (Netherlands)

    Zandee, D.I.; Kruitwagen, E.C.J.

    The differences in sterol content and sterol composition between the midgut gland and remaining parts (structural lipids) of male and female specimens of Cancer pagurus and Eriocheir sinensis are investigated. There are no differences in sterol content in the structural lipids between male and

  3. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    Science.gov (United States)

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Study of different coupling agents in the conjugation of a V3-based synthetic MAP to carrier proteins.

    Science.gov (United States)

    Cruz, L J; Iglesias, E; Aguilar, J C; Quintana, D; Garay, H E; Duarte, C; Reyes, O

    2001-09-01

    The conjugation of synthetic peptides to carrier proteins is a widely used method for immunological studies. Different coupling agents have been described to form the conjugate with carrier proteins. In this paper, we demonstrate that the antibody response toward V3-based synthetic MAPs derived from HIV-1, JY1 isolate, conjugated to two different carrier proteins using either m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) or beta-maleimidopropionic acid N-hydroxysuccinimide ester (MPS), or succinic anhydride (SA) show different behaviors. An excellent anti-JY1 response without a strong response to the coupling agent is observed in the case of succinic anhydride spacer. In contrast, MBS produces total abrogation of the antibody response with a high response toward the coupling agent.

  5. Purified reconstituted lac carrier protein from Escherichia coli is fully functional.

    Science.gov (United States)

    Viitanen, P; Garcia, M L; Kaback, H R

    1984-03-01

    Proteoliposomes reconstituted with lac carrier protein purified from the plasma membrane of Escherichia coli catalyze each of the translocation reactions typical of the beta-galactoside transport system (i.e., active transport, counterflow, facilitated influx and efflux) with turnover numbers and apparent Km values comparable to those observed in right-side-out membrane vesicles. Furthermore, detailed kinetic studies show that the reconstituted system exhibits properties analogous to those observed in membrane vesicles. Imposition of a membrane potential (delta psi, interior negative) causes a marked decrease in apparent Km (by a factor of 7 to 10) with a smaller increase in Vmax (approximately equal to 3-fold). At submaximal values of delta psi, the reconstituted carrier exhibits biphasic kinetics, with one component manifesting the kinetic parameters of active transport and the other exhibiting the characteristics of facilitated diffusion. Finally, at low lactose concentrations, the initial velocity of influx varies linearly with the square of the proton electro-chemical gradient. The results provide quantitative support for the contention that a single polypeptide species, the product of the lac y gene, is responsible for each of the transport reactions typical of the beta-galactoside transport system.

  6. Secretory leukocyte protease inhibitor protein regulates the penetrance of frontotemporal lobar degeneration in progranulin mutation carriers.

    Science.gov (United States)

    Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa

    2014-01-01

    The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.

  7. Effect of increased CRM₁₉₇ carrier protein dose on meningococcal C bactericidal antibody response.

    Science.gov (United States)

    Lee, Lucia H; Blake, Milan S

    2012-04-01

    New multivalent CRM(197)-based conjugate vaccines are available for childhood immunization. Clinical studies were reviewed to assess meningococcal group C (MenC) antibody responses following MenC-CRM(197) coadministration with CRM(197)-based pneumococcal or Haemophilus influenzae type b conjugate vaccines. Infants receiving a total CRM(197) carrier protein dose of ∼50 μg and concomitant diphtheria-tetanus-acellular pertussis (DTaP)-containing vaccine tended to have lower MenC geometric mean antibody titers and continued to have low titers after the toddler dose. Nevertheless, at least 95% of children in the reported studies achieved a MenC serum bactericidal antibody (SBA) titer of ≥ 1:8 after the last infant or toddler dose. SBA was measured using an assay with a baby rabbit or human complement source. Additional studies are needed to assess long-term antibody persistence and MenC CRM(197) conjugate vaccine immunogenicity using alternative dosing schedules.

  8. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents...... which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...... epigallocatechin gallate (EGCG), which both function as inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent...

  9. Genomic Influence in the Prevention of Cardiovascular Diseases with a Sterol-Based Treatment

    Directory of Open Access Journals (Sweden)

    Ismael San Mauro Martín

    2018-04-01

    Full Text Available Raised serum cholesterol concentration is a well-established risk factor in cardiovascular disease. In addition, genetic load may have an indirect influence on cardiovascular risk. Plant-based sterol-supplemented foods are recommended to help reduce the serum low-density lipoprotein cholesterol level. The objective was to analyse the influence of different polymorphisms in hypercholesterolemia patients following a dietary treatment with plant sterols. A randomised double-blind cross-over controlled clinical trial was carried out in 45 people (25 women. Commercial milk, containing 2.24 g of sterols, was ingested daily during a 3-week period, and then the same amount of skim milk, without sterols, was consumed daily during the 3-week placebo phase. Both phases were separated by a washout period of 2 weeks. At the beginning and end of each phase, blood draws were performed. Genes LIPC C-514T and APOA5 C56G are Ser19Trp carriers and greatly benefit from sterol intake in the diet. LIPC C-514T TT homozygous carriers had lower low-density lipoprotein cholesterol (LDL-c levels than CC homozygote and CT heterozygote carriers after the ingestion of plant sterols (p = 0.001. These two genes also showed statistically significant changes in total cholesterol levels (p = 0.025; p = 0.005, and no significant changes in high-density lipoprotein (HDL cholesterol levels (p = 0.032; p = 0.003, respectively. No statistically significant differences were observed for other genes. Further studies are needed to establish which genotype combinations would be the most protective against hypercholesterolemia.

  10. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin.

    Science.gov (United States)

    Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin

    2018-01-26

    Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion.

    Science.gov (United States)

    Nur, M; Ramchandran, L; Vasiljevic, T

    2016-06-05

    Biopolymers such as tragacanth, an anionic polysaccharide gum, can be alternative polymeric carrier for physiologically important peptides and proteins. Characterization of tragacanth is thus essential for providing a foundation for possible applications. Rheological studies colloidal solution of tragacanth at pH 3, 5 or 7 were carried out by means of steady shear and small amplitude oscillatory measurements. Tragacanth mucoadhesivity was also analyzed using an applicable rheological method and compared to chitosan, alginate and PVP. The particle size and zeta potential were measured by a zetasizer. Thermal properties of solutions were obtained using a differential scanning calorimetry. The solution exhibited shear-thinning characteristics. The value of the storage modulus (G') and the loss modulus (G″) increased with an increase in angular frequency (Ω). In all cases, loss modulus values were higher than storage values (G″>G') and viscous character was, therefore, dominant. Tragacanth and alginate showed a good mucoadhesion. Tragacanth upon dispersion created particles of a submicron size with a negative zeta potential (-7.98 to -11.92 mV). These properties were pH dependant resulting in acid gel formation at pH 3.5. Tragacanth has thus a potential to be used as an excipient for peptide/protein delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Deregulation of E2-EPF ubiquitin carrier protein in papillary renal cell carcinoma.

    Science.gov (United States)

    Roos, Frederik C; Evans, Andrew J; Brenner, Walburgis; Wondergem, Bill; Klomp, Jeffery; Heir, Pardeep; Roche, Olga; Thomas, Christian; Schimmel, Heiko; Furge, Kyle A; Teh, Bin T; Thüroff, Joachim W; Hampel, Christian; Ohh, Michael

    2011-02-01

    Molecular pathways associated with pathogenesis of sporadic papillary renal cell carcinoma (PRCC), the second most common form of kidney cancer, are poorly understood. We analyzed primary tumor specimens from 35 PRCC patients treated by nephrectomy via gene expression analysis and tissue microarrays constructed from an additional 57 paraffin-embedded PRCC samples via immunohistochemistry. Gene products were validated and further studied by Western blot analyses using primary PRCC tumor samples and established renal cell carcinoma cell lines, and potential associations with pathologic variables and survival in 27 patients with follow-up information were determined. We show that the expression of E2-EPF ubiquitin carrier protein, which targets the principal negative regulator of hypoxia-inducible factor (HIF), von Hippel-Lindau protein, for proteasome-dependent degradation, is markedly elevated in the majority of PRCC tumors exhibiting increased HIF1α expression, and is associated with poor prognosis. In addition, we identified multiple hypoxia-responsive elements within the E2-EPF promoter, and for the first time we demonstrated that E2-EPF is a hypoxia-inducible gene directly regulated via HIF1. These findings reveal deregulation of the oxygen-sensing pathway impinging on the positive feedback mechanism of HIF1-mediated regulation of E2-EPF in PRCC. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    DEFF Research Database (Denmark)

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner

    2016-01-01

    -the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay...

  14. Lysine(63)-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth

    Czech Academy of Sciences Publication Activity Database

    Leitner, J.; Petrášek, Jan; Tomanov, K.; Retzer, K.; Pařezová, Markéta; Korbei, B.; Bachmair, A.; Zažímalová, Eva; Luschnig, Ch.

    2012-01-01

    Roč. 109, č. 21 (2012), s. 8322-8327 ISSN 0027-8424 R&D Projects: GA ČR(CZ) GAP305/11/2476 Institutional research plan: CEZ:AV0Z50380511 Keywords : PLASMA-MEMBRANE PROTEIN * EFFLUX CARRIER * INTRACELLULAR TRAFFICKING Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.737, year: 2012

  15. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome*

    Science.gov (United States)

    Libby, Andrew E.; Bales, Elise; Orlicky, David J.; McManaman, James L.

    2016-01-01

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. PMID:27679530

  16. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome.

    Science.gov (United States)

    Libby, Andrew E; Bales, Elise; Orlicky, David J; McManaman, James L

    2016-11-11

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Building synthetic sterols computationally – unlocking the secrets of evolution?

    Directory of Open Access Journals (Sweden)

    Tomasz eRog

    2015-08-01

    Full Text Available Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include e.g. its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, and its fluorescent analogs in studies of cholesterol transport in cells and tissues. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols nonexistent in nature can be used to elucidate the roles of cholesterol's structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.

  18. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    Science.gov (United States)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  19. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  20. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed.

    Science.gov (United States)

    Cahoon, E B; Coughlan, S J; Shanklin, J

    1997-04-01

    A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:1delta9)* and cis-vaccenic (18:1delta11) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed delta9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known delta9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized delta9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a delta9-18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.

  1. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, P.M.; Shanklin, J.; Xu, S.; Gagliardini, V.; Whittle, E.; Grossniklaus, U.; Schiestl, F. P.

    2011-04-05

    The orchids Ophrys sphegodes and O. exaltata are reproductively isolated from each other by the attraction of two different, highly specific pollinator species. For pollinator attraction, flowers chemically mimic the pollinators sex pheromones, the key components of which are alkenes with different double-bond positions. This study identifies genes likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturase (SAD) homologs. The expression of two isoforms, SAD1 and SAD2, is flower-specific and broadly parallels alkene production during flower development. SAD2 shows a significant association with alkene production, and in vitro assays show that O. sphegodes SAD2 has activity both as an 18:0-ACP {Delta}{sup 9} and a 16:0-ACP {Delta}{sup 4} desaturase. Downstream metabolism of the SAD2 reaction products would give rise to alkenes with double-bonds at position 9 or position 12, matching double-bond positions observed in alkenes in the odor bouquet of O. sphegodes. SAD1 and SAD2 show evidence of purifying selection before, and positive or relaxed purifying selection after gene duplication. By contributing to the production of species-specific alkene bouquets, SAD2 is suggested to contribute to differential pollinator attraction and reproductive isolation among these species. Taken together, these data are consistent with the hypothesis that SAD2 is a florally expressed barrier gene of large phenotypic effect and, possibly, a genic target of pollinator-mediated selection.

  2. The predictive role of E2-EPF ubiquitin carrier protein in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Chen, Miao-Fen; Lee, Kuan-Der; Lu, Ming-Shian; Chen, Chih-Cheng; Hsieh, Ming-Ju; Liu, Yun-Hen; Lin, Paul-Yang; Chen, Wen-Cheng

    2009-03-01

    The ubiquitin proteasome pathway has been implicated in carcinogenesis. However, the role of E2-EPF ubiquitin carrier protein (UCP) in esophageal cancer remains relatively unstudied. In the study, we examined the mRNA level of circulating tumor cells from 60 esophageal cancer patients by membrane arrays consisting of a panel of potential markers including UCP, compared to 40 normal populations. The predictive capacity of UCP was also assessed by immunohistochemical staining of a retrospective series of 84 biopsied esophageal squamous cell carcinomas in relation to clinical outcome. In addition, we studied in vitro biological changes including tumor growth, metastatic capacity, and the sensitivity to irradiation and cisplatin, after experimental manipulation of UCP expression in esophageal cancer cells. By the data of 25-gene membrane array analysis, UCP was the only factor significantly associated with the extent of tumor burden in esophageal cancer patients. Our immunochemistry findings further indicate that UCP positivity was linked to poor response to neoadjuvant therapy and worse survival. In cell culture, inhibited UCP significantly decrease tumor growth and the capacity for metastasis. The epithelial-mesenchymal transition (EMT) induced by VHL/HIF-1alpha-TGF-beta1 pathway might be the underlying mechanism responsible to the more aggressive tumor growth in UCP-positive esophageal cancer. Our results suggest that UCP was significantly associated with poor prognosis of esophageal cancer and may be a new molecular target for therapeutic intervention for esophageal squamous cell carcinoma.

  3. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  4. Only Acyl Carrier Protein 1 (AcpP1 Functions in Pseudomonas aeruginosa Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Jin-Cheng Ma

    2017-11-01

    Full Text Available The genome of Pseudomonas aeruginosa contains three open reading frames, PA2966, PA1869, and PA3334, which encode putative acyl carrier proteins, AcpP1, AcpP2, and AcpP3, respectively. In this study, we found that, although these apo-ACPs were successfully phosphopantetheinylated by P. aeruginosa phosphopantetheinyl transferase (PcpS and all holo-forms of these proteins could be acylated by Vibrio harveyi acyl-ACP synthetase (AasS, only AcpP1 could be used as a substrate for the synthesis of fatty acids, catalyzed by P. aeruginosa cell free extracts in vitro, and only acpP1 gene could restore growth in the Escherichia coliacpP mutant strain CY1877. And P. aeruginosaacpP1 could not be deleted, while disruption of acpP2 or acpP3 in the P. aeruginosa genome allowed mutant strains to grow as well as the wild type strain. These findings confirmed that only P. aeruginosa AcpP1 functions in fatty acid biosynthesis, and that acpP2 and acpP3 do not play roles in the fatty acid synthetic pathway. Moreover, disruption of acpP2 and acpP3 did not affect the ability of P. aeruginosa to produce N-acylhomoserine lactones (AHL, but replacement of P. aeruginosaacpP1 with E. coliacpP caused P. aeruginosa to reduce the production of AHL molecules, which indicated that neither P. aeruginosa AcpP2 nor AcpP3 can act as a substrate for synthesis of AHL molecules in vivo. Furthermore, replacement of acpP1 with E. coliacpP reduced the ability of P. aeruginosa to produce some exo-products and abolished swarming motility in P. aeruginosa.

  5. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues

    OpenAIRE

    Yao, Lihang; Jenkins, Katie; Horn, Paul S.; Lichtenberg, M. Hayden; Woollett, Laura A.

    2007-01-01

    The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only margina...

  6. Biosynthesis and composition of sterols and sterol esters in the land snail Cepaea nemoralis (L.) (gastropoda, pulmonata, stylommatophora)

    NARCIS (Netherlands)

    Horst, D.J. van der; Voogt, P.A.

    1972-01-01

    1. 1. The biosynthesis and composition of sterols and sterol esters were studied in the land snail Cepaea nemoralis after injection of Na-1-14C-acetate. 2. 2. Free and esterified sterols appeared to be synthesized by the animals, whilst the specific radioactivity of the sterols from the esters

  7. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels.

    Science.gov (United States)

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B; Morris, John C; Goate, Alison

    2011-05-01

    To test whether rs1990622 (TMEM106B) is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy, elderly individuals. Rs1990622 (TMEM106B) was identified as a risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP) in a recent genome-wide association. Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier method and a Cox proportional hazards model. Alzheimer's Disease Research Center. Subjects  We analyzed 50 affected and unaffected GRN mutation carriers from 4 previously reported FTLD-TDP families (HDDD1, FD1, HDDD2, and the Karolinska family). The GRN plasma levels were also measured in 73 healthy, elderly individuals. Age at onset and GRN plasma levels. The risk allele of rs1990622 was associated with a mean decrease of the AAO of 13 years (P = 9.9 × 10(-7)) and with lower plasma GRN levels in both healthy older adults (P = 4 × 10(-4)) and GRN mutation carriers (P = .0027). Analysis of the HapMap database identified a nonsynonymous single-nucleotide polymorphism rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. The association of rs1990622 with AAO explains, in part, the wide range in the AAO of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN.

  8. TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels

    Science.gov (United States)

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L.; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B.; Morris, John C.; Goate, Alison

    2011-01-01

    Objective A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals. Design Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model. Subjects We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals. Results The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. Conclusions The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN. PMID:21220649

  9. (Glyco)-protein drug carriers with an intrinsic therapeutic activity : The concept of dual targeting

    NARCIS (Netherlands)

    Meijer, D.K F; Molema, Ingrid; Moolenaar, Frits; de Zeeuw, D; Swart, P.J

    Dual targeting can in principle be achieved by using intrinsically active carriers that not only deliver the conjugated drug but also otherwise influence the pathological process. Potential carriers of this kind are monoclonal antibodies, certain interferons and interleukins, as well as certain

  10. Expression of sterol regulatory element-binding transcription factor (SREBF 2 and SREBF cleavage-activating protein (SCAP in human atheroma and the association of their allelic variants with sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Kytömäki Leena

    2008-12-01

    Full Text Available Abstract Background Disturbed cellular cholesterol homeostasis may lead to accumulation of cholesterol in human atheroma plaques. Cellular cholesterol homeostasis is controlled by the sterol regulatory element-binding transcription factor 2 (SREBF-2 and the SREBF cleavage-activating protein (SCAP. We investigated whole genome expression in a series of human atherosclerotic samples from different vascular territories and studied whether the non-synonymous coding variants in the interacting domains of two genes, SREBF-2 1784G>C (rs2228314 and SCAP 2386A>G, are related to the progression of coronary atherosclerosis and the risk of pre-hospital sudden cardiac death (SCD. Methods Whole genome expression profiling was completed in twenty vascular samples from carotid, aortic and femoral atherosclerotic plaques and six control samples from internal mammary arteries. Three hundred sudden pre-hospital deaths of middle-aged (33–69 years Caucasian Finnish men were subjected to detailed autopsy in the Helsinki Sudden Death Study. Coronary narrowing and areas of coronary wall covered with fatty streaks or fibrotic, calcified or complicated lesions were measured and related to the SREBF-2 and SCAP genotypes. Results Whole genome expression profiling showed a significant (p = 0.02 down-regulation of SREBF-2 in atherosclerotic carotid plaques (types IV-V, but not in the aorta or femoral arteries (p = NS for both, as compared with the histologically confirmed non-atherosclerotic tissues. In logistic regression analysis, a significant interaction between the SREBF-2 1784G>C and the SCAP 2386A>G genotype was observed on the risk of SCD (p = 0.046. Men with the SREBF-2 C allele and the SCAP G allele had a significantly increased risk of SCD (OR 2.68, 95% CI 1.07–6.71, compared to SCAP AA homologous subjects carrying the SREBF-2 C allele. Furthermore, similar trends for having complicated lesions and for the occurrence of thrombosis were found, although the

  11. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    Science.gov (United States)

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  12. Immunization of mice by Hollow Mesoporous Silica Nanoparticles as carriers of Porcine Circovirus Type 2 ORF2 Protein

    Directory of Open Access Journals (Sweden)

    Guo Hui-Chen

    2012-06-01

    Full Text Available Abstract Backgroud Porcine circovirus type 2 (PCV2 is a primary etiological agent of post-weaning multi-systemic wasting syndrome (PMWS, which is a disease of increasing importance to the pig industry worldwide. Hollow mesoporous silica nanoparticles (HMSNs have gained increasing interest for use in vaccines. Methods To study the potential of HMSNs for use as a protein delivery system or vaccine carriers. HMSNs were synthesized by a sol–gel/emulsion(oil-in-water/ethanol method, purified PCV2 GST-ORF2-E protein was loaded into HMSNs, and the resulting HMSN/protein mixture was injected into mice. The uptake and release profiles of protein by HMSNs in vitro were investigated. PCV2 GST-ORF2-E specific antibodies and secretion of IFN-γ were detected by enzyme-linked immunosorbent assays, spleen lymphocyte proliferation was measured by the MTS method, and the percentage of CD4+ and CD8+ were determined by flow cytometry. Results HMSNs were found to yield better binding capacities and delivery profiles of proteins; the specific immune response induced by PCV2 GST-ORF2-E was maintained for a relatively long period of time after immunization with the HMSN/protein complex. Conclusion The findings suggest that HMSNs are good protein carriers and have high potential for use in future applications in therapeutic drug delivery.

  13. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    Science.gov (United States)

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-04

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals.

  14. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  15. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.

    Science.gov (United States)

    Yoshikawa, Tomoaki; Okada, Naoki; Oda, Atsushi; Matsuo, Kazuhiko; Matsuo, Keisuke; Mukai, Yohei; Yoshioka, Yasuo; Akagi, Takami; Akashi, Mitsuru; Nakagawa, Shinsaku

    2008-02-08

    Nanoscopic therapeutic systems that incorporate biomacromolecules, such as protein and peptides, are emerging as the next generation of nanomedicine aimed at improving the therapeutic efficacy of biomacromolecular drugs. In this study, we report that poly(gamma-glutamic acid)-based nanoparticles (gamma-PGA NPs) are excellent protein delivery carriers for tumor vaccines that delivered antigenic proteins to antigen-presenting cells and elicited potent immune responses. Importantly, gamma-PGA NPs efficiently delivered entrapped antigenic proteins through cytosolic translocation from the endosomes, which is a key process of gamma-PGA NP-mediated anti-tumor immune responses. Our findings suggest that the gamma-PGA NP system is suitable for the intracellular delivery of protein-based drugs as well as tumor vaccines.

  16. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.

    Science.gov (United States)

    Suh, M C; Schultz, D J; Ohlrogge, J B

    1999-03-01

    Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis.

  17. Cholesterol and related sterols autoxidation.

    Science.gov (United States)

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  18. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  19. Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato

    Directory of Open Access Journals (Sweden)

    Juan A. Lara

    2018-05-01

    Full Text Available Steryl esters (SEs serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT and phospholipid:sterol acyltransferases (PSAT depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1 have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs while, in contrast to the endoplasmic reticulum (ER localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM. The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together

  20. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  1. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    Science.gov (United States)

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  2. A clinical trial examining the effect of increased total CRM(197) carrier protein dose on the antibody response to Haemophilus influenzae type b CRM(197) conjugate vaccine.

    Science.gov (United States)

    Usonis, Vytautas; Bakasenas, Vytautas; Lockhart, Stephen; Baker, Sherryl; Gruber, William; Laudat, France

    2008-08-18

    CRM(197) is a carrier protein in certain conjugate vaccines. When multiple conjugate vaccines with the same carrier protein are administered simultaneously, reduced response to vaccines and/or antigens related to the carrier protein may occur. This study examined responses of infants who, in addition to diphtheria toxoid/tetanus toxoid/acellular pertussis vaccine (DTaP) received either diphtheria CRM(197)-based Haemophilus influenzae type b conjugate vaccine (HbOC) or HbOC and a diphtheria CRM(197)-based combination 9-valent pneumococcal conjugate vaccine/meningococcal group C conjugate vaccine. Administration of conjugate vaccines with CRM(197) carrier protein load >50 microg did not reduce response to CRM(197) conjugate vaccines or immunogenicity to immunologically cross-reactive diphtheria toxoid.

  3. Carrier ampholyte-free isoelectric focusing on a paper-based analytical device for the fractionation of proteins.

    Science.gov (United States)

    Xie, Song-Fang; Gao, Han; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Wu, Zhi-Yong; Yang, Fu-Quan

    2018-01-25

    Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte-free isoelectric focusing on paper-based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. This paper-based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost-effective protein sample clean-up method for target protein analysis with mass spectrometry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol......Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used...... desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype....

  5. Stealth carriers for low-resolution structure determination of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma; Skar-Gislinge, Nicholas; Midtgaard, Søren

    2014-01-01

    techniques for fast and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly nontrivial fashion, making subsequent data analysis challenging. Here, an elegant solution to circumvent the intrinsic complexity...

  6. NEOGLYCOPROTEINS AS CARRIERS FOR ANTIVIRAL DRUGS - SYNTHESIS AND ANALYSIS OF PROTEIN DRUG CONJUGATES

    NARCIS (Netherlands)

    Molema, Grietje; Jansen, Robert W.; Visser, Jan; Herdewijn, Piet; Moolenaar, Frits; Meijer, Dirk K.F.

    In order to investigate whether neoglycoproteins can potentially act as carriers for targeting of antiviral drugs to certain cell types in the body, various neoglycoproteins were synthesized using thiophosgene-activated p-aminophenyl sugar derivatives. These neoglycoproteins were conjugated with the

  7. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    Science.gov (United States)

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  8. Structure of 3-ketoacyl-(acyl-carrier-protein) reductase from Rickettsia prowazekii at 2.25 Å resolution

    International Nuclear Information System (INIS)

    Subramanian, Sandhya; Abendroth, Jan; Phan, Isabelle Q. H.; Olsen, Christian; Staker, Bart L.; Napuli, A.; Van Voorhis, Wesley C.; Stacy, Robin; Myler, Peter J.

    2011-01-01

    The R. prowazekii 3-ketoacyl-(acyl-carrier-protein) reductase is similar to those from other prokaryotic pathogens but differs significantly from the mammalian orthologue, strengthening its case as a potential drug target. Rickettsia prowazekii, a parasitic Gram-negative bacterium, is in the second-highest biodefense category of pathogens of the National Institute of Allergy and Infectious Diseases, but only a handful of structures have been deposited in the PDB for this bacterium; to date, all of these have been solved by the SSGCID. Owing to its small genome (about 800 protein-coding genes), it relies on the host for many basic biosynthetic processes, hindering the identification of potential antipathogenic drug targets. However, like many bacteria and plants, its metabolism does depend upon the type II fatty-acid synthesis (FAS) pathway for lipogenesis, whereas the predominant form of fatty-acid biosynthesis in humans is via the type I pathway. Here, the structure of the third enzyme in the FAS pathway, 3-ketoacyl-(acyl-carrier-protein) reductase, is reported at a resolution of 2.25 Å. Its fold is highly similar to those of the existing structures from some well characterized pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei, but differs significantly from the analogous mammalian structure. Hence, drugs known to target the enzymes of pathogenic bacteria may serve as potential leads against Rickettsia, which is responsible for spotted fever and typhus and is found throughout the world

  9. Sterol composition of shellfish species commonly consumed in the United States

    Directory of Open Access Journals (Sweden)

    Katherine M. Phillips

    2012-10-01

    Full Text Available Background: Shellfish can be a component of a healthy diet due to a low fat and high protein content, but the cholesterol content of some species is often cited as a reason to limit their consumption. Data on levels of non-cholesterol sterols in commonly consumed species are lacking. Objective: Shellfish were sampled and analyzed to update sterol data in the United States Department of Agriculture (USDA National Nutrient Database for Standard Reference. Design: Using a nationwide sampling plan, raw shrimp and sea scallops, canned clams, and steamed oysters, blue crab, and lobster were sampled from 12 statistically selected supermarkets across the United States in 2007-08. For each species, four composites were analyzed, each comprised of samples from three locations; shrimp and scallops from six single locations were also analyzed separately. Using validated analytical methodology, 14 sterols were determined in total lipid extracts after saponification and derivatization to trimethylsilyethers, using gas chromatography for quantitation and mass spectrometry for confirmation of components. Results: Crab, lobster, and shrimp contained significant cholesterol (96.2–27 mg/100 g; scallops and clams had the lowest concentrations (23.4–30.1 mg/100 g. Variability in cholesterol among single-location samples of shrimp was low. The major sterols in the mollusks were brassicasterol (12.6–45.6 mg/100 g and 24-methylenecholesterol (16.7–41.9 mg/100 g, with the highest concentrations in oysters. Total non-cholesterol sterols were 46.5–75.6 mg/100 g in five single-location scallops samples, but 107 mg/100 g in the sixth, with cholesterol also higher in that sample. Other prominent non-cholesterol sterols in mollusks were 22-dehydrocholesterol, isofucosterol, clionasterol, campesterol, and 24-norcholesta-5,22-diene-3β-ol (4–21 mg/100 g. Conclusions: The presence of a wide range of sterols, including isomeric forms, in shellfish makes the analysis

  10. Reliability of nine programs of topological predictions and their application to integral membrane channel and carrier proteins.

