WorldWideScience

Sample records for sterol biosynthesis pathway

  1. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  2. Hydroxyurea Induces Cytokinesis Arrest in Cells Expressing a Mutated Sterol-14α-Demethylase in the Ergosterol Biosynthesis Pathway.

    Science.gov (United States)

    Xu, Yong-Jie; Singh, Amanpreet; Alter, Gerald M

    2016-11-01

    Hydroxyurea (HU) has been used for the treatment of multiple diseases, such as cancer. The therapeutic effect is generally believed to be due to the suppression of ribonucleotide reductase (RNR), which slows DNA polymerase movement at replication forks and induces an S phase cell cycle arrest in proliferating cells. Although aberrant mitosis and DNA damage generated at collapsed forks are the likely causes of cell death in the mutants with defects in replication stress response, the mechanism underlying the cytotoxicity of HU in wild-type cells remains poorly understood. While screening for new fission yeast mutants that are sensitive to replication stress, we identified a novel mutation in the erg11 gene encoding the enzyme sterol-14α-demethylase in the ergosterol biosynthesis pathway that dramatically sensitizes the cells to chronic HU treatment. Surprisingly, HU mainly arrests the erg11 mutant cells in cytokinesis, not in S phase. Unlike the reversible S phase arrest in wild-type cells, the cytokinesis arrest induced by HU is relatively stable and occurs at low doses of the drug, which likely explains the remarkable sensitivity of the mutant to HU. We also show that the mutation causes sterol deficiency, which may predispose the cells to the cytokinesis arrest and lead to cell death. We hypothesize that in addition to the RNR, HU may have a secondary unknown target(s) inside cells. Identification of such a target(s) may greatly improve the chemotherapies that employ HU or help to expand the clinical usage of this drug for additional pathological conditions. Copyright © 2016 by the Genetics Society of America.

  3. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed.

    Science.gov (United States)

    Harker, Mark; Hellyer, Amanda; Clayton, John C; Duvoix, Annelyse; Lanot, Alexandra; Safford, Richard

    2003-02-01

    The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development. In both plants, enzyme activities were low during the initial stages of seed development, increasing towards mid-maturation where they remained stable for a time, before declining rapidly as the oilseeds reached maturity. During seed development, the level of total sterols increased 12-fold in tobacco and 9-fold in rape, primarily due to an increase in steryl ester production. In both seed tissues, stages of maximum enzyme activity coincided with periods of high rates of sterol production, indicating developmental regulation of the enzymes to be responsible for the increases in the sterol content observed during seed development. Consistent with previous studies the data presented suggest that sterol biosynthesis is regulated by two key steps, although there may be others. The first is the regulation of carbon flux into the isoprenoid pathway to cycloartenol. The second is the flux from cycloartenol to Delta(5)-end-product sterols. The implications of the results in terms of enhancing seed sterol levels by genetic modification are also discussed.

  4. The Evolution of Sterol Biosynthesis in Bacteria: In Situ Fluorescence Localization of Sterols in the Nucleoid Bacterium Gemmata obscuriglobus

    Science.gov (United States)

    Budin, M.; Jorgenson, T. L.; Pearson, A.

    2004-12-01

    The biosynthesis of sterols is generally regarded as a eukaryotic process. The first enzymatic step in the production of sterols requires molecular oxygen. Therefore, both the origin of eukaryotes and the evolution of sterol biosynthesis were thought to postdate the rise of oxygen in earth's atmosphere, until Brocks et al. discovered steranes in rocks aged 2.7 Ga (1). Many prokaryotes produce hopanoids, sterol-like compounds that are synthesized from the common precursor squalene without the use of molecular oxygen. However, a few bacterial taxa are also known to produce sterols, suggesting this pathway could precede the rise of oxygen (2, 3). Recently, we discovered the shortest sterol-producing biosynthetic pathway known to date in the bacterium Gemmata obscuriglobus (4). Using genomic searches, we found that Gemmata has the enzymes necessary for synthesis of sterols, and lipid analyses showed that the sterols produced are lanosterol and its isomer parkeol. Gemmata is a member of the Planctomycetes, an unusual group of bacteria, all of the known species of which contain intracellular compartmentalization. Among the Planctomycetes, Gemmata uniquely is the only prokaryote known to contain a double-membrane-bounded nuclear body (5). Since sterols usually are found in eukaryotes, and Gemmata has a eukaryote-like nuclear organelle, we investigated the location of the sterols within Gemmata to postulate whether they play a role in stabilization of the nuclear membrane and control of genomic organization. We used the sterol-specific fluorescent dye Filipin III in conjunction with fluorescent dyes for internal and external cellular membranes in order to determine whether the sterols are located in the nuclear body membrane, external membrane, or both. We found that sterols in Gemmata are concentrated in the internal membrane, implying that they function in maintaining this unusual cellular component. It is notable that Gemmata also produce hopanoids, suggesting that they

  5. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.

    Science.gov (United States)

    Singh, Shefali; Pal, Shaifali; Shanker, Karuna; Chanotiya, Chandan Singh; Gupta, Madan Mohan; Dwivedi, Upendra Nath; Shasany, Ajit Kumar

    2014-12-01

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. © 2014 Scandinavian Plant Physiology Society.

  6. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-10-01

    Full Text Available Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(- were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(- mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(- causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  7. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Science.gov (United States)

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-10-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  8. Biosynthesis and composition of sterols and sterol esters in the land snail Cepaea nemoralis (L.) (gastropoda, pulmonata, stylommatophora)

    NARCIS (Netherlands)

    Horst, D.J. van der; Voogt, P.A.

    1972-01-01

    1. 1. The biosynthesis and composition of sterols and sterol esters were studied in the land snail Cepaea nemoralis after injection of Na-1-14C-acetate. 2. 2. Free and esterified sterols appeared to be synthesized by the animals, whilst the specific radioactivity of the sterols from the esters

  9. Biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio

    1976-01-01

    This study deals with the biosynthesis of sterols from mevalonate in a starfish, Coscinasterias acutispina. After injection of mevalonate-2- 14 C, the metabolites were investigated by using thin-layer, column, and gas-liquid chromatographic techniques. The detailed investigation of radioactive desmethylsterols showed that radioactivity was mainly associated with cholest-7-enol. However, there was no evidence for the incorporation of mevalonate-2- 14 C into C 26 -, C 28 -, and C 29 -sterols besides cholestanol and cholesterol. The results indicated that the starfish, C. acutispina, is capable of synthesizing at least cholest-7-enol from mevalonate via probably squalene and lanosterol etc. But not sterols other than C 27 -sterols. Also, it was suggested that the conversion of cholest-7-enol to cholesterol may not proceed in this starfish. (auth.)

  10. Possible regulation of sterol biosynthesis by phenolic acids

    International Nuclear Information System (INIS)

    Ranganathan, S.; Ramasarma, T.

    1974-01-01

    To test whether the phenolic acids, metabolites of tyrosine, regulate the biosynthesis of cholesterol, influence of phenolic acids on the incorporation of mevalonate-2- 14 C into sterols by rat liver and brain homogenate systems has been investigated in vitro. Results show that the combined presence of the aromatic ring and the carboxyl group in the compound under investigation inhibited the incorporation of labelled mevalonate. (M.G.B.)

  11. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death.

    Directory of Open Access Journals (Sweden)

    Rafael Luis Kessler

    Full Text Available The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50/72 h or killing all cells within 24 hours (EC(100/24 h. Incubation with inhibitors at the EC(50/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50/72 h. By contrast, treatment with SBIs at the EC(100/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP, culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.

  12. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  13. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    International Nuclear Information System (INIS)

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-01-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. ( 14 C]-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using ( 3 H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results

  14. Insect molting hormone and sterol biosynthesis in spinach

    International Nuclear Information System (INIS)

    Grebenok, R.J.; Adler, J.H.

    1990-01-01

    Insect molting hormones, which are produced by plants and are effective molecules in the control of insect crop pests, are biosynthesized in developing spinach leaves (Spinacia oleracea L.). The major sterols biosynthesized by spinach are avenasterol (24α-ethyl-5α-cholesta-7,24(28)-dien-3β-ol), spinasterol (24α-ethyl-5α-cholesta-7,22-dien-3β-ol), and 22-dihydrospinasterol (24α-ethyl-5α-cholest-7-en-3β-ol). The major ecdysteroids biosynthesized are ecdysterone (2β,3β,14α,20R,22R,25-hexahydroxy-5β-cholest-7-en-6-one) and polypodine B (2β,3β,5β,14α,20R,22R,25-heptahycroxycholest-7-en-6-one) and polypodine B (2β,3β,5β,14α,20R,22R,25-heptahydroxycholest-7-en-6-one). When labeled 2- 14 C-mevalonic acid was incorporated into young leaves isolated squalene, sterols and ecdysteroids contained the label. During a short (16 h) incorporation period in intact young leaves of 100 day old plants, the avenasterol has the highest specific activity in counts per minute per μg of sterol followed by 22-dihydrospinasterol which is more highly labeled than spinasterol. The ecdysteroids synthesized, on an entire plant basis, account for 20% of the total steroid (sterol and ecdysteroid) isolated from the plant

  15. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1989-01-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of 3 H 2 O and [ 14 C]mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of 14 C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of 3 H of 3 H 2 O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered

  16. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin; Kuwahara, Hiroyuki; Alazmi, Meshari Saud; Cui, Xuefeng

    2017-01-01

    suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived

  18. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.

    Science.gov (United States)

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu

    2013-04-01

    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  20. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    Science.gov (United States)

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  1. Determining Antifungal Target Sites in the Sterol Pathway of the Yeast Candida and Saccharomyces

    National Research Council Canada - National Science Library

    Bard, Martin

    1998-01-01

    ... as in topical infections which lead to significant losses in work-place productivity. The work reported here seeks to identify new target sites in the sterol biosynthetic pathway against which new antifungal compounds might be developed...

  2. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    Science.gov (United States)

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  3. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.

    Directory of Open Access Journals (Sweden)

    Kevin A Robertson

    2016-03-01

    Full Text Available In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1. Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.

  4. Sterol biosynthesis from acetate and the fate of dietary cholesterol and desmosterol in crabs

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio; Okamoto, Haruhito

    1976-01-01

    This paper deals with the sterol-synthesizing ability and the fate of dietary sterols, cholesterol and desmosterol, in the crabs, Sesarma dehaani and Helice tridens. Injected acetate-1- 14 C was not incorporated into either squalene or sterols in the above crabs. This suggested that the sterol-synthesizing ability from acetate is absent or weak in the crabs, S. dehaani and H. tridens. The apparent percentage absorptions of dietary cholesterol and desmosterol from the digestive tracts were 91.9 and 90.9, respectively. The ingested cholesterol and desmosterol were metabolized to steryl esters and polar compounds but only slightly to water-soluble sterols. Also, it was shown that the crab, S. dehaani, is capable of converting desmosterol to cholesterol. (auth.)

  5. The major cellular sterol regulatory pathway is required for Andes virus infection.

    Directory of Open Access Journals (Sweden)

    Josiah Petersen

    2014-02-01

    Full Text Available The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV. Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.

  6. Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato

    Directory of Open Access Journals (Sweden)

    Juan A. Lara

    2018-05-01

    Full Text Available Steryl esters (SEs serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT and phospholipid:sterol acyltransferases (PSAT depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1 have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs while, in contrast to the endoplasmic reticulum (ER localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM. The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together

  7. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates

    International Nuclear Information System (INIS)

    Shafiee, A.; Trzaskos, J.M.; Paik, Y.K.; Gaylor, J.L.

    1986-01-01

    With [ 3 H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1 H-NMR, and infrared spectroscopy of the isolated sterols

  8. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert

    2013-01-01

    in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase......Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown...... to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...

  9. Concerning the role of 24,25-dihydrolanosterol and lanostanol in sterol biosynthesis by cultured cells

    International Nuclear Information System (INIS)

    Nes, W.D.; Norton, R.A.; Parish, E.J.; Meenan, A.; Popjak, G.

    1989-01-01

    Rat hepatoma cells (H4-II-E-C3) efficiently converted a dietary supplement of [2- 3 H]24,25-dihydrolanosterol (1) to [ 3 H]cholesterol while [2- 3 H]lanostanol 4,4,14 alpha-trimethylcholestanol (2) was recovered from the cells without apparent transformation, although it was esterified and induced an accumulation of lanosterol. A comparison of the chromatographic (TLC, GLC and HPLC), spectral (MS and 1H-NMR) and physical properties of 1 and 2 is given for the first time. The inability to detect 2 in nature coupled with our findings that 1 but not 2 is metabolized to cholesterol by H4 cells is interpreted to imply that the biosynthetic inclusion of the delta 8(9)-bond during the cyclization process of squalene-oxide to a tetracyclic product is an evolutionary adaptation selected for because the olefinic linkage is structually important in the subsequent conversion of lanosterol and its stereoisomers, e.g., cycloartenol, to delta 5-sterols

  10. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form.

    Science.gov (United States)

    Yao, Chaoqun; Wilson, Mary E

    2016-04-12

    The Leishmania spp. protozoa, the causative agents of the "neglected" tropical disease leishmaniasis, are transmitted to mammals by sand fly vectors. Within the sand fly, parasites transform from amastigotes to procyclic promastigotes, followed by development of virulent (metacyclic) promastigote forms. The latter are infectious to mammalian hosts. Biochemical components localized in the parasite plasma membrane such as proteins and sterols play a pivotal role in Leishmania pathogenesis. Leishmania spp. lack the enzymes for cholesterol synthesis, and the dynamics of sterol acquisition and biosynthesis in parasite developmental stages are not understood. We hypothesized that dynamic changes in sterol composition during metacyclogenesis contribute to the virulence of metacyclic promastigotes. Sterols were extracted from logarithmic phase or metacyclic promastigotes grown in liquid culture with or without cholesterol, and analyzed qualitatively and quantitatively by gas chromatograph-mass spectrometry (GC-MS). TriTrypDB was searched for identification of genes involved in Leishmania sterol biosynthetic pathways. In total nine sterols were identified. There were dynamic changes in sterols during promastigote metacyclogenesis. Cholesterol in the culture medium affected sterol composition in different parasite stages. There were qualitative and relative quantitative differences between the sterol content of virulent versus avirulent parasite strains. A tentative sterol biosynthetic pathway in Leishmania spp. promastigotes was identified. Significant differences in sterol composition were observed between promastigote stages, and between parasites exposed to different extracellular cholesterol in the environment. These data lay the foundation for further investigating the role of sterols in the pathogenesis of Leishmania spp. infections.

  11. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  12. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  13. Sterol Composition of Clinically Relevant Mucorales and Changes Resulting from Posaconazole Treatment.

    Science.gov (United States)

    Müller, Christoph; Neugebauer, Thomas; Zill, Patrizia; Lass-Flörl, Cornelia; Bracher, Franz; Binder, Ulrike

    2018-05-19

    Mucorales are fungi with increasing importance in the clinics. Infections take a rapidly progressive course resulting in high mortality rates. The ergosterol biosynthesis pathway and sterol composition are of interest, since they are targeted by currently applied antifungal drugs. Nevertheless, Mucorales often exhibit resistance to these drugs, resulting in therapeutic failure. Here, sterol patterns of six clinically relevant Mucorales ( Lichtheimia corymbifera , Lichtheimia ramosa , Mucor circinelloides , Rhizomucor pusillus , Rhizopus arrhizus , and Rhizopus microsporus ) were analysed in a targeted metabolomics fashion after derivatization by gas chromatography-mass spectrometry. Additionally, the effect of posaconazole (POS) treatment on the sterol pattern of R. arrhizus was evaluated. Overall, fifteen different sterols were detected with species dependent variations in the total and relative sterol amount. Sterol analysis from R. arrhizus hyphae confronted with sublethal concentrations of posaconazole revealed the accumulation of 14-methylergosta-8,24-diene-3,6-diol, which is a toxic sterol that was previously only detected in yeasts. Sterol content and composition were further compared to the well-characterized pathogenic mold Aspergillus fumigatus . This work contributes to a better understanding of the ergosterol biosynthesis pathway of Mucorales, which is essential to improve antifungal efficacy, the identification of targets for novel drug design, and to investigate the combinatorial effects of drugs targeting this pathway.

  14. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    Science.gov (United States)

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Sterol Synthesis in Diverse Bacteria

    OpenAIRE

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identifie...

  16. Regulatory cross-talks and cascades in rice hormone biosynthesis pathways contribute to stress signaling

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    2016-08-01

    Full Text Available Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each other’s production directly. Thus multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones.

  17. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.

    OpenAIRE

    Zinser, E; Paltauf, F; Daum, G

    1993-01-01

    Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergostero...

  18. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.

    Science.gov (United States)

    Wriessnegger, Tamara; Pichler, Harald

    2013-07-01

    Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  20. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    Science.gov (United States)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  1. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to produce TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.

  2. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  3. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.

    Directory of Open Access Journals (Sweden)

    Madalina Rujoi

    2010-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165.

  4. Inhibition of the isoprenoid biosynthesis pathway; detection of intermediates by UPLC-MS/MS

    NARCIS (Netherlands)

    Henneman, Linda; van Cruchten, Arno G.; Kulik, Willem; Waterham, Hans R.

    2011-01-01

    The isoprenoid biosynthesis pathway provides the cell with a variety of compounds which are involved in multiple cellular processes. Inhibition of this pathway with statins and bisphosphonates is widely applied in the treatment of hypercholesterolemia and metabolic bone disease, respectively. In

  5. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms

    Science.gov (United States)

    Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David

    2012-01-01

    Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028

  6. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  7. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  8. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    Science.gov (United States)

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT). Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Chemogenomics profiling of drug targets of peptidoglycan biosynthesis pathway in Leptospira interrogans by virtual screening approaches.

    Science.gov (United States)

    Bhattacharjee, Biplab; Simon, Rose Mary; Gangadharaiah, Chaithra; Karunakar, Prashantha

    2013-06-28

    Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an antileptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.

  10. Deregulation of S-adenosylmethionine biosynthesis and regeneration improves methylation in the E. coli de novo vanillin biosynthesis pathway.

    Science.gov (United States)

    Kunjapur, Aditya M; Hyun, Jason C; Prather, Kristala L J

    2016-04-11

    Vanillin is an industrially valuable molecule that can be produced from simple carbon sources in engineered microorganisms such as Saccharomyces cerevisiae and Escherichia coli. In E. coli, de novo production of vanillin was demonstrated previously as a proof of concept. In this study, a series of data-driven experiments were performed in order to better understand limitations associated with biosynthesis of vanillate, which is the immediate precursor to vanillin. Time-course experiments monitoring production of heterologous metabolites in the E. coli de novo vanillin pathway revealed a bottleneck in conversion of protocatechuate to vanillate. Perturbations in central metabolism intended to increase flux into the heterologous pathway increased average vanillate titers from 132 to 205 mg/L, but protocatechuate remained the dominant heterologous product on a molar basis. SDS-PAGE, in vitro activity measurements, and L-methionine supplementation experiments suggested that the decline in conversion rate was influenced more by limited availability of the co-substrate S-adenosyl-L-methionine (AdoMet or SAM) than by loss of activity of the heterologous O-methyltransferase. The combination of metJ deletion and overexpression of feedback-resistant variants of metA and cysE, which encode enzymes involved in SAM biosynthesis, increased average de novo vanillate titers by an additional 33% (from 205 to 272 mg/L). An orthogonal strategy intended to improve SAM regeneration through overexpression of native mtn and luxS genes resulted in a 25% increase in average de novo vanillate titers (from 205 to 256 mg/L). Vanillate production improved further upon supplementation with methionine (as high as 419 ± 58 mg/L), suggesting potential for additional enhancement by increasing SAM availability. Results from this study demonstrate context dependency of engineered pathways and highlight the limited methylation capacity of E. coli. Unlike in previous efforts to improve SAM or

  11. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    Science.gov (United States)

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. Copyright © 2017 American Society for Microbiology.

  12. Methionine salvage pathway in relation to ethylene biosynthesis

    International Nuclear Information System (INIS)

    Miyazaki, J.H.

    1987-01-01

    The recycling of methionine during ethylene biosynthesis (the methionine cycle) was studied. During ethylene biosynthesis, the H 3 CS-group of S-adenosylmethionine (SAM) is released at 5'-methylthioadenosine (MTA), which is recycled to methionine via 5'-methylthioribose (MTS). In mungbean hypocotyls and cell-free extracts of avocado fruit, [ 14 C]MTR was converted to labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB) as intermediates. Radioactive tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract required an amino group donor. Among several potential donors tested, L-glutamine was the most efficient. Incubation of [ribose-U- 14 C]MTR with avocado extract resulted in the production of [ 14 C]formate, with little evolution of other 14 C-labeled one-carbon compounds, indicating that the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR

  13. An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants.

    Science.gov (United States)

    Hudson, André O; Singh, Bijay K; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and LL-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The LL-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that LL-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms.

  14. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

    Science.gov (United States)

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.

  15. Evolution of the Phosphatidylcholine Biosynthesis Pathways in Green Algae: Combinatorial Diversity of Methyltransferases.

    Science.gov (United States)

    Hirashima, Takashi; Toyoshima, Masakazu; Moriyama, Takashi; Sato, Naoki

    2018-01-01

    Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.

  16. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  17. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  18. RNA-Seq analysis for indigo biosynthesis pathway genes in Indigofera tinctoria and Polygonum tinctorium

    Directory of Open Access Journals (Sweden)

    Bijaya K. Sarangi

    2015-12-01

    Full Text Available Natural indigo is the most important blue dye for textile dyeing and valuable secondary metabolite biosynthesized in Indigofera tinctoria and Polygonum tinctorium plants. Present investigation is made to generation of gene resource for pathway enrichment and to understand possible gene expression involved in indigo biosynthesis. The data about raw reads and the transcriptome assembly project has been deposited at GenBank under the accessions SRA180766 and SRX692542 for I. tinctoria and P. tinctorium, respectively.