    Science.gov (United States)

    Reddy, Abhinay; Cho, Jaehoon; Ling, Sam; Reddy, Vamsee; Shlykov, Maksim; Saier, Milton H

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS > MEMSAT > HMMTOP > TOPCONS > PHOBIUS > TMHMM > SVMTOP > DAS > SOSUI. Some families, such as the Sugar Porter Family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC #2.A.1) and the Amino Acid/Polyamine/Organocation (APC) Family (TC #2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC #2.A.29) and the K(+) transporter (Trk) families (TC #2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted pore-forming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. © 2014 S. Karger AG, Basel.

  11. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    International Nuclear Information System (INIS)

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance

  12. Composition and Sources of Sterols in Pulau Tinggi, Johor, Malaysia

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Mohd Talib Latif; Mohamad Pauzi Zakaria

    2011-01-01

    This study explores the role of sterols as lipid bio markers to indicate their input which originates from various sources in the marine environment. Sterols and their ratios were investigated in sediments taken from sixteen sampling stations at Pulau Tinggi, Johor in order to assess the sources of organic matter. The compounds extracted from the sediments were quantified using a gas chromatography-mass spectrometry (GC-MS). The distributions of sterols indicated that organic matter at all sampling stations originated from a mixture of marine source and terrestrial origins at different proportions. A total of eleven sterols were quantified, with the major compounds being phytosterols (44 % of total sterols), cholesterol (11 %), brassica sterol (11 %) and fecal sterols (12 %). (author)

  13. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  14. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  15. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells

    NARCIS (Netherlands)

    Cohen, S.; Coué, G.M.J.P.C.; Beno, D.; Korenstein, R.; Engbersen, Johannes F.J.

    2012-01-01

    An effective intracellular protein delivery system was developed based on linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Two differently functionalized PAAs were synthesized by Michael-type polyaddition of 4-amino-1-butanol (ABOL) to

  16. Crystallization and preliminary X-ray crystallographic studies of the biotin carboxyl carrier protein and biotin protein ligase complex from Pyrococcus horikoshii OT3

    International Nuclear Information System (INIS)

    Bagautdinov, Bagautdin; Matsuura, Yoshinori; Bagautdinova, Svetlana; Kunishima, Naoki

    2007-01-01

    A truncated form of biotin carboxyl carrier protein containing the C-terminal half fragment (BCCPΔN76) and the biotin protein ligase (BPL) with the mutation R48A (BPL*) or the double mutation R48A K111A (BPL**) were successfully cocrystallized in the presence of ATP and biotin. The BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals belong to space group P2 1 and diffract X-rays to 2.7 and 2.0 Å resolution, respectively. Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. To elucidate the exact details of the protein–protein interactions in the biotinylation function, the C-terminal half fragment of BCCP (BCCPΔN76), the R48A mutant of BPL (BPL*) and the R48A K111A double mutant of BPL (BPL**), all of which are from Pyrococcus horikoshii OT3, have been expressed, purified and successfully cocrystallized. Cocrystals of the BPL*–BCCPΔN76 and BPL**–BCCPΔN76 complexes as well as crystals of BPL*, BPL** and BCCPΔN76 were obtained by the oil-microbatch method using PEG 20 000 as a precipitant at 295 K. Complete X-ray diffraction data sets for BPL*–BCCPΔN76 and BPL**–BCCPΔN76 crystals were collected at 100 K to 2.7 and 2.0 Å resolution, respectively, using synchrotron radiation. They belong to the monoclinic space group P2 1 , with similar unit-cell parameters a = 69.85, b = 63.12, c = 75.64 Å, β = 95.9°. Assuming two subunits of the complex per asymmetric unit gives a V M value of 2.45 Å 3 Da −1 and a solvent content of 50%

  17. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs

    International Nuclear Information System (INIS)

    Shanklin, J.; Somerville, C.

    1991-01-01

    Stearoyl-acyl-carrier-protein (ACP) desaturase was purified to homogeneity from avocado mesocarp, and monospecific polyclonal antibodies directed against the protein were used to isolate full-length cDNA clones from Ricinus communis (castor) seed and Cucumis sativus (cucumber). The nucleotide sequence of the castor clone pRCD1 revealed an open reading frame of 1.2 kilobases encoding a 396-amino acid protein of 45 kDa. The cucumber clone pCSD1 encoded a homologous 396-amino acid protein with 88% amino acid identity to the castor clone. Expression of pRCD1 in Saccharomyces cerevisiae resulted in the accumulation of a functional stearoyl-ACP desaturase, demonstrating that the introduction of this single gene product was sufficient to confer soluble desaturase activity to yeast. There was a 48-residue region of 29% amino acid sequence identity between residues 53 and 101 of the castor desaturase and the proximal border of the dehydratase region of the fatty acid synthase from yeast. Stearoyl-ACP mRNA was present at substantially higher levels in developing seeds than in leaf and root tissue, suggesting that expression of the Δ 9 desaturase is developmentally regulated

  18. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma.

    Science.gov (United States)

    Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun

    2017-04-01

    Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p EPF levels was shorter than in patients with low expression (p EPF was significantly shorter than patients with only nuclear E2-EPF (p EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.

  19. Changes in Intestinal Gene Expression of Zebrafish (Danio rerio Related to Sterol Uptake and Excretion upon β-Sitosterol Administration

    Directory of Open Access Journals (Sweden)

    Mai Takase

    2018-01-01

    Full Text Available Replacement of fishmeal with plant ingredients will introduce not only plant oil and protein but also phytosterol to the fish diet. Mammals strictly restrict the uptake of phytosterol at intestinal epithelial cells by regulating the gene expressions of sterol uptake and excretion proteins; however, phytosterol is found in the fish muscle and other organs. In order to assess the ability of phytosterol uptake by the intestinal epithelial cells of fish, no-sterol diet, cholesterol-, and β-sitosterol-containing diet was separately administered to zebrafish, and the relative mRNA expressions related to sterol uptake and excretion were evaluated. Gene expression of Niemann-Pick C1-like protein 1 in the sitosterol-fed group was significantly higher than that of the cholesterol-fed group (p < 0.05. The expression of apolipoprotein A-I gene was also higher in the sitosterol-fed group than that in the no-sterol and cholesterol-fed groups. The expressions of ATP-binding cassette, sub-family G, member 5 and 8, were significantly higher in the sitosterol-fed group, compared to the no-sterol group. Regarding the gene expression of ATP-binding cassette sub-family A, member 1, the sitosterol-fed group showed higher expression level compared to the other groups (p < 0.01. These results suggest that fish should be tolerant to phytosterols in contrast to mammals.

  20. Potential protective immunogenicity of tetanus toxoid, diphtheria toxoid and Cross Reacting Material 197 (CRM197) when used as carrier proteins in glycoconjugates.

    Science.gov (United States)

    Bröker, Michael

    2016-03-03

    When tetanus toxoid (TT), diphtheria toxoid (DT) or Cross Reacting Material 197 (CRM197), a non-toxic diphtheria toxin mutant protein, are used as carrier proteins in glycoconjugate vaccines, these carriers induce a protein specific antibody response as measured by in vitro assays. Here, it was evaluated whether or not glycoconjugates based on TT, DT or CRM197 can induce a protective immune response as measured by potency tests according to the European Pharmacopoeia. It could be shown, that the conjugate carriers TT and DT can induce a protective immune response against a lethal challenge by toxins in animals, while glycoconjugates based on CRM197 failed to induce a protective immune response. Opportunities for new applications of glycoconjugates are discussed.

  1. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon.

    Science.gov (United States)

    Teather, R M; Bramhall, J; Riede, I; Wright, J K; Fürst, M; Aichele, G; Wilhelm, U; Overath, P

    1980-01-01

    The previously described hybrid plasmid pC7 which carries lacI+O+delta(Z)Y+A+ on a 12.3 X 10(6)-Mr DNA fragment [Teather et al. (1978) Mol. Gen. Genet. 159, 239-248] was partially digested with the restriction endonuclease EcoRI under conditions reducing the recognition sequence to d(A-A-T-T) and ligated to the vector pB322. lac Y-carrying inserts of various sized (Mr 1.5-4.7 X 10(6)) were obtained. Hybrid plasmid pTE18 (2300-base-pair insert) carries part of the I (repressor) gene, the promotor-operator region, part of the Z (beta-galactosidase) gene, the Y (lactose carrier) gene and part of the A (transacetylase) gene. Upon induction of pTE18-harbouring strains the Y-gene product is expressed at a nearly constant rate for several generations and accumulates to a level of 12-16% of the total cytoplasmic membrane protein. Integration into the membrane leads to active carrier as judged by binding and transport measurements.

  2. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L.

    Science.gov (United States)

    Xiong, Wangdan; Wei, Qian; Wu, Pingzhi; Zhang, Sheng; Li, Jun; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2017-07-01

    The β-ketoacyl-acyl carrier protein synthase I (KASI) is involved in de novo fatty acid biosynthesis in many organisms. Two putative KASI genes, JcKASI-1 and JcKASI-2, were isolated from Jatropha curcas. The deduced amino acid sequences of JcKASI-1 and JcKASI-2 exhibit around 83.8% and 72.5% sequence identities with AtKASI, respectively, and both contain conserved Cys-His-Lys-His-Phe catalytic active sites. Phylogenetic analysis indicated that JcKASI-2 belongs to a clade with several KASI proteins from dicotyledonous plants. Both JcKASI genes were expressed in multiple tissues, most strongly in filling stage seeds of J. curcas. Additionally, the JcKASI-1 and JcKASI-2 proteins were both localized to the plastids. Expressing JcKASI-1 in the Arabidopsis kasI mutant rescued the mutant's phenotype and restored the fatty acid composition and oil content in seeds to wild-type, but expressing JcKASI-2 in the Arabidopsis kasI mutant resulted in only partial rescue. This implies that JcKASI-1 and JcKASI-2 exhibit partial functional redundancy and KASI genes play a universal role in regulating fatty acid biosynthesis, growth, and development in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  5. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD+ and triclosan

    International Nuclear Information System (INIS)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E.

    2010-01-01

    Structure of the ternary complex of F. tularensis enoyl-acyl carrier protein reductase reveals the structure of the substrate binding loop whose electron density was missing in an earlier structure, and demonstrates a shift in the position of the NAD + cofactor. Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD + has been solved to a resolution of 2.1 Å. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure which is bound to only NAD + reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD + cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors

  6. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.

    Science.gov (United States)

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-02-22

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.

  7. Multicolor bleach-rate imaging enlightens in vivo sterol transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sage, Daniel

    2011-01-01

    , dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel...... with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans....

  8. Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αβ/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.

    Science.gov (United States)

    López-Oliva, María Elvira; Garcimartin, Alba; Muñoz-Martínez, Emilia

    2017-12-01

    The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αβ (LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid β-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.

  9. Variation and sources of sterols in Kuala Selangor, Selangor

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Mohd Talib Latif

    2010-01-01

    This study explores the role of sterols as lipid bio markers to assess organic matter variations and their sources in surface sediments of Kuala Selangor, Selangor which involved extraction procedures and sterol compounds analyzed using GC-MS. Ten sterol compounds were found in the samples with phytosterols being the principal compounds which accounted 79 % of total sterols. This was followed by cholesterol and fecal sterols, each constitutes 6 % of total sterols while the rest are in the ranged of 1-5 %. Sterol Source Index (SSI) also reflected phytosterols predominant at all sampling stations but in different degree based on phytosterols compounds. Another issue was sewage contamination assessment using coprostanol/ cholesterol, coprostanol/ (coprostanol + cholestanol) and epi coprostanol/ coprostanol ratio. No sewage contamination occurred in the study area even though fecal sterols have been quantified. This analytical study indicates that the sediments in the study area consisted of a mixture of sterols from various sources even though dominated by phytosterols originated from terrestrial plants. (author)

  10. Scap is required for sterol synthesis and crypt growth in intestinal mucosa.

    Science.gov (United States)

    McFarlane, Matthew R; Cantoria, Mary Jo; Linden, Albert G; January, Brandon A; Liang, Guosheng; Engelking, Luke J

    2015-08-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Properties of the mitochondrial carrier of adenine-nucleotide after purification. Study of the transport protein under isolated form and reincorporated form in phospho-lipidic vesicles

    International Nuclear Information System (INIS)

    Brandolin, Gerard

    1983-01-01

    The first part of this research thesis addresses the reconstitution of the ADP/ATP transport by incorporation of the specific carrier, isolated in presence of detergent, in phospholipids vesicles. Fundamental properties of the reconstituted transport are identical to that of transport in mitochondria, notably as far as the exchange stoichiometry, the turn over and the transport Km are concerned, as well as the asymmetric orientation of the carrier in the membrane. The second part of this research addresses the study of interactions of specific ligands with the ADP/ATP transport protein in presence of detergent. The study of the variations of the intrinsic fluorescence of the isolated ADP/ATP carrier highlights conformational changes exclusively induced by the presence of transportable nucleotides which are modulated in a different manner by carboxy-atractyloside or bongkrekic acid. Moreover, by using the isolated protein, a detailed analysis of binding parameters of fluorescent analogues of ATP is reported [fr

  12. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  13. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    Energy Technology Data Exchange (ETDEWEB)

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  14. Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giovanna Vinci

    Full Text Available BACKGROUND: It is known that primary sequences of enzymes involved in sterol biosynthesis are well conserved in organisms that produce sterols de novo. However, we provide evidence for a preservation of the corresponding genes in two animals unable to synthesize cholesterol (auxotrophs: Drosophila melanogaster and Caenorhabditis elegans. PRINCIPAL FINDINGS: We have been able to detect bona fide orthologs of several ERG genes in both organisms using a series of complementary approaches. We have detected strong sequence divergence between the orthologs of the nematode and of the fruitfly; they are also very divergent with respect to the orthologs in organisms able to synthesize sterols de novo (prototrophs. Interestingly, the orthologs in both the nematode and the fruitfly are still under selective pressure. It is possible that these genes, which are not involved in cholesterol synthesis anymore, have been recruited to perform different new functions. We propose a more parsimonious way to explain their accelerated evolution and subsequent stabilization. The products of ERG genes in prototrophs might be involved in several biological roles, in addition to sterol synthesis. In the case of the nematode and the fruitfly, the relevant genes would have lost their ancestral function in cholesterogenesis but would have retained the other function(s, which keep them under pressure. CONCLUSIONS: By exploiting microarray data we have noticed a strong expressional correlation between the orthologs of ERG24 and ERG25 in D. melanogaster and genes encoding factors involved in intracellular protein trafficking and folding and with Start1 involved in ecdysteroid synthesis. These potential functional connections are worth being explored not only in Drosophila, but also in Caenorhabditis as well as in sterol prototrophs.

  15. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    International Nuclear Information System (INIS)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do; Ivanova, Galya; Coelho, Manuel

    2012-01-01

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 ± 2 %. The morphology and the size of the particles, before (40–400 nm) and after spray-drying (<20 μm), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH–polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30–50 % over time, compared to free CH molecules. In cellular medium at 37 °C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  16. Carbohydrate particles as protein carriers and scaffolds: physico-chemical characterization and collagen stability

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Ivone; Rocha, Sandra; Loureiro, Joana A.; Carmo Pereira, Maria do [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal); Ivanova, Galya [Universidade do Porto, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias (Portugal); Coelho, Manuel, E-mail: mcoelho@fe.up.pt [University of Porto, LEPAE, Chemical Engineering Department, Faculty of Engineering (Portugal)

    2012-09-15

    The preservation of protein properties after entrapping into polymeric matrices and the effects of drying the emulsions still remains uncertain and controversial. Carbohydrate particles were designed and prepared by homogenization of gum arabic and maltodextrin mixture, with collagen hydrolysate (CH) followed by spray-drying. The encapsulation of CH in the carbohydrate matrix was achieved with an efficiency of 85 {+-} 2 %. The morphology and the size of the particles, before (40-400 nm) and after spray-drying (<20 {mu}m), were characterized by scanning electron microscopy and dynamic light scattering. Measurements of the nuclear relaxation times and application of diffusion ordered spectroscopy, obtained through pulsed field gradient NMR experiments, have been performed to determine the structure of the CH-polysaccharide conjugates and to clarify the mechanism of CH immobilization in the polysaccharide matrix. In vitro release profiles in ultrapure water and in cellular medium reveal that the diffusion rate of CH from the polymeric matrix to the dialysis solution decreases in average 30-50 % over time, compared to free CH molecules. In cellular medium at 37 Degree-Sign C, the complete release of CH from the particles is achieved only after 24 h, demonstrating a significant decrease in the CH mass transfer process when compared with free CH. The findings of this study outline the ability of gum arabic/maltodextrin matrices to entrap and preserve CH original properties after the spray-drying process and support the potential of the polymeric scaffold for protein delivery and tissue engineering.

  17. Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification

    DEFF Research Database (Denmark)

    Nawrocki, A; Larsen, Martin Røssel; Podtelejnikov, A V

    1998-01-01

    Separation of proteins on either carrier ampholyte-based or immobilized pH gradient-based two-dimensional (2-D) gels gives rise to electrophoretic patterns that are difficult to compare visually. In this paper we have used matrix-assisted laser desorption/ionization mass spectrometry (MALDI......-MS) to determine the identities of 335 protein spots in these two 2-D gel systems, including a substantial number of basic proteins which had never been identified before. Proteins that were identified in both gel systems allowed us to cross-reference the gel patterns. Vector analysis of these cross...

  18. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers

    OpenAIRE

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaetan; Payrastre, Bernard; Bourguet, William; Antonny, Bruno; Drin, Guillaume

    2011-01-01

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Os...

  19. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    Science.gov (United States)

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-03

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  1. Interchangeability of meningococcal group C conjugate vaccines with different carrier proteins in the United Kingdom infant immunisation schedule.

    Science.gov (United States)

    Ladhani, Shamez N; Andrews, Nick J; Waight, Pauline; Hallis, Bassam; Matheson, Mary; England, Anna; Findlow, Helen; Bai, Xilian; Borrow, Ray; Burbidge, Polly; Pearce, Emma; Goldblatt, David; Miller, Elizabeth

    2015-01-29

    An open, non-randomised study was undertaken in England during 2011-12 to evaluate vaccine antibody responses in infants after completion of the routine primary infant immunisation schedule, which included two doses of meningococcal group C (MenC) conjugate (MCC) vaccine at 3 and 4 months. Any of the three licensed MCC vaccines could be used for either dose, depending on local availability. Healthy term infants registered at participating general practices (GPs) in Hertfordshire and Gloucestershire, UK, were recruited prospectively to provide a single blood sample four weeks after primary immunisation, which was administered by the GP surgery. Vaccination history was obtained at blood sampling. MenC serum bactericidal antibody (SBA) and IgG antibodies against Haemophilus influenzae b (Hib), pertussis toxin (PT), diphtheria toxoid (DT), tetanus toxoid (TT) and thirteen pneumococcal serotypes were analysed according to MCC vaccines received. MenC SBA responses differed significantly (Pvaccine schedule as follows: MenC SBA geometric mean titres (GMTs) were significantly lower in infants receiving a diphtheria cross-reacting material-conjugated MCC (MCC-CRM) vaccine followed by TT-conjugated MCC (MCC-TT) vaccine (82.0; 95% CI, 39-173; n=14) compared to those receiving two MCC-CRM (418; 95% CI, 325-537; n=82), two MCC-TT (277; 95% CI, 223-344; n=79) or MCC-TT followed by MCC-CRM (553; 95% CI, 322-949; n=18). The same group also had the lowest Hib geometric mean concentrations (0.60 μg/mL, 0.27-1.34) compared to 1.85 μg/mL (1.23-2.78), 2.86 μg/mL (2.02-4.05) and 4.26 μg/mL (1.94-9.36), respectively. Our results indicate that MCC vaccines with different carrier proteins are not interchangeable. When several MCC vaccines are available, children requiring more than one dose should receive MCC vaccines with the same carrier protein or, alternatively, receive MCC-TT first wherever possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  3. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    Science.gov (United States)

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  4. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Bagatolli, Luis A.; Duelund, Lars

    2017-01-01

    Higher sterols are universally present in large amounts (20–30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol...

  5. Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido 3H GBR-12935

    International Nuclear Information System (INIS)

    Berger, S.P.; Martenson, R.E.; Laing, P.; Thurkauf, A.; Decosta, B.; Rice, K.C.; Paul, S.M.

    1991-01-01

    A high affinity tritiated azido-diphenylpiperazine derivative, 3-azido 3 H GBR-12935, was synthesized as a potential photoaffinity probe of the dopamine transporter. Initially, the reversible binding of 3-azido 3 H GBR-12935 to crude synaptosomal membranes from the rat striatum was characterized. Specific binding was sodium dependent and inhibited by a variety of drugs that are known to potently inhibit dopamine uptake. Other neurotransmitter uptake inhibitors, as well as cis-flupenthixol, a potent inhibitor of 3 H GBR-12935 binding to piperazine binding sites, failed to inhibit specific binding at concentrations of less than or equal to 10 microM. A good correlation was observed between the relative potencies of these drugs in inhibiting dopamine uptake into synaptosomes and in inhibiting specific 3-azido 3 H GBR-12935 binding to rat striatal membranes. These data suggest that 3-azido 3 H GBR-12935, like other diphenylpiperazines such as 3 H GBR-12935 and 3 H GBR-12909, binds primarily to the dopamine transporter under defined assay conditions. After UV photolysis of crude synaptosomal membranes preincubated with 3-azido 3 H GBR-12935 (1-2 nM), a single radiolabeled polypeptide with an apparent molecular mass of 80 kDa was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Photoincorporation of 3-azido 3 H GBR-12935 into this polypeptide was inhibited selectively by compounds that inhibit the uptake of dopamine and was completely dependent on the presence of Na+. No photolabeled proteins were observed when cerebellar membranes were substituted for striatal membranes. Essentially complete adsorption of the radiolabeled 80-kDa polypeptide to wheat germ agglutinin and elution with N-acetyl-D-glucosamine strongly suggest that the dopamine transporter polypeptide photolabeled by 3-azido 3 H GBR-12935 is glycosylated

  6. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  7. Solute carrier protein family 11 member 1 (Slc11a1) activation efficiently inhibits Leishmania donovani survival in host macrophages.

    Science.gov (United States)

    Singh, Nisha; Gedda, Mallikarjuna Rao; Tiwari, Neeraj; Singh, Suya P; Bajpai, Surabhi; Singh, Rakesh K

    2017-09-01

    Visceral leishmaniasis (kala-azar), a life threatening disease caused by L. donovani , is a latent threat to more than 147 million people living in disease endemic South East Asia region of the Indian subcontinent. The therapeutic option to control leishmanial infections are very limited, and at present comprise only two drugs, an antifungal amphotericin B and an antitumor miltefosine, which are also highly vulnerable for parasitic resistance. Therefore, identification and development of alternate control measures is an exigent requirement to control leishmanial infections. In this study, we report that functionally induced expression of solute carrier protein family 11 member 1 ( Slc11a1), a transmembrane divalent cationic transporter recruited on the surface of phagolysosomes after phagocytosis of parasites, effectively inhibits Leishmania donovani growth in host macrophages. Further, the increased Slc11a1 functionality also resulted in increased production of NOx, TNF-α and IL-12 by activated macrophages. The findings of this study signify the importance of interplay between Slc11a1 expression and macrophages activation that can be effectively used to control of Leishmania growth and survival.

  8. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed.

    Science.gov (United States)

    Harker, Mark; Hellyer, Amanda; Clayton, John C; Duvoix, Annelyse; Lanot, Alexandra; Safford, Richard

    2003-02-01

    The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development. In both plants, enzyme activities were low during the initial stages of seed development, increasing towards mid-maturation where they remained stable for a time, before declining rapidly as the oilseeds reached maturity. During seed development, the level of total sterols increased 12-fold in tobacco and 9-fold in rape, primarily due to an increase in steryl ester production. In both seed tissues, stages of maximum enzyme activity coincided with periods of high rates of sterol production, indicating developmental regulation of the enzymes to be responsible for the increases in the sterol content observed during seed development. Consistent with previous studies the data presented suggest that sterol biosynthesis is regulated by two key steps, although there may be others. The first is the regulation of carbon flux into the isoprenoid pathway to cycloartenol. The second is the flux from cycloartenol to Delta(5)-end-product sterols. The implications of the results in terms of enhancing seed sterol levels by genetic modification are also discussed.

  9. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2011-01-01

    as N,N-dimethyl-4-nitrosoaniline (NDMA for the enzyme to cycle. Conclusions Taken together, these findings suggest that the mycofactocin precursor is modified by the Rv0693 family rSAM protein and other enzymes in its cluster. It becomes an electron carrier molecule that serves in vivo as NDMA and other artificial electron acceptors do in vitro. Subclasses from three different nicotinoprotein families show "only-if" relationships to mycofactocin because they require its presence. This framework suggests a segregated redox pool in which mycofactocin mediates communication among enzymes with non-exchangeable cofactors.

  10. The Evolution of Sterol Biosynthesis in Bacteria: In Situ Fluorescence Localization of Sterols in the Nucleoid Bacterium Gemmata obscuriglobus

    Science.gov (United States)

    Budin, M.; Jorgenson, T. L.; Pearson, A.

    2004-12-01

    The biosynthesis of sterols is generally regarded as a eukaryotic process. The first enzymatic step in the production of sterols requires molecular oxygen. Therefore, both the origin of eukaryotes and the evolution of sterol biosynthesis were thought to postdate the rise of oxygen in earth's atmosphere, until Brocks et al. discovered steranes in rocks aged 2.7 Ga (1). Many prokaryotes produce hopanoids, sterol-like compounds that are synthesized from the common precursor squalene without the use of molecular oxygen. However, a few bacterial taxa are also known to produce sterols, suggesting this pathway could precede the rise of oxygen (2, 3). Recently, we discovered the shortest sterol-producing biosynthetic pathway known to date in the bacterium Gemmata obscuriglobus (4). Using genomic searches, we found that Gemmata has the enzymes necessary for synthesis of sterols, and lipid analyses showed that the sterols produced are lanosterol and its isomer parkeol. Gemmata is a member of the Planctomycetes, an unusual group of bacteria, all of the known species of which contain intracellular compartmentalization. Among the Planctomycetes, Gemmata uniquely is the only prokaryote known to contain a double-membrane-bounded nuclear body (5). Since sterols usually are found in eukaryotes, and Gemmata has a eukaryote-like nuclear organelle, we investigated the location of the sterols within Gemmata to postulate whether they play a role in stabilization of the nuclear membrane and control of genomic organization. We used the sterol-specific fluorescent dye Filipin III in conjunction with fluorescent dyes for internal and external cellular membranes in order to determine whether the sterols are located in the nuclear body membrane, external membrane, or both. We found that sterols in Gemmata are concentrated in the internal membrane, implying that they function in maintaining this unusual cellular component. It is notable that Gemmata also produce hopanoids, suggesting that they

  11. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Landt Larsen, Ane; Færgeman, Nils J.