  19. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis.

    Science.gov (United States)

    Brickman, Timothy J; Suhadolc, Ryan J; McKelvey, Pamela J; Armstrong, Sandra K

    2017-02-01

    Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis. Although these Bordetellae lack the nadA and nadB genes needed for de novo NAD biosynthesis, remarkably, they have one de novo pathway gene, nadC, encoding quinolinate phosphoribosyltransferase. Genomic analyses of taxonomically related Bordetella and Achromobacter species also indicated the presence of an 'orphan' nadC and the absence of nadA and nadB. When supplied as the sole NAD precursor, quinolinate promoted B. bronchiseptica growth, and the ability to use it required nadC. Co-expression of Bordetella nadC with the nadB and nadA genes of Paraburkholderia phytofirmans allowed B. bronchiseptica to grow in the absence of supplied pyridines, indicative of de novo NAD synthesis and functional confirmation of Bordetella NadC activity. Expression of nadC in B. bronchiseptica was influenced by nicotinic acid and by a NadQ family transcriptional repressor, indicating that these organisms prioritize their use of pyridines for NAD biosynthesis. © 2016 John Wiley & Sons Ltd.

  20. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2018-01-01

    Full Text Available For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes.

  1. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  2. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Clark Shawn M

    2013-01-01

    Full Text Available Abstract Background Bitter acids (e.g. humulone are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP pathway. We used RNA sequencing (RNA-seq to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic and reverse (catabolic reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial and

  3. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    Science.gov (United States)

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  4. Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis

    Directory of Open Access Journals (Sweden)

    Apweiler Eva

    2012-06-01

    Full Text Available Abstract Background Cellular glucose availability is crucial for the functioning of most biological processes. Our understanding of the glucose regulatory system has been greatly advanced by studying the model organism Saccharomyces cerevisiae, but many aspects of this system remain elusive. To understand the organisation of the glucose regulatory system, we analysed 91 deletion mutants of the different glucose signalling and metabolic pathways in Saccharomyces cerevisiae using DNA microarrays. Results In general, the mutations do not induce pathway-specific transcriptional responses. Instead, one main transcriptional response is discerned, which varies in direction to mimic either a high or a low glucose response. Detailed analysis uncovers established and new relationships within and between individual pathways and their members. In contrast to signalling components, metabolic components of the glucose regulatory system are transcriptionally more frequently affected. A new network approach is applied that exposes the hierarchical organisation of the glucose regulatory system. Conclusions The tight interconnection between the different pathways of the glucose regulatory system is reflected by the main transcriptional response observed. Tps2 and Tsl1, two enzymes involved in the biosynthesis of the storage carbohydrate trehalose, are predicted to be the most downstream transcriptional components. Epistasis analysis of tps2Δ double mutants supports this prediction. Although based on transcriptional changes only, these results suggest that all changes in perceived glucose levels ultimately lead to a shift in trehalose biosynthesis.

  5. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway.

    Science.gov (United States)

    Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa

    2006-07-13

    Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. This systems biology program combined

  6. Sterol glycosyltransferases--the enzymes that modify sterols.

    Science.gov (United States)

    Chaturvedi, Pankaj; Misra, Pratibha; Tuli, Rakesh

    2011-09-01

    Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.

  7. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    Science.gov (United States)

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  8. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation

    Science.gov (United States)

    Liu, Tongjin; Zhang, Xiaohui; Yang, Haohui; Agerbirk, Niels; Qiu, Yang; Wang, Haiping; Shen, Di; Song, Jiangping; Li, Xixiang

    2016-01-01

    The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P

  9. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation

    Directory of Open Access Journals (Sweden)

    Tongjin eLiu

    2016-02-01

    Full Text Available The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM after a plant had evolved a new resistance mechanism (e.g. saponins in Barbara vulgaris was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominate glucosinolates, but their biosynthesis pathway are unclear in this plant. In this study, we used G-type (pest-resistant and P-type (pest-susceptible B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR, while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in

  10. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind

    KAUST Repository

    Kuwahara, Hiroyuki; Alazmi, Meshari; Cui, Xuefeng; Gao, Xin

    2016-01-01

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  11. MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind

    KAUST Repository

    Kuwahara, Hiroyuki

    2016-04-29

    To rationally design a productive heterologous biosynthesis system, it is essential to consider the suitability of foreign reactions for the specific endogenous metabolic infrastructure of a host. We developed a novel web server, called MRE, which, for a given pair of starting and desired compounds in a given chassis organism, ranks biosynthesis routes from the perspective of the integration of new reactions into the endogenous metabolic system. For each promising heterologous biosynthesis pathway, MRE suggests actual enzymes for foreign metabolic reactions and generates information on competing endogenous reactions for the consumption of metabolites. These unique, chassis-centered features distinguish MRE from existing pathway design tools and allow synthetic biologists to evaluate the design of their biosynthesis systems from a different angle. By using biosynthesis of a range of high-value natural products as a case study, we show that MRE is an effective tool to guide the design and optimization of heterologous biosynthesis pathways. The URL of MRE is http://www.cbrc.kaust.edu.sa/mre/.

  12. Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway.

    Science.gov (United States)

    Ding, Lili; Li, Jinmei; Song, Baoliang; Xiao, Xu; Huang, Wendong; Zhang, Binfeng; Tang, Xiaowen; Qi, Meng; Yang, Qiming; Yang, Qiaoling; Yang, Li; Wang, Zhengtao

    2014-11-01

    Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acids, and triglycerides. We investigated the effect of the specific SREBP suppressor andrographolide, a natural compound isolated from Andrographis paniculata, on the regulation of SREBP signaling by use of Western blot, reporter gene assay, and quantitative real-time polymerase chain reaction analysis. In addition, the antiobesity effects of andrographolide were evaluated in C57BL/6 mice with high-fat diet (HFD)-induced obesity. Our results showed that andrographolide downregulated the expressions of SREBPs target genes and decreased cellular lipid accumulation in vitro. Further, andrographolide (100 mg/kg per day) attenuated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin or glucose sensitivity in HFD-induced obese mice. Andrographolide effectively suppressed the respiratory quotient, energy expenditure, and oxygen consumption, which may have contributed to the decreased body-weight gain of the obese mice fed with a HFD. Consistently, andrographolide regulated SREBP target genes and metabolism-associated genes in liver or brown adipose tissue, which may have directly contributed to the lower lipid levels and enhanced insulin sensitivity. Taken together, our results indicated that andrographolide ameliorated lipid metabolism and improved glucose use in mice with HFD-induced obesity. Andrographolide has potential as a leading compound in the prevention or treatment of obesity and insulin resistance. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Involvement of 2-C-methyl-D-erythritol-4-phosphate pathway in biosynthesis of aphidicolin-like tetracyclic diterpene of Scoparia dulcis.

    Science.gov (United States)

    Nkembo, Marguerite Kasidimoko; Lee, Jung-Bum; Nakagiri, Takeshi; Hayashi, Toshimitsu

    2006-05-01

    Specific inhibitors of the MVA pathway (pravastatin) and the MEP pathway (fosmidomycin) were used to interfere with the biosynthetic flux which leads to the production of aphidicolin-like diterpene in leaf organ cultures of Scoparia dulcis. Treatment of leaf organs with fosmidomycin resulted in dose dependent inhibition of chlorophylls, carotenoids, scopadulcic acid B (SDB) and phytol production, and no effect on sterol production was observed. In response to the pravastatin treatment, a significant decrease in sterol and perturbation of SDB production was observed.

  14. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae flowers to deduce monoterpene biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Wu Tian-Shung

    2006-07-01

    Full Text Available Abstract Background Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs, and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. Results The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST. Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives

  15. Identification of Candidate Genes and Biosynthesis Pathways Related to Fertility Conversion by Wheat KTM3315A Transcriptome Profiling

    Directory of Open Access Journals (Sweden)

    Lingli Zhang

    2017-04-01

    Full Text Available The Aegilops kotschyi thermo-sensitive cytoplasmic male sterility (K-TCMS system may facilitate hybrid wheat (Triticum aestivum L. seed multiplication and production. The K-TCMS line is completely male sterile during the normal wheat-growing season, whereas its fertility can be restored in a high-temperature environment. To elucidate the molecular mechanisms responsible for male sterility/fertility conversion and candidate genes involved with pollen development in K-TCMS, we employed RNA-seq to sequence the transcriptomes of anthers from K-TCMS line KTM3315A during development under sterile and fertile conditions. We identified 16840 differentially expressed genes (DEGs in different stages including15157 known genes (15135 nuclear genes and 22 plasmagenes and 1683 novel genes. Bioinformatics analysis identified possible metabolic pathways involved with fertility based on KEGG pathway enrichment of the DEGs expressed in fertile and sterile plants. We found that most of the genes encoding key enzyme in the phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were significant upregulated in uninucleate, binuclate or trinucleate stage, which both interact with MYB transcription factors, and that link between all play essential roles in fertility conversion. The relevant DEGs were verified by quantitative RT-PCR. Thus, we suggested that phenylpropanoid biosynthesis and jasmonate biosynthesis pathways were involved in fertility conversion of K-TCMS wheat. This will provide a new perspective and an effective foundation for the research of molecular mechanisms of fertility conversion of CMS wheat. Fertility conversion mechanism in thermo-sensitive cytoplasmic male sterile/fertile wheat involves the phenylpropanoid biosynthesis pathway, jasmonate biosynthesis pathway, and MYB transcription factors.

  16. Sterol content in the artificial diet of Mythimna separata affects the metabolomics of Arma chinensis (Fallou) as determined by proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Guo, Yi; Liu, Chen-Xi; Zhang, Li-Sheng; Wang, Meng-Qing; Chen, Hong-Yin

    2017-12-01

    Insects cannot synthesize sterols and must obtain them from plants. Therefore, reducing plant sterol content or changing sterol type might be an effective pest control strategy. However, the impacts of these changes on pests' natural predators remain unknown. Here, we fed artificial diets with reduced sterol content to Mythimna separata (Walker) (Lepidoptera: Noctuidae) and investigated the effects on its natural predator, Arma chinensis (Fallou) (Hemiptera: Pentatomidae). Reduced sterol content in M. separata (MS1, MS2, and MS5) was achieved by feeding them artificial diets prepared from a feed base subjected to one, two, or five cycles of sterol extractions, respectively. The content of most substances increased in A. chinensis (AC) groups feeding on MS2 and MS5. The content of eight substances (alanine, betaine, dimethylamine, fumarate, glutamine, glycine, methylamine, and sarcosine) differed significantly between the control (AC0) and treated (AC1, AC2, and AC5) groups. Metabolic profiling revealed that only AC5 was significantly distinct from AC0; the major substances contributing to this difference were maltose, glucose, tyrosine, proline, O-phosphocholine, glutamine, allantoin, lysine, valine, and glutamate. Furthermore, only two metabolic pathways, that is, nicotinate and nicotinamide metabolism and ubiquinone and other terpenoid-quinone biosynthesis, differed significantly between AC1 and AC5 and the control, albeit with an impact value of zero. Thus, the sterol content in the artificial diet fed to M. separata only minimally affected the metabolites and metabolic pathways of its predator A. chinensis, suggesting that A. chinensis has good metabolic self-regulation with high resistance to sterol content changes. © 2017 Wiley Periodicals, Inc.

  17. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.

    Science.gov (United States)

    Wang, Guodong; Pichersky, Eran

    2007-03-01

    Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.

  18. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-06-29

    Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.

  19. Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Cory Schwartz

    2017-11-01

    Full Text Available Carotenoids are a class of molecules with commercial value as food and feed additives with nutraceutical properties. Shifting carotenoid synthesis from petrochemical-based precursors to bioproduction from sugars and other biorenewable carbon sources promises to improve process sustainability and economics. In this work, we engineered the oleaginous yeast Yarrowia lipolytica to produce the carotenoid lycopene. To enhance lycopene production, we tested a series of strategies to modify host cell physiology and metabolism, the most successful of which were mevalonate pathway overexpression and alleviating auxotrophies previously engineered into the PO1f strain of Y. lipolytica. The beneficial engineering strategies were combined into a single strain, which was then cultured in a 1-L bioreactor to produce 21.1 mg/g DCW. The optimized strain overexpressed a total of eight genes including two copies of HMG1, two copies of CrtI, and single copies of MVD1, EGR8, CrtB, and CrtE. Recovering leucine and uracil biosynthetic capacity also produced significant enhancement in lycopene titer. The successful engineering strategies characterized in this work represent a significant increase in understanding carotenoid biosynthesis in Y. lipolytica, not only increasing lycopene titer but also informing future studies on carotenoid biosynthesis.

  20. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol......Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used...... desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype....

  1. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-03-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.

  2. Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger

    International Nuclear Information System (INIS)

    Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.; Roehr, M.

    1988-01-01

    Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added 14 CO 2 was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo during the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle

  3. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  4. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  5. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria.

    Science.gov (United States)

    Smyth, Kevin M; Marchant, Alan

    2013-10-18

    The increasing prevalence of multi-drug resistant bacteria is driving efforts in the development of new antibacterial agents. This includes a resurgence of interest in the Gram-negative bacteria lipopolysaccharide (LPS) biosynthesis enzymes as drug targets. The six carbon acidic sugar 2-keto-3-deoxymanno-octulosonic acid (Kdo) is a component of the lipid A moiety of the LPS in Gram-negative bacteria. In most cases the lipid A substituted by Kdo is the minimum requirement for cell growth, thus presenting the possibility of targeting either the synthesis or incorporation of Kdo for the development of antibacterial agents. Indeed, potent in vitro inhibitors of Kdo biosynthesis enzymes have been reported but have so far failed to show sufficient in vivo action against Gram-negative bacteria. As part of an effort to design more potent antibacterial agents targeting Kdo biosynthesis, the crystal structures of the key Kdo biosynthesis enzymes from Escherichia coli have been solved and their structure based mechanisms characterized. In eukaryotes, Kdo is found as a component of the pectic polysaccharide rhamnogalacturonan II in the plant primary cell wall. Interestingly, despite incorporating Kdo into very different macromolecules the Kdo biosynthesis and activation pathway is almost completely conserved between plants and bacteria. This raises the possibility for plant research to exploit the increasingly detailed knowledge and resources being generated by the microbiology community. Likewise, insights into Kdo biosynthesis in plants will be potentially useful in efforts to produce new antimicrobial compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis

    Science.gov (United States)

    2014-01-01

    Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production

  7. An ll-Diaminopimelate Aminotransferase Defines a Novel Variant of the Lysine Biosynthesis Pathway in Plants1[W

    Science.gov (United States)

    Hudson, André O.; Singh, Bijay K.; Leustek, Thomas; Gilvarg, Charles

    2006-01-01

    Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and ll-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The ll-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that ll-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms. PMID:16361515

  8. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  9. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  10. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium

    Science.gov (United States)

    Sacchi, Romina; Li, Johnathon; Villarreal, Fernando; Gardell, Alison M.; Kültz, Dietmar

    2013-01-01

    SUMMARY The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish. PMID:24072791

  12. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Science.gov (United States)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  13. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, Andrea; Flores, Carmen-Lisset

    2004-01-01

    3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial and eu...

  14. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra.

    Science.gov (United States)

    Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F

    2017-11-07

    The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  15. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra

    Directory of Open Access Journals (Sweden)

    Shahida Akter Mitu

    2017-11-01

    Full Text Available The sea cucumber (phylum Echinodermata body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.

  16. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars

    Directory of Open Access Journals (Sweden)

    Xuehua Jin

    2016-09-01

    Full Text Available The cyanidin (Cy, pelargonidin (Pg and delphinidin (Dp pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink and carmine cultivars mainly accumulate Dp, Pg and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3’H1, ScF3’5’H and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3’5’H, ScF3’H and ScDFRs for flower color modification of ornamentals.

  17. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016

  18. Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation.

    Science.gov (United States)

    Levillain, Florence; Poquet, Yannick; Mallet, Ludovic; Mazères, Serge; Marceau, Michael; Brosch, Roland; Bange, Franz-Christoph; Supply, Philip; Magalon, Axel; Neyrolles, Olivier

    2017-11-01

    The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen.

  19. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Zavala, A.; Del Razo, L.M.; Garcia-Vargas, G.G.; Aguilar, C.; Borja, V.H.; Albores, A.; Cebrian, M.E. [CINVESTAV-IPN, Mexico (Mexico). Dept. de Farmacologia y Toxicologica

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 {mu}g As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized. (orig.) With 1 fig., 3 tabs., 20 refs.

  20. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols.

    Science.gov (United States)

    Harding, Scott V; Rideout, Todd C; Jones, Peter J H

    2010-07-01

    The effect of dietary plant sterols on cholesterol homeostasis has been well characterized in the intestine, but how plant sterols affect lipid metabolism in other lipid-rich tissues is not known. Changes in hepatic cholesterol homeostasis in response to high dietary intakes of plant sterols were determined in male golden Syrian hamsters fed hypercholesterolemia-inducing diets with and without 2% plant sterols (wt:wt; Reducol, Forbes Meditech) for 28 d. Plasma and hepatic cholesterol concentrations, cholesterol biosynthesis and absorption, and changes in the expression of sterol response element binding protein 2 (SREBP2) and liver X receptor-beta (LXRbeta) and their target genes were measured. Plant sterol feeding reduced plasma total cholesterol, non-HDL cholesterol, and HDL cholesterol concentrations 43% (P 6-fold (P = 0.029) and >2-fold (P sterol-fed hamsters compared with controls. Plant sterol feeding also increased fractional cholesterol synthesis >2-fold (P sterol feeding increased hepatic protein expression of cytosolic (inactive) SREBP2, decreased nuclear (active) SREBP2, and tended to increase LXRbeta (P = 0.06) and ATP binding cassette transporter G5, indicating a differential modulation of the expression of proteins central to cholesterol metabolism. In conclusion, high-dose plant sterol feeding of hamsters changes hepatic protein abundance in favor of cholesterol excretion despite lower hepatic cholesterol concentrations and higher cholesterol fractional synthesis.

  1. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Molenaar, Johanna A; Wienkoop, Stefanie; Gil-Quintana, Erena; Alibert, Bénédicte; Limami, Anis M; Arrese-Igor, Cesar; González, Esther M

    2014-09-01

    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-L-methionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogen-fixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants, the content of total sulphur, sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a down-regulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions. © 2014 John Wiley & Sons Ltd.

  2. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    Science.gov (United States)

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  3. Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm

    International Nuclear Information System (INIS)

    Hashimoto, Muneaki; Morales, Jorge; Fukai, Yoshihisa; Suzuki, Shigeo; Takamiya, Shinzaburo; Tsubouchi, Akiko; Inoue, Syou; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu; Tanaka, Akiko; Aoki, Takashi; Nara, Takeshi

    2012-01-01

    Highlights: ► We established Trypanosoma cruzi lacking the gene for carbamoyl phosphate synthetase II. ► Disruption of the cpsII gene significantly reduced the growth of epimastigotes. ► In particular, the CPSII-null mutant severely retarded intracellular growth. ► The de novo pyrimidine pathway is critical for the parasite growth in the host cell. -- Abstract: The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes—an insect form—possess both activities, amastigotes—an intracellular replicating form of T. cruzi—are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzicpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.

  4. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. ∆24-sterol methyltransferase plays an important role in the growth and development of Sporothrix schenckii and Sporothrix brasiliensis

    Directory of Open Access Journals (Sweden)

    Luana Pereira Borba-Santos

    2016-03-01

    Full Text Available Inhibition of ∆24-sterol methyltransferase (24-SMT in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3-ol (H3 were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors were completely replaced by 14-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective towards these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of

  6. Δ(24)-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis.

    Science.gov (United States)

    Borba-Santos, Luana P; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M; de Camargo, Zoilo P; Lopes-Bezerra, Leila M; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ(24)-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker(®) Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  7. Δ24-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis

    Science.gov (United States)

    Borba-Santos, Luana P.; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M.; de Camargo, Zoilo P.; Lopes-Bezerra, Leila M.; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ24-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  8. Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-β-D-virenose biosynthesis.

    Science.gov (United States)

    Narasaki, Craig T; Mertens, Katja; Samuel, James E

    2011-01-01

    Coxiella burnetii, the etiologic agent of human Q fever, is a gram-negative and naturally obligate intracellular bacterium. The O-specific polysaccharide chain (O-PS) of the lipopolysaccharide (LPS) of C. burnetii is considered a heteropolymer of the two unusual sugars β-D-virenose and dihydrohydroxystreptose and mannose. We hypothesize that GDP-D-mannose is a metabolic intermediate to GDP-β-D-virenose. GDP-D-mannose is synthesized from fructose-6-phosphate in 3 successive reactions; Isomerization to mannose-6-phosphate catalyzed by a phosphomannose isomerase (PMI), followed by conversion to mannose-1-phosphate mediated by a phosphomannomutase (PMM) and addition of GDP by a GDP-mannose pyrophosphorylase (GMP). GDP-D-mannose is then likely converted to GDP-6-deoxy-D-lyxo-hex-4-ulopyranose (GDP-Sug), a virenose intermediate, by a GDP-mannose-4,6-dehydratase (GMD). To test the validity of this pathway in C. burnetii, three open reading frames (CBU0671, CBU0294 and CBU0689) annotated as bifunctional type II PMI, as PMM or GMD were functionally characterized by complementation of corresponding E. coli mutant strains and in enzymatic assays. CBU0671, failed to complement an Escherichia coli manA (PMM) mutant strain. However, complementation of an E. coli manC (GMP) mutant strain restored capsular polysaccharide biosynthesis. CBU0294 complemented a Pseudomonas aeruginosa algC (GMP) mutant strain and showed phosphoglucomutase activity (PGM) in a pgm E. coli mutant strain. Despite the inability to complement a manA mutant, recombinant C. burnetii PMI protein showed PMM enzymatic activity in biochemical assays. CBU0689 showed dehydratase activity and determined kinetic parameters were consistent with previously reported data from other organisms. These results show the biological function of three C. burnetii LPS biosynthesis enzymes required for the formation of GDP-D-mannose and GDP-Sug. A fundamental understanding of C. burnetii genes that encode PMI, PMM and GMP is

  9. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  10. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  11. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  12. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  13. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals

    DEFF Research Database (Denmark)

    Chen, Xiulai; Gao, Cong; Guo, Liang

    2018-01-01

    , and pathway optimization at the systems level, offers a conceptual and technological framework to exploit potential pathways, modify existing pathways and create new pathways for the optimal production of desired chemicals. Here, we summarize recent progress of DCEO biotechnology and examples of its......Chemical synthesis is a well established route for producing many chemicals on a large scale, but some drawbacks still exist in this process, such as unstable intermediates, multistep reactions, complex process control, etc. Biobased production provides an attractive alternative to these challenges......, but how to make cells into efficient factories is challenging. As a key enabling technology to develop efficient cell factories, design-construction-evaluation-optimization (DCEO) biotechnology, which incorporates the concepts and techniques of pathway design, pathway construction, pathway evaluation...

  14. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  15. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate......-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin...... ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  16. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    Science.gov (United States)

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  17. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  18. RNA-sequencing and pathway analysis reveal alteration of hepatic steroid biosynthesis and retinol metabolism by tributyltin exposure in male rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Sun, Ping; Huang, Maoxian; Fan, Mingzhen; Liu, Min

    2017-07-01

    Tributyltin (TBT) is widely spread in aquatic ecosystems. Although adverse effects of TBT on reproduction and lipogenesis are observed in fishes, the underlying mechanisms, especially in livers, are still scarce and inconclusive. Thus, RNA-sequencing runs were performed on the hepatic libraries of adult male rare minnow (Gobiocypris rarus) after TBT exposure for 60d. After differentially expressed genes were identified, enrichment analysis and validation by quantitative real-time PCR were conducted. The results showed that TBT up-regulated the profile of hepatic genes in the steroid biosynthesis pathway and down-regulated the profile of hepatic genes in the retinol metabolism pathway. In the hepatic steroid biosynthesis pathway, TBT might induce biosynthesis of cholesterol, which could affect the bioavailability of steroid hormones. More important, 3beta-hydroxysteroid 3-dehydrogenase, a key enzyme in the biosynthesis of all active steroid hormones, was up-regulated by TBT exposure. In the hepatic retinol metabolism pathway, TBT impaired retinoic acid homeostasis which plays essential roles in both reproduction and lipogenesis. The results of two pathways offered new mechanisms underlying the toxicology of TBT and represented a starting point from which detailed mechanistic links should be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Brassinosteroid biosynthesis and signalling in Petunia hybrida.

    Science.gov (United States)

    Verhoef, Nathalie; Yokota, Takao; Shibata, Kyomi; de Boer, Gert-Jan; Gerats, Tom; Vandenbussche, Michiel; Koes, Ronald; Souer, Erik

    2013-05-01

    Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.

  20. In silico and in vitro Studies on Begomovirus Induced Andrographolide Biosynthesis Pathway in Andrographis Paniculata for Combating Inflammation and Cancer.

    Science.gov (United States)

    Khan, Asifa; Sharma, Pooja; Khan, Feroz; Ajayakumar, P V; Shanker, Karuna; Samad, Abdul

    2016-07-01

    Andrographolide and neoandrographolide are major bioactive molecules of Andrographis paniculata, a well-known medicinal plant. These molecules exhibited varying degrees of anti-inflammatory and anticancer activities in-vitro and in-vivo. Role of begomovirus protein C2/TrAP in biosynthesis of andrographolide was identified through molecular modeling, docking and predicted results were substantiated by in vitro studies. Homology molecular modeling and molecular docking were performed to study the binding conformations and different bonding behaviors, in order to reveal the possible mechanism of action behind higher accumulation of andrographolide. It was concluded that C2/TrAP inhibit the activation of SNF1-Related Protein Kinase-1 (SnRK1) in terpenoid pathway and removes the negative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) by SnRK1, leading to higher accumulation of andrographolide and neoandrographolide in begomovirus infected plants. The binding site residues of SnRK1 docked with C2/TrAP were found to be associated with ATP binding site, substrate binding site and activation loop. Predicted results were also validated by HPTLC. This study provides important insights into understanding the role of viral protein in altering the regulation of biosynthesis of andrographolide and could be used in future research to develop biomimetic methods for increasing the production of such phytometabolites having anti-cancerous and anti-inflammatory properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  2. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  3. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans.

    Science.gov (United States)

    Dahlin, Paul; Srivastava, Vaibhav; Ekengren, Sophia; McKee, Lauren S; Bulone, Vincent

    2017-01-01

    The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasitica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple potential routes of sterol synthesis, and draws on several avenues of new evidence: bioinformatic mining for genes with sterol-related functions, expression analysis of these genes, and analysis of the sterol profiles in mycelium grown in different media. Additionally, we explore the extent to which P. infestans, which causes the late blight in potato, can modify exogenously provided sterols. We consider whether the two very different approaches to sterol acquisition taken by these pathogens represent any specific survival advantages or potential drug targets.

  4. The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages*

    Science.gov (United States)

    Ke, Hangjun; Sigala, Paul A.; Miura, Kazutoyo; Morrisey, Joanne M.; Mather, Michael W.; Crowley, Jan R.; Henderson, Jeffrey P.; Goldberg, Daniel E.; Long, Carole A.; Vaidya, Akhil B.

    2014-01-01

    Heme is an essential cofactor for aerobic organisms. Its redox chemistry is central to a variety of biological functions mediated by hemoproteins. In blood stages, malaria parasites consume most of the hemoglobin inside the infected erythrocytes, forming nontoxic hemozoin crystals from large quantities of heme released during digestion. At the same time, the parasites possess a heme de novo biosynthetic pathway. This pathway in the human malaria parasite Plasmodium falciparum has been considered essential and is proposed as a potential drug target. However, we successfully disrupted the first and last genes of the pathway, individually and in combination. These knock-out parasite lines, lacking 5-aminolevulinic acid synthase and/or ferrochelatase (FC), grew normally in blood-stage culture and exhibited no changes in sensitivity to heme-related antimalarial drugs. We developed a sensitive LC-MS/MS assay to monitor stable isotope incorporation into heme from its precursor 5-[13C4]aminolevulinic acid, and this assay confirmed that de novo heme synthesis was ablated in FC knock-out parasites. Disrupting the FC gene also caused no defects in gametocyte generation or maturation but resulted in a greater than 70% reduction in male gamete formation and completely prevented oocyst formation in female Anopheles stephensi mosquitoes. Our data demonstrate that the heme biosynthesis pathway is not essential for asexual blood-stage growth of P. falciparum parasites but is required for mosquito transmission. Drug inhibition of pathway activity is therefore unlikely to provide successful antimalarial therapy. These data also suggest the existence of a parasite mechanism for scavenging host heme to meet metabolic needs. PMID:25352601

  5. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides.

    Science.gov (United States)

    Do Rego, Jean Luc; Seong, Jae Young; Burel, Delphine; Leprince, Jerôme; Luu-The, Van; Tsutsui, Kazuyoshi; Tonon, Marie-Christine; Pelletier, Georges; Vaudry, Hubert

    2009-08-01

    Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.

  6. Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack.

    Science.gov (United States)

    Fügi, Matthias A; Gunasekera, Kapila; Ochsenreiter, Torsten; Guan, Xueli; Wenk, Markus R; Mäser, Pascal

    2014-05-01

    Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas's disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.

  7. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics.Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway.Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  8. Analyzing the structural aspects of Isoprenoid biosynthesis pathway proteins in Ocimum species

    Directory of Open Access Journals (Sweden)

    Muktesh Chandra

    2017-10-01

    Full Text Available Generally thought that the extremely diverse array of secondary metabolites observed within Ocimum species defends against a comparable diverse array of biotic pests, pathogens and herbivores encountered around its natural range. Along with defense the diverse array of secondary metabolite also leads to the therapeutic and remedial property which justifies Ocimum as natural medicinal and aromatic casket. Many of the defense compounds, aroma compounds and medicinal derivatives are secondary metabolites isolated from trichome glands, mainly consist of terpenoids as well as phenylpropanoids. Various pathways fabricating these compounds are known viz. mevalonate pathway (MVA, phenylpropanoid pathway and MEP pathways. The enzyme cascade responsible for various secondary metabolites, need to be explored in various aspects. Here we had studied the MVA pathway enzymes in O. basilicum and O. gratissimum to figure out variations in enzyme structures due to speciation. Hence, in depth analysis of the transcriptome of O. basilicum and O. gratissimum, varrying in qualitative and quantitative aspects of essential oil were carried out. The transcriptome data from NCBI server was assembled using bioinformatic approaches. nr database at NCBI repository used for annotation, which assigned 60% contigs to known functions. Contigs corresponding to Mevalonate pathway enzymes are isolated using perl pipelines developed in our lab, which were further assembled using CLC workbench to remove redundancy and make larger stretch of sequence. Blastx of these larger sequences assigned them function and they are mapped to validated sequences to make full length. Data from both species led us to overall seven enzymes (total 14 of MVA pathway. These enzymes are studied in detail for various physio-chemical properties, steriochemical properties and motif/domain for protein-protein interaction (PPI study. Homolog models of all enzymes were predicted, against templates from RCSB

  9. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  10. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  11. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  12. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources.

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-09-02

    Plant secondary metabolites have been attracting people's attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.

  13. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources

    Science.gov (United States)

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-01-01

    Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design. PMID:26329726

  14. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    Science.gov (United States)

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  15. Significance of sterol structural specificity : desmosterol cannot replace cholesterol in lipid rafts

    NARCIS (Netherlands)

    Vainio, S.; Jansen, Maurice; Koivusalo, M.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.; Ikonen, E.

    2006-01-01

    Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here,

  16. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrol

    International Nuclear Information System (INIS)

    Wang Yun; Ye Lan; Leung, Lai K.

    2008-01-01

    Cytochrome P450 (CYP) 19 enzyme or aromatase catalyses the rate-determining step of estrogen synthesis. The transcriptional control of CYP19 gene is highly specific in different cell types, for instance, Promoter I.3/II is commonly used for regulation in breast cancer cells. Recently, a positive feedback pathway for estrogen synthesis has been identified in ERα expressing SK-BR-3 cells. CYP19 mRNA abundance and activity are increased in this pathway and the promoter usage is switched from Promoter I.3/II to I.1 through a non-genomic process. In the present study, effect of the phytocompound resveratrol on this Promoter I.1-controlled expression of aromatase was investigated. Results indicated that resveratrol reduced the estradiol-induced mRNA abundance in SK-BR-3 cells expressing ERα. Luciferase reporter gene assays revealed that resveratrol could also repress the transcriptional control dictated by Promoter I.1. Since the ERE-driven luciferase activity was not repressed by resveratrol, the nuclear events of estrogen were unlikely to be suppressed by resveratrol. Instead the phytochemical reduced the amount of ERK activated by estradiol, which could be the pathway responsible for Promoter I.1 transactivation and the induced CYP19 expression. The present study illustrated that resveratrol impeded the non-genomic induction of estrogen on CYP19

  17. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui

    2016-01-01

    Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of

  18. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe

    2015-01-01

    Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars. © 2014 Wiley Periodicals, Inc.

  19. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  20. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. (Michigan State University, East Lansing (USA))

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  1. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns

    International Nuclear Information System (INIS)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A.

    1989-01-01

    Previous labeling studies of abscisic acid (ABA) with 18 O 2 have been mainly conducted with water-stressed leaves. In this study, 18 O incorporation into ABA of stressed leaves of various species was compared with 18 O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), 18 O was most abundant in the carboxyl group, whereas incorporation of a second and third 18 O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in 18 O 2 . ABA from turgid bean leaves showed significant 18 O incorporation, again with highest 18 O enrichment in the carboxyl group. On the basis of 18 O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid

  2. A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina.

    Directory of Open Access Journals (Sweden)

    Dillon J Lieber

    Full Text Available Multienzyme complexes catalyze important metabolic reactions in many organisms, but little is known about the complexes involved in biological methane production (methanogenesis. A crosslinking-mass spectrometry (XL-MS strategy was employed to identify proteins associated with coenzyme M-coenzyme B heterodisulfide reductase (Hdr, an essential enzyme in all methane-producing archaea (methanogens. In Methanosarcina acetivorans, Hdr forms a multienzyme complex with acetyl-CoA decarbonylase synthase (ACDS, and F420-dependent methylene-H4MPT reductase (Mer. ACDS is essential for production of acetyl-CoA during growth on methanol, or for methanogenesis from acetate, whereas Mer is essential for methanogenesis from all substrates. Existence of a Hdr:ACDS:Mer complex is consistent with growth phenotypes of ACDS and Mer mutant strains in which the complex samples the redox status of electron carriers and directs carbon flux to acetyl-CoA or methanogenesis. We propose the Hdr:ACDS:Mer complex comprises a special class of multienzyme redox complex which functions as a "biological router" that physically links methanogenesis and acetyl-CoA biosynthesis pathways.

  3. EG-01EPIGENETIC INACTIVATION OF ARGININE BIOSYNTHESIS PATHWAY IN PAEDIATRIC HIGH GRADE GLIOMA

    Science.gov (United States)

    Channathodiyil, Prasanna; Kardooni, Hoda; Khozoie, Combiz; Nelofer, Syed; Darling, John; Morris, Mark; Warr, Tracy

    2014-01-01

    Aberrant cellular metabolism contributes significantly to the growth and proliferation of several tumour types. Identification of genes that control critical metabolic pathways is a major factor in the development of novel therapies that target metabolic defects in tumour cells. Our aim is to identify such genes in paediatric high grade glioma that are altered due to promoter hyper-methylation of cytosine residues in CpG dinucleotides. Genome wide DNA methylation profiling using Illumina infinium methylation 450K bead chip array was performed on 18 well-characterised short term cultures derived from paediatric high grade astrocytoma including 3 from diffuse intrinsic pontine glioma. Data analyses were based on beta scores of probes for each gene as measures of intensities of methylation. Genes were selected with beta scores of tumour > =0.70 and that of normal human astrocytes < =0.30. We identified that two vital genes involved in the regulation of arginine biosynthetic pathway, argininosuccinate synthetase 1(ASS1) and argininosuccinate lyase (ASL) were methylated in 9/18 (50%) cases. Hyper methylation was confirmed by methylation-specific PCR and up-regulation of gene expression following treatment with 2 µM 5-aza-2'-deoxyctidine. Down-regulation of ASS1 in hyper methylated samples was confirmed by Western blot analysis. Our findings report epigenetic deregulation of ASS1 and ASL in a subset of paediatric high grade glioma. The enzymes encoded by these genes are essential elements of urea cycle that function together in the de novo synthesis of arginine from citrulline. Tumour cells with deficient ASS1/ASL depend on external sources of arginine for survival and have been reported to be sensitive to autophagic cell death induced by arginine starvation. Therefore, further investigation may render the possibility of arginine-deprivation therapy in such sub type of paediatric high grade glioma. This therapeutic approach is of interest as tumour cells with abnormal

  4. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2018-02-01

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesized in the medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been a major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used the Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total Chl as well as carotenoid content for each silenced gene suggesting a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation at different levels as compared with control plants. Comparative analysis also suggests a major role for the MVA pathway as compared with the MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis, providing new horizons to explore this process further, in planta.

  5. Induction of phosphatidylcholine biosynthesis via CDPcholine pathway in lung and liver of rats following intratracheal administration of DDT and endosulfan

    International Nuclear Information System (INIS)

    Narayan, S.; Dani, H.M.; Misra, U.K.

    1989-01-01

    The induction of phosphatidylcholine (PC) biosynthesis via the CDPcholine pathway in lung and liver of rats has been shown following the intratracheal administration of 1,1,1-trichloro-2m2-bis(p-chlorophenyl) ethane (DDT) (5 mg/100 g body weight) and endosulfan (1 mg/100 g body weight) for 3 days. Controls received only the vehicle solution (groundnut oil, 0.1 m1/100 g body weight). The treatment of DDT and endosulfan significantly increased the PC contents and the incorporation of radioactive [methyl-3H]choline into PC of lung and liver microsomes. The incorporation of radioactive [methyl-14C]methionine into microsomal PC of lung and liver was not affected significantly by treatment with either of the insecticides. 1,4,5,6,7-hexachloro-5-norbornene-2,3-dimethano cyclic sulfite (endosulfan) administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal) of lung, whereas DDT increased the activity of only latter. In liver, both DDT and endosulfan administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal). However, the activity of phosphocholinetransferase was not affected in both lung and liver microsomes of rats treated with these insecticides. The PC precursor pool sizes, choline and phosphorylcholine, of lung and liver tissues were not altered by DDT and endosulfan treatments. The present results suggest that the increased level of PC and incorporation of radioactive [methyl-3H]choline into microsomal PC could be the result of increased activity of choline kinase and phosphocholine cytidylyltransferase of lung and liver of rats following intratracheal administration of DDT and endosulfan

  6. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway.

    Science.gov (United States)

    Zhao, Hui; Fang, Yu; Wang, Xiaoyuan; Zhao, Lei; Wang, Jianli; Li, Ye

    2018-04-30

    L-threonine is an important amino acid that can be added in food, medicine, or feed. Here, the influence of glyoxylate shunt on an L-threonine producing strain Escherichia coli TWF001 has been studied. The gene iclR was deleted, and the native promoter of the aceBA operon was replaced by the trc promoter in the chromosome of TWF001, the resulting strainTWF004 could produce 0.39 g L-threonine from1 g glucose after 36-h flask cultivation. Further replacing the native promoter of aspC by the trc promoter in the chromosome of TWF004 resulted in the strain TWF006. TWF006 could produce 0.42 g L-threonine from 1 g glucose after 36-h flask cultivation. Three key genes in the biosynthetic pathway of L-threonine, thrA * (a mutated thrA), thrB, and thrC were overexpressed in TWF006, resulting the strain TWF006/pFW01-thrA * BC. TWF006/pFW01-thrA * BC could produce 0.49 g L-threonine from 1 g glucose after 36-h flask cultivation. Next, the genes asd, rhtA, rhtC, or thrE were inserted into the plasmid TWF006/pFW01-thrA * BC, and TWF006 was transformed with these plasmids, resulting the strains TWF006/pFW01-thrA * BC-asd, TWF006/pFW01-thrA * BC-rhtA, TWF006/pFW01-thrA * BC-rhtC, and TWF006/pFW01-thrA * BC-thrE, respectively. These four strains could produce more L-threonine than the control strain, and the highest yield was produced by TWF006/pFW01-thrA * BC-asd; after 36-h flask cultivation, TWF006/pFW01-thrA * BC-asd could produce 15.85 g/l L-threonine, i.e., 0.53 g L-threonine per 1 g glucose, which is a 70% increase relative to the control strain TWF001. The results suggested that the combined engineering of glyoxylate shunt and L-threonine biosynthesis pathway could significantly increase the L-threonine production in E. coli.

  7. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    Science.gov (United States)

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with

  8. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  9. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    Science.gov (United States)

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  10. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    Science.gov (United States)

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  11. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable e...

  12. Relationship between the rate of hepatic sterol synthesis and the incorporation of [3H]water

    International Nuclear Information System (INIS)

    Pullinger, C.R.; Gibbons, G.F.

    1983-01-01

    The true rate of sterol synthesis in liver cells was determined by measurement of the weight of desmosterol produced over a given time period during incubations in the presence of triparanol. The simultaneous presence of tritiated water ( 3 H 2 O) during the incubations permitted a direct observation of the weight of tritium incorporated into a given mass of newly synthesized sterol. The incorporation of tritium per atom of sterol carbon (H/C ratio) was lower than some previously reported values and suggests that a sizeable proportion of the reducing equivalents (NADPH) required for sterol synthesis arises via the pentose phosphate pathway. The H/C ratio changed significantly with length of the incubation period. The value of the ratio was also dependent upon whether the acetyl-CoA units utilized for sterol synthesis were derived predominantly from a carbohydrate or a fatty acid source

  13. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  14. Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora.

    Science.gov (United States)

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2007-10-01

    The filamentous ascomycete Sordaria macrospora accumulates melanin during sexual development. The four melanin biosynthesis genes pks, teh, sdh and tih were isolated and their homology to genes involved in 1,8 dihydroxynaphthalene (DHN) melanin biosynthesis was shown. The presence of DHN melanin in S. macrospora was further confirmed by disrupting the pks gene encoding a putative polyketide synthase and by RNA interference-mediated silencing of the sdh gene encoding a putative scytalone dehydratase. Because melanin occurs in fruiting bodies that develop through several intermediate stages within 7 days of growth, a Northern analysis of a developmental time-course was conducted. These data revealed a time-dependent regulation of teh and sdh transcript levels. Comparing the transcriptional expression by real-time PCR of melanin biosynthesis genes in the wild type under conditions allowing or repressing sexual development, a significant downregulation during vegetative growth was detected. Quantitative real-time PCR and Northern blot analysis of melanin biosynthesis gene expression in different developmental mutants confirmed that melanin biosynthesis is linked to fruiting body development and is under the control of specific regulatory genes that participate in sexual differentiation.

  15. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  16. Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of LL-diaminopimelate aminotransferase.

    Science.gov (United States)

    Hudson, André O; Gilvarg, Charles; Leustek, Thomas

    2008-05-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an LL-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of L-2,3,4,5-tetrahydrodipicolinate to LL-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze LL-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae.

  17. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  18. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    OpenAIRE

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with o...

  19. Amo 1618 effects on incorporation of 14C-MVA and 14C-acetate into sterols in Nicotiana and Digitalis seedlings and cell-free preparations from Nicotiana

    International Nuclear Information System (INIS)

    Douglas, T.J.; Paleg, L.G.