    2010-01-01

    The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method....... Bleach-rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut-granule-loss (glo) mutants with reduced...... homologues of Niemann-Pick C disease proteins. Our approach is generally useful for identifying fluorescent probes in the presence of high cellular autofluorescence....

  12. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  13. Quantitative charge-tags for sterol and oxysterol analysis.

    Science.gov (United States)

    Crick, Peter J; William Bentley, T; Abdel-Khalik, Jonas; Matthews, Ian; Clayton, Peter T; Morris, Andrew A; Bigger, Brian W; Zerbinati, Chiara; Tritapepe, Luigi; Iuliano, Luigi; Wang, Yuqin; Griffiths, William J

    2015-02-01

    Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism. © 2014 American Association for Clinical Chemistry.

  14. Sterol composition from inflorescences of Hieracium pilosella L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Krzaczek

    2011-01-01

    Full Text Available The fraction of sterol acetates from the inflorescences of Hieracium pilosella has been isolated in the typical way from petroleum ether extract. By means of the weight method the total amount of sterols was determined (0.2659%. The mixtures of sterol acetates and free sterols were investigated using GC-MS techniques. The occurrence of about 18 sterols has been observed. Cholesterol, cholest-8(14-en-3b-ol, cholesta-5.7-dien-3b-ol, cholest-7-en-3b-ol, ergosta-5.24-dien-3b-ol, campesterol, stigmasterol, b-sitosterol, fucosterol, 5a-stigmast-7-en-3a-ol were identified. The probable structures of lophenol, isofucosterol, 5a-stigmasta-7.24-dien-3b-ol, lanosta-9(11.24-dien-3b-ol and 24-ethylidene lophenol were stated on the basis of literature data. The last 4 sterols occur in a vestigial quantity, which made its identification impossible. Sitos erol and cholesterol are remarkably dominating sterols in the fraction.

  15. Neutral Sterols of Cephalic Glands of Stingless Bees and Their Correlation with Sterols from Pollen

    Directory of Open Access Journals (Sweden)

    Maria Juliana Ferreira-Caliman

    2012-01-01

    de novo and, thus, all phytophagous insects depend on an exogenous source of sterols for growth, development, and reproduction. The sterol requirements of social bees are not fully known due to the fact that there is no well-defined diet available throughout the year with regard to floral resources. Our study aimed to characterize the sterols present in pollen stored in Melipona marginata and Melipona scutellaris colonies, as well as evaluating their presence in the mandibular, hypopharyngeal, and cephalic salivary gland secretions. We analyzed the chemical composition of pollen stored in the colonies and the composition of the cephalic glands of workers in three adult functional phases (newly emerged, nurses, and foragers by gas chromatography and mass spectrometry. The results showed that the pollen analyzed contained campesterol, stigmasterol, sitosterol, isofucosterol, lanosterol, and small amounts of cholesterol. The glands showed the same compounds found in the pollen analyzed, except lanosterol that was not found in M. scutellaris glands. Surprisingly, cholesterol was found in some glands with relative ratios greater than those found in pollen.

  16. Sterol Regulation of Voltage-Gated K+ Channels.

    Science.gov (United States)

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  17. How cholesterol interacts with proteins and lipids during its intracellular transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-01-01

    as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics...... for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how......Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions...

  18. Purification, crystallization and preliminary X-ray diffraction analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus mutans strain UA159

    International Nuclear Information System (INIS)

    Kim, Tae-O; Im, Dong-Won; Jung, Ha Yun; Kwon, Seong Jung; Heo, Yong-Seok

    2012-01-01

    Enoyl-acyl carrier protein reductase (FabK) from S. mutans strain UA159 was cloned, overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 2.40 Å. A triclosan-resistant flavoprotein termed FabK is the sole enoyl-acyl carrier protein reductase in Streptococcus pneumoniae and Streptococcus mutans. In this study, FabK from S. mutans strain UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.40 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P6 2 , with unit-cell parameters a = b = 105.79, c = 44.15 Å. The asymmetric unit contained one molecule, with a corresponding V M of 2.05 Å 3 Da −1 and a solvent content of 39.9%

  19. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N.; Guiltinan, Mark J.

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance. PMID:25926841

  20. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins).

    Science.gov (United States)

    Marcella, Aaron M; Barb, Adam W

    2017-12-01

    The commercial impact of fermentation systems producing novel and biorenewable chemicals will flourish with the expansion of enzymes engineered to synthesize new molecules. Though a small degree of natural variability exists in fatty acid biosynthesis, the molecular space accessible through enzyme engineering is fundamentally limitless. Prokaryotic fatty acid biosynthesis enzymes build carbon chains on a functionalized acyl carrier protein (ACP) that provides solubility, stability, and a scaffold for interactions with the synthetic enzymes. Here, we identify the malonyl-coenzyme A (CoA)/holo-ACP transacylase (FabD) from Escherichia coli as a platform enzyme for engineering to diversify microbial fatty acid biosynthesis. The FabD R117A variant produced novel ACP-based primer and extender units for fatty acid biosynthesis. Unlike the wild-type enzyme that is highly specific for malonyl-CoA to produce malonyl-ACP, the R117A variant synthesized acetyl-ACP, succinyl-ACP, isobutyryl-ACP, 2-butenoyl-ACP, and β-hydroxybutyryl-ACP among others from holo-ACP and the corresponding acyl-CoAs with specific activities from 3.7 to 120 nmol min -1  mg -1 . FabD R117A maintained K M values for holo-ACP (~ 40 μM) and displayed small changes in K M for acetoacetyl-CoA (110 ± 30 μM) and acetyl-CoA (200 ± 70 μM) when compared to malonyl-CoA (80 ± 30 μM). FabD R117A represents a novel catalyst that synthesizes a broad range of acyl-acyl-ACPs.

  1. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L.

    Science.gov (United States)

    Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.

  2. Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase.

    Science.gov (United States)

    Liu, Qin; Chai, Jin; Moche, Martin; Guy, Jodie; Lindqvist, Ylva; Shanklin, John

    2015-09-01

    Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase1[OPEN

    Science.gov (United States)

    Liu, Qin; Chai, Jin; Moche, Martin; Guy, Jodie; Lindqvist, Ylva; Shanklin, John

    2015-01-01

    Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity. PMID:26224800

  4. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA.

    Science.gov (United States)

    Küssau, Tanja; Flipo, Marion; Van Wyk, Niel; Viljoen, Albertus; Olieric, Vincent; Kremer, Laurent; Blaise, Mickaël

    2018-05-01

    In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP + -bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP + -bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.

  5. Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters

    DEFF Research Database (Denmark)

    Fricke, Christiane B.; Schrøder, Malene; Poulsen, Morten

    2007-01-01

    . Cholesterol synthesis in brain, indicated by lathosterol, a local surrogate cholesterol synthesis marker, does not seem to be affected by plant sterol or stanol ester feeding. We conclude that high dose intake of plant sterol and stanol esters in Watanabe rabbits results in elevated concentrations...... of these components not only in the periphery but also in the central nervous system....... of these components in brain tissue of homozygous and heterozygous Watanabe rabbits, an animal model for familial hypercholesterolemia. Homozygous animals received either a standard diet, RSO stanol or RSO sterol ester while heterozygous animals were additionally fed with 2 g cholesterol/kg to the respective diet...

  6. Sterol Profile for Natural Juices Authentification by GC-MS

    Science.gov (United States)

    Culea, M.

    2007-04-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15m×0.25mm, 0.25μm film thickness, in a temperature program from 50°C for 1 min, then ramped at 15°C/min to 300°C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  7. Sterol Profile for Natural Juices Authentification by GC-MS

    International Nuclear Information System (INIS)

    Culea, M.

    2007-01-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25μm film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices

  8. Biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio

    1976-01-01

    This study deals with the biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina. After injection of mevalonate-2- 14 C, the metabolites were investigated by using thin-layer, column, and gas-liquid chromatographic techniques. The detailed investigation of radioactive desmethylsterols showed that radioactivity was mainly associated with cholest-7-enol. However, there was no evidence for the incorporation of mevalonate-2- 14 C into C 26 -, C 28 -, and C 29 -sterols besides cholestanol and cholesterol. The results indicated that the starfish, C. acutispina, is capable of synthesizing at least cholest-7-enol from mevalonate via probably squalene and lanosterol etc. But not sterols other than C 27 -sterols. Also, it was suggested that the conversion of cholest-7-enol to cholesterol may not proceed in this starfish. (auth.)

  9. Quantitative and qualitative analysis of sterols/sterolins and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... Most research has been carried out on ... method was developed to identify and quantify sterols (especially β-sitosterol) in chloroform extracts of .... Corms of the three Hypoxis spp. were planted in the same soil type.

  10. Transport of sterols to the plasma membrane of leek seedlings

    International Nuclear Information System (INIS)

    Moreau, P.; Hartmann, M.A.; Perret, A.M.; Sturbois-Balcerazak, B.; Cassagne, C.

    1998-01-01

    To investigate the intracellular transport of sterols in etiolated leek (Allium porrum L.) seedlings, in vivo pulse-chase experiments with [1-14C]acetate were performed. Then, endoplasmic reticulum-, Golgi-, and plasma membrane (PM)-enriched fractions were prepared and analyzed for the radioactivity incorporated into free sterols. In leek seedlings sterols are present as a mixture in which (24R)-24-ethylcholest-5-en-3beta-ol is by far the major compound (around 60%). The other sterols are represented by cholest-5-en-3beta-ol, 24-methyl-cholest-5-en-3beta-ol, (24S)-24-ethylcholesta-5,22E-dien-3beta-ol, and stigmasta-5,24(24(1))Z-dien-3Beta-ol. These compounds are shown to reside mainly in the PM. Our results clearly indicate that free sterols are actively transported from the endoplasmic reticulum to the PM during the first 60 min of chase, with kinetics very similar to that of phosphatidylserine. Such a transport was found to be decreased at low temperature (12 degrees C) and following treatment with monensin and brefeldin A. These data are consistent with a membrane-mediated process for the intracellular transport of sterols to the PM, which likely involves the Golgi apparatus

  11. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  12. Modulating Endoplasmic Reticulum-Golgi Cargo Receptors for Improving Secretion of Carrier-Fused Heterologous Proteins in the Filamentous Fungus Aspergillus oryzae

    Science.gov (United States)

    Hoang, Huy-Dung; Maruyama, Jun-ichi

    2014-01-01

    Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi. PMID:25362068

  13. The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent.

    Science.gov (United States)

    Tsuji, Takahiro; Sheehy, Noreen; Gautier, Virginie W; Hayakawa, Hitoshi; Sawa, Hirofumi; Hall, William W

    2007-05-04

    HTLV-1 is the etiologic agent of the adult T cell leukemialymphoma (ATLL). The viral regulatory protein Tax plays a central role in leukemogenesis as a transcriptional transactivator of both viral and cellular gene expression, and this requires Tax activity in both the cytoplasm and the nucleus. In the present study, we have investigated the mechanisms involved in the nuclear localization of Tax. Employing a GFP fusion expression system and a range of Tax mutants, we could confirm that the N-terminal 60 amino acids, and specifically residues within the zinc finger motif in this region, are important for nuclear localization. Using an in vitro nuclear import assay, it could be demonstrated that the transportation of Tax to the nucleus required neither energy nor carrier proteins. Specific and direct binding between Tax and p62, a nucleoporin with which the importin beta family of proteins have been known to interact was also observed. The nuclear import activity of wild type Tax and its mutants and their binding affinity for p62 were also clearly correlated, suggesting that the entry of Tax into the nucleus involves a direct interaction with nucleoporins within the nuclear pore complex (NPC). The nuclear export of Tax was also shown to be carrier independent. It could be also demonstrated that Tax it self may have a carrier function and that the NF-kappaB subunit p65 could be imported into the nucleus by Tax. These studies suggest that Tax could alter the nucleocytoplasmic distribution of cellular proteins, and this could contribute to the deregulation of cellular processes observed in HTLV-1 infection.

  14. Binding of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) and/or its metabolites to mammalian biliary carrier proteins

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Huwe, J.; Hakk, H. [USDA ARS Biosciences Research Lab, Fargo, ND (United States); Low, M.; Rutherford, D. [Concordia College, Moorhead, MN (United States)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in the textile and electronics industries and are globally produced in the range of 150,000 tons annually. Because they are very lipophilic, structurally similar to polychlorinated dibenzo-p-dioxins and biphenyls, environmentally persistent, and display an increasing number of toxicological effects, there is growing concern that this class of compounds may be emerging as a new environmental contaminant. Recent reports have documented their presence in human plasma, milk, and adipose tissue and in aquatic species such as sperm whales, harbor seals, and whitebeaked dolphins. Only a few PBDE congeners are consistently found and reported in the environment, e.g. BDE-47, 99, 100, 153 and 154, and 209. Of this group, only BDE-47 and 99 have been studied in mammals. Halogenated aromatic hydrocarbons can associate with endogenous carrier proteins in the urine and bile of rats, either as the parent or as metabolites. Toxic and non-toxic dioxins, PCB's, and PBDE's all have this capacity. Based on its lipophilicity, BDE-100 would be expected to require carrier proteins for mammalian in vivo transport. The purpose of the association has not been established but may be part of the process involved in mammalian elimination of these xenobiotics. However, the association may affect the normal function of these carrier proteins. One of the purposes of the present research was to administer a single oral dose of BDE-100 to male rats and measure the amount eliminated in the urine and bile, as well as characterize the nature and extent of binding to any proteins in these excreta.

  15. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  16. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  17. Sterol transfer between cyclodextrin and membranes: similar but not identical mechanism to NPC2-mediated cholesterol transfer.

    Science.gov (United States)

    McCauliff, Leslie A; Xu, Zhi; Storch, Judith

    2011-08-30

    Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.

  18. Free Sterols of the red alga Chondria armata (Kutz.) Okamura

    Digital Repository Service at National Institute of Oceanography (India)

    Govenkar, M.B.; Wahidullah, S.

    . Results and Discussion The analysis of the sterol fraction by 1 H and 13 C NMR indicated it to be a mixture of four major D 5 3b-hydroxy sterols 2 cholest 5-en-3b-ol (choles- terol), 24j-methyl cholest-5,22-diene-3b-ol, 24j-ethyl cholest-5,22-diene-3b-ol....388 9 % 400 23j-Methyl 5a-cholestan-3b-ol C 28 H 50 O 30.759 6.7 % 402 24b-Ethyl cholest-5,22-diene-3b-ol C 29 H 48 O 31.21 4 % 412 24b-Ethyl cholest-5-en-3b-ol C 29 H 50 O 31.790 18.02 % 414 Table II. Mass spectroscopic characteristic of sterol acetates...

  19. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    Science.gov (United States)

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  20. A novel approach for over-expression, characterization, and isotopic enrichment of a homogeneous species of acyl carrier protein from Plasmodium falciparum

    International Nuclear Information System (INIS)

    Sharma, Shailendra Kumar; Modak, Rahul; Sharma, Shilpi; Sharma, Alok Kumar; Sarma, Siddhartha P.; Surolia, Avadhesha; Surolia, Namita

    2005-01-01

    Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis by transferring the acyl groups from one enzyme to another for the completion of the fatty acid synthesis cycle. Holo-ACP is the obligatory substrate for the synthesis of acyl-ACPs which act as the carrier and donor for various metabolic reactions. Despite its interactions with numerous proteins in the cell, its mode of interaction is poorly understood. Here, we report the over-expression of PfACP in minimal medium solely in its holo form and in high yield. Expression in minimal media provides a means to isotopically label PfACP for high resolution multi-nuclear and multi-dimensional NMR studies. Indeed, the proton-nitrogen correlated NMR spectrum exhibits very high chemical shift dispersion and resolution. We also show that holo-PfACP thus expressed is amenable to acylation reactions using Escherichia coli acyl-ACP synthetase as well as by standard chemical methods

  1. Expression, purification, crystallization and preliminary X-ray analysis of the d-alanyl carrier protein DltC from Staphylococcus epidermidis

    International Nuclear Information System (INIS)

    Huang, Chi-Hung; Kao, Chao-Hung; Yang, Chia-Shin; Chang, Chi-Huang; Chen, Sheng-Chia; Kuan, Shu-Min; Su, Yen-Chao; Huang, Yu-Han; Chang, Ming-Chung; Chen, Yeh

    2012-01-01

    The S. epidermidis carrier protein DltC has been crystallized in order to elucidate the functional role of DltC in the alanylation of lipoteichoic acids in bacteria. The d-alanyl lipoteichoic acids (d-alanyl LTAs) present in the cell walls of Gram-positive bacteria play crucial roles in autolysis, cation homeostasis and biofilm formation. The alanylation of LTAs requires the d-alanyl carrier protein DltC to transfer d-Ala onto a membrane-associated LTA. Here, DltC from Staphylococcus epidermidis (SeDltC) was purified and crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to a resolution of 1.83 Å and belonged to space group P2, with unit-cell parameters a = 66.26, b = 53.28, c = 88.05 Å, β = 98.22°. The results give a preliminary crystallographic analysis of SeDltC and shed light on the functional role of DltC in the alanylation of LTAs

  2. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans

    OpenAIRE

    Dahlin, Paul; Srivastava, Vaibhav; Ekengren, Sophia; McKee, Lauren S.; Bulone, Vincent

    2017-01-01

    The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heter...

  3. Sterols of Pneumocystis carinii hominis organisms isolated from human lungs

    DEFF Research Database (Denmark)

    Kaneshiro, E S; Amit, Z; Chandra, Jan Suresh

    1999-01-01

    in conjunction with analyses of chemically synthesized authentic standards. The sterol composition of isolated P. carinii hominis organisms has yet to be reported. If P. carinii from animal models is to be used for identifying potential drug targets and for developing chemotherapeutic approaches to clear human...... infections, it is important to determine whether the 24-alkylsterols of organisms found in rats are also present in organisms in humans. In the present study, sterol analyses of P. carinii hominis organisms isolated from cryopreserved human P. carinii-infected lungs and from bronchoalveolar lavage fluid were...

  4. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  5. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton.

    Directory of Open Access Journals (Sweden)

    Maike Piepho

    Full Text Available Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.

  6. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been...

  7. Identification of ergosterol and inhibition of sterol synthesis by Δ5-sterols in GL7, an auxotrophic mutant of yeast

    International Nuclear Information System (INIS)

    Dhanuka, I.C.

    1988-01-01

    Synthesis of ergosterol was demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the exogenous sterol was 5α-cholestan-3β-ol, 5α-cholest-8(14)-en-3β-ol, or 24β-methyl-5α-cholest-8(14)-en-3β-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol. Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labelling from [ 3 H]acetate. Except for some cholest-5-en-3β-ol (cholesterol) which was derived from the 5α-cholestan-3β-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the exogenous sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5α-cholest-8(9)-en-3β-ol and 5α-cholest-7-en-3β-ol (lathosterol) were converted to cholesta-5,7-dien-3β-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol

  8. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  9. Co-suppression of sterol-regulatory element binding protein ...

    African Journals Online (AJOL)

    Arabidopsis plants were transformed with a chimeric construct containing expression cassettes for GFP election marker and CaMV 35S promoter-driven At5g35220 cDNA, via Agro bacterium-mediated method. Two transformants produced pigmentation deficient phenotype. Analysis revealed the decrease of chlorophyll in ...

  10. Radionuclide carrier

    International Nuclear Information System (INIS)

    Hartman, F.A.; Kretschmar, H.C.; Tofe, A.J.

    1978-01-01

    A physiologically acceptable particulate radionuclide carrier is described. It comprises a modified anionic starch derivative with 0.1% to 1.5% by weight of a reducing agent and 1 to 20% by weight of anionic substituents

  11. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  12. Sneaking under the toxin surveillance radar: parasitism and sterol ...

    African Journals Online (AJOL)

    This was not simply a reflection of retaining host lipid content because K. micrum contains octadecapentaenoic acid (18:5n3), largely in galactolipids of the chloroplast, whereas Amoebophrya sp. contained little to no 18:5n3. By having a sterol content similar to its host, Amoebophrya sp. is able to avoid cell lysis caused by ...

  13. Sterol-specific membrane interactions with the toxins from ...

    African Journals Online (AJOL)

    The lipophilic toxins from Karlodinium micrum, KmTX, have negative effects on several co-occurring phytoplankton species, yet appear to have no effect on K. micrum itself. One of these compounds, KmTX2, has differing toxicity towards eukaryotic membranes with differing sterol compositions (vertebrate > fungal ...

  14. A Study of the Reactivity of Polyhydroxylated Sterol Derivatives

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Klepetářová, Blanka; Elbert, Tomáš

    2015-01-01

    Roč. 4, č. 8 (2015), s. 808-817 ISSN 2193-5807 R&D Projects: GA AV ČR IAA400550801 Institutional support: RVO:61388963 Keywords : alpha-hydroxyketones * polyhydroxylated compounds * regiospecific reactions * silylation * sterols Subject RIV: CC - Organic Chemistry Impact factor: 3.275, year: 2015

  15. Insect molting hormone and sterol biosynthesis in spinach

    International Nuclear Information System (INIS)

    Grebenok, R.J.; Adler, J.H.

    1990-01-01

    Insect molting hormones, which are produced by plants and are effective molecules in the control of insect crop pests, are biosynthesized in developing spinach leaves (Spinacia oleracea L.). The major sterols biosynthesized by spinach are avenasterol (24α-ethyl-5α-cholesta-7,24(28)-dien-3β-ol), spinasterol (24α-ethyl-5α-cholesta-7,22-dien-3β-ol), and 22-dihydrospinasterol (24α-ethyl-5α-cholest-7-en-3β-ol). The major ecdysteroids biosynthesized are ecdysterone (2β,3β,14α,20R,22R,25-hexahydroxy-5β-cholest-7-en-6-one) and polypodine B (2β,3β,5β,14α,20R,22R,25-heptahycroxycholest-7-en-6-one) and polypodine B (2β,3β,5β,14α,20R,22R,25-heptahydroxycholest-7-en-6-one). When labeled 2- 14 C-mevalonic acid was incorporated into young leaves isolated squalene, sterols and ecdysteroids contained the label. During a short (16 h) incorporation period in intact young leaves of 100 day old plants, the avenasterol has the highest specific activity in counts per minute per μg of sterol followed by 22-dihydrospinasterol which is more highly labeled than spinasterol. The ecdysteroids synthesized, on an entire plant basis, account for 20% of the total steroid (sterol and ecdysteroid) isolated from the plant

  16. Minor sterols from the sponge Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Three sterols, isolated from the lipid fraction of the sponge Ircinia ramosa were characterised as cholest-5-en-3 beta-ol-7-one (7-oxo cholesterol, 1), cholest 5-23-dien-b beta ol-7-one (7-oxo demosterol, 2) and 24E-ethyl cholest-5-en-3 beta -ol-7...

  17. Sterols from the Lakshadweep sponge, Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Four monohydroxy sterols, viz, (22E,24S)-24-methylcholest-5,22-dien-3(beta)-ol (3), cholesterol (4), 24(Xi)-ethylcholesterol (8) and the corresponding Delta super(4)-3 ketones, viz. (22E,24S)-24-methylcholest-4,22-dien-3-one (1), cholest-4-en-3-one...

  18. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  19. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.

    Science.gov (United States)

    Behmer, Spencer T

    2017-10-01

    Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  1. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  2. Differential Impact of Plasma Proteins on the Adhesion Efficiency of Vascular-Targeted Carriers (VTCs) in Blood of Common Laboratory Animals.

    Science.gov (United States)

    Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola

    2015-12-16

    Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.

  3. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    DEFF Research Database (Denmark)

    Klemm, Robin W; Ejsing, Christer S.; Surma, Michal A

    2009-01-01

    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane...... trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN...... than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery....

  4. Serum sterol responses to increasing plant sterol intake from natural foods in the Mediterranean diet.

    Science.gov (United States)

    Escurriol, Verónica; Cofán, Montserrat; Serra, Mercè; Bulló, Mónica; Basora, Josep; Salas-Salvadó, Jordi; Corella, Dolores; Zazpe, Itziar; Martínez-González, Miguel A; Ruiz-Gutiérrez, Valentina; Estruch, Ramón; Ros, Emilio

    2009-09-01

    Phytosterols in natural foods are thought to inhibit cholesterol absorption. The Mediterranean diet is rich in phytosterol-containing plant foods. To assess whether increasing phytosterol intake from natural foods was associated with a cholesterol-lowering effect in a substudy of a randomized trial of nutritional intervention with Mediterranean diets for primary cardiovascular prevention (PREDIMED study). One hundred and six high cardiovascular risk subjects assigned to two Mediterranean diets supplemented with virgin olive oil (VOO) or nuts, which are phytosterol-rich foods, or advice on a low-fat diet. Outcomes were 1-year changes in nutrient intake and serum levels of lipids and non-cholesterol sterols. Average phytosterol intake increased by 76, 158 and 15 mg/day in participants assigned VOO, nuts and low-fat diets, respectively. Compared to participants in the low-fat diet group, changes in outcome variables were observed only in those in the Mediterranean diet with nuts group, with increases in intake of fibre, polyunsaturated fatty acids and phytosterols (P natural foods appear to be bioactive in cholesterol lowering.

  5. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking.

    Science.gov (United States)

    Hashemi, Behnaz; Madadlou, Ashkan; Salami, Maryam

    2017-12-15

    Nanostructured lipid carriers (NLCs) with mean size of 347nm were fabricated and added into a heat-denatured whey protein solution. The subsequent crosslinking of proteins by citric acid or CaCl 2 resulted in the formation of cold-set hydrogels. Fourier transform infrared spectroscopy (FTIR) proposed formation of more hydrogen bonds in gel due to NLC loading or citric acid-mediated gelation. It was also found based on FITR spectroscopy that citric acid crosslinking disordered whey proteins. Scanning electron microscopy (SEM) imaging showed a non-porous and finely meshed microstructure for the crosslinked gels compared to non-crosslinked counterparts. Crosslinking also increased the firmness and water-holding capacity of gels. In pepsin-free fluid, a strong correlation existed between reduction in gel swellability and digestibility over periods up to 60min due to NLC loading and citric acid gelation. However, in peptic fluid, NLC loading and citric acid crosslinking brought about much higher decrease in digestibility than swellability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of pH-sensitive poly(β-amino ester)-graft-poly(ethylene glycol) and its usefulness as a pH-sensor and protein carrier.

    Science.gov (United States)

    Kim, Min Sang; Gao, Guang Hui; Kang, Seong Woo; Lee, Doo Sung

    2011-07-07

    In this study, some possible biomedical applications of a pH-sensitive and amphiphilic copolymer as a pH sensor and protein delivery system are reported. PAE-g-PEG was used as a pH-sensitive polymer that can exhibit a sharp pH-dependent transition. Various fluorescent dyes including pyrene and RITC can be used to label the pH-sensitive polymer PAE-g-PEG, which was evaluated for protein encapsulation. pH-sensing was possible by observing excimer formation of the labeled pyrene via pH-dependent expansion of the polymeric chain. Also, it was confirmed that FITC-BSA could be entrapped in RITC-labeled pH-sensitive micelles of PAE-g-PEG by FRET. As a result, PAE-g-PEG can be a pH sensor and carrier for protein delivery. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The role of ß-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower

    DEFF Research Database (Denmark)

    González-Mellado, Damián; von Wettstein, Penny; Garcés, Rafael

    2010-01-01

    The ß-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing...... seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous...... proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons...

  8. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain.

    Science.gov (United States)

    Kasongo, Kasongo Wa; Jansch, Mirko; Müller, Rainer H; Walker, Roderick B

    2011-09-01

    The preferential in vitro adsorption of apolipoprotein E (Apo E) onto the surface of colloidal drug carriers may be used as a strategy to evaluate the in vivo potential for such systems to transport drugs to the brain. The aim of this research was to investigate the in vitro protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (DDI-NLCs), using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), in order to establish the potential for NLCs to deliver DDI to the brain. NLC formulations were manufactured using high-pressure homogenization using a lipid matrix consisting of a mixture of Precirol(®) ATO 5 and Transcutol(®) HP. The 2-D PAGE analysis revealed that NLCs in formulations stabilized using Solutol(®) HS 15 alone or with a ternary surfactant system consisting of Solutol(®) HS 15, Tween(®) 80, and Lutrol(®) F68, preferentially adsorbed proteins, such as Apo E. Particles stabilized with Tween(®) 80 and Lutrol(®) F68 did not adsorb Apo E in these studies, which could be related to the relatively large particle size and hence small surface area observed for these NLCs. These findings have revealed that DDI-loaded NLCs may have the potential to deliver DDI to the brain in vivo and, in addition, to Tween(®) 80, which has already been shown to have the ability to facilitate the targeting of colloidal drug delivery systems to the brain. Solutol(®) HS 15-stabilized nanoparticles may also achieve a similar purpose.

  9. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz

    2013-02-28

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  10. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    KAUST Repository

    Trujillo, Uldaeliz; Vá zquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  11. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    Directory of Open Access Journals (Sweden)

    Uldaeliz Trujillo

    Full Text Available The polyunsaturated fatty acid (PUFA synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect and in structural stabilization of the multidomain protein (synergistic effect. While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of

  12. Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae).

    Science.gov (United States)

    Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A

    1977-05-17

    A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.

  13. Disposable Amperometric Immunosensor for the Determination of Human P53 Protein in Cell Lysates Using Magnetic Micro-Carriers

    Directory of Open Access Journals (Sweden)

    María Pedrero

    2016-11-01

    Full Text Available An amperometric magnetoimmunosensor for the determination of human p53 protein is described in this work using a sandwich configuration involving the covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic beads (HOOC-MBs and incubation of the modified MBs with a mixture of the target protein and horseradish peroxidase-labeled antibody (HRP-anti-p53. The resulting modified MBs are captured by a magnet placed under the surface of a disposable carbon screen-printed electrode (SPCE and the amperometric responses are measured at −0.20 V (vs. an Ag pseudo-reference electrode, upon addition of hydroquinone (HQ as a redox mediator and H2O2 as the enzyme substrate. The magnetoimmunosensing platform was successfully applied for the detection of p53 protein in different cell lysates without any matrix effect after a simple sample dilution. The results correlated accurately with those provided by a commercial ELISA kit, thus confirming the immunosensor as an attractive alternative for rapid and simple determination of this protein using portable and affordable instrumentation.

  14. Changes in blood levels of proteinase inhibitors, pregnancy zone protein, steroid carriers and complement factors induced by oral contraceptives

    DEFF Research Database (Denmark)

    Nielsen, C H; Poulsen, H K; Teisner, B

    1993-01-01

    levels of antithrombin III (AT III), alpha 2-macroglobulin (alpha 2M) alpha 1-antitrypsin (alpha 1at), complement factors (factor B, C3, C4), pregnancy zone protein (PZP), corticosteroid binding globulin (CBG), sex hormone binding globulin (SHBG) and albumin were measured before treatment and during...

  15. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  16. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  17. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease.

    Science.gov (United States)

    Gylling, Helena; Hallikainen, Maarit; Rajaratnam, Radhakrishnan A; Simonen, Piia; Pihlajamäki, Jussi; Laakso, Markku; Miettinen, Tatu A

    2009-03-01

    In postmenopausal coronary artery disease (CAD) women, serum plant sterols are elevated. Thus, we investigated further whether serum plant sterols reflect absolute cholesterol metabolism in CAD as in other populations and whether the ABCG5 and ABCG8 genes, associated with plant sterol metabolism, were related to the risk of CAD. In free-living postmenopausal women with (n = 47) and without (n = 62) CAD, serum noncholesterol sterols including plant sterols were analyzed with gas-liquid chromatography, cholesterol absorption with peroral isotopes, absolute cholesterol synthesis with sterol balance technique, and bile acid synthesis with quantitating fecal bile acids. In CAD women, serum plant sterol ratios to cholesterol were 21% to 26% (P synthesis were reduced. Only in controls were serum plant sterols related to cholesterol absorption (eg, sitosterol; in controls: r = 0.533, P synthesis marker) and lathosterol-cholestanol (relative synthesis-absorption marker) were related to absolute synthesis and absorption percentage (P range from .05 to sterol metabolism is disturbed in CAD women; so serum plant sterols only tended to reflect absolute cholesterol absorption. Other relative markers of cholesterol metabolism were related to the absolute ones in both groups. ABCG5 and ABCG8 genes were not associated with the risk of CAD.

  18. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans.

    Science.gov (United States)

    Dahlin, Paul; Srivastava, Vaibhav; Ekengren, Sophia; McKee, Lauren S; Bulone, Vincent

    2017-01-01

    The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets.

  19. Competition between ergosterol and cholesterol in sterol uptake and intracellular trafficking in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Valachovic, M.; Hronska, L.; Hapala, I.

    1998-01-01

    The fate of internal cholesterol was evaluated in cells grown under various conditions with respect to the amount and the nature of sterols supplemented to the cells. Steryl esters accumulate in stationary phase-yeast cells and they are rapidly hydrolyzed in cells during exponential growth or ergosterol depletion. Cholesterol and other 'unnatural' sterols are esterified more efficiently that native ergosterol and it was speculated that esterification could protect cellular membranes from accumulation of these less optimal sterols. We tested this idea by monitoring the mobility of 14 C-cholesterol between free and esterified fractions in cell supplemented with cholesterol or ergosterol. It was found that cells grown on cholesterol to the stationary phase accumulated up to 80 % of label in the steryl ester fraction. Subsequent growth in sterol-free media caused sterol-depletion of plasma membrane and induced hydrolysis of 14 C- cholesteryl esters and accumulation of the label in free membranous sterol pool.Supplementation of cells with external sterols resulted in a shift in sterol trafficking and in a new accumulation of 14 C-cholesteryl esters. This indicates that the absence of an efficient proof-reading mechanism in plasma membrane that would be able to remove preferentially cholesterol from the free sterol pool in plasma membrane to steryl esters in lipidic particles. The mobility of cholesterol molecules in non-growing cells wa negligible suggesting that active growth or membrane proliferation are required for shifts of sterol molecules between these pools. (authors)

  20. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-10-01

    Full Text Available Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(- were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(- mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(- causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  1. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Science.gov (United States)

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-10-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  2. Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols

    NARCIS (Netherlands)

    Plat, Jogchum; Beugels, Ilona; Gijbels, Marion J. J.; de Winther, Menno P. J.; Mensink, Ronald P.

    2006-01-01

    Statins do not always decrease coronary heart disease mortality, which was speculated based on increased serum plant sterols observed during statin treatment. To evaluate plant sterol atherogenicity, we fed low density lipoprotein-receptor deficient (LDLr(+/-)) mice for 35 weeks with Western diets

  3. Possible regulation of sterol biosynthesis by phenolic acids

    International Nuclear Information System (INIS)

    Ranganathan, S.; Ramasarma, T.

    1974-01-01

    To test whether the phenolic acids, metabolites of tyrosine, regulate the biosynthesis of cholesterol, influence of phenolic acids on the incorporation of mevalonate-2- 14 C into sterols by rat liver and brain homogenate systems has been investigated in vitro. Results show that the combined presence of the aromatic ring and the carboxyl group in the compound under investigation inhibited the incorporation of labelled mevalonate. (M.G.B.)

  4. Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function.

    Directory of Open Access Journals (Sweden)

    Katrin Sebastian

    Full Text Available Organic anion transporting polypeptides (OATP/SLCO have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20 and genes implicated in developmental processes (e.g. TGM2. A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration.

  5. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2016-08-01

    The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.

  6. Effect of ketoconazole in combination with other inhibitors of sterol synthesis on fungal growth.

    OpenAIRE

    Sud, I J; Feingold, D S

    1985-01-01

    The effect of combination of ketoconazole with other sterol synthesis inhibitors on fungal growth was tested against a variety of fungi selected for resistance to ketoconazole. All of the sterol inhibitors, at concentrations lower than their MICs, caused an increase greater than fourfold in the ketoconazole susceptibility of some fungi. Some of the sterol synthesis inhibitors showed this effect with ketoconazole at levels that may be achieved clinically.

  7. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    Science.gov (United States)

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  8. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulate Myelination in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuhei Nishimura

    2016-07-01

    Full Text Available Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS, and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs. Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation

  9. Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole.

    OpenAIRE

    Ghannoum, M A; Spellberg, B J; Ibrahim, A S; Ritchie, J A; Currie, B; Spitzer, E D; Edwards, J E; Casadevall, A

    1994-01-01

    Analysis of the sterol compositions of 13 clinical isolates of the pathogenic yeast Cryptococcus neoformans obtained from five patients with recurring cryptococcal meningitis showed that, unlike Candida albicans, the major sterols synthesized by this yeast were obtusifoliol (range, 21.1 to 68.2%) and ergosterol (range, 0.0 to 46.5%). There was considerable variation in the sterol contents among the 13 isolates, with total sterol contents ranging from 0.31 to 5.9% of dry weight. The isolates f...

  10. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215)

    International Nuclear Information System (INIS)

    Plemenitas, A.; Havel, C.M.; Watson, J.A.

    1990-01-01

    Chinese hamster ovary-215 (CHO-215) mutant cells are auxotrophic for cholesterol. Berry and Chang (Berry, D. J., and Chang, T. Y. (1982) Biochemistry 21, 573-580) suggested that the metabolic lesion was at the level of 4-methyl sterol oxidation. However, the observed cellular accumulation of lanosterol was not consistent with a defect at this metabolic site. With the use of a novel Silica Sep Pak sterol separation procedure, we demonstrated that 60-80% of the acetonesoluble lipid radioactivity in [5-3H]mevalonate-labeled CHO-215 cells was incorporated into acidic sterols. 7(8),Cholesten-4 beta-methyl,4 alpha-carboxy,3 beta-ol was the dominant end product. In addition to this acidic sterol, 7(8),24-cholestadien,4 beta-methyl,4 alpha-carboxy,3 beta-ol and 7(8),24-cholestadien,4 alpha-carboxy,3 beta-ol were also isolated. Incubation of cell-free extracts with [3H]7(8)-cholesten-4 beta-methyl, 4 alpha-carboxy,3 beta-ol and pyridine nucleotides confirmed that CHO-215 4-carboxysterol decarboxylase activity was less than 1% of that for wild type cells. Thus, a correspondence between decreased 4-carboxysterol decarboxylase activity and the spectrum of accumulated sterol products by intact CHO-215 cells was demonstrated. No detectable cholesterol was synthesized by CHO-215 cells. 3H-Product accumulation studies demonstrated that 7(8),24-cholestadien, 4 beta-methyl,4 alpha-carboxy,3 beta-ol increased prior to its subsequent saturation at the delta 24 carbon. Furthermore, the steady state ratio for delta 24-saturated acidic sterols/unsaturated acidic sterols was dependent on media cholesterol source and amount. Finally, the accumulated acidic sterol(s) were not regulatory signal molecules for the modulation of 3-hydroxy-3-methyl-glutaryl coenzyme. A reductase activity in response to cholesterol availability

  11. X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy.

    Science.gov (United States)

    Freundlich, Joel S; Wang, Feng; Tsai, Han-Chun; Kuo, Mack; Shieh, Hong-Ming; Anderson, John W; Nkrumah, Louis J; Valderramos, Juan-Carlos; Yu, Min; Kumar, T R Santha; Valderramos, Stephanie G; Jacobs, William R; Schiehser, Guy A; Jacobus, David P; Fidock, David A; Sacchettini, James C

    2007-08-31

    The x-ray crystal structures of five triclosan analogs, in addition to that of the isoniazid-NAD adduct, are described in relation to their integral role in the design of potent inhibitors of the malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of the novel 5-substituted analogs exhibit low micromolar potency against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and inhibit purified PfENR enzyme with IC50 values of <200 nM. This study has significantly expanded the knowledge base with regard to the structure-activity relationship of triclosan while affording gains against cultured parasites and purified PfENR enzyme. In contrast to a recent report in the literature, these results demonstrate the ability to improve the in vitro potency of triclosan significantly by replacing the suboptimal 5-chloro group with larger hydrophobic moieties. The biological and x-ray crystallographic data thus demonstrate the flexibility of the active site and point to future rounds of optimization to improve compound potency against purified enzyme and intracellular Plasmodium parasites.

  12. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb.

    Science.gov (United States)

    Peng, Dan; Zhou, Bo; Jiang, Yueqiao; Tan, XiaoFeng; Yuan, DeYi; Zhang, Lin

    2018-07-01

    Sapium sebiferum (L.) Roxb. is an important woody oil tree and traditional herbal medicine in China. Stearoyl-acyl carrier protein desaturase (SAD) is a dehydrogenase enzyme that plays a key role in the transformation of saturated fatty acids into unsaturated fatty acids in oil; these fatty acids greatly influence the freezing tolerance of plants. However, it remains unclear whether freezing tolerance can be regulated by the expression level of SsSAD in S. sebiferum L. Our research indicated that SsSAD expression in S. sebiferum L. increased under freezing stress. To further confirm this result, we constructed a pEGAD-SsSAD vector and transformed it into B. napus L. W10 by Agrobacterium tumefaciens-mediated transformation. Transgenic plants that overexpressed the SsSAD gene exhibited significantly higher linoleic (18:2) and linolenic acid (18:3) content and advanced freezing tolerance. These results suggest that SsSAD overexpression in B. napus L. can increase the content of polyunsaturated fatty acids (PUFAs) such as linoleic (18:2) and linolenic acid (18:3), which are likely pivotal in improving freezing tolerance in B. napus L. plants. Thus, SsSAD overexpression could be useful in the production of freeze-tolerant varieties of B. napus L. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Conserved Function of ACYL–ACYL CARRIER PROTEIN DESATURASE 5 on Seed Oil and Oleic Acid Biosynthesis between Arabidopsis thaliana and Brassica napus

    Directory of Open Access Journals (Sweden)

    Changyu Jin

    2017-07-01

    Full Text Available Previous studies have shown that several ACYL–ACYL CARRIER PROTEIN DESATURASE (AtAAD members in Arabidopsis thaliana are responsible for oleic acid (C18:1 biosynthesis. Limited research has been conducted on another member, AtAAD5, and its paralog BnAAD5 in the closely related and commercially important plant, Brassica napus. Here, we found that AtAAD5 was predominantly and exclusively expressed in developing embryos at the whole seed developmental stages. The aad5 mutation caused a significant decrease in the amounts of oil and C18:1, and a considerable increase in the content of stearic acid (C18:0 in mature seeds, suggesting that AtAAD5 functioned as an important facilitator of seed oil biosynthesis. We also cloned the full-length coding sequence of BnAAD5-1 from the A3 subgenome of the B. napus inbred line L111. We showed that ectopic expression of BnAAD5-1 in the A. thaliana aad5-2 mutant fully complemented the phenotypes of the mutant, such as lower oil content and altered contents of C18:0 and C18:1. These results help us to better understand the functions of AAD members in A. thaliana and B. napus and provide a promising target for genetic manipulation of B. napus.

  14. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  15. Detection of Foot-and-mouth Disease Virus RNA and Capsid Protein in Lymphoid Tissues of Convalescent Pigs Does Not Indicate Existence of a Carrier State.

    Science.gov (United States)

    Stenfeldt, C; Pacheco, J M; Smoliga, G R; Bishop, E; Pauszek, S J; Hartwig, E J; Rodriguez, L L; Arzt, J

    2016-04-01

    A systematic study was performed to investigate the potential of pigs to establish and maintain persistent foot-and-mouth disease virus (FMDV) infection. Infectious virus could not be recovered from sera, oral, nasal or oropharyngeal fluids obtained after resolution of clinical infection with any of five FMDV strains within serotypes A, O and Asia-1. Furthermore, there was no isolation of live virus from tissue samples harvested at 28-100 days post-infection from convalescent pigs recovered from clinical or subclinical FMD. Despite lack of detection of infectious FMDV, there was a high prevalence of FMDV RNA detection in lymph nodes draining lesion sites harvested at 35 days post-infection, with the most frequent detection recorded in popliteal lymph nodes (positive detection in 88% of samples obtained from non-vaccinated pigs). Likewise, at 35 dpi, FMDV capsid antigen was localized within follicles of draining lymph nodes, but without concurrent detection of FMDV non-structural protein. There was a marked decline in the detection of FMDV RNA and antigen in tissue samples by 60 dpi, and no antigen or viral RNA could be detected in samples obtained at 100 dpi. The data presented herein provide the most extensive investigation of FMDV persistence in pigs. The overall conclusion is that domestic pigs are unlikely to be competent long-term carriers of infectious FMDV; however, transient persistence of FMDV protein and RNA in lymphoid tissues is common following clinical or subclinical infection. © Published 2014. This article is a US Government work and is in the public domain in the USA.

  16. Impact of ice melting on distribution of particulate sterols in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Gutiérrez, Marcelo H.; Riquelme, Pablo; Pantoja, Silvio

    2016-04-01

    We analyzed variability in abundance and composition of sterols in waters of the fjord adjacent to glacier Jorge Montt, one of the fastest retreated glaciers in Patagonian Icefields. The study was carried out between August 2012 and November 2013 under different meltwater scenarios. Distribution of sterols in surface and bottom waters was determined by Gas Chromatography coupled to Mass Spectrometry. Sterol concentration ranged from 18 to 1726 ng/L in surface and bottom waters and was positive correlated with chlorophyll-a concentration. Under high melting conditions in austral summer, surface meltwaters showed high concentrations of sterols and were dominated by methylene-cholesterol, a representative sterol of centric diatoms. In the area near open ocean and in austral autumn, winter and spring in proglacial fjord, lower sterol concentrations in surface waters were accompanied by other microalgae sterols and an increase in relative abundance of plant sterols, evidencing a different source of organic matter. In autumn, when high meltwater flux was also evidenced, presence of stanols and an uncommon tri-unsaturated sterol suggests influence of meltwaters in composition of sterols in the downstream fjord. We conclude that ice melting can modify sterol composition by setting conditions for development of a singular phytoplankton population able to thrive in surface meltwater and by carrying glacier organic matter into Patagonian glacial fjords. In projected ice melting scenario, these changes in organic matter quantity and quality can potentially affect availability of organic substrates for heterotrophic activity and trophic status of glacial fjords. This research was funded by COPAS Sur-Austral (PFB-31)

  17. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  18. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  19. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments...

  20. Sterols from the soft coral Lobophytum strictum (Alcyonarian) from Lakshadweep sea

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Two polyhydroxy sterols 24(Xi)-methylcholestane-3(beta), 5a, 6(beta), 25-tetrol, 25-monoacetate, and 24S-methylcholestane-3(beta), 4(beta), 5(beta), 25-tetrol-6-one, 25-monoacetate (lo-bosterol), six monohydroxy sterols as well as batyl alcohol...

  1. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation

    Science.gov (United States)

    The acquisition of plant sterols, mediated via elicitins, is required for growth and sporulation of Phytophthora spp. In this paper, we looked at the interaction between elicitins, sterols, and tannins. When ground leaf tissue was added to growth media, P. ramorum growth and sporulation was greates...

  2. Plant sterol intakes and colorectal cancer risk in the Netherlands : cohort study on diet and cancer

    NARCIS (Netherlands)

    Normén, A.L.; Brants, H.A.M.; Voorrips, L.E.; Andersson, H.A.; Brandt, P.A. van den

    2001-01-01

    Background: Plant sterols in vegetable foods might prevent colorectal cancer. Objective: The objective was to study plant sterol intakes in relation to colorectal cancer risk in an epidemiologic study. Design: The study was performed within the framework of the Netherlands Cohort Study on Diet and

  3. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    International Nuclear Information System (INIS)

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-01-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with [4- 14 C]cholesterol or beta-[4- 14 C]sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study

  4. Significance of sterol structural specificity : desmosterol cannot replace cholesterol in lipid rafts

    NARCIS (Netherlands)

    Vainio, S.; Jansen, Maurice; Koivusalo, M.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.; Ikonen, E.

    2006-01-01

    Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here,

  5. Sterol Composition of Clinically Relevant Mucorales and Changes Resulting from Posaconazole Treatment.

    Science.gov (United States)

    Müller, Christoph; Neugebauer, Thomas; Zill, Patrizia; Lass-Flörl, Cornelia; Bracher, Franz; Binder, Ulrike

    2018-05-19

    Mucorales are fungi with increasing importance in the clinics. Infections take a rapidly progressive course resulting in high mortality rates. The ergosterol biosynthesis pathway and sterol composition are of interest, since they are targeted by currently applied antifungal drugs. Nevertheless, Mucorales often exhibit resistance to these drugs, resulting in therapeutic failure. Here, sterol patterns of six clinically relevant Mucorales ( Lichtheimia corymbifera , Lichtheimia ramosa , Mucor circinelloides , Rhizomucor pusillus , Rhizopus arrhizus , and Rhizopus microsporus ) were analysed in a targeted metabolomics fashion after derivatization by gas chromatography-mass spectrometry. Additionally, the effect of posaconazole (POS) treatment on the sterol pattern of R. arrhizus was evaluated. Overall, fifteen different sterols were detected with species dependent variations in the total and relative sterol amount. Sterol analysis from R. arrhizus hyphae confronted with sublethal concentrations of posaconazole revealed the accumulation of 14-methylergosta-8,24-diene-3,6-diol, which is a toxic sterol that was previously only detected in yeasts. Sterol content and composition were further compared to the well-characterized pathogenic mold Aspergillus fumigatus . This work contributes to a better understanding of the ergosterol biosynthesis pathway of Mucorales, which is essential to improve antifungal efficacy, the identification of targets for novel drug design, and to investigate the combinatorial effects of drugs targeting this pathway.

  6. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels.

    Science.gov (United States)

    Weingärtner, Oliver; Bogeski, Ivan; Kummerow, Carsten; Schirmer, Stephan H; Husche, Constanze; Vanmierlo, Tim; Wagenpfeil, Gudrun; Hoth, Markus; Böhm, Michael; Lütjohann, Dieter; Laufs, Ulrich

    2017-05-01

    This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, psynthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Live-cell imaging of new polyene sterols for improved analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, M.; Solanko, K. A.; Szomek, M.

    2018-01-01

    brightness, significant photobleaching and excitation/emission in the ultraviolet region. Thus, special equipment is required to image such sterols. Here, we describe synthesis, characterization and intracellular imaging of new polyene sterols containing four conjugated double bonds in the sterol ring system....... We show that such analogues have red-shifted excitation and emission by ∼20 nm compared to DHE or CTL. The red shift was even more pronounced when preventing keto-enol tautomer equilibration by protecting the 3'-hydroxy group with acetate. We show that the latter analogue can be imaged...... on a conventional wide field microscope with a DAPI/filipin filter cube. The new polyene sterols show reduced photobleaching compared to DHE or CTL allowing for improved deconvolution microscopy of sterol containing cellular membranes....

  8. Sterol biosynthesis from acetate and the fate of dietary cholesterol and desmosterol in crabs

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio; Okamoto, Haruhito

    1976-01-01

    This paper deals with the sterol-synthesizing ability and the fate of dietary sterols, cholesterol and desmosterol, in the crabs, Sesarma dehaani and Helice tridens. Injected acetate-1- 14 C was not incorporated into either squalene or sterols in the above crabs. This suggested that the sterol-synthesizing ability from acetate is absent or weak in the crabs, S. dehaani and H. tridens. The apparent percentage absorptions of dietary cholesterol and desmosterol from the digestive tracts were 91.9 and 90.9, respectively. The ingested cholesterol and desmosterol were metabolized to steryl esters and polar compounds but only slightly to water-soluble sterols. Also, it was shown that the crab, S. dehaani, is capable of converting desmosterol to cholesterol. (auth.)

  9. Relationship between the rate of hepatic sterol synthesis and the incorporation of [3H]water

    International Nuclear Information System (INIS)

    Pullinger, C.R.; Gibbons, G.F.

    1983-01-01

    The true rate of sterol synthesis in liver cells was determined by measurement of the weight of desmosterol produced over a given time period during incubations in the presence of triparanol. The simultaneous presence of tritiated water ( 3 H 2 O) during the incubations permitted a direct observation of the weight of tritium incorporated into a given mass of newly synthesized sterol. The incorporation of tritium per atom of sterol carbon (H/C ratio) was lower than some previously reported values and suggests that a sizeable proportion of the reducing equivalents (NADPH) required for sterol synthesis arises via the pentose phosphate pathway. The H/C ratio changed significantly with length of the incubation period. The value of the ratio was also dependent upon whether the acetyl-CoA units utilized for sterol synthesis were derived predominantly from a carbohydrate or a fatty acid source

  10. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  11. Screening for the genes involved in bombykol biosynthesis: Identification and functional characterization of Bombyx mori acyl carrier protein (BmACP

    Directory of Open Access Journals (Sweden)

    Atsushi eOhnishi

    2011-12-01

    Full Text Available Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG via fatty acid synthesis (FAS. Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN, a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs, which store the sex pheromone (bombykol precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed sequence tag (EST clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another 8 EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP. Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis.

  12. delta 6 Hexadecenoic acid is synthesized by the activity of a soluble delta 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm.

    Science.gov (United States)

    Cahoon, E B; Cranmer, A M; Shanklin, J; Ohlrogge, J B

    1994-11-04

    delta 6 Hexadecenoic acid (16:1 delta 6) composes more than 80% of the seed oil of Thunbergia alata. Studies were conducted to determine the biosynthetic origin of the double bond of this unusual fatty acid. Assays of fractions of developing T. alata seed endosperm with [1-14C]palmitoyl (16:0)-acyl carrier protein (ACP) revealed the presence of a soluble delta 6 desaturase activity. This activity was greatest when 16:0-ACP was provided as a substrate, whereas no desaturation of the coenzyme A ester of this fatty acid was detected. In addition, delta 6 16:0-ACP desaturase activity in T. alata endosperm extracts was dependent on the presence of ferredoxin and molecular oxygen and was stimulated by catalase. To further characterize this enzyme, a cDNA encoding a diverged acyl-ACP desaturase was isolated from a T. alata endosperm cDNA library using polymerase chain reaction with degenerate oligonucleotides corresponding to conserved amino acid sequences in delta 9 stearoyl (18:0)- and delta 4 16:0-ACP desaturases. The primary structure of the mature peptide encoded by this cDNA shares 66% identity with the mature castor delta 9 18:0-ACP desaturase and 57% identity with the mature coriander delta 4 16:0-ACP desaturase. Extracts of Escherichia coli that express the T. alata cDNA catalyzed the delta 6 desaturation of 16:0-ACP. These results demonstrate that 16:1 delta 6 in T. alata endosperm is formed by the activity of a soluble delta 6 16:0-ACP desaturase that is structurally related to the delta 9 18:0- and delta 4 16:0-ACP desaturases. Implications of this work to an understanding of active site structures of acyl-ACP desaturases are discussed.