    1978-01-01

    Incorporation of radioactivity from acetate-[ 14 C] and MVA-[ 14 C] into sterols and sterol precursors in tobacco was inhibited by Amo 1618; differing patterns of accumulation were obtained with the two precursors, suggesting more than one point of inhibition. This was borne out with cell-free preparations with which it was demonstrated that both HMG-CoA reductase and squalene-2,3-epoxide cyclase were inhibited, the latter more strongly than the former. GLC analysis of gross sterol and hydrocarbon fractions confirmed previous indications that incorporation of radioactivity into individual sterols was inhibited by Amo 1618. Finally, incorporation of MVA-[ 14 C] into sterols and sterol precursors of Digitalis was significantly altered by the retardant, thus expanding the generality of the relationship between sterol (particularly 4-desmethylsterol) biosynthesis inhibition and retardant effect. (author)

  20. Identification of a trichothecene gene cluster and description of the harzianum A biosynthesis pathway in the fungus Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenes that act like mycotoxins. Their biosynthesis has been mainly studied in the fungal genera Fusarium, where most of the biosynthetic genes (tri) are grouped in a cluster regulated by ambient conditions and regulatory genes. Unexpectedly, few studies are available abou...

  1. Lipid Biosynthesis as an Antifungal Target

    Directory of Open Access Journals (Sweden)

    Jiao Pan

    2018-04-01

    Full Text Available Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs, are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs, are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.

  2. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    Science.gov (United States)

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. AP2/ERF Transcription Factor, Ii049, Positively Regulates Lignan Biosynthesis in Isatis indigotica through Activating Salicylic Acid Signaling and Lignan/Lignin Pathway Genes

    Directory of Open Access Journals (Sweden)

    Ruifang Ma

    2017-08-01

    Full Text Available Lignans, such as lariciresinol and its derivatives, have been identified as effective antiviral ingredients in Isatis indigotica. Evidence suggests that the APETALA2/ethylene response factor (AP2/ERF family might be related to the biosynthesis of lignans in I. indigotica. However, the special role played by the AP2/ERF family in the metabolism and its underlying putative mechanism still need to be elucidated. One novel AP2/ERF gene, named Ii049, was isolated and characterized from I. indigotica in this study. The quantitative real-time PCR analysis revealed that Ii049 was expressed highest in the root and responded to methyl jasmonate, salicylic acid (SA and abscisic acid treatments to various degrees. Subcellular localization analysis indicated that Ii049 protein was localized in the nucleus. Knocking-down the expression of Ii049 caused a remarkable reduction of lignan/lignin contents and transcript levels of genes involved in the lignan/lignin biosynthetic pathway. Ii049 bound to the coupled element 1, RAV1AAT and CRTAREHVCBF2 motifs of genes IiPAL and IiCCR, the key structural genes in the lignan/lignin pathway. Furthermore, Ii049 was also essential for SA biosynthesis, and SA induced lignan accumulation in I. indigotica. Notably, the transgenic I. indigotica hairy roots overexpressing Ii049 showed high expression levels of lignan/lignin biosynthetic genes and SA content, resulting in significant accumulation of lignan/lignin. The best-engineered line (OVX049-10 produced 425.60 μg·g−1 lariciresinol, an 8.3-fold increase compared with the wild type production. This study revealed the function of Ii049 in regulating lignan/lignin biosynthesis, which had the potential to increase the content of valuable lignan/lignin in economically significant medicinal plants.

  4. The yeast Saccharomyces cerevisiae Pdr16p restricts changes in ergosterol biosynthesis caused by the presence of azole antifungals.

    Science.gov (United States)

    Šimová, Zuzana; Poloncová, Katarína; Tahotná, Dana; Holič, Roman; Hapala, Ivan; Smith, Adam R; White, Theodore C; Griač, Peter

    2013-06-01

    Pdr16p belongs to the family of phosphatidylinositol transfer proteins in yeast. The absence of Pdr16p results in enhanced susceptibility to azole antifungals in Saccharomyces cerevisiae. In the major fungal human pathogen Candida albicans, CaPDR16 is a contributing factor to clinical azole resistance. The current study was aimed at better understanding the function of Pdr16p, especially in relation to azole resistance in S. cerevisiae. We show that deletion of the PDR16 gene increased susceptibility of S. cerevisiae to azole antifungals that are used in clinical medicine and agriculture. Significant differences in the inhibition of the sterol biosynthetic pathway were observed between the pdr16Δ strain and its corresponding wild-type (wt) strain when yeast cells were challenged by sub-inhibitory concentrations of the azoles miconazole or fluconazole. The increased susceptibility to azoles, and enhanced changes in sterol biosynthesis upon exposure to azoles of the pdr16Δ strain compared to wt strain, are not the results of increased intracellular concentration of azoles in the pdr16Δ cells. We also show that overexpression of PDR17 complemented the azole susceptible phenotype of the pdr16Δ strain and corrected the enhanced sterol alterations in pdr16Δ cells in the presence of azoles. Pdr17p was found previously to be an essential part of a complex required for intermembrane transport of phosphatidylserine at regions of membrane apposition. Based on these observations, we propose a hypothesis that Pdr16p assists in shuttling sterols or their intermediates between membranes or, alternatively, between sterol biosynthetic enzymes or complexes. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    OpenAIRE

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinc...

  6. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61 in Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Loto Iris

    2012-10-01

    Full Text Available Abstract Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved. Results In this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase, was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants. Conclusions These results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.

  7. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    Science.gov (United States)

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze ll-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae. PMID:18310350

  8. Investigations on the isoprenoid biosynthesis in the green alga Scenedesmus obliquus by using the 13C-labelling technique

    International Nuclear Information System (INIS)

    Schwender, J.

    1995-01-01

    The biosynthesis of several prenyllipids (isoprenoid lipids) of the green alga Scendesmus obliquus was investigated. The aim was to verify, whether the biosynthesis of isopentenyl diphosphate (IPP) in Scenedesmus proceeds according to the classical acetate mevalonate pathway or to an alternative pathway. An alternative pathway for IPP formation has recently been detected in some eubacteria by the group of Prof. M. Rohmer. Some inhibition tests were performed with mevinolin, a specific inhibitor of HMG-CoA reductase which yields mevalonic acid. Mevinolin should block the biosynthesis of such isoprenoids which are formed via the acetate mevalonate pathway. Scenedesmus was grown heterotrophically on 13 C-labelled glucose or acetate. After isolation and purification of 13 C-labelled phytol (side chains of chlorophylls), β-carotene, lutein, plastoquinone-9 and three sterol compounds, the enrichment of 13 C at different carbon-positions of the labelled compounds was determined. This was achieved by the 13 C-NMR technique in cooperation with Miriam Seemann of the group of Prof. M. Rohmer in Mullhouse/France. (orig.) [de

  9. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes

    Directory of Open Access Journals (Sweden)

    Weiwei Dai

    2015-06-01

    Full Text Available Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation. Results: Increased AA levels enhanced the phosphorylation of ribosomal protein S6 kinase (S6K1, S6, and insulin receptor substrate 1 (IRS-1 on Ser302 but suppressed Akt and p38 phosphorylation; up-regulated the expression of genes related to gluconeogenesis and fatty acid biosynthesis. mTORC1 inhibition not only inhibited the phosphorylation of mTORC1 downstream targets, but also blunted IRS-1 Ser302 phosphorylation and restored excessive AAs-suppressed Akt phosphorylation. Rapamycin also inhibited fatty acid biosynthetic and gluconeogenic gene expression. Conclusion: High levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt activation and thereby weakening insulin action. We propose that p38 MAPK probably also involves in these AAs-induced metabolic changes.

  10. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis.

    Science.gov (United States)

    Marshall, Darrell D; Halouska, Steven; Zinniel, Denise K; Fenton, Robert J; Kenealy, Katie; Chahal, Harpreet K; Rathnaiah, Govardhan; Barletta, Raúl G; Powers, Robert

    2017-03-03

    In mycobacteria, d-alanine is an essential precursor for peptidoglycan biosynthesis. The only confirmed enzymatic pathway to form d-alanine is through the racemization of l-alanine by alanine racemase (Alr, EC 5.1.1.1). Nevertheless, the essentiality of Alr in Mycobacterium tuberculosis and Mycobacterium smegmatis for cell survivability in the absence of d-alanine has been a point of controversy with contradictory results reported in the literature. To address this issue, we examined the effects of alr inactivation on the cellular metabolism of M. smegmatis. The M. smegmatis alr insertion mutant TAM23 exhibited essentially identical growth to wild-type mc 2 155 in the absence of d-alanine. NMR metabolomics revealed drastically distinct phenotypes between mc 2 155 and TAM23. A metabolic switch was observed for TAM23 as a function of supplemented d-alanine. In the absence of d-alanine, the metabolic response directed carbon through an unidentified transaminase to provide the essential d-alanine required for survival. The process is reversed when d-alanine is available, in which the d-alanine is directed to peptidoglycan biosynthesis. Our results provide further support for the hypothesis that Alr is not an essential function of M. smegmatis and that specific Alr inhibitors will have no bactericidal action.

  11. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynthesis pathway on the synthesis of pullulan, heavy oil and melanin in Aureobasidium pullulans.

    Science.gov (United States)

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-12-18

    Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.

  12. Speed Limits for Nonvesicular Intracellular Sterol Transport.

    Science.gov (United States)

    Dittman, Jeremy S; Menon, Anant K

    2017-02-01

    Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by nonvesicular mechanisms requiring sterol transport proteins (STPs). Here we examine the idea that transport is enhanced at membrane contact sites where the ER is closely apposed to the PM. We conclude that sterol desorption from the membrane, rather than STP-mediated diffusion, is rate limiting in the cellular context, so there is no apparent kinetic benefit to having STP-mediated sterol transfer occur at contact sites. Contact sites may instead compartmentalize lipid synthesis or transport machinery, providing opportunities for regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Depot sterols in comparisons with structural sterols in Cancer pagurus and Eriocheir sinensis

    NARCIS (Netherlands)

    Zandee, D.I.; Kruitwagen, E.C.J.

    The differences in sterol content and sterol composition between the midgut gland and remaining parts (structural lipids) of male and female specimens of Cancer pagurus and Eriocheir sinensis are investigated. There are no differences in sterol content in the structural lipids between male and

  14. THE E2/FRB PATHWAY REGULATION OF DNA REPLICATION AND PROTEIN BIOSYNTHESIS

    Science.gov (United States)

    The E2F/Rb pathway plays a pivotal role in the control of cell cycle progression and regulates the expression of genes required for Gl/S transition. Our study examines the genomic response in Drosophila embryos after overexpression and mutation of E2F/Rb pathway molecules. Hierar...

  15. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  16. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    Science.gov (United States)

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: Insights into enzyme activities and steroid fluxes in healthy infants during the first year of life from the urinary steroid metabolome.

    Science.gov (United States)

    Dhayat, Nasser A; Dick, Bernhard; Frey, Brigitte M; d'Uscio, Claudia H; Vogt, Bruno; Flück, Christa E

    2017-01-01

    The steroid profile changes dramatically from prenatal to postnatal life. Recently, a novel backdoor pathway for androgen biosynthesis has been discovered. However, its role remains elusive. Therefore, we investigated androgen production from birth to one year of life with a focus on minipuberty and on production of androgens through the backdoor pathway. Additionally, we assessed the development of the specific steroid enzyme activities in early life. To do so, we collected urine specimens from diapers in 43 healthy newborns (22 females) at 13 time points from birth to one year of age in an ambulatory setting, and performed in house GC-MS steroid profiling for 67 steroid metabolites. Data were analyzed for androgen production through the classic and backdoor pathway and calculations of diagnostic ratios for steroid enzyme activities were performed. Analysis revealed that during minipuberty androgen production is much higher in boys than in girls (e.g. androsterone (An)), originates largely from the testis (An boys -An girls ), and uses predominantly the alternative backdoor pathway (An/Et; Δ5metabolome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  19. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB.

    Science.gov (United States)

    Roussel, Benoit D; Newton, Timothy M; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E; Burr, Marian L; Lehner, Paul J; Crowther, Damian C; Marciniak, Stefan J; Lomas, David A

    2013-11-15

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.

  20. Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels.

    Science.gov (United States)

    Stiles, Ashlee R; Kozlitina, Julia; Thompson, Bonne M; McDonald, Jeffrey G; King, Kevin S; Russell, David W

    2014-09-23

    An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.

  1. Involvement of membrane sterols in hypergravity-induced modifications of growth and cell wall metabolism in plant stems

    Science.gov (United States)

    Koizumi, T.; Soga, K.; Wakabayashi, K.; Suzuki, M.; Muranaka, T.; Hoson, T.

    Organisms living on land resist the gravitational force by constructing a tough body Plants have developed gravity resistance responses after having first went ashore more than 500 million years ago The mechanisms of gravity resistance responses have been studied under hypergravity conditions which are easily produced on earth by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which is involved in synthesis of terpenoids such as membrane sterols In the present study we examined the role of membrane sterols in gravity resistance in plants by analyzing sterol levels of stem organs grown under hypergravity conditions and by analyzing responses to hypergravity of the organs whose sterol level was modulated Hypergravity inhibited elongation growth but stimulated lateral expansion of Arabidopsis hypocotyls and azuki bean epicotyls Under hypergravity conditions sterol levels were kept high as compared with 1 g controls during incubation Lovastatin an inhibitor HMGR prevented lateral expansion as the gravity resistance response in azuki bean epicotyls Similar results were obtained in analyses with loss of function mutants of HMGR in Arabidopsis It has been shown that sterols play a role in cellulose biosynthesis probably as the primer In wild type Arabidopsis hypocotyls hypergravity increased the cellulose content but it did not influence the content in HMGR mutants These results suggest that hypergravity increases

  2. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat; Jedidi, Abdesslem; Cavallo, Luigi; Eppinger, Jö rg

    2015-01-01

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids

  3. The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway.

    Science.gov (United States)

    Zhou, Tao; Dang, Ying; Zheng, Yong-Hui

    2014-03-01

    The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins

  4. Biosynthesis of platelet activating factor (PAF) via alternate pathways: subcellular distribution of products in HL-60 cells

    International Nuclear Information System (INIS)

    Record, M.; Snyder, F.

    1986-01-01

    Final steps in the biosynthesis of PAF can be catalyzed by two different routes: CDP-choline:1-alkyl-2-acetyl-Gro cholinephosphotransferase [dithiothrietol (DTT)-insensitive] or acetyl-CoA:1-alkyl-2-lyso-GroPCho acetyltransferase. The authors have investigated the conversion of tritium-labeled 1-alkyl-2-acetyl-Gro and 1-alkyl-2-lyso-GroPCho (lyso-PAF) to PAF and other lipid products in HL-60 cells and in subcellular organelles isolated by centrifugation in a Percoll gradient. When cells are incubated with the labeled precursors (2 μM) the total amount of labeled PAF and 1-alkyl-2-acyl-GroPCho formed was similar from both precursors (60 pmol from 1-alkyl-2-acetyl-Gro and 50 pmol from lyso-PAF). However, PAF formed from 1-alkyl-2-acetyl-Gro represented 70% of the total products, whereas with lyso-PAF the major labeled product was 1-alkyl-2-acyl-GroPCho. Formation of PAF from 1-[ 3 H]alkyl-2-acetyl-Gro was linear to at least 30 min at 20 0 C. After a 15-min incubation of this neutral lipid with HL-60 cells, the labeled PAF produced was located exclusively in the plasma membrane fraction as opposed to the label in the 1-alkyl-2-acyl-GroPCho, which was found only in the endoplasmic reticulum; none of the labeled PAF product was released to the media. The authors results suggest PAF might be synthesized by the DTT-insensitive cholinephosphotransferase at the site of the plasma membrane in HL-60 cells

  5. Transcriptome mining and in silico structural and functional analysis of ascorbic acid and tartaric acid biosynthesis pathway enzymes in rose-scanted geranium.

    Science.gov (United States)

    Narnoliya, Lokesh K; Sangwan, Rajender S; Singh, Sudhir P

    2018-06-01

    Rose-scented geranium (Pelargonium sp.) is widely known as aromatic and medicinal herb, accumulating specialized metabolites of high economic importance, such as essential oils, ascorbic acid, and tartaric acid. Ascorbic acid and tartaric acid are multifunctional metabolites of human value to be used as vital antioxidants and flavor enhancing agents in food products. No information is available related to the structural and functional properties of the enzymes involved in ascorbic acid and tartaric acid biosynthesis in rose-scented geranium. In the present study, transcriptome mining was done to identify full-length genes, followed by their bioinformatic and molecular modeling investigations and understanding of in silico structural and functional properties of these enzymes. Evolutionary conserved domains were identified in the pathway enzymes. In silico physicochemical characterization of the catalytic enzymes revealed isoelectric point (pI), instability index, aliphatic index, and grand average hydropathy (GRAVY) values of the enzymes. Secondary structural prediction revealed abundant proportion of alpha helix and random coil confirmations in the pathway enzymes. Three-dimensional homology models were developed for these enzymes. The predicted structures showed significant structural similarity with their respective templates in root mean square deviation analysis. Ramachandran plot analysis of the modeled enzymes revealed that more than 84% of the amino acid residues were within the favored regions. Further, functionally important residues were identified corresponding to catalytic sites located in the enzymes. To, our best knowledge, this is the first report which provides a foundation on functional annotation and structural determination of ascorbic acid and tartaric acid pathway enzymes in rose-scanted geranium.

  6. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat

    2015-06-22

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), promoted by the IspH enzyme. Our results support the viability of the bio-organometallic pathway from rotation of the OH group of HMBPP away from the [Fe4S4] cluster at the core of the catalytic site, to be engaged in a H-bond with Glu126. This rotation is synchronous with π-coordination of the C2=C3 double bond of HMBPP to the apical Fe atom of the [Fe4S4] cluster. Dehydroxylation of HMBPP is triggered by a proton transfer from Glu126 to the OH group of HMBPP. The reaction pathway is completed by competitive proton transfer from the terminal phosphate group to the C2 or C4 atom of HMBPP.

  7. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD+ biosynthesis pathway and NAMPT mutation.

    Science.gov (United States)

    Guo, Jun; Lam, Lloyd T; Longenecker, Kenton L; Bui, Mai H; Idler, Kenneth B; Glaser, Keith B; Wilsbacher, Julie L; Tse, Chris; Pappano, William N; Huang, Tzu-Hsuan

    2017-09-23

    Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD + ), and NAD + depletion ultimately results in cell death. The rate limiting step within the NAD + salvage pathway required for converting nicotinamide to NAD + is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD + depletion and cytotoxicity. To identify mechanisms that could cause resistance to NAMPT inhibitor treatment, we generated a human fibrosarcoma cell line refractory to the highly potent and selective NAMPT small molecule inhibitor, GMX1778. We uncovered novel and unexpected mechanisms of resistance including significantly increased expression of quinolinate phosphoribosyl transferase (QPRT), a key enzyme in the de novo NAD + synthesis pathway. Additionally, exome sequencing of the NAMPT gene in the resistant cells identified a single heterozygous point mutation that was not present in the parental cell line. The combination of upregulation of the NAD + de novo synthesis pathway through QPRT over-expression and NAMPT mutation confers resistance to GMX1778, but the cells are only partially resistant to next-generation NAMPT inhibitors. The resistance mechanisms uncovered herein provide a potential avenue to continue exploration of next generation NAMPT inhibitors to treat neoplasms in the clinic. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Interspecies and Intraspecies Analysis of Trehalose Contents and the Biosynthesis Pathway Gene Family Reveals Crucial Roles of Trehalose in Osmotic-Stress Tolerance in Cassava

    Directory of Open Access Journals (Sweden)

    Bingying Han

    2016-07-01

    Full Text Available Trehalose is a nonreducing α,α-1,1-disaccharide in a wide range of organisms, and has diverse biological functions that range from serving as an energy source to acting as a protective/signal sugar. However, significant amounts of trehalose have rarely been detected in higher plants, and the function of trehalose in the drought-tolerant crop cassava (Manihot esculenta Crantz is unclear. We measured soluble sugar concentrations of nine plant species with differing levels of drought tolerance and 41 cassava varieties using high-performance liquid chromatography with evaporative light-scattering detector (HPLC-ELSD. Significantly high amounts of trehalose were identified in drought-tolerant crops cassava, Jatropha curcas, and castor bean (Ricinus communis. All cassava varieties tested contained high amounts of trehalose, although their concentrations varied from 0.23 to 1.29 mg·g−1 fresh weight (FW, and the trehalose level was highly correlated with dehydration stress tolerance of detached leaves of the varieties. Moreover, the trehalose concentrations in cassava leaves increased 2.3–5.5 folds in response to osmotic stress simulated by 20% PEG 6000. Through database mining, 24 trehalose pathway genes, including 12 trehalose-6-phosphate synthases (TPS, 10 trehalose-6-phosphate phosphatases (TPP, and two trehalases were identified in cassava. Phylogenetic analysis indicated that there were four cassava TPS genes (MeTPS1–4 that were orthologous to the solely active TPS gene (AtTPS1 and OsTPS1 in Arabidopsis and rice, and a new TPP subfamily was identified in cassava, suggesting that the trehalose biosynthesis activities in cassava had potentially been enhanced in evolutionary history. RNA-seq analysis indicated that MeTPS1 was expressed at constitutionally high level before and after osmotic stress, while other trehalose pathway genes were either up-regulated or down-regulated, which may explain why cassava accumulated high level of trehalose

  9. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  10. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues

    OpenAIRE

    Yao, Lihang; Jenkins, Katie; Horn, Paul S.; Lichtenberg, M. Hayden; Woollett, Laura A.

    2007-01-01

    The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only margina...

  11. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis.

    Science.gov (United States)

    Ohyama, Kiyoshi; Suzuki, Masashi; Kikuchi, Jun; Saito, Kazuki; Muranaka, Toshiya

    2009-01-20

    The differences between the biosynthesis of sterols in higher plants and yeast/mammals are believed to originate at the cyclization step of oxidosqualene, which is cyclized to cycloartenol in higher plants and lanosterol in yeast/mammals. Recently, lanosterol synthase genes were identified from dicotyledonous plant species including Arabidopsis, suggesting that higher plants possess dual biosynthetic pathways to phytosterols via lanosterol, and through cycloartenol. To identify the biosynthetic pathway to phytosterol via lanosterol, and to reveal the contributions to phytosterol biosynthesis via each cycloartenol and lanosterol, we performed feeding experiments by using [6-(13)C(2)H(3)]mevalonate with Arabidopsis seedlings. Applying (13)C-{(1)H}{(2)H} nuclear magnetic resonance (NMR) techniques, the elucidation of deuterium on C-19 behavior of phytosterol provided evidence that small amounts of phytosterol were biosynthesized via lanosterol. The levels of phytosterol increased on overexpression of LAS1, and phytosterols derived from lanosterol were not observed in a LAS1-knockout plant. This is direct evidence to indicate that the biosynthetic pathway for phytosterol via lanosterol exists in plant cells. We designate the biosynthetic pathway to phytosterols via lanosterol "the lanosterol pathway." LAS1 expression is reported to be induced by the application of jasmonate and is thought to have evolved from an ancestral cycloartenol synthase to a triterpenoid synthase, such as beta-amyrin synthase and lupeol synthase. Considering this background, the lanosterol pathway may contribute to the biosynthesis of not only phytosterols, but also steroids as secondary metabolites.

  12. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    Science.gov (United States)

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed. © 2015 by The Mycological Society of America.

  13. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  14. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    Science.gov (United States)

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn.

    Science.gov (United States)

    Lv, Quan-Zhen; Yan, Lan; Jiang, Yuan-Ying

    2016-08-17

    Sterols are the basal components of the membranes of the fungal pathogen Candida albicans, and these membranes determine the susceptibility of C. albicans cells to a variety of stresses, such as ionic, osmotic and oxidative pressures, and treatment with antifungal drugs. The common antifungal azoles in clinical use are targeted to the biosynthesis of ergosterol. In the past years, the synthesis, storage and metabolism of ergosterol in Saccharomyces cerevisiae has been characterized in some detail; however, these processes has not been as well investigated in the human opportunistic pathogen C. albicans. In this review, we summarize the genes involved in ergosterol synthesis and regulation in C. albicans. As well, genes in S. cerevisiae implicated in ergosterol storage and conversions with other lipids are noted, as these provide us clues and directions for the study of the homologous genes in C. albicans. In this report we have particularly focused on the essential roles of ergosterol in the dynamic process of cell biology and its fundamental status in the biological membrane system that includes lipid rafts, lipid droplets, vacuoles and mitochondria. We believe that a thorough understanding of this classic and essential pathway will give us new ideas about drug resistance and morphological switching in C. albicans.

  16. Cholesterol and related sterols autoxidation.

    Science.gov (United States)

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  17. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    Science.gov (United States)

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  18. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.

    Science.gov (United States)

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-02-22

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.

  19. Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giovanna Vinci

    Full Text Available BACKGROUND: It is known that primary sequences of enzymes involved in sterol biosynthesis are well conserved in organisms that produce sterols de novo. However, we provide evidence for a preservation of the corresponding genes in two animals unable to synthesize cholesterol (auxotrophs: Drosophila melanogaster and Caenorhabditis elegans. PRINCIPAL FINDINGS: We have been able to detect bona fide orthologs of several ERG genes in both organisms using a series of complementary approaches. We have detected strong sequence divergence between the orthologs of the nematode and of the fruitfly; they are also very divergent with respect to the orthologs in organisms able to synthesize sterols de novo (prototrophs. Interestingly, the orthologs in both the nematode and the fruitfly are still under selective pressure. It is possible that these genes, which are not involved in cholesterol synthesis anymore, have been recruited to perform different new functions. We propose a more parsimonious way to explain their accelerated evolution and subsequent stabilization. The products of ERG genes in prototrophs might be involved in several biological roles, in addition to sterol synthesis. In the case of the nematode and the fruitfly, the relevant genes would have lost their ancestral function in cholesterogenesis but would have retained the other function(s, which keep them under pressure. CONCLUSIONS: By exploiting microarray data we have noticed a strong expressional correlation between the orthologs of ERG24 and ERG25 in D. melanogaster and genes encoding factors involved in intracellular protein trafficking and folding and with Start1 involved in ecdysteroid synthesis. These potential functional connections are worth being explored not only in Drosophila, but also in Caenorhabditis as well as in sterol prototrophs.

  20. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.

    Science.gov (United States)

    Margis-Pinheiro, Marcia; Zhou, Xue-Rong; Zhu, Qian-Hao; Dennis, Elizabeth S; Upadhyaya, Narayana M

    2005-03-01

    We have isolated a severe dwarf transposon (Ds) insertion mutant in rice (Oryza sativa L.), which could be differentiated early in the seedling stage by reduced shoot growth and dark green leaves, and later by severe dwarfism and failure to initiate flowering. These mutants, however, showed normal seed germination and root growth. One of the sequences flanking Ds, rescued from the mutant, was of a chromosome 4-located putative ent-kaurene synthase (KS) gene, encoding the enzyme catalyzing the second step of the gibberellin (GA) biosynthesis pathway. Dwarf mutants were always homozygous for this Ds insertion and no normal plants homozygous for this mutation were recovered in the segregating progeny, indicating that the Ds insertion mutation is recessive. As mutations in three recently reported rice GA-responsive dwarf mutant alleles and the dwarf mutation identified in this study mapped to the same locus, we designate the corresponding gene OsKS1. The osks1 mutant seedlings were responsive to exogenous gibberellin (GA3). OsKS1 transcripts of about 2.3 kb were detected in leaves and stem of wild-type plants, but not in germinating seeds or roots, suggesting that OsKS1 is not involved in germination or root growth. There are at least five OsKS1-like genes in the rice genome, four of which are also represented in rice expressed sequence tag (EST) databases. All OsKS1-like genes are transcribed with different expression patterns. ESTs corresponding to all six OsKS genes are represented in other cereal databases including barley, wheat and maize, suggesting that they are biologically active.

  1. Effects of sterol regulatory element-binding protein (SREBP in chickens

    Directory of Open Access Journals (Sweden)

    Alipour Fahimeh

    2012-02-01

    Full Text Available Abstract Sterol regulatory element binding protein- 1 and -2 (SREBP-1 and -2 are key transcription factors involved in the biosynthesis of cholesterol and fatty acids. The SREBP have mostly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, though, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. Since a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we review Size and Tissue expression Pattern of SREBP and role of this protein in chickens.

  2. Genomic variants in the ASS1 gene, involved in the nitric oxide biosynthesis and signaling pathway, predict hydroxyurea treatment efficacy in compound sickle cell disease/β-thalassemia patients.

    Science.gov (United States)

    Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P

    2016-03-01

    Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.

  3. Mechanism-based Enzyme Inactivators of Phytosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    W. David Nes

    2004-03-01

    Full Text Available Current progress on the mechanism and substrate recognition by sterol methyl transferase (SMT, the role of mechanism-based inactivators, other inhibitors of SMT action to probe catalysis and phytosterol synthesis is reported. SMT is a membrane-bound enzyme which catalyzes the coupled C-methylation-deprotonation reaction of sterol acceptor molecules generating the 24-alkyl sterol side chains of fungal ergosterol and plant sitosterol. This C-methylation step can be rate-limiting in the post-lanosterol (fungal or post-cycloartenol (plant pathways. A series of sterol analogs designed to impair SMT activity irreversibly have provided deep insight into the C-methylation reaction and topography of the SMT active site and as reviewed provide leads for the development of antifungal agents.

  4. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus.

    Directory of Open Access Journals (Sweden)

    Zhixin Xu

    Full Text Available Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu. Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1, steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2, ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3, protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis-keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.

  5. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  6. Scap is required for sterol synthesis and crypt growth in intestinal mucosa.

    Science.gov (United States)

    McFarlane, Matthew R; Cantoria, Mary Jo; Linden, Albert G; January, Brandon A; Liang, Guosheng; Engelking, Luke J

    2015-08-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function.

    Science.gov (United States)

    Fan, Jieru; Urban, Martin; Parker, Josie E; Brewer, Helen C; Kelly, Steven L; Hammond-Kosack, Kim E; Fraaije, Bart A; Liu, Xili; Cools, Hans J

    2013-05-01

    CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. In Fusarium species, including pathogens of humans and plants, three CYP51 paralogues have been identified with one unique to the genus. Currently, the functions of these three genes and the rationale for their conservation within the genus Fusarium are unknown. Three Fusarium graminearum CYP51s (FgCYP51s) were heterologously expressed in Saccharomyces cerevisiae. Single and double FgCYP51 deletion mutants were generated and the functions of the FgCYP51s were characterized in vitro and in planta. FgCYP51A and FgCYP51B can complement yeast CYP51 function, whereas FgCYP51C cannot. FgCYP51A deletion increases the sensitivity of F. graminearum to the tested azoles. In ΔFgCYP51B and ΔFgCYP51BC mutants, ascospore formation is blocked, and eburicol and two additional 14-methylated sterols accumulate. FgCYP51C deletion reduces virulence on host wheat ears. FgCYP51B encodes the enzyme primarily responsible for sterol 14α-demethylation, and plays an essential role in ascospore formation. FgCYP51A encodes an additional sterol 14α-demethylase, induced on ergosterol depletion and responsible for the intrinsic variation in azole sensitivity. FgCYP51C does not encode a sterol 14α-demethylase, but is required for full virulence on host wheat ears. This is the first example of the functional diversification of a fungal CYP51. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14[alpha]-Demethylase (CYP51) from Leishmania infantum

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W. David; Waterman, Michael R.; Lepesheva, Galina I. (Vanderbilt); (TTU); (NWU)

    2012-05-14

    Leishmaniasis is a major health problem that affects populations of {approx}90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14{alpha}-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14{alpha}-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V{sub max} of {approx}10 and 8 min{sup -1}, respectively), it is also found to 14{alpha}-demethylate C4-dimethylated lanosterol (V{sub max} = 0.9 min{sup -1}) and C4-desmethylated 14{alpha}-methylzymosterol (V{sub max} = 1.9 min{sup -1}). Binding parameters with six sterols were tested, with K{sub d} values ranging from 0.25 to 1.4 {mu}m. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14{alpha}-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.

  9. Composition and Sources of Sterols in Pulau Tinggi, Johor, Malaysia

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Mohd Talib Latif; Mohamad Pauzi Zakaria

    2011-01-01

    This study explores the role of sterols as lipid bio markers to indicate their input which originates from various sources in the marine environment. Sterols and their ratios were investigated in sediments taken from sixteen sampling stations at Pulau Tinggi, Johor in order to assess the sources of organic matter. The compounds extracted from the sediments were quantified using a gas chromatography-mass spectrometry (GC-MS). The distributions of sterols indicated that organic matter at all sampling stations originated from a mixture of marine source and terrestrial origins at different proportions. A total of eleven sterols were quantified, with the major compounds being phytosterols (44 % of total sterols), cholesterol (11 %), brassica sterol (11 %) and fecal sterols (12 %). (author)

  10. Coordinate Regulation of Yeast Sterol Regulatory Element-binding Protein (SREBP) and Mga2 Transcription Factors.

    Science.gov (United States)

    Burr, Risa; Stewart, Emerson V; Espenshade, Peter J

    2017-03-31

    The Mga2 and Sre1 transcription factors regulate oxygen-responsive lipid homeostasis in the fission yeast Schizosaccharomyces pombe in a manner analogous to the mammalian sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 transcription factors. Mga2 and SREBP-1 regulate triacylglycerol and glycerophospholipid synthesis, whereas Sre1 and SREBP-2 regulate sterol synthesis. In mammals, a shared activation mechanism allows for coordinate regulation of SREBP-1 and SREBP-2. In contrast, distinct pathways activate fission yeast Mga2 and Sre1. Therefore, it is unclear whether and how these two related pathways are coordinated to maintain lipid balance in fission yeast. Previously, we showed that Sre1 cleavage is defective in the absence of mga2 Here, we report that this defect is due to deficient unsaturated fatty acid synthesis, resulting in aberrant membrane transport. This defect is recapitulated by treatment with the fatty acid synthase inhibitor cerulenin and is rescued by addition of exogenous unsaturated fatty acids. Furthermore, sterol synthesis inhibition blocks Mga2 pathway activation. Together, these data demonstrate that Sre1 and Mga2 are each regulated by the lipid product of the other transcription factor pathway, providing a source of coordination for these two branches of lipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Exploring the functional significance of sterol glycosyltransferase enzymes.

    Science.gov (United States)

    Singh, Gaurav; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Misra, Pratibha

    2018-01-01

    Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Triterpene biosynthesis in plants.

    Science.gov (United States)

    Thimmappa, Ramesha; Geisler, Katrin; Louveau, Thomas; O'Maille, Paul; Osbourn, Anne

    2014-01-01

    The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.

  13. Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar.

    Science.gov (United States)

    Siu, Sarah; Robotham, Anna; Logan, Susan M; Kelly, John F; Uchida, Kaoru; Aizawa, Shin-Ichi; Jarrell, Ken F

    2015-05-01

    Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for

  14. Selective inhibition of the demethylation at C-14 in ergosterol biosynthesis by the fungicide, Denmert (S-1358)

    International Nuclear Information System (INIS)

    Kato, Toshiro; Kawase, Yasuo

    1976-01-01

    A direct evidence of the inhibitory effect in a cell-free system of S. cerevisiae was experimentally studied, and the site of action of Denmert (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbon-imidate) in sterol biosynthesis was examined. 14 C-labeled lanosterol and 14-desmethyl-lanosterol were biosynthetically prepared. DL-mevalonate-2- 14 C was incubated with yeast cell-free homogenates for 3 hr at 28 deg C while being shaked vigorously in atmospheric oxygen. The resultant 14 C-labeled sterol was extracted and chromatographed on a silicic acid-Hyflo Super Cel column. 4,4-dimethyl sterol thus obtained was acetylated with acetic anhydride and pyridine. The separation of lanosteryl acetate and 14-desmethyl lanosteryl acetate was accomplished on alumina thin-layer plates. After the saponification of each steryl acetate, the quantity of the sterol was assessed by gas chromatography with cholesterol as an internal standard. The incubation of the 14 C-labeled sterol was achieved under the same conditions as those for the DL-mevalonate-2- 14 C except the addition of the substrate which was dispersed in 0.1M phosphate buffer. Denmert inhibited the conversion of 14 C-labeled lanosterol to 4-desmethyl sterol, while the conversion of 14 C-labeled 14-desmethyl lanosterol to 4-desmethyl sterol was hardly affected by the fungicide. Therefore, Denmert is a potent selective inhibitor of the demethylation at the C-14 position in ergosterol biosynthesis. The fungicide, triarimol, exhibited the same effect on sterol biosynthesis as that of Denmert. (Iwakiri, K.)

  15. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, James [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Dietzel, Kevin L. [Amyris, inc., Emeryville, CA (United States); Wichmann, Gale [Amyris, inc., Emeryville, CA (United States); Chan, Rossana [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Antipov, Eugene [Amyris, inc., Emeryville, CA (United States); Moss, Nathan [Amyris, inc., Emeryville, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Jackson, Peter [Amyris, inc., Emeryville, CA (United States); Gaucher, Sara P. [Amyris, inc., Emeryville, CA (United States); Gottlieb, Shayin [Amyris, inc., Emeryville, CA (United States); LaBarge, Jeremy [Amyris, inc., Emeryville, CA (United States); Mahatdejkul, Tina [Amyris, inc., Emeryville, CA (United States); Hawkins, Kristy M. [Amyris, inc., Emeryville, CA (United States); Muley, Sheela [Amyris, inc., Emeryville, CA (United States); Newman, Jack D. [Amyris, inc., Emeryville, CA (United States); Liu, Pinghua [Boston Univ., MA (United States). Dept. of Chemistry; Keasling, Jay D. [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Depts. of Chemical & Biomolecular Engineering and Bioengineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems & Engineering Div.; Technical Univ. of Denmark, Hoesholm (Denmark). Novo Nodisk Foundation Center for Biosustainability; Zhao, Lishan [Amyris, inc., Emeryville, CA (United States)

    2016-10-27

    Isoprenoids are made by all free-living organisms and range from essential metabolites like sterols and quinones to more complex compounds like pinene and rubber. They are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.

  16. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  17. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  18. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus.

    Science.gov (United States)

    Wilmowicz, Emilia; Frankowski, Kamil; Kućko, Agata; Świdziński, Michał; de Dios Alché, Juan; Nowakowska, Anna; Kopcewicz, Jan

    2016-11-01

    Flower abscission is a highly regulated developmental process activated in response to exogenous (e.g. changing environmental conditions) and endogenous stimuli (e.g. phytohormones). Ethylene (ET) and abscisic acid (ABA) are very effective stimulators of flower abortion in Lupinus luteus, which is a widely cultivated species in Poland, Australia and Mediterranean countries. In this paper, we show that artificial activation of abscission by flower removal caused an accumulation of ABA in the abscission zone (AZ). Moreover, the blocking of that phytohormone's biosynthesis by NDGA (nordihydroguaiaretic acid) decreased the number of abscised flowers. However, the application of NBD - an inhibitor of ET action - reversed the stimulatory effect of ABA on flower abscission, indicating that ABA itself is not sufficient to turn on the organ separation. Our analysis revealed that exogenous ABA significantly accelerated the transcriptional activity of the ET biosynthesis genes ACC synthase (LlACS) and oxidase (LlACO), and moreover, strongly increased the level of 1-aminocyclopropane-1-carboxylic acid (ACC) - ET precursor, which was specifically localized within AZ cells. We cannot exclude the possibility that ABA mediates flower abscission processes by enhancing the ET biosynthesis rate. The findings of our study will contribute to the overall basic knowledge on the phytohormone-regulated generative organs abscission in L. luteus. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Inhibitory effects of various oxygenated sterols on the differentiation and function of tumor-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Spangrude, G.J.; Sherris, D.; Daynes, R.A.

    1982-01-01

    Irradiation of skin with ultraviolet light (UVL) is capable of causing many biological and biochemical changes in this complex organ. One early consequence is the oxidation of epidermal plasma membrane cholesterol, causing the induction of a wide variety of photoproducts. It is well recognized that some oxygenated sterols possess potent biological activity on mammalian cells by their ability to inhibit endogeneous mevalonate and cholesterol biosynthesis. In the few immunological systems that have been studied, there is general agreement that lymphocyte function is lacking, as both afferent and efferent blockades have been suggested. These studies were undertaken to determine the effect of various oxygenated sterols (representing a number of known cholesterol-derived photoproducts) on the generation (afferent) and function (efferent) of cytotoxic T lymphocytes (CTLs). Cell-mediated immune responses which result in the generation of both alloantigen-specific and syngeneic tumor-specific CTLs were evaluated

  20. Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana.

    Directory of Open Access Journals (Sweden)

    Roy Mwenechanya

    2017-06-01

    Full Text Available Amphotericin B has emerged as the therapy of choice for use against the leishmaniases. Administration of the drug in its liposomal formulation as a single injection is being promoted in a campaign to bring the leishmaniases under control. Understanding the risks and mechanisms of resistance is therefore of great importance. Here we select amphotericin B-resistant Leishmania mexicana parasites with relative ease. Metabolomic analysis demonstrated that ergosterol, the sterol known to bind the drug, is prevalent in wild-type cells, but diminished in the resistant line, where alternative sterols become prevalent. This indicates that the resistance phenotype is related to loss of drug binding. Comparing sequences of the parasites' genomes revealed a plethora of single nucleotide polymorphisms that distinguish wild-type and resistant cells, but only one of these was found to be homozygous and associated with a gene encoding an enzyme in the sterol biosynthetic pathway, sterol 14α-demethylase (CYP51. The mutation, N176I, is found outside of the enzyme's active site, consistent with the fact that the resistant line continues to produce the enzyme's product. Expression of wild-type sterol 14α-demethylase in the resistant cells caused reversion to drug sensitivity and a restoration of ergosterol synthesis, showing that the mutation is indeed responsible for resistance. The amphotericin B resistant parasites become hypersensitive to pentamidine and also agents that induce oxidative stress. This work reveals the power of combining polyomics approaches, to discover the mechanism underlying drug resistance as well as offering novel insights into the selection of resistance to amphotericin B itself.

  1. Multicolor bleach-rate imaging enlightens in vivo sterol transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sage, Daniel

    2011-01-01

    , dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel...... with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans....

  2. Variation and sources of sterols in Kuala Selangor, Selangor

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Mohd Talib Latif

    2010-01-01

    This study explores the role of sterols as lipid bio markers to assess organic matter variations and their sources in surface sediments of Kuala Selangor, Selangor which involved extraction procedures and sterol compounds analyzed using GC-MS. Ten sterol compounds were found in the samples with phytosterols being the principal compounds which accounted 79 % of total sterols. This was followed by cholesterol and fecal sterols, each constitutes 6 % of total sterols while the rest are in the ranged of 1-5 %. Sterol Source Index (SSI) also reflected phytosterols predominant at all sampling stations but in different degree based on phytosterols compounds. Another issue was sewage contamination assessment using coprostanol/ cholesterol, coprostanol/ (coprostanol + cholestanol) and epi coprostanol/ coprostanol ratio. No sewage contamination occurred in the study area even though fecal sterols have been quantified. This analytical study indicates that the sediments in the study area consisted of a mixture of sterols from various sources even though dominated by phytosterols originated from terrestrial plants. (author)

  3. Quality of deli-style turkey enriched with plant sterols.

    Science.gov (United States)

    Grasso, S; Brunton, N P; Lyng, J G; Harrison, S M; Monahan, F J

    2016-12-01

    Low-fat meat products could be excellent carriers for plant sterols, known for their cholesterol-lowering properties. In this study, we developed a protocol for the manufacture of a deli-style turkey enriched with plant sterols (S) at a level sufficient to deliver the maximum plant sterols amount recommended for cholesterol reduction by the European Food Safety Authority (3 g of plant sterols per day) in a 70 g portion. We investigated the stability of the plant sterols and the effects of their addition on the product quality. Plant sterols remained stable during the seven-day storage period. The addition of plant sterols significantly affected some texture parameters, shear force, lipid oxidation, L values and water-holding capacity compared with control (C). Sensory analysis was carried out by an untrained panel (32) using the difference-from-control test between C and S samples to evaluate first the extent of the overall sensory difference and then the extent of sensory difference on colour, texture and flavour. Results indicated that panellists considered the intensity of the difference between C and S samples to be 'small'. Plant sterols could be used as a potential health-promoting meat ingredient with no effect on plant sterol stability but with some effects on texture and sensory characteristics. © The Author(s) 2016.