  13. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    Vanmierlo, Tim; Rutten, Kris; van Vark-van der Zee, Leonie C.; Friedrichs, Silvia; Bloks, Vincent W.; Blokland, Arjan; Ramaekers, Frans C.; Sijbrands, Eric; Steinbusch, Harry; Prickaerts, Jos; Kuipers, Folkert; Luetjohann, Dieter; Mulder, Monique

    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations

  14. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    T. Vanmierlo (Tim); K. Rutten (Kris); L.C. van Vark-van der Zee (Leonie); S. Friedrichs (Silvia); V.W. Bloks (Vincent ); A. Blokland (Arjan); F.C.S. Ramaekers (Franks); E.J.G. Sijbrands (Eric); H. Steinbusch; J. Prickaerts (Jos); F. Kuipers (Folkert); D. Lütjohann; M.T. Mulder (Monique)

    2011-01-01

    textabstractPlant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associ/+ mice for

  15. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  16. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico

    Science.gov (United States)

    Arcega-Cabrera, F.; Velázquez-Tavera, N.; Fargher, L.; Derrien, M.; Noreña-Barroso, E.

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g- 1) and fecal sterols (0.3-1690.18 μg g- 1). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate

  17. Rat organic solute carrier protein 1 (rOscp1) mediated the transport of organic solutes in Xenopus laevis oocytes: isolation and pharmacological characterization of rOscp1.

    Science.gov (United States)

    Izuno, Hisanori; Kobayashi, Yasuna; Sanada, Yutaka; Nihei, Daisuke; Suzuki, Masako; Kohyama, Noriko; Ohbayashi, Masayuki; Yamamoto, Toshinori

    2007-09-22

    Rat organic solute carrier protein 1 (rOscp1) was isolated from a rat testis cDNA library. Isolated rOscp1 cDNA consisted of 1089 base pairs that encoded a 363-amino acid protein, and the amino acid sequence was 88% and 93% identical to that of human OSCP1 (hOSCP1) and mouse Oscp1 (mOscp1), respectively. The message for rOscp1 is highly detected in rat testis. When expressed in X. oocytes, rOscp1 mediated the high affinity transport of p-aminohippurate (PAH) with a Km value of 15.7+/-1.9 microM, and rOscp1-mediated organic solutes were exhibited in time- and Na+-independent manners. rOscp1 also transported various structurally heterogenous compounds such as testosterone, dehydroepiandrosterone sulfate (DHEA-S), and taurocholate with some differences in substrate specificity compared with hOSCP1. Immunohistochemical analysis revealed that the rOscp1 protein is localized in the basal membrane side of Sertoli cells as observed in mouse testis [Kobayashi et al., 2007; Kobayashi, Y., Tsuchiya, A., Hayashi, T., Kohyama, N., Ohbayashi, M., Yamamoto, T., 2007. Isolation and characterization of polyspecific mouse organic solute carrier protein 1 (mOscp1). Drug Metabolism and Disposition 35 (7), 1239-1245]. Thus, the present results indicate that a newly isolated cDNA clone, rOscp1, is a polyspecific organic solute carrier protein with some differences in substrate specificity compared with human and mouse OSCP1.

  18. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1989-01-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of 3 H 2 O and [ 14 C]mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of 14 C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of 3 H of 3 H 2 O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered

  19. Structure-activity relationships between sterols and their thermal stability in oil matrix.

    Science.gov (United States)

    Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi

    2018-08-30

    Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.

    Science.gov (United States)

    Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar

    2014-12-01

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. © 2014 Scandinavian Plant Physiology Society.

  1. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack.

    Science.gov (United States)

    Fügi, Matthias A; Gunasekera, Kapila; Ochsenreiter, Torsten; Guan, Xueli; Wenk, Markus R; Mäser, Pascal

    2014-05-01

    Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.

  2. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C; Sitbon, Folke

    2011-09-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.

  3. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    Science.gov (United States)

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  4. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis of Molecularly Imprinted Polymer for Sterol Separation

    Directory of Open Access Journals (Sweden)

    Yuangsawad Ratanaporn

    2016-01-01

    Full Text Available Molecular imprinted polymer (MIP was prepared by bulk polymerization in acetone using acrylamide as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, stigmasterol as a template and benzoyl peroxide as an initiator. The obtained MIPs were characterized using a scanning electron microscope and a fourier transform infrared spectrophotometer. Performance in sterol adsorption of MIPs prepared under various conditions was investigated using a model solution of phytosterols in heptane, comparing with a nonimprinted polymer (NIP. Statistical analysis revealed that the amounts of crosslinker and template strongly affected the performance of MIP while the amount of solvent slightly affected the performance of MIP. MIP synthesized under the optimal condition had adsorption capacity of 1.28 mgsterols/gads which were 1.13 times of NIP.

  6. Cell-free transfer of sterols by plant fractions

    International Nuclear Information System (INIS)

    Morre, D.J.; Wilkinson, F.E.; Morre, D.M.; Moreau, P.; Sandelius, A.S.; Penel, C.; Greppin, H.

    1990-01-01

    Microsomes from etiolated hypocotyls of soybean or leaves of light-grown spinach radiolabeled in vivo with [ 3 H]acetate or in vitro with [ 3 H]squalene or [ 3 H]cholesterol as donor transferred radioactivity to unlabeled acceptor membranes immobilized on nitrocellulose. Most efficient transfer was with plasma membrane or tonoplast as the acceptor. The latter were highly purified by aqueous two-phase partition (plasma membrane) and preparative free-flow electrophoresis (tonoplast and plasma membrane). Plasma membrane- and tonoplast-free microsomes and purified mitochondria were less efficient acceptors. Sterol transfer was verified by thin-layer chromatography of extracted lipids. Transfer was time- and temperature-dependent, required ATP but was not promoted by cytosol. The nature of the donor (endoplasmic reticulum, Golgi apparatus or both) and of the transfer mechanism is under investigation

  7. Effects of adenine nucleotide and sterol depletion on tight junction structure and function in MDCK cells

    International Nuclear Information System (INIS)

    Ladino, C.A.

    1988-01-01

    The antitumor agent Hadacidin (H), N-formyl-hydroxyamino-acetic acid, reversibly inhibited the multiplication of clone 4 Madin-Darby canine kidney (MDCK) cells at a 4 mM concentration within 24-48 hours. Treated cells were arrested in the S phase of the cell cycle. Accompanying this action was a 16-fold increase in the area occupied b the cells and a refractoriness to trypsin treatment. To test whether this effect was due to an increase in tight junction integrity, electrical resistance (TER) was measured across H-treated monolayers. Addition of H at the onset of junction formation reversibly prevented the development of TER. ATP and cAMP levels were decreased by H, as well as the rate of [ 3 H]-leucine incorporation into protein. When 1 mM dibutyryl-cAMP (d.cAMP) and theophylline were added, H had no effect on cell division or protein synthesis, and TER was partially restored. The addition of 1 mM d.cAMP and 1 mM theophylline to control cultures decreased TER, indicating a biphasic effect on TER development/maintenance. In a separate study, the effect of sterol depletion on tight junctions formation/maintenance in wild-type MDCK cells was investigated

  8. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2017-02-01

    We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.

  9. Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Dani, Vincent; Priouzeau, Fabrice; Mertz, Marjolijn; Mondin, Magali; Pagnotta, Sophie; Lacas-Gervais, Sandra; Davy, Simon K; Sabourault, Cécile

    2017-10-01

    The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host-symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol-trafficking Niemann-Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2-a protein is mainly expressed in the epidermis, whereas the NPC2-d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2-d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2-d is a cnidarian-specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann-Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host-symbiont interactions in the anthozoan-dinoflagellate association. © 2017 John Wiley & Sons Ltd.

  10. Multicomponent synthesis of 4,4-dimethyl sterol analogues and their effect on eukaryotic cells.

    Science.gov (United States)

    Alonso, Fernando; Cirigliano, Adriana M; Dávola, María Eugenia; Cabrera, Gabriela M; García Liñares, Guadalupe E; Labriola, Carlos; Barquero, Andrea A; Ramírez, Javier A

    2014-06-01

    Most sterols, such as cholesterol and ergosterol, become functional only after the removal of the two methyl groups at C-4 from their biosynthetic precursors. Nevertheless, some findings suggest that 4,4-dimethyl sterols might be involved in specific physiological processes. In this paper we present the synthesis of a collection of analogues of 4,4-dimethyl sterols with a diamide side chain and a preliminary analysis of their in vitro activity on selected biological systems. The key step for the synthesis involves an Ugi condensation, a versatile multicomponent reaction. Some of the new compounds showed antifungal and cytotoxic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  12. Effect of a plant sterol, fish oil and B vitamin combination on cardiovascular risk factors in hypercholesterolemic children and adolescents: a pilot study

    Directory of Open Access Journals (Sweden)

    Garaiova Iveta

    2013-01-01

    Full Text Available Abstract Background Assessment of cardiovascular disease (CVD risk factors can predict clinical manifestations of atherosclerosis in adulthood. In this pilot study with hypercholesterolemic children and adolescents, we investigated the effects of a combination of plant sterols, fish oil and B vitamins on the levels of four independent risk factors for CVD; LDL-cholesterol, triacylglycerols, C-reactive protein and homocysteine. Methods Twenty five participants (mean age 16 y, BMI 23 kg/m2 received daily for a period of 16 weeks an emulsified preparation comprising plant sterols esters (1300 mg, fish oil (providing 1000 mg eicosapentaenoic acid (EPA plus docosahexaenoic acid (DHA and vitamins B12 (50 μg, B6 (2.5 mg, folic acid (800 μg and coenzyme Q10 (3 mg. Atherogenic and inflammatory risk factors, plasma lipophilic vitamins, provitamins and fatty acids were measured at baseline, week 8 and 16. Results The serum total cholesterol, LDL- cholesterol, VLDL-cholesterol, subfractions LDL-2, IDL-1, IDL-2 and plasma homocysteine levels were significantly reduced at the end of the intervention period (pp Conclusions Daily intake of a combination of plant sterols, fish oil and B vitamins may modulate the lipid profile of hypercholesterolemic children and adolescents. Trial registration Current Controlled Trials ISRCTN89549017

  13. Clostridium difficile Recombinant Toxin A Repeating Units as a Carrier Protein for Conjugate Vaccines: Studies of Pneumococcal Type 14, Escherichia coli K1, and Shigella flexneri Type 2a Polysaccharides in Mice

    Science.gov (United States)

    Pavliakova, Danka; Moncrief, J. Scott; Lyerly, David M.; Schiffman, Gerald; Bryla, Dolores A.; Robbins, John B.; Schneerson, Rachel

    2000-01-01

    Unlike the native protein, a nontoxic peptide (repeating unit of the native toxin designated rARU) from Clostridium difficile toxin A (CDTA) afforded an antigen that could be bound covalently to the surface polysaccharides of pneumococcus type 14, Shigella flexneri type 2a, and Escherichia coli K1. The yields of these polysaccharide-protein conjugates were significantly increased by prior treatment of rARU with succinic anhydride. Conjugates, prepared with rARU or succinylated (rARUsucc), were administered to mice by a clinically relevant dosage and immunization scheme. All conjugates elicited high levels of serum immunoglobulin G both to the polysaccharides and to CDTA. Conjugate-induced anti-CDTA had neutralizing activity in vitro and protected mice challenged with CDTA, similar to the rARU alone. Conjugates prepared with succinylated rARU, therefore, have potential for serving both as effective carrier proteins for polysaccharides and for preventing enteric disease caused by C. difficile. PMID:10722615

  14. Fatty acid and sterol composition of fenugreek seed (Trigonella foenum-graecum L.

    Directory of Open Access Journals (Sweden)

    Mustafa Kıralan

    2017-12-01

    Full Text Available Oil content, fatty acid and sterol composition of fenugreek seeds obtained from three different provinces were investigated. Oil was obtained from fenugreek seeds by solvent extraction and oil content was determined between 7.01-8.82%. Fenugreek seed oils were determined to be rich of unsaturated fatty acids according to gas chromatography results. Especially, linoleic acid was the most important of the fatty acids and varied between 45.10-46.19%. Total sterol content of oils varied from 8 681.54 to 9 591.70 ppm. The major sterol was β- sitosterol, and it was found to be between 59.94-68.24% of the total sterols.

  15. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis.

    Science.gov (United States)

    Korber, Martina; Klein, Isabella; Daum, Günther

    2017-12-01

    Sterols are essential lipids of all eukaryotic cells, appearing either as free sterols or steryl esters. Besides other regulatory mechanisms, esterification of sterols and hydrolysis of steryl esters serve to buffer both an excess and a lack of free sterols. In this review, the esterification process, the storage of steryl esters and their mobilization will be described. Several model organisms are discussed but the focus was set on mammals and the yeast Saccharomyces cerevisiae. The contribution of imbalanced cholesterol homeostasis to several human diseases, namely Wolman disease, cholesteryl ester storage disease, atherosclerosis and Alzheimer's disease, Niemann-Pick type C and Tangier disease is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Determining Antifungal Target Sites in the Sterol Pathway of the Yeast Candida and Saccharomyces

    National Research Council Canada - National Science Library

    Bard, Martin

    1998-01-01

    ... as in topical infections which lead to significant losses in work-place productivity. The work reported here seeks to identify new target sites in the sterol biosynthetic pathway against which new antifungal compounds might be developed...

  17. Traditional herbal medicines: potential degradation of sterols and sterolins by microbial contaminants

    OpenAIRE

    S. Govender; M. van de Venter; D. du Plessis-Stoman; T. G. Downing

    2010-01-01

    Medicinal plants with a high content of sterols and sterolins, such as Bulbine natalensis (rooiwortel) and Hypoxis hemerocallidea (African potato), are commonly and inappropriately used in South Africa for the treatment of HIV/AIDS due to the inaccessibility of antiretroviral drugs. This study investigated the presence of active compounds, such as sterols and sterolins, in the herbal medicines. The research was carried out in the Nelson Mandela Metrop...

  18. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....

  19. In Vitro and In Vivo Anticancer Effects of Sterol Fraction from Red Algae Porphyra dentata

    Directory of Open Access Journals (Sweden)

    Katarzyna Kazłowska

    2013-01-01

    Full Text Available Porphyra dentata, an edible red macroalgae, is used as a folk medicine in Asia. This study evaluated in vitro and in vivo the protective effect of a sterol fraction from P. dentata against breast cancer linked to tumor-induced myeloid derived-suppressor cells (MDSCs. A sterol fraction containing cholesterol, β-sitosterol, and campesterol was prepared by solvent fractionation of methanol extract of P. dentata  in silica gel column chromatography. This sterol fraction in vitro significantly inhibited cell growth and induced apoptosis in 4T1 cancer cells. Intraperitoneal injection of this sterol fraction at 10 and 25 mg/kg body weight into 4T1 cell-implanted tumor BALB/c mice significantly inhibited the growth of tumor nodules and increased the survival rate of mice. This sterol fraction significantly decreased the reactive oxygen species (ROS and arginase activity of MDSCs in tumor-bearing mice. Therefore, the sterol fraction from P. dentata showed potential for protecting an organism from 4T1 cell-based tumor genesis.

  20. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    Science.gov (United States)

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  1. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms

    Science.gov (United States)

    Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David

    2012-01-01

    Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028

  2. Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels.

    Science.gov (United States)

    Stiles, Ashlee R; Kozlitina, Julia; Thompson, Bonne M; McDonald, Jeffrey G; King, Kevin S; Russell, David W

    2014-09-23

    An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.

  3. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  4. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor

    International Nuclear Information System (INIS)

    Raymond, Marc-Andre; Desormeaux, Anik; Labelle, Andree; Soulez, Mathilde; Soulez, Gilles; Langelier, Yves; Pshezhetsky, Alexey V.; Hebert, Marie-Josee

    2005-01-01

    Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP). DBP induced both proliferation and migration of VSMC in vitro in association with increased phosphorylation of ERK 1/2. PD 98059, a biochemical inhibitor of ERK 1/2, abrogated these proliferative and migratory responses in VSMC. DBP is an important carrier for the vitamin-D sterols, 25-hydroxyvitamin-D, and 1α,25-dihydroxyvitamin-D. Both sterols inhibited the activity of DBP on VSMC, suggesting that vitamin D binding sites are important for initiating the activities of DBP on VSMC. Release of DBP at sites of endothelial injury represents a novel pathway favoring accumulation of VSMC at sites of vascular injury

  5. Exploring the functional significance of sterol glycosyltransferase enzymes.

    Science.gov (United States)

    Singh, Gaurav; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Misra, Pratibha

    2018-01-01

    Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phase behaviour of sterols and vitamins in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Gerszt R.

    2000-01-01

    Full Text Available Extraction with supercritical solvents has been used in different areas, such as petroleum desasphaltation, descaffeination of coffee and tea and in the separation of other types of natural products. The supercritical solvent most frequently utilized in the extraction of natural products is carbon dioxide (CO2 due to its several advantages over other solvents such as low cost, atoxicity and volatility. The design, evaluation and optimization of a supercritical extraction that is based on phase equilibrium require phase equilibrium data. This type of data is very scarce for natural compounds like sterols and vitamins. These natural compounds are produced synthetically, but nowadays interest in their extraction from natural sources is increasing. Therefore, the objective of this work is to study the thermodynamic modelling equilibrium of systems containing vitamins A, D, E and K, using the predictive LCVM model. The sensitivity of critical properties in the calculation of the phase behavior was also studied. This study proved that the choice of a group contribution method to calculate thermodynamic properties is very important for obtaining good results in the phase equilibrium calculations.

  7. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters

    NARCIS (Netherlands)

    Lin, Y.; Knol, D.; Menéndez-Carreño, M.; Blom, W.A.M.; Matthee, J.; Janssen, H.G.; Trautwein, E.A.

    2016-01-01

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median

  8. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease.

    Science.gov (United States)

    Gylling, Helena; Plat, Jogchum; Turley, Stephen; Ginsberg, Henry N; Ellegård, Lars; Jessup, Wendy; Jones, Peter J; Lütjohann, Dieter; Maerz, Winfried; Masana, Luis; Silbernagel, Günther; Staels, Bart; Borén, Jan; Catapano, Alberico L; De Backer, Guy; Deanfield, John; Descamps, Olivier S; Kovanen, Petri T; Riccardi, Gabriele; Tokgözoglu, Lale; Chapman, M John

    2014-02-01

    This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled

  9. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.

    1999-01-01

    To use peptides as synthetic vaccines, they have to be coupled to a carrier protein to make them more immunogenic. Coupling efficiency between a carrier protein and a peptide, however, is difficult to control with respect to loading density of the peptide, This makes these carrier proteins poorly...... for the induction of antibodies against GnRH and immunocastration of pigs....

  10. Changes in the sterol compositions of milk thistle oil (Silybium marianum L.) during seed maturation

    Energy Technology Data Exchange (ETDEWEB)

    Harrabi, S.; Curtis, S.; Hayet, F.; Mayer, P.M.

    2016-07-01

    In this study, the total lipid content and sterol compositions were determined during the development of milk thistle seeds. The oil content increased to a maximum value of 36±1.7% and then declined to reach a value of 30.5±0.9% at full maturity. The sterol content of milk thistle seeds was affected by the ripening degree of the seeds. At the early stages of seed maturation, Δ7 -stigmastenol was the most abundant sterol followed by β-sitosterol. However, at full maturity, β-sitosterol was the most predominant sterol (46.50±0.8%). As the seed developed, campesterol and stigmasterol amounts increased, while Δ7 -avenasterol content decreased. It can be concluded that milk thistle seed oil has a characteristic sterol pattern comparable to the ones elucidated for olive oil and corn oil. The extracted oil from milk thistle seeds is rich in phytosterols and could be used in foodpreparation and human nutrition. (Author)

  11. Traditional herbal medicines: potential degradation of sterols and sterolins by microbial contaminants

    Directory of Open Access Journals (Sweden)

    S. Govender

    2010-01-01

    Full Text Available Medicinal plants with a high content of sterols and sterolins, such as Bulbine natalensis (rooiwortel and Hypoxis hemerocallidea (African potato, are commonly and inappropriately used in South Africa for the treatment of HIV/AIDS due to the inaccessibility of antiretroviral drugs. This study investigated the presence of active compounds, such as sterols and sterolins, in the herbal medicines. The research was carried out in the Nelson Mandela Metropole area. The effect of microbial contaminants isolated from the medicines on sterols and sterolins of rooiwortel extracts was assessed. Sterols and sterolins were detected in rooiwortel, raw African potatoes and one ready-made mixture. Co-incubation of rooiwortel with bacteria (Bacillus spp. and Pseudomonas putida and fungi (Aspergillus spp., Penicillium spp. and Mucor spp. that were isolated from these samples increased the rate of degradation of sterols and sterolins over time, with slower degradation at 4°C than at 28°C.

  12. Plasma sterols and depressive symptom severity in a population-based cohort.

    Directory of Open Access Journals (Sweden)

    Basar Cenik

    Full Text Available Convergent evidence strongly suggests major depressive disorder is heterogeneous in its etiology and clinical characteristics. Depression biomarkers hold potential for identifying etiological subtypes, improving diagnostic accuracy, predicting treatment response, and personalization of treatment. Human plasma contains numerous sterols that have not been systematically studied. Changes in cholesterol concentrations have been implicated in suicide and depression, suggesting plasma sterols may be depression biomarkers. Here, we investigated associations between plasma levels of 34 sterols (measured by mass spectrometry and scores on the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR16 scale in 3117 adult participants in the Dallas Heart Study, an ethnically diverse, population-based cohort. We built a random forest model using feature selection from a pool of 43 variables including demographics, general health indicators, and sterol concentrations. This model comprised 19 variables, 13 of which were sterol concentrations, and explained 15.5% of the variation in depressive symptoms. Desmosterol concentrations below the fifth percentile (1.9 ng/mL, OR 1.9, 95% CI 1.2-2.9 were significantly associated with depressive symptoms of at least moderate severity (QIDS-SR16 score ≥10.5. This is the first study reporting a novel association between plasma concentrations cholesterol precursors and depressive symptom severity.

  13. Following Intracellular Cholesterol Transport by Linear and Non-Linear Optical Microscopy of Intrinsically Fluorescent Sterols

    DEFF Research Database (Denmark)

    Wustner, D.

    2012-01-01

    Elucidation of intracellular cholesterol transport is important for understanding the molecular basis of several metabolic and neuronal diseases, like atheroclerosis or lysosomal storage disorders. Progress in this field depends crucially on the development of new technical approaches to follow...... is on recent developments in imaging technology to follow the intracellular fate of intrinsically fluorescent sterols as faithful cholesterol markers. In particular, UV-sensitive wide field and multiphoton microscopy of the sterol dehydroergosterol, DHE, is explained and new methods of quantitative image...... analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented....

  14. The major cellular sterol regulatory pathway is required for Andes virus infection.

    Directory of Open Access Journals (Sweden)

    Josiah Petersen

    2014-02-01

    Full Text Available The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV. Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.

  15. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce J. Grattan

    2013-01-01

    Full Text Available While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.

  16. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sung; Yang, Seung-Woo [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hong, Dong-Ki; Kim, Woo-Taek [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Ho-Guen [Department of Pathology, Yonsei Medical School, Seoul 120-752 (Korea, Republic of); Lee, Sang-Kyou, E-mail: sjrlee@yonsei.ac.kr [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-01-29

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  17. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    International Nuclear Information System (INIS)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki; Kim, Woo-Taek; Kim, Ho-Guen; Lee, Sang-Kyou

    2010-01-01

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.

  18. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.

    Science.gov (United States)

    Paramsothy, Pathmaja; Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-11-01

    The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P LIR (P OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons.

  19. Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men

    Science.gov (United States)

    Cederberg, Henna; Gylling, Helena; Miettinen, Tatu A.; Paananen, Jussi; Vangipurapu, Jagadish; Pihlajamäki, Jussi; Kuulasmaa, Teemu; Stančáková, Alena; Smith, Ulf; Kuusisto, Johanna; Laakso, Markku

    2013-01-01

    We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes. PMID:23840693

  20. Preferential campesterol incorporation into various tissues in apolipoprotein E*3-Leiden mice consuming plant sterols or stanols

    NARCIS (Netherlands)

    Plat, J.; Jong, A.de; Volger, O.L.; Princen, H.M.G.; Mensink, R.P.

    2008-01-01

    Intestinal absorption of plant sterols and stanols is much lower as compared with that of cholesterol; and therefore, serum concentrations are low. Circulating plant sterols and stanols are incorporated into tissues. However, hardly any data are available about tissue distributions of individual

  1. Sterol patterns of cultured zooxanthellae isolated from marine invertebrates: Synthesis of gorgosterol and 23-desmethylgorgosterol by aposymbiotic algae.

    Science.gov (United States)

    Withers, N W; Kokke, W C; Fenical, W; Djerassi, C

    1982-06-01

    QUANTITATIVE STEROL COMPOSITIONS OF CULTURED ZOOXANTHELLAE ISOLATED FROM VARIOUS PACIFIC AND ATLANTIC INVERTEBRATE HOSTS: Zoanthus sociatus (a zoanthid), Oculina diffusa (a scleractian coral), Tridacna gigas (a giant clam), Melibe pilosa (a nudibranch), and Aiptasia pulchella (a sea anemone) are reported. The results clearly demonstrate large differences in sterol patterns of zooxanthellae and that there is no obvious relationship between the taxonomic affiliation of the host and the sterol pattern of its isolated symbiont. The sterols of the zooxanthellae of O. diffusa (Cnidaria) and T. gigas (Mollusca) are qualitatively equivalent. Based on the structures of the two major free sterols synthesized by each alga, the zooxanthellae from different hosts were separated into three distinct groups. It was also found that an aposymbiotic alga can synthesize the unique marine sterols gorgosterol and 23-desmethylgorgosterol. Most of the sterols were identified by using mass spectroscopy and 360-MHz proton magnetic resonance. Spectroscopic data are reported for four novel sterols-(23,24R)-dimethyl-5alpha-cholest-(22E)-en-3beta-o l, 23-methyl-5alpha-cholest-22E-en-3beta-ol, cholesta-5,14-dien-3beta-ol, and 4alpha-methyl-5alpha-cholesta-8(14)-24-dien-3beta-ol.

  2. A LONG CHAIN ALCOHOL AND TWO STEROL COMPOUNDS FROM THE HEXANE EXTRACT OF STEM BARK OF Aglaia odorata Lour. (Meliaceae

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2010-06-01

    Full Text Available A long chain alcohol, 1-eicosanol together with two sterols, β-sitosterol and stigmasterol had been isolated from hexane extract of stem bark of pacar cina (Aglaia odorata Lour (Meliaceae. These structures had been established based on spectroscopic data (IR and NMR and by comparison to those of standard compounds.   Keywords: Aglaia odorata Lour, Alcohol, Meliaceae, Sterol

  3. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Lund, F. W.; Lomholt, M. A.; Solanko, L. M.

    2012-01-01

    to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter...

  4. Triglycerides, fatty acids, sterols, mono- and disaccharides and sugar alcohols in human milk and current types of infant formula milk

    NARCIS (Netherlands)

    Huisman, M; vanBeusekom, CM; Nijeboer, HJ; Muskiet, FAJ; Boersma, ER

    Objective: To investigate differences in the fatty acid composition, sterols, minor carbohydrates and sugar alcohols between human and formula milk. Design: We analyzed the concentrations of triglycerides, sterols, di- and monosaccharides and sugar alcohols, as well as the fatty acid composition of

  5. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle

    NARCIS (Netherlands)

    Vliet, A.K. van; Nègre-Arrariou, P.; Thiel, G.C.F. van; Bolhuis, P.A.; Cohen, L.H.

    1996-01-01

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 ± 6 nM and 4.0 ± 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 ± 38 nM). Through

  6. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample.

    Science.gov (United States)

    Li, Yan; Ye, Dezan; Shao, Zongze; Cui, Chengbin; Che, Yongsheng

    2012-02-01

    A new polyoxygenated sterol, sterolic acid (1), three new breviane spiroditerpenoids, breviones I-K (2-4), and the known breviones (5-8), were isolated from the crude extract of a Penicillium sp. obtained from a deep sea sediment sample that was collected at a depth of 5115 m. The structures of 1-4 were elucidated primarily by NMR experiments, and 1 was further confirmed by X-ray crystallography. The absolute configurations of 2 and 3 were deduced by comparison of their CD spectra with those of the model compounds. Compounds 2 and 5 showed significant cytotoxicity against MCF-7 cells, which is comparable to the positive control cisplatin.

  7. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae.

    OpenAIRE

    Lorenz, R T; Parks, L W

    1990-01-01

    The hypocholesterolemic drug lovastatin (mevinolin) was found to be very effective in lowering the sterol levels of the wild-type yeast Saccharomyces cerevisiae. Lovastatin dramatically decreased the steryl ester content from 2.62 to 0.8 micrograms/mg (dry weight), whereas the free sterol content decreased only from 2.79 to 2.24 micrograms/mg (dry weight) when lovastatin was present in the medium at 10 micrograms/ml. At higher concentrations (100 micrograms/ml), lovastatin nearly abolished th...

  8. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome.

    Science.gov (United States)

    Hallikainen, Maarit; Huikko, Laura; Kontra, Kirsi; Nissinen, Markku; Piironen, Vieno; Miettinen, Tatu; Gylling, Helena

    2008-01-01

    Hepatobiliary complications are common during parenteral nutrition. Lipid moiety in commercially available solutions contains plant sterols. It is not known whether plant sterols in parenteral nutrition interfere with hepatic function in adults. We detected how different amounts of plant sterols in parenteral nutrition solution affected serum plant sterol concentrations and liver enzymes during a 1.5-year follow-up in a patient with short bowel syndrome. Serum lipid, plant sterol, and liver enzyme levels were measured regularly during the transition from Intralipid (100% soy-based intravenous fat emulsion) to ClinOleic (an olive oil-based intravenous fat emulsion with 80% olive oil, 20% soy oil and lower plant sterols); the lipid supply was also gradually increased from 20 to 35 g/d. Plant sterols in parenteral nutrition solution and serum were measured with gas-liquid chromatography. During infusion of soy-based intravenous fat emulsion (30 g/d, total plant sterols 87 mg/d), the concentrations of sitosterol, campesterol, and stigmasterol were 4361, 1387, and 378 microg/dL, respectively, and serum liver enzyme values were >or= 2.5 times above upper limit of normal. After changing to olive oil-based intravenous fat emulsion (20-35 g/d, plant sterols 37-65 mg/d), concentrations decreased to 2148 to 2251 microg/dL for sitosterol, 569-297 microg/dL for campesterol, and 95-55 microg/dL for stigmasterol. Concomitantly, liver enzyme values decreased to 1.4 to 1.8 times above upper limit of normal at the end of follow-up. The nutrition status of the patient improved. The amount of plant sterols in lipid emulsion affects serum liver enzyme levels more than the amount of lipid.

  9. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols.

    Science.gov (United States)

    Midzak, Andrew; Papadopoulos, Vassilios

    2014-09-01

    Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.

    Science.gov (United States)

    Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A

    2016-04-01

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of

  11. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    Science.gov (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null

  12. Synthesis of steryl ferulates with various sterol structures and comparison of their antioxidant activity

    Science.gov (United States)

    Steryl ferulates extracted from corn and rice differ in the structures of the phytosterol head groups, which had a significant impact on their activity as antioxidants in soybean oil used for frying. An improved method was used to synthesize steryl ferulates from commercial sterols to better underst...

  13. Investigation of oxidation attack sites in sterols: Thermodynamics of hydrogen atom transfer

    Czech Academy of Sciences Publication Activity Database

    Škorňa, P.; Lengyel, Jozef; Rimarčík, J.; Klein, E.

    2014-01-01

    Roč. 1038, JUN 2014 (2014), s. 26-32 ISSN 2210-271X R&D Projects: GA ČR(CZ) GA14-27047S Institutional support: RVO:61388955 Keywords : sterol * steroid * oxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.545, year: 2014

  14. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...

  15. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.

    The plant sterolsβ-sitosterol and sitostanol are

  16. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Rogoziński, Tomasz; Perkowski, Juliusz

    2017-06-27

    Wood compounds, especially sterols, are connected with the level of contamination with microscopic fungi. Within this study, tests were conducted on wood dust samples collected at various work stations in a pine and birch timber conversion plant. Their contamination with mycobiota was measured as the concentration of ergosterol (ERG) by ultra performance liquid chromatography (UPLC). Another aim of this study was to assess the effect of contamination with microscopic fungi on the sterol contents in wood dusts. Analyses were conducted on five sterols: desmosterol, cholesterol, lanosterol, stigmasterol, and β-sitosterol using UPLC and their presence was confirmed using gas chromatography/mass spectrometry (GC/MS). The results of chemical analyses showed the greatest contamination with mycobiota in birch wood dust. We also observed varied contents of individual sterols depending on the wood dust type. Their highest concentration was detected in birch dust. The discriminant analysis covering all tested compounds as predictors showed complete separation of all tested wood dust types. The greatest discriminatory power was found for stigmasterol, desmosterol, and ergosterol.

  17. Plant sterols for adults with hypercholesterolemia treated with or without medication (statins

    Directory of Open Access Journals (Sweden)

    Raquel Bernácer

    2015-07-01

    Full Text Available Hypercholesterolemia is the most common coronary risk factor among the Spanish population; 37.4% of the Spanish adult population have cholesterol levels between 190 and 240 mg/dl. Foods enriched with plant sterols (PS can effectively reduce plasma cholesterol in patients with high levels. However, its effectiveness and safety in adults with moderate hypercholesterolemia who are on medication (statins or not has been less studied. The aim of this review is to establish the possible role of plant sterols in the control of hypercholesterolemia, as well as how safe they are for people with moderate hypercholesterolemia treated with statins. The main studies were looked at, regardless of design, language or publication date which studied the connection between “plant sterols” and “hypercholesterolemia”, using Pubmed/Medline, SCOPUS and Google Scholar databases. The studies brought together in this review show that an intake of between 2 and 3g/day of plant sterols effectively reduces plasma cholesterol levels in patients with hypercholesterolemia. Both clinical studies and available meta-analyses do not indicate any problems related to the drug-nutrient interaction associated with the use of plant sterol-enriched foods. In patients with moderate hypercholesterolemia where the use of statins is not justified a healthy diet, exercise and foods high in PS can provide the best therapeutic approach.

  18. Parameters for Martini sterols and hopanoids based on a virtual-site description

    NARCIS (Netherlands)

    Melo, M. N.; Ingolfsson, H. I.; Marrink, S. J.

    2015-01-01

    Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the

  19. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2013-11-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  20. Air Carrier Traffic Statistics.

    Science.gov (United States)

    2012-07-01

    This report contains airline operating statistics for large certificated air carriers based on data reported to U.S. Department of Transportation (DOT) by carriers that hold a certificate issued under Section 401 of the Federal Aviation Act of 1958 a...

  1. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    International Nuclear Information System (INIS)

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-01-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. ( 14 C]-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using ( 3 H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results

  2. Synthesis of Hydroxylated Sterols in Transgenic Arabidopsis Plants Alters Growth and Steroid Metabolism1[C][W][OA

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C.; Sitbon, Folke

    2011-01-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels. PMID:21746809

  3. Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana.

    Directory of Open Access Journals (Sweden)

    Roy Mwenechanya

    2017-06-01

    Full Text Available Amphotericin B has emerged as the therapy of choice for use against the leishmaniases. Administration of the drug in its liposomal formulation as a single injection is being promoted in a campaign to bring the leishmaniases under control. Understanding the risks and mechanisms of resistance is therefore of great importance. Here we select amphotericin B-resistant Leishmania mexicana parasites with relative ease. Metabolomic analysis demonstrated that ergosterol, the sterol known to bind the drug, is prevalent in wild-type cells, but diminished in the resistant line, where alternative sterols become prevalent. This indicates that the resistance phenotype is related to loss of drug binding. Comparing sequences of the parasites' genomes revealed a plethora of single nucleotide polymorphisms that distinguish wild-type and resistant cells, but only one of these was found to be homozygous and associated with a gene encoding an enzyme in the sterol biosynthetic pathway, sterol 14α-demethylase (CYP51. The mutation, N176I, is found outside of the enzyme's active site, consistent with the fact that the resistant line continues to produce the enzyme's product. Expression of wild-type sterol 14α-demethylase in the resistant cells caused reversion to drug sensitivity and a restoration of ergosterol synthesis, showing that the mutation is indeed responsible for resistance. The amphotericin B resistant parasites become hypersensitive to pentamidine and also agents that induce oxidative stress. This work reveals the power of combining polyomics approaches, to discover the mechanism underlying drug resistance as well as offering novel insights into the selection of resistance to amphotericin B itself.

  4. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death.

    Directory of Open Access Journals (Sweden)

    Rafael Luis Kessler

    Full Text Available The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50/72 h or killing all cells within 24 hours (EC(100/24 h. Incubation with inhibitors at the EC(50/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50/72 h. By contrast, treatment with SBIs at the EC(100/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP, culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.

  5. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  6. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    Science.gov (United States)

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  7. A novel mutation in the sterol 27-hydroxylase gene of a woman with autosomal recessive cerebrotendinous xanthomatosis

    Directory of Open Access Journals (Sweden)

    Garuti Rita

    2010-10-01

    Full Text Available Article abstract Mutations of the gene encoding the mitochondrial enzyme sterol 27-hydroxylase (CYP27A1 gene cause defects in the cholesterol pathway to bile acids that lead to the storage of cholestanol and cholesterol in tendons, lenses and the central nervous system. This disorder is the cause of a clinical syndrome known as cerebrotendinous xanthomatosis (CTX. Since 1991 several mutations of the CYP27A1 gene have been reported. We diagnosed the clinical features of CTX in a caucasian woman. Serum levels of cholestanol and 7α-hydroxycholesterol were elevated and the concentration of 27-hydroxycholesterol was reduced. Bile alcohols in the urine and faeces were increased. The analysis of the CYP27A1 gene showed that the patient was a compound heterozygote carrying two mutations both located in exon 8. One mutation is a novel four nucleotide deletion (c.1330-1333delTTCC that results in a frameshift and the occurrence of a premature stop codon leading to the formation of a truncated protein of 448 amino acids. The other mutation, previously reported, is a C - > T transition (c. c.1381C > T that converts the glutamine codon at position 461 into a termination codon (p.Q461X. These truncated proteins are expected to have no biological function being devoid of the cysteine residue at position 476 of the normal enzyme that is crucial for heme binding and enzyme activity.

  8. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  9. Immune sensitization to methylene diphenyl diisocyanate (MDI resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses

    Directory of Open Access Journals (Sweden)

    Redlich Carrie A

    2011-03-01

    Full Text Available Abstract Background Methylene diphenyl diisocyanate (MDI, a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods Mice exposed via the skin to varying doses (0.1-10% w/v of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA, while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL. Autologous serum IgG from "skin only" exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary respiratory tract inflammation and eosinophilia depended upon the (primary skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI. The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma

  10. Comparison of bile acid synthesis determined by isotope dilution versus fecal acidic sterol output in human subjects

    International Nuclear Information System (INIS)

    Duane, W.C.; Holloway, D.E.; Hutton, S.W.; Corcoran, P.J.; Haas, N.A.

    1982-01-01

    Fecal acidic sterol output has been found to be much lower than bile acid synthesis determined by isotope dilution. Because of this confusing discrepancy, we compared these 2 measurements done simultaneously on 13 occasions in 5 normal volunteers. In contrast to previous findings, bile acid synthesis by the Lindstedt isotope dilution method averaged 16.3% lower than synthesis simultaneously determined by fecal acidic sterol output (95% confidence limit for the difference - 22.2 to -10.4%). When one-sample determinations of bile acid pools were substituted for Lindstedt pools, bile acid synthesis by isotope dilution averaged 5.6% higher than synthesis by fecal acidic sterol output (95% confidence limits -4.9 to 16.1%). These data indicate that the 2 methods yield values in reasonably close agreement with one another. If anything, fecal acidic sterol outputs are slightly higher than synthesis by isotope dilution

  11. Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri

    Directory of Open Access Journals (Sweden)

    Donghai Zhao

    2016-06-01

    Full Text Available The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST and tail suspension test (TST in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters.

  12. Tracing the Temporal and Spatial Variations in the Origin of Fecal Material in Three Oklahoma Watersheds Using Sterol Fingerprints

    Science.gov (United States)

    Lu, Y.; Philp, P. R.

    2014-12-01

    Organic wastes, in particular fecal material, are qualified as one of the major causes of water quality deterioration. Their accumulation in water bodies may increase algal proliferation and eutrophication and the number of pathogenic organisms, which are responsible for many intestinal diseases especially when the water is used for recreational activities and/or as a supply for drinking water. In order to estimate the risk level associated with primary body contact in recreational water bodies, enumeration of some specific micro-organisms, such as Enterococci and Escherichia coli, are commonly used. Sterol distributions can provide some relevant information on the origin of fecal material in water system, since they are ubiquitous organic compounds and their distributions in many warm-blooded animal feces can be used as evidence for their source. In this study, we monitored fecal material contamination in three Oklahoma watersheds based on sterol fingerprints over a one-year period (2012 ~ 2013). The sterols from sediments and water samples (sterols associated to suspended particles as well as free sterols in water) were recovered using sonication and solid phase extraction (SPE), respectively, using different organic solvents. They were then identified and quantified by gas chromatography - mass spectrometry (GC-MS) using an internal standard. The GC-MS was previously calibrated with a sterol mixture injected at different concentrations. Our primary results show that the concentration of total sterols generally increases from the Upper Canadian contamination and provide a better understanding on the ability of using sterol fingerprints to determine the origin of the fecal contamination. Additionally, such a sampling strategy, over a one-year period at regular intervals, enable us to track the water contamination by feces according to the seasonal climatic variations such as drought or heavy rainfall events.

  13. Cholesterol lowering effect of a soy drink enriched with plant sterols in a French population with moderate hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Bard Jean-Marie

    2008-10-01

    Full Text Available Abstract Background Plant sterols are an established non-pharmacological means to reduce total and LDL blood cholesterol concentrations and are therefore recommended for cholesterol management by worldwide-renown health care institutions. Their efficacy has been proven in many types of foods with the majority of trials conducted in spreads or dairy products. As an alternative to dairy products, soy based foods are common throughout the world. Yet, there is little evidence supporting the efficacy of plant sterols in soy-based foods. The objective of this study was to investigate the effect of a soy drink enriched with plant sterols on blood lipid profiles in moderately hypercholesterolemic subjects. Methods In a randomized, placebo-controlled double-blind mono-centric study, 50 subjects were assigned to 200 ml of soy drink either enriched with 2.6 g plant sterol esters (1.6 g/d free plant sterol equivalents or without plant sterols (control for 8 weeks. Subjects were instructed to maintain stable diet pattern and physical activity. Plasma concentrations of lipids were measured at initial visit, after 4 weeks and after 8 weeks. The primary measurement was the change in LDL cholesterol (LDL-C. Secondary measurements were changes in total cholesterol (TC, non-HDL cholesterol (non-HDL-C, HDL cholesterol (HDL-C and triglycerides. Results Regular consumption of the soy drink enriched with plant sterols for 8 weeks significantly reduced LDL- C by 0.29 mmol/l or 7% compared to baseline (p 96%, and products were well tolerated. Conclusion Daily consumption of a plant sterol-enriched soy drink significantly decreased total, non-HDL and LDL cholesterol and is therefore an interesting and convenient aid in managing mild to moderate hypercholesterolemia.

  14. Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, Maciej; Lund, Frederik W.; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol...... as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal...... fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first...

  15. The effect of a combination of plant sterol-enriched foods in mildly hypercholesterolemic subjects.

    Science.gov (United States)

    Madsen, Martin B; Jensen, Anne-Mette; Schmidt, Erik B

    2007-12-01

    The purpose of this study was to evaluate the effect of low-fat products enriched with plant sterols in addition to a National Cholesterol Education Program step 1 diet on serum lipids and lipoproteins. This study was a double-blind, randomised, placebo-controlled cross-over design with a run-in period and 2 intervention periods, each lasting 4 weeks. A total of 46 mildly hypercholesterolemic subjects (age 50.6+/-9.8) completed the trial. The study products consisted of 20 g low-fat margarine (35% fat) and 250 ml low-fat milk (0.7% fat), in total delivering 2.3g plant sterols/d. Serum total and low-density lipoprotein cholesterol were significantly reduced by 5.5% (pUnilever Denmark A/S.

  16. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    Science.gov (United States)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  17. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  18. The Effect of Turmeric (Curcuma longa Extract on the Functionality of the Solute Carrier Protein 22 A4 (SLC22A4 and Interleukin-10 (IL-10 Variants Associated with Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Mark J. McCann

    2014-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual’s capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152 and interleukin-10 (IL-10, rs1800896 associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F and increasing anti-inflammatory cytokine gene promoter activity (IL-10, −1082A. The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  19. The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease.

    Science.gov (United States)

    McCann, Mark J; Johnston, Sarah; Reilly, Kerri; Men, Xuejing; Burgess, Elaine J; Perry, Nigel B; Roy, Nicole C

    2014-10-13

    Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual's capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, -1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  20. Involvement of membrane sterols in hypergravity-induced modifications of growth and cell wall metabolism in plant stems

    Science.gov (United States)

    Koizumi, T.; Soga, K.; Wakabayashi, K.; Suzuki, M.; Muranaka, T.; Hoson, T.

    Organisms living on land resist the gravitational force by constructing a tough body Plants have developed gravity resistance responses after having first went ashore more than 500 million years ago The mechanisms of gravity resistance responses have been studied under hypergravity conditions which are easily produced on earth by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which is involved in synthesis of terpenoids such as membrane sterols In the present study we examined the role of membrane sterols in gravity resistance in plants by analyzing sterol levels of stem organs grown under hypergravity conditions and by analyzing responses to hypergravity of the organs whose sterol level was modulated Hypergravity inhibited elongation growth but stimulated lateral expansion of Arabidopsis hypocotyls and azuki bean epicotyls Under hypergravity conditions sterol levels were kept high as compared with 1 g controls during incubation Lovastatin an inhibitor HMGR prevented lateral expansion as the gravity resistance response in azuki bean epicotyls Similar results were obtained in analyses with loss of function mutants of HMGR in Arabidopsis It has been shown that sterols play a role in cellulose biosynthesis probably as the primer In wild type Arabidopsis hypocotyls hypergravity increased the cellulose content but it did not influence the content in HMGR mutants These results suggest that hypergravity increases

  1. Solution Structure of 4′-Phosphopantetheine - GmACP3 from Geobacter metallireducens: A Specialized Acyl Carrier Protein with Atypical Structural Features and a Putative Role in Lipopolysaccharide Biosynthesis†

    Science.gov (United States)

    Ramelot, Theresa A.; Smola, Matthew J.; Lee, Hsiau-Wei; Ciccosanti, Colleen; Hamilton, Keith; Acton, Thomas B.; Xiao, Rong; Everett, John K.; Prestegard, James H.; Montelione, Gaetano T.; Kennedy, Michael A.

    2011-01-01

    GmACP3 from Geobacter metallireducens is a specialized acyl carrier protein (ACP) whose gene, gmet_2339, is located near genes encoding many proteins involved in lipopolysaccharide (LPS) biosynthesis, indicating a likely function for GmACP3 in LPS production. By overexpression in Escherichia coli, about 50% holo-GmACP3 and 50% apo-GmACP3 were obtained. Apo-GmACP3 exhibited slow precipitation and non-monomeric behavior by 15N NMR relaxation measurements. Addition of 4′-phosphopantetheine (4′-PP) via enzymatic conversion by E. coli holo-ACP synthase, resulted in stable >95% holo-GmACP3 that was characterized as monomeric by 15N relaxation measurements and had no indication of conformational exchange. We have determined a high-resolution solution structure of holo-GmACP3 by standard NMR methods, including refinement with two sets of NH residual dipolar couplings, allowing for a detailed structural analysis of the interactions between 4′-PP and GmACP3. Whereas the overall four helix bundle topology is similar to previously solved ACP structures, this structure has unique characteristics, including an ordered 4′-PP conformation that places the thiol at the entrance to a central hydrophobic cavity near a conserved hydrogen-bonded Trp-His pair. These residues are part of a conserved WDSLxH/N motif found in GmACP3 and it’s orthologs. The helix locations and the large hydrophobic cavity are more similar to medium- and long-chain acyl-ACPs than to other apo- and holo-ACP structures. Taken together, structural characterization along with bioinformatic analysis of nearby genes suggest that GmACP3 is involved in lipid A acylation, possibly by atypical long-chain hydroxy fatty acids, and potentially involved in synthesis of secondary metabolites. PMID:21235239

  2. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.

    Directory of Open Access Journals (Sweden)

    Madalina Rujoi

    2010-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165.

  3. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms1

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu

    2016-01-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  5. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi.

    Science.gov (United States)

    Gunasekera, S P; Kelly-Borges, M; Longley, R E

    1996-02-01

    24(R)-Methyl-5 alpha-cholest-7-enyl 3 beta-methoxymethyl ether (1), a new sterol ether, has been isolated from a deep-water marine sponge Scleritoderma sp. cf. paccardi. Compound 1 exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line with an IC50 of 2.3 micrograms/mL. The isolation and structure elucidation of 1 by NMR spectroscopy is described.

  6. Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study.

    Science.gov (United States)

    Ellegård, L; Andersson, H; Bosaeus, I

    2005-12-01

    To study whether olive oil and rapeseed oil have different effects on cholesterol metabolism. Short-term experimental study, with controlled diets. Outpatients at a metabolic-ward kitchen. A total of nine volunteers with conventional ileostomies. Two 3-day diet periods; controlled diet including 75 g of rapeseed oil or olive oil. Cholesterol absorption, ileal excretion of cholesterol, and bile acids. Serum levels of cholesterol and bile acid metabolites. Differences between diets evaluated with Wilcoxon's signed rank sum test. Rapeseed oil diet contained 326 mg more plant sterols than the olive oil diet. Rapeseed oil tended to decrease cholesterol absorption by 11% (P = 0.050), and increased excretion of cholesterol, bile acids, and their sum as sterols by 9% (P = 0.021), 32% (P = 0.038), and 51% (P = 0.011) compared to olive oil. A serum marker for bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one) increased by 28% (P = 0.038) within 10 h of consumption, and serum cholesterol levels decreased by 7% (P = 0.024), whereas a serum marker for cholesterol synthesis (lathosterol) as well as serum levels of plant sterols remained unchanged. Rapeseed oil and olive oil have different effects on cholesterol metabolism. Rapeseed oil, tends to decrease cholesterol absorption, increases excretion of cholesterol and bile acids, increases serum marker of bile acid synthesis, and decreases serum levels of cholesterol compared to olive oil. This could in part be explained by different concentrations of natural plant sterols. Supported by the Göteborg Medical Society, the Swedish Medical Society, the Swedish Board for Agricultural Research (SJFR) grant 50.0444/98 and by University of Göteborg.

  7. Divergent changes in serum sterols during a strict uncooked vegan diet in patients with rheumatoid arthritis.

    Science.gov (United States)

    Agren, J J; Tvrzicka, E; Nenonen, M T; Helve, T; Hänninen, O

    2001-02-01

    The effects of a strict uncooked vegan diet on serum lipid and sterol concentrations were studied in patients with rheumatoid arthritis. The subjects were randomized into a vegan diet group (n 16), who consumed a vegan diet for 2-3 months, or into a control group (n 13), who continued their usual omnivorous diets. Serum total and LDL-cholesterol and -phospholipid concentrations were significantly decreased by the vegan diet. The levels of serum cholestanol and lathosterol also decreased, but serum cholestanol:total cholesterol and lathosterol:total cholesterol did not change. The effect of a vegan diet on serum plant sterols was divergent as the concentration of campesterol decreased while that of sitosterol increased. This effect resulted in a significantly greater sitosterol:campesterol value in the vegan diet group than in the control group (1.48 (SD 0.39) v. 0.72 (SD 0.14); P vegan diet changes the relative absorption rates of these sterols and/or their biliary clearance.

  8. Quantification of sterol-specific response in human macrophages using automated imaged-based analysis.

    Science.gov (United States)

    Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E

    2017-12-13

    The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.

  9. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    Science.gov (United States)

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. © 2016 Institute of Food Technologists®

  10. Role of membrane sterols and cortical microtubules in gravity resistance in plants

    Science.gov (United States)

    Hoson, T.; Koizumi, T.; Matsumoto, S.; Kumasaki, S.; Soga, K.; Wakabayashi, K.; Sakaki, T.

    Resistance to the gravitational force is a principal graviresponse in plants comparable to gravitropism Nevertheless only limited information has been obtained for this graviresponse We have examined mechanisms of signal perception transformation and transduction of the perceived signal and response to the transduced signal in gravity resistance using hypergravity conditions produced by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which catalyzes a reaction producing mevalonic acid a key precursor of terpenoids such as membrane sterols Geranyl diphosphate synthase gene was also up-regulated by hypergravity whereas the expression of other genes involved in membrane lipid metabolism was not influenced Hypergravity caused an increase in sterol content in azuki bean epicotyls but not in phospholipid glycolipid or fatty acid content Also hypergravity did not influence fatty acid composition in any lipid class Thus the effect of hypergravity on membrane lipid metabolism was specific for sterol synthesis On the other hand alpha- and beta-tubulin genes were up-regulated by hypergravity treatment in Arabidopsis hypocotyls Hypergravity also induced reorientation of cortical microtubules in azuki epicotyls the percentage of epidermal cells with transverse microtubles was decreased whereas that with longitudinal microtubules was increased Inhibitors of HMGR action and microtubule-disrupting agents completely prevented the gravity resistance

  11. Determination of Main Plant Sterols in Turkish Bread Wheat (Triticum aestivum L. by GC-MS

    Directory of Open Access Journals (Sweden)

    Halil Erdem

    2017-07-01

    Full Text Available Plant sterols are belong to triterpenes family of natural products which includes more than 200 different types of plant sterols and more than 4000 other types of triterpenes. The optimization of method, specially the derivatization step as well as the corresponding analytical validation, is the main goal of this study. The optimum temperature, time and reagent volume of derivatization step were obtained at 60°C, 60 minutes and 50 µL, respectively. A rapid and sensitive gas chromatographic–mass spectrometric method was developed and validated for quantitative analysis of the most common plant sterols (β-sitosterol, campesterol and stigmasterol in 20 Turkish bread wheat cultivars using GC-MS-SIM. Separation of β-cholestanol (I.S, campesterol, stigmasterol and β-sitosterol was achieved on Rxi (5Sil MS column (60 m×0.25 mm. The limits of detection for β-sitosterol, campesterol and stigmasterol were 0.074, 0.054 and 0.064 mg kg-1, respectively with RSD ≤ 0.66%. The obtained concentrations of campesterol, stigmasterol and β-sitosterol from 20 Turkish bread wheat cultivars ranged from: 15.30 to 76.02, 4.27 to 23.23 and 303.21 to 682.66 mg kg-1, respectively.