  4. Characterization of Flavan-3-ols and Expression of MYB and Late Pathway Genes Involved in Proanthocyanidin Biosynthesis in Foliage of Vitis bellula

    Directory of Open Access Journals (Sweden)

    Ke-Gang Li

    2013-03-01

    Full Text Available Proanthocyanidins (PAs are fundamental nutritional metabolites in different types of grape products consumed by human beings. Although the biosynthesis of PAs in berry of Vitis vinifera has gained intensive investigations, the understanding of PAs in other Vitis species is limited. In this study, we report PA formation and characterization of gene expression involved in PA biosynthesis in leaves of V. bellula, a wild edible grape species native to south and south-west China. Leaves are collected at five developmental stages defined by sizes ranging from 0.5 to 5 cm in length. Analyses of thin layer chromatography (TLC and high performance liquid chromatography-photodiode array detector (HPLC-PAD show the formation of (+-catechin, (−-epicatechin, (+-gallocatechin and (−-epigallocatechin during the entire development of leaves. Analyses of butanol-HCl boiling cleavage coupled with spectrometry measurement at 550 nm show a temporal trend of extractable PA levels, which is characterized by an increase from 0.5 cm to 1.5 cm long leaves followed by a decrease in late stages. TLC and HPLC-PAD analyses identify cyanidin, delphinidin and pelargonidin produced from the cleavage of PAs in the butanol-HCl boiling, showing that the foliage PAs of V. bellula include three different types of extension units. Four cDNAs, which encode VbANR, VbDFR, VbLAR1 and VbLAR2, respectively, are cloned from young leaves. The expression patterns of VbANR and VbLAR2 but not VbLAR1 and VbDFR follow a similar trend as the accumulation patterns of PAs. Two cDNAs encoding VbMYBPA1 and VbMYB5a, the homologs of which have been demonstrated to regulate the expression of both ANR and LAR in V. vinifera, are also cloned and their expression profiles are similar to those of VbANR and VbLAR2. In contrast, the expression profiles of MYBA1 and 2 homologs involved in anthocyanin biosynthesis are different from those of VbANR and VbLAR2. Our data show that both ANR and LAR branches are

  5. A-Factor and Phosphate Depletion Signals Are Transmitted to the Grixazone Biosynthesis Genes via the Pathway-Specific Transcriptional Activator GriR▿ †

    OpenAIRE

    Higashi, Tatsuichiro; Iwasaki, Yuko; Ohnishi, Yasuo; Horinouchi, Sueharu

    2007-01-01

    Grixazone (GX), which is a diffusible yellow pigment containing a phenoxazinone chromophore, is one of the secondary metabolites under the control of A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) in Streptomyces griseus. GX production is also induced by phosphate starvation. The whole biosynthesis gene cluster for GX was cloned and characterized. The gene cluster consisting of 13 genes contained six transcriptional units, griT, griSR, griR, griAB, griCDEFG, and griJIH. During cul...

  6. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.

    Science.gov (United States)

    Kumar, Sunil; Kalra, Shikha; Singh, Baljinder; Kumar, Avneesh; Kaur, Jagdeep; Singh, Kashmir

    2016-01-01

    Chlorophytum borivilianum is an important species of liliaceae family, owing to its vital medicinal properties. Plant roots are used for aphrodisiac, adaptogen, anti-aging, health-restorative and health-promoting purposes. Saponins, are considered to be the principal bioactive components responsible for the wide variety of pharmacological properties of this plant. In the present study, we have performed de novo root transcriptome sequencing of C. borivilianum using Illumina Hiseq 2000 platform, to gain molecular insight into saponins biosynthesis. A total of 33,963,356 high-quality reads were obtained after quality filtration. Sequences were assembled using various programs which generated 97,344 transcripts with a size range of 100-5,216 bp and N50 value of 342. Data was analyzed against non-redundant proteins, gene ontology (GO), and enzyme commission (EC) databases. All the genes involved in saponins biosynthesis along with five full-length genes namely farnesyl pyrophosphate synthase, cycloartenol synthase, β-amyrin synthase, cytochrome p450, and sterol-3-glucosyltransferase were identified. Read per exon kilobase per million (RPKM)-based comparative expression profiling was done to study the differential regulation of the genes. In silico expression analysis of seven selected genes of saponin biosynthetic pathway was validated by qRT-PCR.

  7. Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, Maciej; Lund, Frederik W.; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol...... as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal...... fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first...

  8. SUPLEMENTASI STEROL LEMBAGA GANDUM (Triticum sp. PADA MARGARIN (Supplementation of Margarine with Wheat Germ Sterol

    Directory of Open Access Journals (Sweden)

    Sri Anna Marliyati1*

    2010-06-01

    Full Text Available Margarine is a water in oil (w/o emulsion product which is widely used for household cooking and baking industry. Consuming of margarine, which contains trans fatty acid may cause health problem due to the increase of LDL cholesterol. Since margarine is also a good carrier of phytosterol which prevent the absorption of cholesterol, there is a possibility to formulate a healthier margarine. In this research formulation and characteristics of products was investigated. The research work consisted of two steps: (1 supplementation of wheat germ sterol into margarine (two methods and (2 analysis of physical, chemical characteristics and hedonic score. Parameters of physical characteristics were melting point and emulsion stability, whereas chemical characteristics were water and oil contents. The hedonic test was carried out based on product’s color, odor, taste, texture, and spreadability. Results showed that method II of supplementation produced better margarine than method I, in which the concentration of sterol in the margarine was higher with a melting point similar to that of control, better emulsion stability, and higher hedonic score. Supplementation process was carried out by mixing sterol into fat phase melted at 50 0C, followed by mixing with aqueous phase at 4 0C. Sterol used for method II was extracted using mixed solvent of hexane and ethanol at the ratio of 1:2 (v/v, which was resulted from previous experimentation.

  9. Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors.

    Science.gov (United States)

    Li, Wenjin; Ulm, Hannah; Rausch, Marvin; Li, Xue; O'Riordan, Katie; Lee, Jean C; Schneider, Tanja; Müller, Christa E

    2014-11-01

    Polysaccharide capsules significantly contribute to virulence of invasive pathogens, and inhibition of capsule biosynthesis may offer a valuable strategy for novel anti-infective treatment. We purified and characterized the enzymes CapD and CapE of the Staphylococcus aureus serotype 5 biosynthesis cluster, which catalyze the first steps in the synthesis of the soluble capsule precursors UDP-D-FucNAc and UDP-L-FucNAc, respectively. CapD is an integral membrane protein and was obtained for the first time in a purified, active form. A capillary electrophoresis (CE)-based method applying micellar electrokinetic chromatography (MEKC) coupled with UV detection at 260 nm was developed for functional characterization of the enzymes using a fused-silica capillary, electrokinetic injection, and dynamic coating with polybrene at pH 12.4. The limits of detection for the CapD and CapE products UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex-4-ulose and UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hex-4-ulose, respectively, were below 1 μM. Using this new, robust and sensitive method we performed kinetic studies for CapD and CapE and screened a compound library in search for enzyme inhibitors. Several active compounds were identified and characterized, including suramin (IC50 at CapE 1.82 μM) and ampicillin (IC50 at CapD 40.1 μM). Furthermore, the cell wall precursors UDP-D-MurNAc-pentapeptide and lipid II appear to function as inhibitors of CapD enzymatic activity, suggesting an integrated mechanism of regulation for cell envelope biosynthesis pathways in S. aureus. Corroborating the in vitro findings, staphylococcal cells grown in the presence of subinhibitory concentrations of ampicillin displayed drastically reduced CP production. Our studies contribute to a profound understanding of the capsule biosynthesis in pathogenic bacteria. This approach may lead to the identification of novel anti-virulence and antibiotic drugs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Rosenkrantz, Tina J; Haldimann, Andreas

    2003-01-01

    An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene...

  11. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    Science.gov (United States)

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  12. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Bagatolli, Luis A.; Duelund, Lars

    2017-01-01

    Higher sterols are universally present in large amounts (20–30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol...

  13. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli

    Directory of Open Access Journals (Sweden)

    Weibo Qiao

    2018-01-01

    Full Text Available Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.

  14. Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree

    Science.gov (United States)

    Nomura, Taro; Hano, Yoshio; Fukai, Toshio

    2009-01-01

    Many isoprenylated flavonoids have been isolated from Japanese mulberry tree (Moraceae). Among them, kuwanons G (1) and H (2) were the first isolated active substances exhibiting a hypotensive effect. These compounds are considered to be formed through an enzymatic Diels-Alder type reaction between an isoprenyl portion of an isoprenylphenol as the diene and an α, β-double bond of chalcone as the dienophile. The absolute configurations of these Diels-Alder type adducts were confirmed by three different methods. The stereochemistries of the adducts were consistent with those of ones in the Diels-Alder reaction involving exo- and endo-addition. Some strains of Morus alba callus tissues have a high productivity of mulberry Diels-Alder type adducts, such as chalcomoracin (3) and kuwanon J (4). The biosynthetic studies of the mulberry Diels-Alder type adducts have been carried out with the aid of the cell strain. Chalcomoracin (3) and kuwanon J (4) were proved to be enzymatic Diels-Alder type reaction products by the administration experiments with O-methylchalcone derivatives. Furthermore, for the isoprenoid biosynthesis of prenylflavonoids in Morus alba callus tissues by administration of [1,3-13C2]- and [2-13C]-glycerol, a novel way through the junction of glycolysis and pentose-phosphate cycle was proved. Two independent isoprenoid biosynthetic pathways, that for sterols and that for isoprenoidphenols, operate in the Morus alba cell cultures. The former is susceptible to compactin (ML-236) and the latter resists to compactin in the cell cultures, respectively. PMID:19907125

  15. Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Techapiesancharoenkij, Nirachara [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Fiala, Jeannette L.A. [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Croy, Robert G.; Wogan, Gerald N. [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Groopman, John D. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Ruchirawat, Mathuros [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210 (Thailand); Essigmann, John M., E-mail: jessig@mit.edu [Department of Biological Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-01-01

    Aflatoxin B{sub 1} (AFB{sub 1}) is one of the major risk factors for liver cancer globally. A recent study showed that sulforaphane (SF), a potent inducer of phase II enzymes that occurs naturally in widely consumed vegetables, effectively induces hepatic glutathione S-transferases (GSTs) and reduces levels of hepatic AFB{sub 1}-DNA adducts in AFB{sub 1}-exposed Sprague Dawley rats. The present study characterized the effects of SF pre-treatment on global gene expression in the livers of similarly treated male rats. Combined treatment with AFB{sub 1} and SF caused reprogramming of a network of genes involved in signal transduction and transcription. Changes in gene regulation were observable 4 h after AFB{sub 1} administration in SF-pretreated animals and may reflect regeneration of cells in the wake of AFB{sub 1}-induced hepatotoxicity. At 24 h after AFB{sub 1} administration, significant induction of genes that play roles in cellular lipid metabolism and acetyl-CoA biosynthesis was detected in SF-pretreated AFB{sub 1}-dosed rats. Induction of this group of genes may indicate a metabolic shift toward glycolysis and fatty acid synthesis to generate and maintain pools of intermediate molecules required for tissue repair, cell growth and compensatory hepatic cell proliferation. Collectively, gene expression data from this study provide insights into molecular mechanisms underlying the protective effects of SF against AFB{sub 1} hepatotoxicity and hepatocarcinogenicity, in addition to the chemopreventive activity of this compound as a GST inducer. - Highlights: • This study revealed sulforaphane (SF)-deregulated gene sets in aflatoxin B{sub 1} (AFB{sub 1})-treated rat livers. • SF redirects biochemical networks toward lipid biosynthesis in AFB{sub 1}-dosed rats. • SF enhanced gene sets that would be expected to favor cell repair and regeneration.

  16. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  17. Novel bioassay for the discovery of inhibitors of the 2-C-methyl-D-erythritol 4-phosphate (MEP and terpenoid pathways leading to carotenoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Natália Corniani

    Full Text Available The 2-C-methyl-D-erythritol 4-phosphate (MEP pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.

  18. Biosynthesis and function of plant lipids

    International Nuclear Information System (INIS)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    1983-01-01

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds and chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function

  19. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms1

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu

    2016-01-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  1. Quantitative charge-tags for sterol and oxysterol analysis.

    Science.gov (United States)

    Crick, Peter J; William Bentley, T; Abdel-Khalik, Jonas; Matthews, Ian; Clayton, Peter T; Morris, Andrew A; Bigger, Brian W; Zerbinati, Chiara; Tritapepe, Luigi; Iuliano, Luigi; Wang, Yuqin; Griffiths, William J

    2015-02-01

    Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism. © 2014 American Association for Clinical Chemistry.

  2. Sterol composition from inflorescences of Hieracium pilosella L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Krzaczek

    2011-01-01

    Full Text Available The fraction of sterol acetates from the inflorescences of Hieracium pilosella has been isolated in the typical way from petroleum ether extract. By means of the weight method the total amount of sterols was determined (0.2659%. The mixtures of sterol acetates and free sterols were investigated using GC-MS techniques. The occurrence of about 18 sterols has been observed. Cholesterol, cholest-8(14-en-3b-ol, cholesta-5.7-dien-3b-ol, cholest-7-en-3b-ol, ergosta-5.24-dien-3b-ol, campesterol, stigmasterol, b-sitosterol, fucosterol, 5a-stigmast-7-en-3a-ol were identified. The probable structures of lophenol, isofucosterol, 5a-stigmasta-7.24-dien-3b-ol, lanosta-9(11.24-dien-3b-ol and 24-ethylidene lophenol were stated on the basis of literature data. The last 4 sterols occur in a vestigial quantity, which made its identification impossible. Sitos erol and cholesterol are remarkably dominating sterols in the fraction.

  3. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    Science.gov (United States)

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  4. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad Talebi

    2014-08-01

    Full Text Available Advanced generations of biofuels basically revolve around non-agricultural energy crops. Among those, microalgae owing to its unique characteristics i.e. natural tolerance to waste and saline water, sustainable biomass production and high lipid content (LC, is regarded by many as the ultimate choice for the production of various biofuels such as biodiesel. In the present study, manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina was achieved using pGH plasmid harboring AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. The stability of transformation was confirmed by PCR after several passages. Southern hybridization of AccD probe with genomic DNA revealed stable integration of the cassette in the specific positions in the chloroplast genome with no read through transcription by indigenous promoters. Comparison of the LC and fatty acid profile of the transformed algal cell line and the control revealed the over-expression of the ME/AccD genes in the transformants leading to 12% increase in total LC and significant improvements in biodiesel properties especially by increasing algal oil oxidation stability. The whole process successfully implemented herein for transforming algal cells by genes involved in lipid production pathway could be helpful for large scale biodiesel production from microalgae.

  5. Neutral Sterols of Cephalic Glands of Stingless Bees and Their Correlation with Sterols from Pollen

    Directory of Open Access Journals (Sweden)

    Maria Juliana Ferreira-Caliman

    2012-01-01

    de novo and, thus, all phytophagous insects depend on an exogenous source of sterols for growth, development, and reproduction. The sterol requirements of social bees are not fully known due to the fact that there is no well-defined diet available throughout the year with regard to floral resources. Our study aimed to characterize the sterols present in pollen stored in Melipona marginata and Melipona scutellaris colonies, as well as evaluating their presence in the mandibular, hypopharyngeal, and cephalic salivary gland secretions. We analyzed the chemical composition of pollen stored in the colonies and the composition of the cephalic glands of workers in three adult functional phases (newly emerged, nurses, and foragers by gas chromatography and mass spectrometry. The results showed that the pollen analyzed contained campesterol, stigmasterol, sitosterol, isofucosterol, lanosterol, and small amounts of cholesterol. The glands showed the same compounds found in the pollen analyzed, except lanosterol that was not found in M. scutellaris glands. Surprisingly, cholesterol was found in some glands with relative ratios greater than those found in pollen.

  6. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases

    Directory of Open Access Journals (Sweden)

    Anthony Samsel

    2013-04-01

    Full Text Available Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease. We explain the documented effects of glyphosate and its ability to induce disease, and we show that glyphosate is the “textbook example” of exogenous semiotic entropy: the disruption of homeostasis by environmental toxins.

  7. Sterol Regulation of Voltage-Gated K+ Channels.

    Science.gov (United States)

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  8. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day -1 ) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day -1 . DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression

  9. Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters

    DEFF Research Database (Denmark)

    Fricke, Christiane B.; Schrøder, Malene; Poulsen, Morten

    2007-01-01

    . Cholesterol synthesis in brain, indicated by lathosterol, a local surrogate cholesterol synthesis marker, does not seem to be affected by plant sterol or stanol ester feeding. We conclude that high dose intake of plant sterol and stanol esters in Watanabe rabbits results in elevated concentrations...... of these components not only in the periphery but also in the central nervous system....... of these components in brain tissue of homozygous and heterozygous Watanabe rabbits, an animal model for familial hypercholesterolemia. Homozygous animals received either a standard diet, RSO stanol or RSO sterol ester while heterozygous animals were additionally fed with 2 g cholesterol/kg to the respective diet...

  10. Structural complex of sterol 14[alpha]-demethylase (CYP51) with 14[alpha]-methylenecyclopropyl-[delta]7-24, 25-dihydrolanosterol[S

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Waterman, Michael R.; Nes, W. David; Lepesheva, Galina I. (Vanderbilt); (TTU); (NWU)

    2012-06-28

    Sterol 14{alpha}-demethylase (CYP51) that catalyzes the removal of the 14{alpha}-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14{alpha}-methylenecyclopropyl-{Delta}7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.

  11. Phytosterol and cholesterol precursor levels indicate increased cholesterol excretion and biosynthesis in gallstone disease.

    Science.gov (United States)

    Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco

    2012-05-01

    In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol

  12. The enzymology of polyether biosynthesis.

    Science.gov (United States)

    Liu, Tiangang; Cane, David E; Deng, Zixin

    2009-01-01

    Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.

  13. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  14. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Susannah ePiek

    2012-12-01

    Full Text Available The Gram-negative bacterial cell envelope consists of an inner membrane (IM that surrounds the cytoplasm, and an asymmetrical outer-membrane (OM that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS, phospholipids, outer membrane proteins (OMPs and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the correct biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation and isomerisation pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, these conserved pathways have been modified to suit the lifestyle of each organism.

  15. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5

    OpenAIRE

    Zhang, Duanwu; Tomisato, Wataru; Su, Lijing; Sun, Lei; Choi, Jin Huk; Zhang, Zhao; Wang, Kuan-wen; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong; Tang, Miao; Castro-Perez, Jose M.; Hildebrand, Sara; Murray, Anne R.; Moresco, Eva Marie Y.

    2017-01-01

    We discovered a previously unrecognized regulator of cholesterol biosynthesis, glycerol kinase 5 (GK5), which functions exclusively in the skin independently of cholesterol regulation in other tissues. GK5 negatively regulates the processing and nuclear localization of sterol regulatory element binding proteins, transcription factors that control expression of virtually all cholesterol synthesis enzymes. Excessive amounts of cholesterol, triglycerides, and ceramides were found in the skin of ...

  16. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation

    NARCIS (Netherlands)

    Houten, S. M.; Frenkel, J.; Waterham, H. R.

    2003-01-01

    Mevalonate kinase (MK) is an essential enzyme in the isoprenoid biosynthesis pathway which produces numerous biomolecules (isoprenoids) involved in a variety of cellular processes. The indispensability of MK and isoprenoid biosynthesis for human health is demonstrated by the identification of its

  17. Sterol Profile for Natural Juices Authentification by GC-MS

    Science.gov (United States)

    Culea, M.

    2007-04-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15m×0.25mm, 0.25μm film thickness, in a temperature program from 50°C for 1 min, then ramped at 15°C/min to 300°C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  18. Sterol Profile for Natural Juices Authentification by GC-MS

    International Nuclear Information System (INIS)

    Culea, M.

    2007-01-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25μm film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices

  19. Quantitative and qualitative analysis of sterols/sterolins and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... Most research has been carried out on ... method was developed to identify and quantify sterols (especially β-sitosterol) in chloroform extracts of .... Corms of the three Hypoxis spp. were planted in the same soil type.

  20. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  1. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Gaigalat Lars

    2006-08-01

    Full Text Available Abstract Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4-monophosphatases (EC 3.1.3.25. Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown

  2. Transport of sterols to the plasma membrane of leek seedlings

    International Nuclear Information System (INIS)

    Moreau, P.; Hartmann, M.A.; Perret, A.M.; Sturbois-Balcerazak, B.; Cassagne, C.