  12. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    Matsumura, K.; Nakano, I.

    1989-01-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  13. The effect of plant sterol-enriched turkey meat on cholesterol bio-accessibility during in vitro digestion and Caco-2 cell uptake.

    Science.gov (United States)

    Grasso, S; Harrison, S M; Monahan, F J; Brayden, D; Brunton, N P

    2018-03-01

    This study evaluated the effect of a plant sterol-enriched turkey product on cholesterol bio-accessibility during in vitro digestion and cholesterol uptake by Caco-2 monolayers. Turkey products, one plant sterol-enriched (PS) and one plant sterol-free (C), were produced in an industrial pilot plant. Before simulated digestion, matrices were spiked with cholesterol (1:5 weight ratio of cholesterol to plant sterol). Plant sterols were included at a concentration equivalent to the minimum daily intake recommended by the European Food Safety Authority (EFSA) for cholesterol lowering. After simulated digestion, the percentage of cholesterol micellarization and uptake by Caco-2 cells in the presence of PS meat were measured. Compared to C meat, PS meat significantly inhibited cholesterol micellarization on average by 24% and Caco-2 cell accumulation by 10%. This study suggests that plant sterols in meat can reduce cholesterol uptake by intestinal epithelia and it encourages efforts to make new PS-based functional foods.

  14. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Lund Frederik W

    2012-10-01

    Full Text Available Abstract Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE, an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s, a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle

  15. Sterol synthesis and cell size distribution under oscillatory growth conditions in Saccharomyces cerevisiae scale-down cultivations.

    Science.gov (United States)

    Marbà-Ardébol, Anna-Maria; Bockisch, Anika; Neubauer, Peter; Junne, Stefan

    2018-02-01

    Physiological responses of yeast to oscillatory environments as they appear in the liquid phase in large-scale bioreactors have been the subject of past studies. So far, however, the impact on the sterol content and intracellular regulation remains to be investigated. Since oxygen is a cofactor in several reaction steps within sterol metabolism, changes in oxygen availability, as occurs in production-scale aerated bioreactors, might have an influence on the regulation and incorporation of free sterols into the cell lipid layer. Therefore, sterol and fatty acid synthesis in two- and three-compartment scale-down Saccharomyces cerevisiae cultivation were studied and compared with typical values obtained in homogeneous lab-scale cultivations. While cells were exposed to oscillating substrate and oxygen availability in the scale-down cultivations, growth was reduced and accumulation of carboxylic acids was increased. Sterol synthesis was elevated to ergosterol at the same time. The higher fluxes led to increased concentrations of esterified sterols. The cells thus seem to utilize the increased availability of precursors to fill their sterol reservoirs; however, this seems to be limited in the three-compartment reactor cultivation due to a prolonged exposure to oxygen limitation. Besides, a larger heterogeneity within the single-cell size distribution was observed under oscillatory growth conditions with three-dimensional holographic microscopy. Hence the impact of gradients is also observable at the morphological level. The consideration of such a single-cell-based analysis provides useful information about the homogeneity of responses among the population. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Effects of Aloe Sterol Supplementation on Skin Elasticity, Hydration, and Collagen Score: A 12-Week Double-Blind, Randomized, Controlled Trial.

    Science.gov (United States)

    Tanaka, Miyuki; Yamamoto, Yuki; Misawa, Eriko; Nabeshima, Kazumi; Saito, Marie; Yamauchi, Koji; Abe, Fumiaki; Furukawa, Fukumi

    2016-01-01

    Our previous study confirmed that Aloe sterol stimulates collagen and hyaluronic acid production in human dermal fibroblasts. This study aims to investigate whether Aloe sterol intake affects skin conditions. We performed a 12-week, randomized, double-blind, placebo-controlled study to evaluate the effects of oral Aloe sterol supplementation on skin elasticity, hydration, and the collagen score in 64 healthy women (age range 30-59 years; average 44.3 years) who were randomly assigned to receive either a placebo or an Aloe sterol-supplemented yogurt. Skin parameters were measured and ultrasound analysis of the forearm was performed. ANCOVA revealed statistical differences in skin moisture, transepidermal water loss, skin elasticity, and collagen score between the Aloe sterol and placebo groups. The gross elasticity (R2), net elasticity (R5), and biological elasticity (R7) scores of the Aloe sterol group significantly increased with time. In addition, skin fatigue area F3, which is known to decrease with age and fatigue, also increased with Aloe sterol intake. Ultrasound echogenicity revealed that the collagen content in the dermis increased with Aloe sterol intake. The results suggest that continued Aloe sterol ingestion contributes to maintaining healthy skin. © 2017 S. Karger AG, Basel.

  17. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand

    2010-01-01

    index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...

  18. Willis H Carrier

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 2. Willis H. Carrier - Father of Air Conditioning. R V Simha. General Article Volume 17 Issue 2 February 2012 pp 117-138. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/017/02/0117-0138 ...

  19. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves

    International Nuclear Information System (INIS)

    Roughan, G.; Nishida, I.

    1990-01-01

    Fatty acid synthesis from [1-14C]acetate by chloroplasts isolated from peas and amaranthus was linear for at least 15 min, whereas incorporation of the tracer into long-chain acyl-acyl carrier protein (ACP) did not increase after 2-3 min. When reactions were transferred to the dark after 3-5 min, long-chain acyl-ACPs lost about 90% of their radioactivity and total fatty acids retained all of theirs. Half-lives of the long-chain acyl-ACPs were estimated to be 10-15 s. Concentrations of palmitoyl-, stearoyl-, and oleoyl-ACP as indicated by equilibrium labeling during steady-state fatty acid synthesis, ranged from 0.6-1.1, 0.2-0.7, and 0.4-1.6 microM, respectively, for peas and from 1.6-1.9, 1.3-2.6, and 0.6-1.4 microM, respectively, for amaranthus. These values are based on a chloroplast volume of 47 microliters/mg chlorophyll and varied according to the mode of the incubation. A slow increase in activity of the fatty acid synthetase in safflower chloroplasts resulted in long-chain acyl-ACPs continuing to incorporate labeled acetate for 10 min. Upon re-illumination following a dark break, however, both fatty acid synthetase activity and acyl-ACP concentrations increased very rapidly. Palmitoyl-ACP was present at concentrations up to 2.5 microM in safflower chloroplasts, whereas those of stearoyl- and oleoyl-ACPs were in the lower ranges measured for peas. Acyl-ACPs were routinely separated from extracts of chloroplasts that had been synthesising long-chain fatty acids from labeled acetate by a minor modification of the method of Mancha et al. The results compared favorably with those obtained using alternative analytical methods such as adsorption to filter paper and partition chromatography on silicic acid columns

  20. Plasmid AZOBR_p1-borne fabG gene for putative 3-oxoacyl-[acyl-carrier protein] reductase is essential for proper assembly and work of the dual flagellar system in the alphaproteobacterium Azospirillum brasilense Sp245.

    Science.gov (United States)

    Filip'echeva, Yulia A; Shelud'ko, Andrei V; Prilipov, Alexei G; Burygin, Gennady L; Telesheva, Elizaveta M; Yevstigneyeva, Stella S; Chernyshova, Marina P; Petrova, Lilia P; Katsy, Elena I

    2018-02-01

    Azospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella. In an immotile leaky Fla - Laf - fabG1::Omegon-Km mutant, Sp245.1610, defects in flagellation and motility were fully complemented by expressing the CDS AZOBR_p1160043 from plasmid pRK415. When pRK415 with the cloned CDS AZOBR_p1160045 (fliC) for a putative 65.2 kDa Sp245 Fla flagellin was transferred into the Sp245.1610 cells, the bacteria also became able to assemble a motile single flagellum. Some cells, however, had unusual swimming behavior, probably because of the side location of the organelle. Although the assembly of Laf was not restored in Sp245.1610 (pRK415-p1160045), this strain was somewhat capable of swarming motility. We propose that the putative 3-oxoacyl-[ACP] reductase encoded by the CDS AZOBR_p1160043 plays a role in correct flagellar location in the cell envelope and (or) in flagellar modification(s), which are also required for the inducible construction of Laf and for proper swimming and swarming motility of A. brasilense Sp245.

  1. Sealed substrate carrier for electroplating

    Science.gov (United States)

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  2. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  3. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    Science.gov (United States)

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  4. Serum plant sterols as surrogate markers of dietary compliance in familial dyslipidemias.

    Science.gov (United States)

    Mateo-Gallego, Rocío; Baila-Rueda, Lucía; Mouratidou, Theodora; De Castro-Orós, Isabel; Bea, Ana M; Perez-Calahorra, Sofía; Cenarro, Ana; Moreno, Luis A; Civeira, Fernando

    2015-06-01

    A well-balanced diet is the first-line treatment in hyperlipidemia. The objective was to study the association between serum phytosterols and dietary patterns to use them as surrogate markers of dietary compliance in primary dyslipidemias. 288 patients with primary hyperlipidemias (192 autosomal dominant hypercholesterolemia (ADH) and 96 familial combined hyperlipidemia (FCHL)) were included. Principal factor analysis identified 2 major dietary patterns using a 137-item food frequency questionnaire. "Vegetable & Fruits pattern" was characterized by higher intake of fruits, green beans, nuts, tomatoes, roasted or boiled potatoes, lettuce and chard and lower of processed baked goods, pizza and beer. "Western pattern" was positively characterized by hamburgers, pasta, sunflower oil, rice, chickpeas, whole milk, veal, red beans and negatively with white fish. Serum non-cholesterol sterols were determined by HPLC-MS/MS. Plant sterols to-total cholesterol (TC) levels were lower with a higher adherence to a "Vegetable & Fruits pattern" (P = 0.009), mainly in ADH subjects (R(2) = 0.019). Their concentration was greater with higher compliance to "Western pattern" especially in FCHL (P = 0.014). Higher levels of synthesis markers-to-TC with a greater adherence to "Vegetable & Fruits pattern" were found (P = 0.001) (R(2) = 0.033 and R(2) = 0.109 in ADH and FCHL respectively). In subjects with primary dislipidemia, dietary patterns associate with serum absorption and synthesis markers, but no with lipid concentrations. The influence of diet on non-cholesterol sterols levels is not powerful enough to use them as subrogate markers. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. New method for recognition of sterol signalling molecules: Methinium salts as receptors for sulphated steroids

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Bříza, T.; Králová, Jarmila; Mikula, I.; Poučková, P.; Martásek, P.; Král, V.

    2015-01-01

    Roč. 94, February 2015 (2015), s. 15-20 ISSN 1878-5867 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GAP303/11/1291; GA MŠk(CZ) LH14008; GA MŠk(CZ) CZ.1.07/2.300/30.0060; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Polymethinium salts * Sulphated sterols * Molecular recognition * Synthetic receptors Subject RIV: EB - Genetics ; Molecular Biology

  6. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize...... macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon...

  7. Motor carrier evaluation program

    International Nuclear Information System (INIS)

    Portsmouth, James

    1992-01-01

    The U.S. Department of Energy-Headquarters (DOE-HQ), Transportation Management Program (TMP) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned materials. The DOE-TMP has established an excellent safety record in the transportation of hazardous materials including radioactive materials and radioactive wastes. This safety record can be maintained only through continued diligence and sustained effort on the part of the DOE-TMP, its field offices, and the contractors' organizations. Key elements in the DOE'S effective hazardous and radioactive materials shipping program are (1) integrity of packages, (2) strict adherence to regulations and procedures, (3) trained personnel, (4) complete management support, and (5) use of the best commercial carriers. The DOE Motor Carrier Evaluation Program was developed to better define the criteria and methodology needed to identify motor carriers for use in the transportation of Highway Route Controlled Quantities (HRCQ), Truck Load (TL) quantities of radioactive materials, hazardous materials and waste. (author)

  8. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism...

  9. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  10. Fatty acid, sterol and proximate compositions of peanut species (Arachis L. seeds from Bolivia and Argentina

    Directory of Open Access Journals (Sweden)

    Grosso, Nelson R.

    1997-08-01

    Full Text Available The oil, protein, ash and carbohydrates contents, iodine value, fatty acid and sterol compositions were studied in seeds of Arachis correntina, A. durannensis, A. monticola, A. batizocoi, and A. cardenasii originating from Bolivia and Argentina. Oil content was greatest in A. batizocoi (mean value 53,35%. The protein level was higher in A. monticola (mean value 29,40% and A. durannensis (29,13%. Mean value of oleic acid varied between 34,91% (A. durannensis and A. cardenasii and 42,60% (Arachis correntina, and linoleic acid oscilated between 40,23% (A. correntina and 45,86% (A. durannensis. The better oleic to linoleic ratio was exhibited by A. correntina (1,06. Iodine value was lower in A. batizocoi (106,0. The sterol composition in the different peanut species showed higher concentration of β-sitosterol (mean values oscilated between 55,70-58,70% following by campesterol (15,18-16,47%, stigmasterol (10,67- 12,27% and Δ5-avenasterol (10,80-12,13%.

    Los contenidos en aceite, proteína, ceniza e hidratos de carbono, índice de acidez, composiciones en ácidos grasos y esteroles fueron estudiadas en semillas de Arachis correntina, A. durannensis, A. Monticola, A. batizocoi, y A. cardenasii originaria de Bolivia y Argentina. El contenido en aceite fue mayor en A. batizocoi (valor medio 53,35%. El nivel de proteína fue más alto en A. monticoia (valor medio 29,40% y A. durannensis (29,13%. El valor medio del ácido oleico varió entre 34,91% (A. Durannensis y A. cardenasii y 42,60% (Arachis correntina, y el ácido linoleico osciló entre 40,23% (A. correntina y 45,86% (A.durannensis. La mejor relación oleico a linoleico fue exhibida por A. correntina (1.06. El índice de iodo fue más bajo en A. batizocoi (106,0. La composición esterólica en las diferentes especies de

  11. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function.

    Science.gov (United States)

    Fan, Jieru; Urban, Martin; Parker, Josie E; Brewer, Helen C; Kelly, Steven L; Hammond-Kosack, Kim E; Fraaije, Bart A; Liu, Xili; Cools, Hans J

    2013-05-01

    CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. In Fusarium species, including pathogens of humans and plants, three CYP51 paralogues have been identified with one unique to the genus. Currently, the functions of these three genes and the rationale for their conservation within the genus Fusarium are unknown. Three Fusarium graminearum CYP51s (FgCYP51s) were heterologously expressed in Saccharomyces cerevisiae. Single and double FgCYP51 deletion mutants were generated and the functions of the FgCYP51s were characterized in vitro and in planta. FgCYP51A and FgCYP51B can complement yeast CYP51 function, whereas FgCYP51C cannot. FgCYP51A deletion increases the sensitivity of F. graminearum to the tested azoles. In ΔFgCYP51B and ΔFgCYP51BC mutants, ascospore formation is blocked, and eburicol and two additional 14-methylated sterols accumulate. FgCYP51C deletion reduces virulence on host wheat ears. FgCYP51B encodes the enzyme primarily responsible for sterol 14α-demethylation, and plays an essential role in ascospore formation. FgCYP51A encodes an additional sterol 14α-demethylase, induced on ergosterol depletion and responsible for the intrinsic variation in azole sensitivity. FgCYP51C does not encode a sterol 14α-demethylase, but is required for full virulence on host wheat ears. This is the first example of the functional diversification of a fungal CYP51. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14[alpha]-Demethylase (CYP51) from Leishmania infantum

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W. David; Waterman, Michael R.; Lepesheva, Galina I. (Vanderbilt); (TTU); (NWU)

    2012-05-14

    Leishmaniasis is a major health problem that affects populations of {approx}90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14{alpha}-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14{alpha}-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V{sub max} of {approx}10 and 8 min{sup -1}, respectively), it is also found to 14{alpha}-demethylate C4-dimethylated lanosterol (V{sub max} = 0.9 min{sup -1}) and C4-desmethylated 14{alpha}-methylzymosterol (V{sub max} = 1.9 min{sup -1}). Binding parameters with six sterols were tested, with K{sub d} values ranging from 0.25 to 1.4 {mu}m. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14{alpha}-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.

  13. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  14. ∆24-sterol methyltransferase plays an important role in the growth and development of Sporothrix schenckii and Sporothrix brasiliensis

    Directory of Open Access Journals (Sweden)

    Luana Pereira Borba-Santos

    2016-03-01

    Full Text Available Inhibition of ∆24-sterol methyltransferase (24-SMT in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3-ol (H3 were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors were completely replaced by 14-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective towards these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of

  15. Δ(24)-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis.

    Science.gov (United States)

    Borba-Santos, Luana P; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M; de Camargo, Zoilo P; Lopes-Bezerra, Leila M; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ(24)-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker(®) Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  16. The liver plays a key role in whole body sterol accretion of the neonatal Golden Syrian hamster

    OpenAIRE

    Yao, Lihang; Horn, Paul S.; Heubi, James E.; Woollett, Laura A.

    2007-01-01

    Neonates have a significant requirement for cholesterol. From −1 to 25 days of age, the liver accrues 6.9 mg cholesterol and the extra-hepatic tissues accrue 107.7 mg cholesterol in the hamster. It is currently unknown if each of these body compartments synthesizes their own cholesterol or if they have alternative source(s) of sterol. Using 3H2O, in vivo hepatic sterol synthesis rates (per g liver per animal) increased between −1 and 5 days of age, decreased by 10 days of age, and increased a...

  17. Δ24-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis

    Science.gov (United States)

    Borba-Santos, Luana P.; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M.; de Camargo, Zoilo P.; Lopes-Bezerra, Leila M.; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ24-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  18. Functional analysis of candidate ABC transporter proteins for sitosterol transport

    DEFF Research Database (Denmark)

    Albrecht, C; Elliott, J I; Sardini, A

    2002-01-01

    implicated in lipid movement and expressed in tissues with a role in sterol synthesis and absorption, might also be involved in sitosterol transport. Transport by the multidrug resistance P-glycoprotein (P-gp; Abcb1), the multidrug resistance-associated protein (Mrp1; Abcc1), the breast cancer resistance...

  19. Effect of rapeseed oil derived plant sterol and stanol esters on atherosclerosis parameters in cholesterol challenged heterozygous Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Schrøder, Malene; Fricke, Christiane; Pilegaard, Kirsten

    2009-01-01

    Watanabe heritable hyperlipidaemic (Hh-WHHL) rabbits. Four groups (n 18 per group) received a cholesterol-added (2 g/kg) standard chow or this diet with added RSO stanol esters (17 g/kg), RSO stanol esters (34 g/kg) or RSO sterol esters (34 g/kg) for 18 weeks. Feeding RSO stanol esters increased plasma...... campestanol (P Feeding RSO sterol esters increased concentrations of plasma campesterol (P ... of the RSO stanol ester groups and in one in the RSO sterol ester group. Aortic cholesterol was decreased in the treated groups (P response to lowering of plasma cholesterol induced by RSO sterol and stanol esters. In conclusion, RSO stanol and sterol esters with a high concentration...

  20. Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence

    Science.gov (United States)

    McCourt, Paula; Liu, Hsing-Yin; Parker, Josie E.; Gallo-Ebert, Christina; Donigan, Melissa; Bata, Adam; Giordano, Caroline; Kelly, Steven L.; Nickels, Joseph T.

    2016-01-01

    Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD) that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution. PMID:27587298

  1. Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence

    Directory of Open Access Journals (Sweden)

    Paula McCourt

    2016-11-01

    Full Text Available Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution.

  2. Acute sterol o-acyltransferase 2 (SOAT2 knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE. We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2 increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD, the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.

  3. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates

    International Nuclear Information System (INIS)

    Shafiee, A.; Trzaskos, J.M.; Paik, Y.K.; Gaylor, J.L.

    1986-01-01

    With [ 3 H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1 H-NMR, and infrared spectroscopy of the isolated sterols

  4. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum.

    Science.gov (United States)

    Li, Wei; Lee, Sang Hyun; Jang, Hae Dong; Ma, Jin Yeul; Kim, Young Ho

    2017-01-11

    Hericium erinaceum , commonly called lion's mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate ( 6 ), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1 - 5 and five sterols 7 - 11 . The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, ¹D-NMR (¹H, 13 C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1 - 11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1 , 3 , and 4 showed potent reducing capacity. Moreover, compounds 1 , 2 , 4 , and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  5. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6, was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1–5 and five sterols 7–11. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT and 2D-NMR (COSY, HMQC, HMBC, and NOESY spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1–11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity. Moreover, compounds 1, 2, 4, and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  6. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...... in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...... the experience of all users and not just the few best ones; while overall cell capacity is not compromised....

  7. The origin of fetal sterols in second-trimester amniotic fluid : endogenous synthesis or maternal-fetal transport?

    NARCIS (Netherlands)

    Baardman, Maria E.; Erwich, Jan Jaap H. M.; Berger, Rolf M. F.; Hofstra, Robert M. W.; Kerstjens-Frederikse, Wilhelmina S.; Luetjohann, Dieter; Plosch, Torsten; Lutjohann, D.

    OBJECTIVE: Cholesterol is crucial for fetal development. To gain more insight into the origin of the fetal cholesterol pool in early human pregnancy, we determined cholesterol and its precursors in the amniotic fluid of uncomplicated, singleton human pregnancies. STUDY DESIGN: Total sterols were

  8. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    Science.gov (United States)

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160). The harmful marine dinoflagella...

  9. Different effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors on sterol synthesis in various human cell types

    NARCIS (Netherlands)

    Vliet, A.K. van; Thiel, G.C.F. van; Huisman, R.H.; Moshage, H.; Yap, S.H.; Cohen, L.H.

    1995-01-01

    The three vastatins examined, lovastatin, simvastatin and pravastatin, are equally strong inhibitors of the sterol synthesis in human hepatocytes in culture with IC50-values of 4.1, 8.0 and 2.0 nM, respectively. However, in the human extrahepatic cells: umbilical vascular endothelial cells, retinal

  10. Sebaceous lipid profiling of bat integumentary tissues: quantitative analysis of free Fatty acids, monoacylglycerides, squalene, and sterols.

    Science.gov (United States)

    Pannkuk, Evan L; Gilmore, David F; Fuller, Nathan W; Savary, Brett J; Risch, Thomas S

    2013-12-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Heterogeneous expression of cholesterol 7α-hydroxylase and sterol 27- hydroxylase genes in the rat liver lobulus

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Mager, W.H.; Moorman, A.F.M.; Boer, P.A.J. de; Scheja, L.; Princen, H.M.G.; Gebhardt, R.

    1995-01-01

    We investigated the lobular localization and molecular level of expression of cholesterol 7α-hydroxylase and sterol 27-hydroxylase, two key enzymes in bile acid synthesis, in isolated periportal and pericentral hepatocytes and by in situ hybridization of rat liver. Enzyme activity, mRNA, and gene

  12. A Novel Fibrosis Index Comprising a Non-Cholesterol Sterol Accurately Predicts HCV-Related Liver Cirrhosis

    DEFF Research Database (Denmark)

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin

    2014-01-01

    of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive...

  13. Synthesis of deuterium-labeled plant sterols and analysis of their side-chain mobility by solid state deuterium NMR

    International Nuclear Information System (INIS)

    Marsan, M.P.; Muller, I.; Milon, A.

    1996-01-01

    Sitosterol and stigmasterol, plant sterols, were deuterated at specific positions. Orientation and mobility of the deuterated sitosterol and stigmasterol (and two of their diasteromers) on oriented lipid bilayers were analyzed by deuterium NMR spectroscopy. Orientation and mobility of the side chains was revealed by these studies

  14. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    NARCIS (Netherlands)

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects

  15. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  16. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity1234

    Science.gov (United States)

    Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-01-01

    Background: The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. Objective: We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Design: Plasma sterols were measured by gas chromatography–mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (SI) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. Results: The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol–cholesterol ratios were as follows: LIS > OIR (P LIR (P OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS sterol concentrations were positively associated with SI and negatively associated with obesity, whereas lathosterol correlations were the opposite. Conclusions: Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve SI and to decrease cholesterol overproduction in LIR and OIR persons. PMID:21940599

  17. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016

  18. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption.

    Science.gov (United States)

    Miettinen, T A; Gylling, H; Nissinen, M J

    2011-10-01

    To study the whole-body cholesterol metabolism in man, cholesterol synthesis and absorption need to be measured. Because of the complicated methods of the measurements, new approaches were developed including the analysis of serum non-cholesterol sterols. In current lipidologic papers and even in intervention studies, serum non-cholesterol sterols are frequently used as surrogate markers of cholesterol metabolism without any validation to the absolute metabolic variables. The present review compares serum non-cholesterol sterols with absolute measurements of cholesterol synthesis and absorption in published papers to find out whether the serum markers are valid indicators of cholesterol metabolism in various conditions. During statin treatment, during interventions of dietary fat, and in type 2 diabetes the relative and absolute variables of cholesterol synthesis and absorption were frequently but not constantly correlated with each other. In some occasions, especially in subjects with apolipoprotein E3/4 and E4/4 phenotypes, the relative metabolic markers were even more sensitive than the absolute ones to reflect changes in cholesterol metabolism during dietary interventions. Even in general population at very high absorption the homeostasis of cholesterol metabolism is disturbed damaging the validity of the serum markers. It is worth using several instead of only one precursor and absorption sterol marker for making conclusions of altered synthesis or absorption of cholesterol, and even then the presence of at least some absolute measurement is valuable. During consumption of plant sterol-enriched diets and in situations of interfered cholesterol homeostasis the relative markers do not adequately reflect cholesterol metabolism. Accordingly, the validity of the relative markers of cholesterol metabolism should not be considered as self-evident. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  20. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  1. Studies on sterol-ester hydrolase from Fusarium oxysporum. I. Partial purification and properties.

    Science.gov (United States)

    Okawa, Y; Yamaguchi, T

    1977-05-01

    1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by means of CaCl2 precipitation and Sephadex G-75 column chromatography. 3. The cholesterol esterase was activated by adekatol and Triton X-100. It was inhibited by lecithin and lysolecithin, and completely inactivated by heat treatment (60 degrees C for 30 min, at pH 7.0). 4. The optimum pH of the enzyme was found to be around 7.0. 5. Among various cholesterol esters tested, cholesterol linoleate was the most suitable substrate. 6. Cholesterol esters in serum were also hydrolyzed by this enzyme.

  2. Amo 1618 effects on incorporation of 14C-MVA and 14C-acetate into sterols in Nicotiana and Digitalis seedlings and cell-free preparations from Nicotiana

    International Nuclear Information System (INIS)

    Douglas, T.J.; Paleg, L.G.

    1978-01-01

    Incorporation of radioactivity from acetate-[ 14 C] and MVA-[ 14 C] into sterols and sterol precursors in tobacco was inhibited by Amo 1618; differing patterns of accumulation were obtained with the two precursors, suggesting more than one point of inhibition. This was borne out with cell-free preparations with which it was demonstrated that both HMG-CoA reductase and squalene-2,3-epoxide cyclase were inhibited, the latter more strongly than the former. GLC analysis of gross sterol and hydrocarbon fractions confirmed previous indications that incorporation of radioactivity into individual sterols was inhibited by Amo 1618. Finally, incorporation of MVA-[ 14 C] into sterols and sterol precursors of Digitalis was significantly altered by the retardant, thus expanding the generality of the relationship between sterol (particularly 4-desmethylsterol) biosynthesis inhibition and retardant effect. (author)

  3. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    Science.gov (United States)

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  4. Comparison of sterols and fatty acids in two species of Ganoderma

    Science.gov (United States)

    2012-01-01

    Background Two species of Ganoderma, G. sinense and G. lucidum, are used as Lingzhi in China. Howerver, the content of triterpenoids and polysaccharides, main actives compounds, are significant different, though the extracts of both G. lucidum and G. sinense have antitumoral proliferation effect. It is suspected that other compounds contribute to their antitumoral activity. Sterols and fatty acids have obvious bioactivity. Therefore, determination and comparison of sterols and fatty acids is helpful to elucidate the active components of Lingzhi. Results Ergosterol, a specific component of fungal cell membrane, was rich in G. lucidum and G. sinense. But its content in G. lucidum (median content 705.0 μg·g-1, range 189.1-1453.3 μg·g-1, n = 19) was much higher than that in G. sinense (median content 80.1 μg·g-1, range 16.0-409.8 μg·g-1, n = 13). Hierarchical clustering analysis based on the content of ergosterol showed that 32 tested samples of Ganoderma were grouped into two main clusters, G. lucidum and G. sinense. Hierarchical clustering analysis based on the contents of ten fatty acids showed that two species of Ganoderma had no significant difference though two groups were also obtained. The similarity of two species of Ganoderma in fatty acids may be related to their antitumoral proliferation effect. Conclusions The content of ergosterol is much higher in G. lucidum than in G. sinense. Palmitic acid, linoleic acid, oleic acid, stearic acid are main fatty acids in Ganoderma and their content had no significant difference between G. lucidum and G. sinense, which may contribute to their antitumoral proliferation effect. PMID:22293530

  5. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters.

    Science.gov (United States)

    Lin, Yuguang; Knol, Diny; Menéndez-Carreño, María; Blom, Wendy A M; Matthee, Joep; Janssen, Hans-Gerd; Trautwein, Elke A

    2016-01-27

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median POP contents per portion size of cooked foods were 0.57 mg (range 0.05-1.11 mg) with control margarine versus 1.42 mg (range 0.08-20.5 mg) with PS-margarine. The oxidation rate of PS (ORP) was 0.50% (median) with the PS-margarine and 3.66% with the control margarine. Using the PS-margarine, microwave-cooked codfish had the lowest POP content, with 0.08 mg per portion, while shallow-fried potatoes had the highest POP content, 20.5 mg per portion. Median POP contents in cookies, muffins, banana bread, and sponge cake baked with the control or PS-margarine were 0.12 mg (range 0.11-0.21 mg) and 0.24 mg (range 0.19-0.60 mg) per portion, with a corresponding ORP of 1.38% and 0.06%, respectively. POP contents in all the cooked and baked foods did not exceed 20.5 mg per typical portion size. A wide variation in the distribution of individual POP among different foods existed, with 7-keto-PS and 5,6-epoxy-PS being the major oxidation products.

  6. Triton X-114 cloud point extraction to subfractionate blood plasma proteins for two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Jessen, Flemming; Wulff, Tune

    2015-01-01

    -sterol acyltransferase, serum amyloid A, and serum paraoxonase/arylesterase 1, which are proteins of a hydrophobic nature, as in plasma they relate to lipoprotein particles. Thus, Triton X-114-based CPE is a simple plasma prefractionation tool, attractive for detailed 2DE studies of hydrophobic plasma proteins...

  7. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  8. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus.

    Science.gov (United States)

    Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken

    2005-06-01

    Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.

  9. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters.

    Science.gov (United States)

    Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J

    2000-09-01

    The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol

  10. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  11. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans

    2009-01-01

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...

  12. 7 CFR 35.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... AND PLUMS Definitions § 35.4 Carrier. Carrier means any common or private carrier, including, but not being limited to, trucks, rail, airplanes, vessels, tramp or chartered steamers, whether carrying for...

  13. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  14. Sterol content in the artificial diet of Mythimna separata affects the metabolomics of Arma chinensis (Fallou) as determined by proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Guo, Yi; Liu, Chen-Xi; Zhang, Li-Sheng; Wang, Meng-Qing; Chen, Hong-Yin

    2017-12-01

    Insects cannot synthesize sterols and must obtain them from plants. Therefore, reducing plant sterol content or changing sterol type might be an effective pest control strategy. However, the impacts of these changes on pests' natural predators remain unknown. Here, we fed artificial diets with reduced sterol content to Mythimna separata (Walker) (Lepidoptera: Noctuidae) and investigated the effects on its natural predator, Arma chinensis (Fallou) (Hemiptera: Pentatomidae). Reduced sterol content in M. separata (MS1, MS2, and MS5) was achieved by feeding them artificial diets prepared from a feed base subjected to one, two, or five cycles of sterol extractions, respectively. The content of most substances increased in A. chinensis (AC) groups feeding on MS2 and MS5. The content of eight substances (alanine, betaine, dimethylamine, fumarate, glutamine, glycine, methylamine, and sarcosine) differed significantly between the control (AC0) and treated (AC1, AC2, and AC5) groups. Metabolic profiling revealed that only AC5 was significantly distinct from AC0; the major substances contributing to this difference were maltose, glucose, tyrosine, proline, O-phosphocholine, glutamine, allantoin, lysine, valine, and glutamate. Furthermore, only two metabolic pathways, that is, nicotinate and nicotinamide metabolism and ubiquinone and other terpenoid-quinone biosynthesis, differed significantly between AC1 and AC5 and the control, albeit with an impact value of zero. Thus, the sterol content in the artificial diet fed to M. separata only minimally affected the metabolites and metabolic pathways of its predator A. chinensis, suggesting that A. chinensis has good metabolic self-regulation with high resistance to sterol content changes. © 2017 Wiley Periodicals, Inc.

  15. Effects of plant sterol esters in skimmed milk and vegetable-fat-enriched milk on serum lipids and non-cholesterol sterols in hypercholesterolaemic subjects: a randomised, placebo-controlled, crossover study.

    Science.gov (United States)

    Casas-Agustench, Patricia; Serra, Mercè; Pérez-Heras, Ana; Cofán, Montserrat; Pintó, Xavier; Trautwein, Elke A; Ros, Emilio

    2012-06-01

    Plant sterol (PS)-supplemented foods are recommended to help in lowering serum LDL-cholesterol (LDL-C). Few studies have examined the efficacy of PS-enriched skimmed milk (SM) or semi-SM enriched with vegetable fat (PS-VFM). There is also insufficient information on factors predictive of LDL-C responses to PS. We examined the effects of PS-SM (0·1 % dairy fat) and PS-VFM (0·1 % dairy fat plus 1·5 % vegetable fat) on serum lipids and non-cholesterol sterols in hypercholesterolaemic individuals. In a placebo-controlled, crossover study, forty-three subjects with LDL-C>1300 mg/l were randomly assigned to three 4-week treatment periods: control SM, PS-SM and PS-VFM, with 500 ml milk with or without 3·4 g PS esters (2 g free PS). Serum concentrations of lipids and non-cholesterol sterols were measured. Compared to control, LDL-C decreased by 8·0 and 7·4 % (P synthesis and high cholesterol absorption predicted improved LDL-C responses to PS.

  16. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol

    DEFF Research Database (Denmark)

    Wustner, D.; Solanko, L.; Sokol, Olena

    2011-01-01

    Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehythoergosterol (DHE), a well-established marker for cholesterol, by introducing simultan......Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehythoergosterol (DHE), a well-established marker for cholesterol, by introducing...... and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference...

  17. Inhibitory effects of various oxygenated sterols on the differentiation and function of tumor-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Spangrude, G.J.; Sherris, D.; Daynes, R.A.

    1982-01-01

    Irradiation of skin with ultraviolet light (UVL) is capable of causing many biological and biochemical changes in this complex organ. One early consequence is the oxidation of epidermal plasma membrane cholesterol, causing the induction of a wide variety of photoproducts. It is well recognized that some oxygenated sterols possess potent biological activity on mammalian cells by their ability to inhibit endogeneous mevalonate and cholesterol biosynthesis. In the few immunological systems that have been studied, there is general agreement that lymphocyte function is lacking, as both afferent and efferent blockades have been suggested. These studies were undertaken to determine the effect of various oxygenated sterols (representing a number of known cholesterol-derived photoproducts) on the generation (afferent) and function (efferent) of cytotoxic T lymphocytes (CTLs). Cell-mediated immune responses which result in the generation of both alloantigen-specific and syngeneic tumor-specific CTLs were evaluated

  18. Synthesis, Spectroscopic and Theoretical Studies of New Quaternary N,N-Dimethyl-3-phthalimidopropylammonium Conjugates of Sterols and Bile Acids

    Directory of Open Access Journals (Sweden)

    Bogumil Brycki

    2014-04-01

    Full Text Available New quaternary 3-phthalimidopropylammonium conjugates of steroids were obtained by reaction of sterols (ergosterol, cholesterol, cholestanol and bile acids (lithocholic, deoxycholic, cholic with bromoacetic acid bromide to give sterol 3β-bromoacetates and bile acid 3α-bromoacetates, respectively. These intermediates were subjected to nuclephilic substitution with N,N-dimethyl-3-phthalimidopropylamine to give the final quaternary ammonium salts. The structures of products were confirmed by spectral (1H-NMR, 13C-NMR, and FT-IR analysis, mass spectrometry (ESI-MS, MALDI as well as PM5 semiempirical methods and B3LYP ab initio methods. Estimation of the pharmacotherapeutic potential has been accomplished for synthesized compounds on the basis of Prediction of Activity Spectra for Substances (PASS.

  19. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  20. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.

    Science.gov (United States)

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu

    2013-04-01

    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    Portsmouth, J.H.; Maxwell, J.E.; Boness, G.O.; Rice, L.E.

    1991-04-01

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  2. AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Kikuma, Takashi; Tadokoro, Takayuki; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2017-02-01

    Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.

  3. Serum levels of pancreatic stone protein (PSP/reg1A as an indicator of beta-cell apoptosis suggest an increased apoptosis rate in hepatocyte nuclear factor 1 alpha (HNF1A-MODY carriers from the third decade of life onward

    Directory of Open Access Journals (Sweden)

    Bacon Siobhan

    2012-07-01

    Full Text Available Abstract Background Mutations in the transcription factor hepatocyte nuclear factor-1-alpha (HNF1A result in the commonest type of maturity onset diabetes of the young (MODY. HNF1A-MODY carriers have reduced pancreatic beta cell mass, partially due to an increased rate of apoptosis. To date, it has not been possible to determine when apoptosis is occurring in HNF1A-MODY.We have recently demonstrated that beta cell apoptosis stimulates the expression of the pancreatic stone protein/regenerating (PSP/reg gene in surviving neighbour cells, and that PSP/reg1A protein is subsequently secreted from these cells. The objective of this study was to determine whether serum levels of PSP/reg1A are elevated during disease progression in HNF1A-MODY carriers, and whether it may provide information regarding the onset of beta-cell apoptosis. Methods We analysed serum PSP/reg1A levels and correlated with clinical and biochemical parameters in subjects with HNF1A-MODY, glucokinase (GCK-MODY, and type 1 diabetes mellitus. A control group of normoglycaemic subjects was also analysed. Results PSP/reg1A serum levels were significantly elevated in HNF1A-MODY (n = 37 subjects compared to controls (n = 60 (median = 12.50 ng/ml, IQR = 10.61-17.87 ng/ml versus median = 10.72 ng/ml, IQR = 8.94-12.54 ng/ml, p = 0.0008. PSP/reg1A correlated negatively with insulin levels during OGTT, (rho = −0.40, p = 0.02. Interestingly we noted a significant positive correlation of PSP/reg1A with age of the HNF1A-MODY carriers (rho = 0.40 p = 0.02 with an age of 25 years separating carriers with low and high PSP/reg1A levels. Patients with type 1 diabetes mellitus also had elevated serum levels of PSP/reg1A compared to controls, however this was independent of the duration of diabetes. Conclusion Our data suggest that beta cell apoptosis contributes increasingly to the pathophysiology of HNF1A-MODY in patients 25 years and over

  4. Serum levels of pancreatic stone protein (PSP)/reg1A as an indicator of beta-cell apoptosis suggest an increased apoptosis rate in hepatocyte nuclear factor 1 alpha (HNF1A-MODY) carriers from the third decade of life onward

    LENUS (Irish Health Repository)

    Bacon, Siobhan

    2012-07-18

    AbstractBackgroundMutations in the transcription factor hepatocyte nuclear factor-1-alpha (HNF1A) result in the commonest type of maturity onset diabetes of the young (MODY). HNF1A-MODY carriers have reduced pancreatic beta cell mass, partially due to an increased rate of apoptosis. To date, it has not been possible to determine when apoptosis is occurring in HNF1A-MODY.We have recently demonstrated that beta cell apoptosis stimulates the expression of the pancreatic stone protein\\/regenerating (PSP\\/reg) gene in surviving neighbour cells, and that PSP\\/reg1A protein is subsequently secreted from these cells. The objective of this study was to determine whether serum levels of PSP\\/reg1A are elevated during disease progression in HNF1A-MODY carriers, and whether it may provide information regarding the onset of beta-cell apoptosis.MethodsWe analysed serum PSP\\/reg1A levels and correlated with clinical and biochemical parameters in subjects with HNF1A-MODY, glucokinase (GCK-MODY), and type 1 diabetes mellitus. A control group of normoglycaemic subjects was also analysed.ResultsPSP\\/reg1A serum levels were significantly elevated in HNF1A-MODY (n = 37) subjects compared to controls (n = 60) (median = 12.50 ng\\/ml, IQR = 10.61-17.87 ng\\/ml versus median = 10.72 ng\\/ml, IQR = 8.94-12.54 ng\\/ml, p = 0.0008). PSP\\/reg1A correlated negatively with insulin levels during OGTT, (rho = −0.40, p = 0.02). Interestingly we noted a significant positive correlation of PSP\\/reg1A with age of the HNF1A-MODY carriers (rho = 0.40 p = 0.02) with an age of 25 years separating carriers with low and high PSP\\/reg1A levels. Patients with type 1 diabetes mellitus also had elevated serum levels of PSP\\/reg1A compared to controls, however this was independent of the duration of diabetes.ConclusionOur data suggest that beta cell apoptosis contributes increasingly to the pathophysiology of HNF1A-MODY in patients 25 years and

  5. Determination of fatty acid, tocopherol and phyto sterol contents of the oils of various poppy (Papaver somniferum L.) seeds.

    Energy Technology Data Exchange (ETDEWEB)

    Enric, H.; Tekin, A.; Musa Ozcan, M.

    2009-07-01

    The fatty acid, tocopherol and sterol contents of the oils of several poppy seeds were investigated. The main fatty acids in poppy seed oils were linoleic (687.6-739.2 g kg{sup -}1), oleic (141.3-192.8 g kg{sup -}1) and palmitic (76.8-92.8 g kg{sup -}1). The oils contained an appreciable amount of {gamma}-tocopherol (195.37-280.85 mg kg{sup -}1), with a mean value of 261.31 mg kg-1 and {alpha}-tocopherol (21.99-45.83 mg kg{sup -}1), with a mean value of 33.03 mg kg{sup -}1. The concentrations of total sterol ranged from 1099.84 mg kg{sup -}1 (K.pembe) to 4816.10 mg kg-1 (2. sinif beyaz), with a mean value of 2916.20 mg kg{sup -}1. The major sterols were {beta}-sitosterol, ranging from 663.91 to 3244.39 mg kg{sup -}1; campesterol, ranging from 228.59 to 736.50 mg kg{sup -}1; and {delta}{sup 5}-avenasterol, ranging from 103.90 to 425.02 mg kg{sup -}1. The studied varieties of poppy seeds from Turkey were found to be a potential source of valuable oil. (Author) 31 refs.

  6. Photoaffinity labeling of the oxysterol binding protein

    International Nuclear Information System (INIS)

    Taylor, F.R.; Kandutsch, A.A.; Anzalone, L.; Spencer, T.A.

    1986-01-01

    A cytosolic receptor protein for oxygenated sterols, that is thought to be involved in the regulation of HMG-CoA reductase and cholesterol biosynthesis, can be labeled covalently by the photoactivated affinity compound [5,6- 3 H]-7,7'-azocholestane-3β,25-diol (I). Several other compounds were tested including 25-hydroxycholesta-4,6-dien-3-one, 25-azido-27-norcholest-5-en-3β-ol,3β,25-dihydroxycholest-5-en-7-one and 3β-hydroxycholesta-8(14),9(11)-dien-15-one. However, these sterols either did not bind to the receptor with adequate affinity or did not react covalently with the receptor during photolysis. Compound I binds to the receptor with very high affinity (K/sub d/ = 30 nM). After activation with long wavelength UV, two tritium labeled proteins, M/sub r/ approximately 95K and 65K daltons, are found upon SDS gel electrophoresis. No labeling occurs when the binding reaction is carried out in the presence of a large excess of 25-hydroxycholesterol. It is possible that the smaller polypeptide is a degradation product. Under the reaction conditions investigated so far labeling is relatively inefficient (< 1% of bound sterol). These results are generally consistent with previous information suggesting that the M/sub r/ of the receptor subunit is 97,000. Covalent labeling of the receptor should greatly facilitate its further purification and characterization

  7. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  8. Hydrocortisone fails to abolish NF-κB1 protein nuclear translocation in deletion allele carriers of the NFKB1 promoter polymorphism (-94ins/delATTG and is associated with increased 30-day mortality in septic shock.

    Directory of Open Access Journals (Sweden)

    Simon T Schäfer

    Full Text Available BACKGROUND: Previous investigations and meta-analyses on the effect of glucocorticoids on mortality in septic shock revealed mixed results. This heterogeneity might be evoked by genetic variations. Such candidate is a promoter polymorphism (-94ins/delATTG of the gene encoding the ubiquitous transcription-factor nuclear-factor-κB (NF-κB which binds to recognition elements in the promoter of several genes encoding for the innate immune-system. In turn, hydrocortisone inhibits NF-κB nuclear translocation and thus transcription of key immune-response regulators. Accordingly, we tested the hypotheses that hydrocortisone has a NFKB1 genotype dependent effect on 1 NF-κB1 nuclear translocation evoked by lipopolysaccharide (LPS in monocytes in vitro, and 2 mortality in septic shock. METHODS: Monocytes of volunteers with the homozygous insertion (II; n = 5 or deletion (DD; n = 6 NFKB1 genotype were incubated with 10 µgml-1 LPS ± hydrocortisone (10-5M, and NF-κB1 nuclear translocation was assessed (immunofluorescence. Furthermore, we analyzed 30-day-mortality in 160 patients with septic shock stratified for both genotype and hydrocortisone therapy. RESULTS: Hydrocortisone inhibited LPS induced nuclear translocation of NF-κB1 in II (25%±11;p = 0.0001 but not in DD genotypes (51%±15;p = n.s.. Onehundredandfour of 160 patients with septic shock received hydrocortisone, at the discretion of the intensivist. NFKB1 deletion allele carriers (ID/DD receiving hydrocortisone had a much greater 30-day-mortality (57.6% than II genotypes (24.4%; HR:3.18, 95%-CI:1.61-6.28;p = 0.001. In contrast, 30-day mortality was 22.2% in ID/DD and 25.0% in II genotypes without hydrocortisone therapy. Results were similar when using propensity score matching to account for possible bias in the intensivists' decision to administer hydrocortisone. CONCLUSION: Hydrocortisone fails to inhibit LPS induced nuclear NF-κB1 translocation in deletion allele

  9. Hydrocortisone Fails to Abolish NF-κB1 Protein Nuclear Translocation in Deletion Allele Carriers of the NFKB1 Promoter Polymorphism (-94ins/delATTG) and Is Associated with Increased 30-Day Mortality in Septic Shock

    Science.gov (United States)

    Schäfer, Simon T.; Gessner, Sophia; Scherag, André; Rump, Katharina; Frey, Ulrich H.; Siffert, Winfried; Westendorf, Astrid M.; Steinmann, Jörg; Peters, Jürgen; Adamzik, Michael

    2014-01-01

    Background Previous investigations and meta-analyses on the effect of glucocorticoids on mortality in septic shock revealed mixed results. This heterogeneity might be evoked by genetic variations. Such candidate is a promoter polymorphism (-94ins/delATTG) of the gene encoding the ubiquitous transcription-factor nuclear-factor-κB (NF-κB) which binds to recognition elements in the promoter of several genes encoding for the innate immune-system. In turn, hydrocortisone inhibits NF-κB nuclear translocation and thus transcription of key immune-response regulators. Accordingly, we tested the hypotheses that hydrocortisone has a NFKB1 genotype dependent effect on 1) NF-κB1 nuclear translocation evoked by lipopolysaccharide (LPS) in monocytes in vitro, and 2) mortality in septic shock. Methods Monocytes of volunteers with the homozygous insertion (II; n = 5) or deletion (DD; n = 6) NFKB1 genotype were incubated with 10 µgml-1 LPS ± hydrocortisone (10-5M), and NF-κB1 nuclear translocation was assessed (immunofluorescence). Furthermore, we analyzed 30-day-mortality in 160 patients with septic shock stratified for both genotype and hydrocortisone therapy. Results Hydrocortisone inhibited LPS induced nuclear translocation of NF-κB1 in II (25%±11;p = 0.0001) but not in DD genotypes (51%±15;p = n.s.). Onehundredandfour of 160 patients with septic shock received hydrocortisone, at the discretion of the intensivist. NFKB1 deletion allele carriers (ID/DD) receiving hydrocortisone had a much greater 30-day-mortality (57.6%) than II genotypes (24.4%; HR:3.18, 95%-CI:1.61-6.28;p = 0.001). In contrast, 30-day mortality was 22.2% in ID/DD and 25.0% in II genotypes without hydrocortisone therapy. Results were similar when using propensity score matching to account for possible bias in the intensivists' decision to administer hydrocortisone. Conclusion Hydrocortisone fails to inhibit LPS induced nuclear NF-κB1 translocation in deletion allele carriers of the

  10. The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease

    Science.gov (United States)

    Sabeva, Nadezhda S.; Liu, Jingjing; Graf, Gregory A.

    2014-01-01

    Purpose of review This review summarizes recent developments in the activity, regulation, and physiology of the ABCG5 ABCG8 (G5G8) transporter and the use of its xenobiotic substrates, phytosterols, as cholesterol lowering agents in the treatment of cardiovascular disease. Recent progress has significant implications for the role of G5G8 and its substrates in complications associated with features of the metabolic syndrome. Recent findings Recent reports expand the clinical presentation of sitosterolemia to include platelet and adrenal dysfunction. The G5G8 sterol transporter is critical to hepatobiliary excretion of cholesterol under nonpathological conditions and has been linked to the cholesterol gallstone susceptibility. Finally, the cardiovascular benefits of cholesterol lowering through the use of phytosterol supplements were offset by vascular dysfunction, suggesting that alternative strategies to reduced cholesterol absorption offer greater benefit. Summary Insulin resistance elevates G5G8 and increases susceptibility to cholesterol gallstones. However, this transporter is critical for the exclusion of phytosterols from the absorptive pathways in the intestine. Challenging the limits of this protective mechanism through phytosterol supplementation diminishes the cardioprotective benefits of cholesterol lowering in mouse models of cardiovascular disease. PMID:19306529

  11. The in-process removal of sterol glycosides by ultrafiltration in biodiesel production

    Directory of Open Access Journals (Sweden)

    André Y. Tremblay

    2017-03-01

    Full Text Available Minor components found in biodiesel can affect its stability and cold flow properties. Without extensive post treatments, trace compounds such as sterol glycosides (SG can remain at unacceptable levels in finished biodiesel fuels. This study proposes to remove SG from reacted Fatty Acid Methyl Ester (FAME mixtures using ultrafiltration. Degummed soybean oil was transesterified using methanol and a catalyst (sodium methoxide. The mixtures were immediately ultrafiltered after the reaction and the FAMEs from the retentate and permeate were analyzed for SG. The highest separation for SG (86 % was obtained when the reaction conditions were 0.7 wt.% catalyst and 4:1 MeOH:Oil ratio. The lowest separation (0% was observed at 0.3 wt.% catalyst and 4:1 MeOH:Oil ratio. The higher separations were explained by the deprotonation of the hydroxyl groups on SG. This decreased the solubility of SG in the reacted FAME phase. The separation was lowest, when unreacted oil along with monoacylglycerides (MG and diacylglycerides (DG solubilized SG in the reacted mixture. The separation was also low when high methanol to oil ratios were used in the transesterification. The lowest concentration of SG measured in FAMEs treated by ultrafiltration was 3.4 ppm. The results indicate that ultrafiltration is an effective method to remove SG from soybean FAMEs.

  12. Concerning the role of 24,25-dihydrolanosterol and lanostanol in sterol biosynthesis by cultured cells

    International Nuclear Information System (INIS)

    Nes, W.D.; Norton, R.A.; Parish, E.J.; Meenan, A.; Popjak, G.

    1989-01-01

    Rat hepatoma cells (H4-II-E-C3) efficiently converted a dietary supplement of [2- 3 H]24,25-dihydrolanosterol (1) to [ 3 H]cholesterol while [2- 3 H]lanostanol 4,4,14 alpha-trimethylcholestanol (2) was recovered from the cells without apparent transformation, although it was esterified and induced an accumulation of lanosterol. A comparison of the chromatographic (TLC, GLC and HPLC), spectral (MS and 1H-NMR) and physical properties of 1 and 2 is given for the first time. The inability to detect 2 in nature coupled with our findings that 1 but not 2 is metabolized to cholesterol by H4 cells is interpreted to imply that the biosynthetic inclusion of the delta 8(9)-bond during the cyclization process of squalene-oxide to a tetracyclic product is an evolutionary adaptation selected for because the olefinic linkage is structually important in the subsequent conversion of lanosterol and its stereoisomers, e.g., cycloartenol, to delta 5-sterols

  13. Synthesis, liquid crystallinity, and chiroptical properties of sterol-containing polyacetylenes

    Science.gov (United States)

    Lam, Jacky Wing Yip; Lai, Lo Ming; Tang, Ben Zhong

    2006-08-01

    Poly(phenylacetylene)s and poly(1-alkyne)s containing chiral sterol pendant groups with molecular structures of -[HC=C-C 6H 4-CO II-R] n-, -[HC=C-C 6H 4-O(CH II) 10-CO II-R] n- and -[HC=C(CH II) mCO II-R] n-, (where R = cholesterol, stigmasterol, ergosterol and m = 2, 3, 8} are designed and synthesized. The monomers are prepared by esterifications of acetylenic acids with cholesterol, stigmasterol, and ergosterol and exhibit cholestericity at high temperatures. Polymerizations of the monomers are effected by WCl 6-Ph 4Sn, MoCl 5-Ph 4Sn, and organorhodium catalysts, giving high molecular weight (M w up to 8.0 × 10 5) polymers in high yields (up to 99%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, DSC, POM, X-ray, UV, and CD analyses. All the polymers are thermally stable (greater than or equal to 300 °C). Polymers with long flexible alkyl chains form smectic and cholesteric phases at elevated temperatures. With an increase in the spacer length in poly(1-alkyne)s, the packing arrangements of the mesogenic pendants in the mesophases change from bilayer or mixed mono- and bilayer into homogeneous monolayer structures. Few poly(phenylacetylene)s show CD bands in the absorption region of the polyacetylene backbones, revealing that the main chains are helically rotating with a preferred screw sense.

  14. Phenolic compounds and sterol contents of olive (olea europaea l.) oils obtained from different

    International Nuclear Information System (INIS)

    Juhaimi, F.; Ghafoor, K.; Adiamo, O.Q.; Babiker, E.E.

    2017-01-01

    Oil obtained from 5 different olive cultivars was analyzed for phenolic and sterol composition. Total phenol