    1998-01-01

    To investigate the intracellular transport of sterols in etiolated leek (Allium porrum L.) seedlings, in vivo pulse-chase experiments with [1-14C]acetate were performed. Then, endoplasmic reticulum-, Golgi-, and plasma membrane (PM)-enriched fractions were prepared and analyzed for the radioactivity incorporated into free sterols. In leek seedlings sterols are present as a mixture in which (24R)-24-ethylcholest-5-en-3beta-ol is by far the major compound (around 60%). The other sterols are represented by cholest-5-en-3beta-ol, 24-methyl-cholest-5-en-3beta-ol, (24S)-24-ethylcholesta-5,22E-dien-3beta-ol, and stigmasta-5,24(24(1))Z-dien-3Beta-ol. These compounds are shown to reside mainly in the PM. Our results clearly indicate that free sterols are actively transported from the endoplasmic reticulum to the PM during the first 60 min of chase, with kinetics very similar to that of phosphatidylserine. Such a transport was found to be decreased at low temperature (12 degrees C) and following treatment with monensin and brefeldin A. These data are consistent with a membrane-mediated process for the intracellular transport of sterols to the PM, which likely involves the Golgi apparatus

  3. Metabolic Characterization of the Anthocyanidin Reductase Pathway Involved in the Biosynthesis of Flavan-3-ols in Elite Shuchazao Tea (Camellia sinensis Cultivar in the Field

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2017-12-01

    Full Text Available Anthocyanidin reductase (ANR is a key enzyme in the ANR biosynthetic pathway of flavan-3-ols and proanthocyanidins (PAs in plants. Herein, we report characterization of the ANR pathway of flavan-3-ols in Shuchazao tea (Camellia sinesis, which is an elite and widely grown cultivar in China and is rich in flavan-3-ols providing with high nutritional value to human health. In our study, metabolic profiling was preformed to identify two conjugates and four aglycones of flavan-3-ols: (−-epigallocatechin-gallate [(−-EGCG], (−-epicatechin-gallate [(−-ECG], (−-epigallocatechin [(−-EGC], (−-epicatechin [(−-EC], (+-catechin [(+-Ca], and (+-gallocatechin [(+-GC], of which (−-EGCG, (−-ECG, (−-EGC, and (−-EC accounted for 70–85% of total flavan-3-ols in different tissues. Crude ANR enzyme was extracted from young leaves. Enzymatic assays showed that crude ANR extracts catalyzed cyanidin and delphinidin to (−-EC and (−-Ca and (−-EGC and (−-GC, respectively, in which (−-EC and (−-EGC were major products. Moreover, two ANR cDNAs were cloned from leaves, namely CssANRa and CssANRb. His-Tag fused recombinant CssANRa and CssANRb converted cyanidin and delphinidin to (−-EC and (−-Ca and (−-EGC and (−-GC, respectively. In addition, (+-EC was observed from the catalysis of recombinant CssANRa and CssANRb. Further overexpression of the two genes in tobacco led to the formation of PAs in flowers and the reduction of anthocyanins. Taken together, these data indicate that the majority of leaf flavan-3-ols in Shuchazao’s leaves were produced from the ANR pathway.

  4. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14α-demethylase (ERG11 gene of Moniliophthora perniciosa

    Directory of Open Access Journals (Sweden)

    Geruza de Oliveira Ceita

    2014-12-01

    Full Text Available The phytopathogenic fungus Moniliophthora perniciosa (Stahel Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11 that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR. Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  5. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.

    Science.gov (United States)

    Hadjipieri, Margarita; Georgiadou, Egli C; Marin, Alicia; Diaz-Mula, Huertas M; Goulas, Vlasios; Fotopoulos, Vasileios; Tomás-Barberán, Francisco A; Manganaris, George A

    2017-06-14

    Carotenoids are the main colouring substances found in orange-fleshed loquat fruits. The aim of this study was to unravel the carotenoid biosynthetic pathway of loquat fruit (cv. 'Obusa') in peel and flesh tissue during distinct on-tree developmental stages through a targeted analytical and molecular approach. Substantial changes regarding colour parameters, both between peel and flesh and among the different developmental stages, were monitored, concomitant with a significant increment in carotenoid content. Key genes and individual compounds that are implicated in the carotenoid biosynthetic pathway were further dissected with the employment of molecular (RT-qPCR) and advanced analytical techniques (LC-MS). Results revealed significant differences in carotenoid composition between peel and flesh. Thirty-two carotenoids were found in the peel, while only eighteen carotenoids were identified in the flesh. Trans-lutein and trans-β-carotene were the major carotenoids in the peel; the content of the former decreased with the progress of ripening, while the latter registered a 7.2-fold increase. However, carotenoid profiling of loquat flesh indicated trans-β-cryptoxanthin, followed by trans-β-carotene and 5,8-epoxy-β-carotene to be the most predominant carotenoids. High amounts of trans-β-carotene in both tissues were supported by significant induction in a chromoplast-specific lycopene β-cyclase (CYCB) transcript levels. PSY1, ZDS, CYCB and BCH were up-regulated and CRTISO, LCYE, ECH and VDE were down-regulated in most of the developmental stages compared with the immature stage in both peel and flesh tissue. Overall, differential regulation of expression levels with the progress of on-tree fruit development was more evident in the middle and downstream genes of carotenoid biosynthetic pathway. Carotenoid composition is greatly affected during on-tree loquat development with striking differences between peel and flesh tissue. A link between gene up- or down

  6. Combinatorial biosynthesis of medicinal plant secondary metabolites

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Koulman, Albert; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2006-01-01

    Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors

  7. Biosynthesis of furanochromones in Pimpinella monoica

    Indian Academy of Sciences (India)

    polyketide origin of their aromatic and pyrone rings while the furan ring originates via an acetate-mevalonate pathway. The plant also utilises glycine and leucine as substrate via acetate. Biotransformation of 3-H-visnagin to (6) but not to (2) was also observed. Keywords. Biosynthesis; furochromones; polyketide origin; ...

  8. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  9. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway

    International Nuclear Information System (INIS)

    Ding, Lili; Li, Jinmei; Song, Baoliang; Xiao, Xu; Zhang, Binfeng; Qi, Meng; Huang, Wendong; Yang, Li

    2016-01-01

    Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. - Highlights: • Curcumin decreases biosynthesis of cholesterol and fatty acid in vitro. • Curcumin as a SREBP inhibitor ameliorates HFD-induced obesity. • Curcumin as a SREBP inhibitor improves insulin resistance.

  10. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lili; Li, Jinmei [The Ministry of Education - MOE Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM - SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shanghai R& D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203 (China); Song, Baoliang; Xiao, Xu [The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zhang, Binfeng; Qi, Meng [The Ministry of Education - MOE Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM - SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shanghai R& D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203 (China); Huang, Wendong [Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA (United States); Yang, Li, E-mail: yangli7951@hotmail.com [The Ministry of Education - MOE Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM - SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shanghai R& D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203 (China); and others

    2016-08-01

    Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. - Highlights: • Curcumin decreases biosynthesis of cholesterol and fatty acid in vitro. • Curcumin as a SREBP inhibitor ameliorates HFD-induced obesity. • Curcumin as a SREBP inhibitor improves insulin resistance.

  11. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  12. Acute sterol o-acyltransferase 2 (SOAT2 knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE. We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2 increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD, the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.

  13. Biosynthesis of oleamide.

    Science.gov (United States)

    Mueller, Gregory P; Driscoll, William J

    2009-01-01

    Oleamide (cis-9-octadecenamide) is the prototype long chain primary fatty acid amide lipid messenger. The natural occurrence of oleamide was first reported in human serum in 1989. Subsequently oleamide was shown to accumulate in the cerebrospinal fluid of sleep-deprived cats and to induce sleep when administered to experimental animals. Accordingly, oleamide first became known for its potential role in the mechanisms that mediate the drive to sleep. Oleamide also has profound effects on thermoregulation and acts as an analgesic in several models of experimental pain. Although these important pharmacologic effects are well establish, the biochemical mechanism for the synthesis of oleamide has not yet been defined. This chapter reviews the biosynthetic pathways that have been proposed and highlights two mechanisms which are most supported by experimental evidence: the generation of oleamide from oleoylglycine by the neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), and alternatively, the direct amidation of oleic acid via oleoyl coenzyme A by cytochrome c using ammonia as the nitrogen source. The latter mechanism is discussed in the context of apoptosis where oleamide may play a role in regulating gap junction communication. Lastly, several considerations and caveats pertinent to the future study oleamide biosynthesis are discussed.

  14. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii.

    Science.gov (United States)

    Sivanandhan, Ganeshan; Arunachalam, Chinnathambi; Selvaraj, Natesan; Sulaiman, Ali Alharbi; Lim, Yong Pyo; Ganapathi, Andy

    2015-06-01

    The investigation of seaweeds, Gracilaria edulis and Sargassum wightii extracts was carried out for the estimation of growth characteristics and major withanolides production in hairy root culture of Withania somnifera. The extract of G. edulis (50%) in MS liquid basal medium enabled maximum production of dry biomass (5.46 g DW) and withanolides contents (withanolide A 5.23 mg/g DW; withaferin A 2.24 mg/g DW and withanone 4.83 mg/g DW) in hairy roots after 40 days of culture with 48 h contact time. The obtained withanolides contents were significantly higher (2.32-fold-2.66-fold) in hairy root culture when compared to the control. RT PCR analysis of important pathway genes such as SE, SS, HMGR and FPPS exhibited substantial higher expression upon the seaweed extracts treatment in hairy root culture. This experiment would paw a platform for withanolides production in hairy root culture with the influence of sea weed extracts for pharmaceutical companies in the future. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. The Sorghum Gene for Leaf Color Changes upon Wounding (P Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawahigashi

    2016-05-01

    Full Text Available Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L. Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP and tan Greenleaf (pp cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol to flavan-4-ols (apiforol or luteoforol in vitro. Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway.

  16. Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using [3H]water: diurnal variation and effect of type of dietary fat

    International Nuclear Information System (INIS)

    Mercer, N.J.; Holub, B.J.

    1981-01-01

    The hepatic synthesis of sterol was measured in the male Mongolian gerbil (Meriones unguiculatus) in vivo following the administration of [ 3 H]water by monitoring the incorporation of radioactivity into digitonin-precipitable sterol. A diurnal rhythm in cholesterol synthesis was exhibited under conditions of ad libitum feeding with alternating 12-hour periods of light (0200 to 1400 hr) and dark (1400 to 0200 hr). The zenith was reached between 1500 and 2100 hr and the nadir approximately 10-12 hours later between 0200 and 0400 hr, which provided a zenith/nadir ratio of 9.6 to 1.0. The in vivo rates of hepatic sterol synthesis and plasma cholesterol levels were measured in gerbils fed semi-purified diets containing either 19.5% beef tallow + 0.5% safflower, 20% lard, or 20% safflower oil and widely differing ratios of polyunsaturated: saturated fatty acids. All diets were equalized to contain 0.01% cholesterol and 0.05% plant sterol. After 3 days on the experimental diets, the mean rates of cholesterol synthesis (nmol/g liver per hr) were 41.5, 26.6, and 13.8 for animals fed the diets containing beef tallow, lard, and safflower oil, respectively. After 7 and 14 days, synthetic rates were lowest in the gerbils fed safflower oil as were also the plasma cholesterol levels. These results indicate that the type of dietary lipid can significantly influence the in vivo rate of sterol biosynthesis in gerbil liver. This response may contribute, at least in part, to the observed differences in plasma cholesterol levels

  17. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  18. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol

    DEFF Research Database (Denmark)

    Wustner, D.; Solanko, L.; Sokol, Olena

    2011-01-01

    Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehythoergosterol (DHE), a well-established marker for cholesterol, by introducing simultan......Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehythoergosterol (DHE), a well-established marker for cholesterol, by introducing...... and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference...

  19. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    Science.gov (United States)

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  20. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.

    Science.gov (United States)

    Liao, Cangsong; Seebeck, Florian P

    2017-11-02

    Biosynthesis of N-α-trimethyl-2-thiohistidine (ergothioneine) is a frequent trait in cyanobacteria. This sulfur compound may provide essential relief from oxidative stress related to oxygenic photosynthesis. The central steps in ergothioneine biosynthesis are catalyzed by a histidine methyltransferase and an iron-dependent sulfoxide synthase. In this report, we present evidence that some cyanobacteria recruited and adapted a sulfoxide synthase from a different biosynthetic pathway to make ergothioneine. The discovery of a second origin of ergothioneine production underscores the physiological importance of this metabolite and highlights the evolutionary malleability of the thiohistidine biosynthetic machinery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    Science.gov (United States)

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics. Copyright © 2014. Published by Elsevier Ltd.

  2. The expanding universe of alkaloid biosynthesis.

    Science.gov (United States)

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  3. RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates.

    Science.gov (United States)

    Liu, Min; Zhu, Zhan-Tao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-04-25

    Understanding the metabolic mechanism of sterols to produce valuable steroid intermediates in mycobacterium by a noncoding small RNA (sRNA) view is still limited. In the work, RNA-seq was implemented to investigate the noncoding transcriptome of Mycobacterium neoaurum (Mn) in the transformation process of sterols to valuable steroid intermediates, including 9α-hydroxy-4-androstene-3,17-dione (9OHAD), 1,4-androstadiene-3,17-dione (ADD), and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (1,4-BNA). A total of 263 sRNA candidates were predicted from the intergenic regions in Mn. Differential expression of sRNA candidates was explored in the wide type Mn with vs without sterol addition, and the steroid intermediate producing Mn strains vs wide type Mn with sterol addition, respectively. Generally, sRNA candidates were differentially expressed in various strains, but there were still some shared candidates with outstandingly upregulated or downregulated expression in these steroid producing strains. Accordingly, four regulatory networks were constructed to reveal the direct and/or indirect interactions between sRNA candidates and their target genes in four groups, including wide type Mn with vs without sterol addition, 9OHAD, ADD, and BNA producing strains vs wide type Mn with sterol addition, respectively. Based on these constructed networks, several highly focused sRNA candidates were discovered to be prevalent in the networks, which showed comprehensive regulatory roles in various cellular processes, including lipid transport and metabolism, amino acid transport and metabolism, signal transduction, cell envelope biosynthesis and ATP synthesis. To explore the functional role of sRNA candidates in Mn cells, we manipulated the overexpression of candidates 131 and 138 in strain Mn-9OHAD, which led to enhanced production of 9OHAD from 1.5- to 2.3-fold during 6 d' fermentation and a slight effect on growth rate. This study revealed the complex and important regulatory

  4. Free Sterols of the red alga Chondria armata (Kutz.) Okamura

    Digital Repository Service at National Institute of Oceanography (India)

    Govenkar, M.B.; Wahidullah, S.

    . Results and Discussion The analysis of the sterol fraction by 1 H and 13 C NMR indicated it to be a mixture of four major D 5 3b-hydroxy sterols 2 cholest 5-en-3b-ol (choles- terol), 24j-methyl cholest-5,22-diene-3b-ol, 24j-ethyl cholest-5,22-diene-3b-ol....388 9 % 400 23j-Methyl 5a-cholestan-3b-ol C 28 H 50 O 30.759 6.7 % 402 24b-Ethyl cholest-5,22-diene-3b-ol C 29 H 48 O 31.21 4 % 412 24b-Ethyl cholest-5-en-3b-ol C 29 H 50 O 31.790 18.02 % 414 Table II. Mass spectroscopic characteristic of sterol acetates...

  5. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    Science.gov (United States)

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  6. Comparative analysis of sterol acquisition in the oomycetes Saprolegnia parasitica and Phytophthora infestans

    OpenAIRE

    Dahlin, Paul; Srivastava, Vaibhav; Ekengren, Sophia; McKee, Lauren S.; Bulone, Vincent

    2017-01-01

    The oomycete class includes pathogens of animals and plants which are responsible for some of the most significant global losses in agriculture and aquaculture. There is a need to replace traditional chemical means of controlling oomycete growth with more targeted approaches, and the inhibition of sterol synthesis is one promising area. To better direct these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotrophic Saprolegnia parasitica, and the sterol-heter...

  7. Building Synthetic Sterols Computationally - Unlocking the Secrets of Evolution?

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pöyry, Sanja; Vattulainen, Ilpo

    2015-01-01

    Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on chole......Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent...

  8. Sterols of Pneumocystis carinii hominis organisms isolated from human lungs

    DEFF Research Database (Denmark)

    Kaneshiro, E S; Amit, Z; Chandra, Jan Suresh

    1999-01-01

    in conjunction with analyses of chemically synthesized authentic standards. The sterol composition of isolated P. carinii hominis organisms has yet to be reported. If P. carinii from animal models is to be used for identifying potential drug targets and for developing chemotherapeutic approaches to clear human...... infections, it is important to determine whether the 24-alkylsterols of organisms found in rats are also present in organisms in humans. In the present study, sterol analyses of P. carinii hominis organisms isolated from cryopreserved human P. carinii-infected lungs and from bronchoalveolar lavage fluid were...

  9. Biosynthesis and function of chondroitin sulfate.

    Science.gov (United States)

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton.

    Directory of Open Access Journals (Sweden)

    Maike Piepho

    Full Text Available Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.

  11. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been...

  12. Identification of ergosterol and inhibition of sterol synthesis by Δ5-sterols in GL7, an auxotrophic mutant of yeast

    International Nuclear Information System (INIS)

    Dhanuka, I.C.

    1988-01-01

    Synthesis of ergosterol was demonstrated in the GL7 mutant of Saccharomyces cerevisiae. This sterol auxotroph has been thought to lack the ability to synthesize sterols due both to the absence of 2,3-oxidosqualene cyclase and to a heme deficiency eliminating cytochrome P-450 which is required in demethylation at C-14. However, when the exogenous sterol was 5α-cholestan-3β-ol, 5α-cholest-8(14)-en-3β-ol, or 24β-methyl-5α-cholest-8(14)-en-3β-ol, sterol synthesis was found to proceed yielding 1-3 fg/cell of ergosterol. Ergosterol was identified by mass spectroscopy, gas and high performance liquid chromatography, ultraviolet spectroscopy, and radioactive labelling from [ 3 H]acetate. Except for some cholest-5-en-3β-ol (cholesterol) which was derived from the 5α-cholestan-3β-ol, the stanol and the two 8(14)-stenols were not significantly metabolized confirming the absence of an isomerase for migration of the double bond from C-8(14) to C-7. Drastic reduction of ergosterol synthesis to not more than 0.06 fg/cell was observed when the exogenous sterol either had a double bond at C-5, as in the case of cholesterol, or could be metabolized to a sterol with such a bond. Thus, both 5α-cholest-8(9)-en-3β-ol and 5α-cholest-7-en-3β-ol (lathosterol) were converted to cholesta-5,7-dien-3β-ol (7-dehydrocholesterol), and the presence of the latter dienol depressed the level of ergosterol

  13. TM6SF2 and MAC30, new enzyme homologues in sterol metabolism and common metabolic disease.

    Directory of Open Access Journals (Sweden)

    Luis eSanchez-Pulido

    2014-12-01

    Full Text Available Carriers of the Glu167Lys coding variant in the TM6SF2 gene have recently been identified as being more susceptible to non-alcoholic fatty liver disease (NAFLD, yet exhibit lower levels of circulating lipids and hence are protected against cardiovascular disease. Despite the physiological importance of these observations, the molecular function of TM6SF2 remains unknown, and no sequence similarity with functionally characterised proteins has been identified. In order to trace its evolutionary history and to identify functional domains, we embarked on a computational protein sequence analysis of TM6SF2. We identified a new domain, the EXPERA domain, which is conserved among TM6SF, MAC30/TMEM97 and EBP (D8,D7 sterol isomerase protein families. EBP mutations are the cause of chondrodysplasia punctata 2 X-linked dominant (CDPX2, also known as Conradi-Hünermann-Happle syndrome, a defective cholesterol biosynthesis disorder. Our analysis of evolutionary conservation among EXPERA domain-containing families and the previously suggested catalytic mechanism for the EBP enzyme, indicate that TM6SF and MAC30/TMEM97 families are both highly likely to possess, as for the EBP family, catalytic activity as sterol isomerases. This unexpected prediction of enzymatic functions for TM6SF and MAC30/TMEM97 is important because it now permits detailed experiments to investigate the function of these key proteins in various human pathologies, from cardiovascular disease to cancer.

  14. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  15. Co-suppression of sterol-regulatory element binding protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... In Arabidopsis,. At5g35220 gene being sterol regulatory element-binding protein site 2, protease and metalloendopeptidase activity were required for chloroplast development and play a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-.

  16. Sneaking under the toxin surveillance radar: parasitism and sterol ...

    African Journals Online (AJOL)

    This was not simply a reflection of retaining host lipid content because K. micrum contains octadecapentaenoic acid (18:5n3), largely in galactolipids of the chloroplast, whereas Amoebophrya sp. contained little to no 18:5n3. By having a sterol content similar to its host, Amoebophrya sp. is able to avoid cell lysis caused by ...

  17. Sterol-specific membrane interactions with the toxins from ...

    African Journals Online (AJOL)

    The lipophilic toxins from Karlodinium micrum, KmTX, have negative effects on several co-occurring phytoplankton species, yet appear to have no effect on K. micrum itself. One of these compounds, KmTX2, has differing toxicity towards eukaryotic membranes with differing sterol compositions (vertebrate > fungal ...

  18. A Study of the Reactivity of Polyhydroxylated Sterol Derivatives

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Klepetářová, Blanka; Elbert, Tomáš

    2015-01-01

    Roč. 4, č. 8 (2015), s. 808-817 ISSN 2193-5807 R&D Projects: GA AV ČR IAA400550801 Institutional support: RVO:61388963 Keywords : alpha-hydroxyketones * polyhydroxylated compounds * regiospecific reactions * silylation * sterols Subject RIV: CC - Organic Chemistry Impact factor: 3.275, year: 2015

  19. Minor sterols from the sponge Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Three sterols, isolated from the lipid fraction of the sponge Ircinia ramosa were characterised as cholest-5-en-3 beta-ol-7-one (7-oxo cholesterol, 1), cholest 5-23-dien-b beta ol-7-one (7-oxo demosterol, 2) and 24E-ethyl cholest-5-en-3 beta -ol-7...

  20. Sterols from the Lakshadweep sponge, Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Four monohydroxy sterols, viz, (22E,24S)-24-methylcholest-5,22-dien-3(beta)-ol (3), cholesterol (4), 24(Xi)-ethylcholesterol (8) and the corresponding Delta super(4)-3 ketones, viz. (22E,24S)-24-methylcholest-4,22-dien-3-one (1), cholest-4-en-3-one...

  1. Effects of ionizing radiation on the activity of the major hepatic enzymes implicated in bile acid biosynthesis in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Scanff, P.; Grison, St.; Gourmelon, P.; Aigueperse, J.

    2007-01-01

    In the days following high-dose radiation exposure, damage to small intestinal mucosa is aggravated by changes in the bile acid pool reaching the gut. Intestinal bile acid malabsorption, as described classically, may be associated with altered hepatic bile acid biosynthesis, which was the objective of this work. The activity of the main rate-limiting enzymes implicated in the bile acid biosynthesis were evaluated in the days following an 8-Gy γ Co 60 total body irradiation of rats, with concomitant determination of biliary bile acid profiles and intestinal bile acid content. Modifications of biliary bile acid profiles, observed as early as the first post-irradiation day, were most marked at the third and fourth day, and resulted in an increased hydrophobicity index. In parallel, the intestinal bile acids' content was enhanced and hepatic enzymatic activities leading to bile acids were changed. A marked increase of sterol 12-hydroxylase and decrease of oxy-sterol 7-hydroxylase activity was observed at day 3, whereas both cholesterol 7-hydroxylase and oxy-sterol 7-hydroxylase activities were decreased at day 4 after irradiation. These results show, for the first time, radiation-induced modifications of hepatic enzymatic activities implicated in bile acid biosynthesis and suggest that they are mainly a consequence of radiation-altered intestinal absorption, which induces a physiological response of the entero-hepatic bile acid recirculation. (authors)

  2. Enzymology of the Carnitine Biosynthesis Pathway

    NARCIS (Netherlands)

    Strijbis, Karin; Vaz, Frédéric M.; Distel, Ben

    2010-01-01

    The water-soluble zwitterion carnitine is an essential metabolite in eukaryotes required for fatty acid oxidation as it functions as a carrier during transfer of activated acyl and acetyl groups across intracellular membranes. Most eukaryotes are able to synthesize carnitine endogenously, besides

  3. Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation

    African Journals Online (AJOL)

    The anthocyanin biosynthesis pathway is a little complex with branches responsible for the synthesis of a variety of metabolites. In fruit tree crops, during the past decade, many structural genes encoding enzymes in the anthocyanin biosynthetic pathway and various regulatory genes encoding transcription factors that ...

  4. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal.

    Science.gov (United States)

    Behmer, Spencer T

    2017-10-01

    Insects cannot synthesize sterols de novo, but like all eukaryotes they use them as cell membrane inserts where they influence membrane fluidity and rigidity. They also use a small amount for metabolic purposes, most notably as essential precursors for steroid hormones. It has been a long-held view that most insects require a small amount of specific sterol (often cholesterol) for metabolic purposes, but for membrane purposes (where the bulk of sterols are used) specificity in sterol structure was less important. Under this model, it was assumed that insects could tolerate mixed-sterol diets as long as a small amount of cholesterol was available. In the current paper this dogma is overturned, using data from plant-feeding insects that were fed mixed-sterol diets with different amounts and ratios of dietary sterols. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    Science.gov (United States)

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  6. Oleic acid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    VanDusen, W.J.; Jaworski, J.G.

    1986-01-01

    The biosynthesis of fatty acids in cyanobacteria is very similar to the well characterized system found in green plants. However, the initial desaturation of stearic acid in cyanobacteria appears to represent a significant departure from plant systems in which stearoyl-ACP is the exclusive substrate for desaturation. In Anabaena variabilis, the substrate appears to be monoglucosyldiacylglycerol, a lipid not found in plants. The authors examined five different cyanobacteria to determine if the pathway in A. variabilis was generally present in other cyanobacteria. The cyanobacteria studied were A. variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis marina, and Anacystis nidulans. Each were grown in liquid culture, harvested, and examined for stearoyl-ACP desaturase activity or incubated with 14 CO 2 . None of the cyanobacteria contained any stearoyl-ACP desaturase activity in whole homogenates or 105,000g supernatants. All were capable of incorporating 14 CO 2 into monoglucosyldiacylglycerol and results from incubations of 20 min, 1 hr, 1 hr + 10 hr chase were consistent with monoglucosyldiacylglycerol serving as precursor for monogalctosyldiacylglycerol. Thus, initial evidence is consistent with oleic acid biosynthesis occurring by desaturation of stearoyl-monoglucosyldiacylglycerol in all cyanobacteria

  7. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  8. Serum sterol responses to increasing plant sterol intake from natural foods in the Mediterranean diet.

    Science.gov (United States)

    Escurriol, Verónica; Cofán, Montserrat; Serra, Mercè; Bulló, Mónica; Basora, Josep; Salas-Salvadó, Jordi; Corella, Dolores; Zazpe, Itziar; Martínez-González, Miguel A; Ruiz-Gutiérrez, Valentina; Estruch, Ramón; Ros, Emilio

    2009-09-01

    Phytosterols in natural foods are thought to inhibit cholesterol absorption. The Mediterranean diet is rich in phytosterol-containing plant foods. To assess whether increasing phytosterol intake from natural foods was associated with a cholesterol-lowering effect in a substudy of a randomized trial of nutritional intervention with Mediterranean diets for primary cardiovascular prevention (PREDIMED study). One hundred and six high cardiovascular risk subjects assigned to two Mediterranean diets supplemented with virgin olive oil (VOO) or nuts, which are phytosterol-rich foods, or advice on a low-fat diet. Outcomes were 1-year changes in nutrient intake and serum levels of lipids and non-cholesterol sterols. Average phytosterol intake increased by 76, 158 and 15 mg/day in participants assigned VOO, nuts and low-fat diets, respectively. Compared to participants in the low-fat diet group, changes in outcome variables were observed only in those in the Mediterranean diet with nuts group, with increases in intake of fibre, polyunsaturated fatty acids and phytosterols (P natural foods appear to be bioactive in cholesterol lowering.

  9. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    DEFF Research Database (Denmark)

    Klemm, Robin W; Ejsing, Christer S.; Surma, Michal A

    2009-01-01

    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane...... trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN...... than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery....

  10. Biosynthesis of tylophora alkaloids

    International Nuclear Information System (INIS)

    Mulchandani, N.B.; Iyer, S.S.; Badheka, L.P.

    1974-01-01

    Using labelled precursors, biosynthesis of the tylophora alkaloids, tylophorine, tylophorinidine and tylophorinide has been investigated in Tylophora asthmatica plants. The radioactive precursors, phenylalanine-2- 14 C, benzoic acid-1- 14 C, benzoic acid-ring 14 C, acetate-2- 14 C, ornithine-5- 14 C, acetate-2- 14 C, ornithine-5- 14 C and cinnamic acid-2- 14 C were administered to the plants individually by wick technique. Tylophorine was isolated in each case and assayed for its radioactivity to find out the incorporation of the label into it. The results indicate that: (1) phenylalanine via cinnamic acid is an important precursor in the biosynthesis of tylophorine (2) orinithine participates in tylophorine biosynthesis via pyrroline and (3) tylophorinidine may be a direct precursor of tylophorine. (M.G.B.)

  11. Wybutosine biosynthesis: Structural and mechanistic overview

    Science.gov (United States)

    Perche-Letuvée, Phanélie; Molle, Thibaut; Forouhar, Farhad; Mulliez, Etienne; Atta, Mohamed

    2014-01-01

    Over the last 10 years, significant progress has been made in understanding the genetics, enzymology and structural components of the wybutosine (yW) biosynthetic pathway. These studies have played a key role in expanding our understanding of yW biosynthesis and have revealed unexpected evolutionary ties, which are presently being unraveled. The enzymes catalyzing the 5 steps of this pathway, from genetically encoded guanosine to wybutosine base, provide an ensemble of amazing reaction mechanisms that are to be discussed in this review article. PMID:25629788

  12. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease.

    Science.gov (United States)

    Gylling, Helena; Hallikainen, Maarit; Rajaratnam, Radhakrishnan A; Simonen, Piia; Pihlajamäki, Jussi; Laakso, Markku; Miettinen, Tatu A

    2009-03-01

    In postmenopausal coronary artery disease (CAD) women, serum plant sterols are elevated. Thus, we investigated further whether serum plant sterols reflect absolute cholesterol metabolism in CAD as in other populations and whether the ABCG5 and ABCG8 genes, associated with plant sterol metabolism, were related to the risk of CAD. In free-living postmenopausal women with (n = 47) and without (n = 62) CAD, serum noncholesterol sterols including plant sterols were analyzed with gas-liquid chromatography, cholesterol absorption with peroral isotopes, absolute cholesterol synthesis with sterol balance technique, and bile acid synthesis with quantitating fecal bile acids. In CAD women, serum plant sterol ratios to cholesterol were 21% to 26% (P synthesis were reduced. Only in controls were serum plant sterols related to cholesterol absorption (eg, sitosterol; in controls: r = 0.533, P synthesis marker) and lathosterol-cholestanol (relative synthesis-absorption marker) were related to absolute synthesis and absorption percentage (P range from .05 to sterol metabolism is disturbed in CAD women; so serum plant sterols only tended to reflect absolute cholesterol absorption. Other relative markers of cholesterol metabolism were related to the absolute ones in both groups. ABCG5 and ABCG8 genes were not associated with the risk of CAD.

  13. Competition between ergosterol and cholesterol in sterol uptake and intracellular trafficking in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Valachovic, M.; Hronska, L.; Hapala, I.

    1998-01-01

    The fate of internal cholesterol was evaluated in cells grown under various conditions with respect to the amount and the nature of sterols supplemented to the cells. Steryl esters accumulate in stationary phase-yeast cells and they are rapidly hydrolyzed in cells during exponential growth or ergosterol depletion. Cholesterol and other 'unnatural' sterols are esterified more efficiently that native ergosterol and it was speculated that esterification could protect cellular membranes from accumulation of these less optimal sterols. We tested this idea by monitoring the mobility of 14 C-cholesterol between free and esterified fractions in cell supplemented with cholesterol or ergosterol. It was found that cells grown on cholesterol to the stationary phase accumulated up to 80 % of label in the steryl ester fraction. Subsequent growth in sterol-free media caused sterol-depletion of plasma membrane and induced hydrolysis of 14 C- cholesteryl esters and accumulation of the label in free membranous sterol pool.Supplementation of cells with external sterols resulted in a shift in sterol trafficking and in a new accumulation of 14 C-cholesteryl esters. This indicates that the absence of an efficient proof-reading mechanism in plasma membrane that would be able to remove preferentially cholesterol from the free sterol pool in plasma membrane to steryl esters in lipidic particles. The mobility of cholesterol molecules in non-growing cells wa negligible suggesting that active growth or membrane proliferation are required for shifts of sterol molecules between these pools. (authors)

  14. Plant sterol or stanol esters retard lesion formation in LDL receptor-deficient mice independent of changes in serum plant sterols

    NARCIS (Netherlands)

    Plat, Jogchum; Beugels, Ilona; Gijbels, Marion J. J.; de Winther, Menno P. J.; Mensink, Ronald P.

    2006-01-01

    Statins do not always decrease coronary heart disease mortality, which was speculated based on increased serum plant sterols observed during statin treatment. To evaluate plant sterol atherogenicity, we fed low density lipoprotein-receptor deficient (LDLr(+/-)) mice for 35 weeks with Western diets

  15. Building synthetic sterols computationally – unlocking the secrets of evolution?

    Directory of Open Access Journals (Sweden)

    Tomasz eRog

    2015-08-01

    Full Text Available Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include e.g. its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, and its fluorescent analogs in studies of cholesterol transport in cells and tissues. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols nonexistent in nature can be used to elucidate the roles of cholesterol's structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.

  16. Effect of ketoconazole in combination with other inhibitors of sterol synthesis on fungal growth.

    OpenAIRE

    Sud, I J; Feingold, D S

    1985-01-01

    The effect of combination of ketoconazole with other sterol synthesis inhibitors on fungal growth was tested against a variety of fungi selected for resistance to ketoconazole. All of the sterol inhibitors, at concentrations lower than their MICs, caused an increase greater than fourfold in the ketoconazole susceptibility of some fungi. Some of the sterol synthesis inhibitors showed this effect with ketoconazole at levels that may be achieved clinically.

  17. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulate Myelination in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuhei Nishimura

    2016-07-01

    Full Text Available Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS, and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs. Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation

  18. Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole.

    OpenAIRE

    Ghannoum, M A; Spellberg, B J; Ibrahim, A S; Ritchie, J A; Currie, B; Spitzer, E D; Edwards, J E; Casadevall, A

    1994-01-01

    Analysis of the sterol compositions of 13 clinical isolates of the pathogenic yeast Cryptococcus neoformans obtained from five patients with recurring cryptococcal meningitis showed that, unlike Candida albicans, the major sterols synthesized by this yeast were obtusifoliol (range, 21.1 to 68.2%) and ergosterol (range, 0.0 to 46.5%). There was considerable variation in the sterol contents among the 13 isolates, with total sterol contents ranging from 0.31 to 5.9% of dry weight. The isolates f...

  19. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  20. Recent advances in combinatorial biosynthesis for drug discovery

    Directory of Open Access Journals (Sweden)

    Sun H

    2015-02-01

    Full Text Available Huihua Sun,1,* Zihe Liu,1,* Huimin Zhao,1,2 Ee Lui Ang1 1Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore; 2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA *These authors contributed equally to this work Abstract: Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1 precursor-directed biosynthesis; 2 enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3 pathway-level recombination. Recent examples of combinatorial biosynthesis employing these

  1. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215)

    International Nuclear Information System (INIS)

    Plemenitas, A.; Havel, C.M.; Watson, J.A.

    1990-01-01

    Chinese hamster ovary-215 (CHO-215) mutant cells are auxotrophic for cholesterol. Berry and Chang (Berry, D. J., and Chang, T. Y. (1982) Biochemistry 21, 573-580) suggested that the metabolic lesion was at the level of 4-methyl sterol oxidation. However, the observed cellular accumulation of lanosterol was not consistent with a defect at this metabolic site. With the use of a novel Silica Sep Pak sterol separation procedure, we demonstrated that 60-80% of the acetonesoluble lipid radioactivity in [5-3H]mevalonate-labeled CHO-215 cells was incorporated into acidic sterols. 7(8),Cholesten-4 beta-methyl,4 alpha-carboxy,3 beta-ol was the dominant end product. In addition to this acidic sterol, 7(8),24-cholestadien,4 beta-methyl,4 alpha-carboxy,3 beta-ol and 7(8),24-cholestadien,4 alpha-carboxy,3 beta-ol were also isolated. Incubation of cell-free extracts with [3H]7(8)-cholesten-4 beta-methyl, 4 alpha-carboxy,3 beta-ol and pyridine nucleotides confirmed that CHO-215 4-carboxysterol decarboxylase activity was less than 1% of that for wild type cells. Thus, a correspondence between decreased 4-carboxysterol decarboxylase activity and the spectrum of accumulated sterol products by intact CHO-215 cells was demonstrated. No detectable cholesterol was synthesized by CHO-215 cells. 3H-Product accumulation studies demonstrated that 7(8),24-cholestadien, 4 beta-methyl,4 alpha-carboxy,3 beta-ol increased prior to its subsequent saturation at the delta 24 carbon. Furthermore, the steady state ratio for delta 24-saturated acidic sterols/unsaturated acidic sterols was dependent on media cholesterol source and amount. Finally, the accumulated acidic sterol(s) were not regulatory signal molecules for the modulation of 3-hydroxy-3-methyl-glutaryl coenzyme. A reductase activity in response to cholesterol availability

  2. Sterol-derived hormone(s controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16.

    Directory of Open Access Journals (Sweden)

    Vitali Matyash

    2004-10-01

    Full Text Available Upon starvation or overcrowding, Caenorhabditis elegans interrupts its reproductive cycle and forms a specialised larva called dauer (enduring. This process is regulated by TGF-beta and insulin-signalling pathways and is connected with the control of life span through the insulin pathway components DAF-2 and DAF-16. We found that replacing cholesterol with its methylated metabolite lophenol induced worms to form dauer larvae in the presence of food and low population density. Our data indicate that methylated sterols do not actively induce the dauer formation but rather that the reproductive growth requires a cholesterol-derived hormone that cannot be produced from methylated sterols. Using the effect of lophenol on growth, we have partially purified activity, named gamravali, which promotes the reproduction. In addition, the effect of lophenol allowed us to determine the role of sterols during dauer larva formation and longevity. In the absence of gamravali, the nuclear hormone receptor DAF-12 is activated and thereby initiates the dauer formation program. Active DAF-12 triggers in neurons the nuclear import of DAF-16, a forkhead domain transcription factor that contributes to dauer differentiation. This hormonal control of DAF-16 activation is, however, independent of insulin signalling and has no influence on life span.

  3. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    Science.gov (United States)

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  4. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  5. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells

    Science.gov (United States)

    Bach, Thomas J

    2013-01-01

    We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL). By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP) pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1), shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA) pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL. PMID:24555083

  6. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    Science.gov (United States)

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Impact of ice melting on distribution of particulate sterols in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Gutiérrez, Marcelo H.; Riquelme, Pablo; Pantoja, Silvio

    2016-04-01

    We analyzed variability in abundance and composition of sterols in waters of the fjord adjacent to glacier Jorge Montt, one of the fastest retreated glaciers in Patagonian Icefields. The study was carried out between August 2012 and November 2013 under different meltwater scenarios. Distribution of sterols in surface and bottom waters was determined by Gas Chromatography coupled to Mass Spectrometry. Sterol concentration ranged from 18 to 1726 ng/L in surface and bottom waters and was positive correlated with chlorophyll-a concentration. Under high melting conditions in austral summer, surface meltwaters showed high concentrations of sterols and were dominated by methylene-cholesterol, a representative sterol of centric diatoms. In the area near open ocean and in austral autumn, winter and spring in proglacial fjord, lower sterol concentrations in surface waters were accompanied by other microalgae sterols and an increase in relative abundance of plant sterols, evidencing a different source of organic matter. In autumn, when high meltwater flux was also evidenced, presence of stanols and an uncommon tri-unsaturated sterol suggests influence of meltwaters in composition of sterols in the downstream fjord. We conclude that ice melting can modify sterol composition by setting conditions for development of a singular phytoplankton population able to thrive in surface meltwater and by carrying glacier organic matter into Patagonian glacial fjords. In projected ice melting scenario, these changes in organic matter quantity and quality can potentially affect availability of organic substrates for heterotrophic activity and trophic status of glacial fjords. This research was funded by COPAS Sur-Austral (PFB-31)

  8. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  9. Recent advances in the elucidation of enzymatic function in natural product biosynthesis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gao-Yi Tan

    2016-02-01

    Full Text Available With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  10. Recent advances in the elucidation of enzymatic function in natural product biosynthesis [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tan Gao-Yi

    2015-12-01

    Full Text Available With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  11. Terpenoids and Their Biosynthesis in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bagmi Pattanaik

    2015-01-01

    Full Text Available Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.

  12. Terpenoids and Their Biosynthesis in Cyanobacteria

    Science.gov (United States)

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  13. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  14. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments...

  15. Sterols from the soft coral Lobophytum strictum (Alcyonarian) from Lakshadweep sea

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Two polyhydroxy sterols 24(Xi)-methylcholestane-3(beta), 5a, 6(beta), 25-tetrol, 25-monoacetate, and 24S-methylcholestane-3(beta), 4(beta), 5(beta), 25-tetrol-6-one, 25-monoacetate (lo-bosterol), six monohydroxy sterols as well as batyl alcohol...

  16. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation

    Science.gov (United States)

    The acquisition of plant sterols, mediated via elicitins, is required for growth and sporulation of Phytophthora spp. In this paper, we looked at the interaction between elicitins, sterols, and tannins. When ground leaf tissue was added to growth media, P. ramorum growth and sporulation was greates...

  17. Plant sterol intakes and colorectal cancer risk in the Netherlands : cohort study on diet and cancer

    NARCIS (Netherlands)

    Normén, A.L.; Brants, H.A.M.; Voorrips, L.E.; Andersson, H.A.; Brandt, P.A. van den

    2001-01-01

    Background: Plant sterols in vegetable foods might prevent colorectal cancer. Objective: The objective was to study plant sterol intakes in relation to colorectal cancer risk in an epidemiologic study. Design: The study was performed within the framework of the Netherlands Cohort Study on Diet and

  18. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    International Nuclear Information System (INIS)

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-01-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with [4- 14 C]cholesterol or beta-[4- 14 C]sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study

  19. [A systematic review of biosynthesis of poly (3-hydroxypropionate)].

    Science.gov (United States)

    Chang, Le; Zhan, Yuanlong; Liu, Changli

    2018-04-25

    Poly (3-hydroxypropionate) (P3HP), a new member of thermoplastic of family polyhydroxyalkanoates (PHAs), has excellent characteristics of biodegradability and biocompatibility. By now no reports can be found about wild-type bacteria that naturally synthesize P3HP, so the main way to produce P3HP is chemical and biological methods. Chemical method by adding high cost 3-HP monomers or their structural analogs as precursors, has the drawbacks of toxicity, low effectiveness and high cost. Biological method using engineered strain may utilize inexpensive and renewable carbon source to produce P3HP and has gradually become more and more popular. We systematically review here the biosynthesis of P3HP research progress. The advantages and disadvantages of biosynthesis pathways of glycerol pathway, malonyl-CoA pathway and β-alanine pathway were analyzed.

  20. Molecular and biochemical studies of fragrance biosynthesis in rose

    NARCIS (Netherlands)

    Sun, P.

    2017-01-01

    Roses are one of the most popular ornamental plants, whose floral volatiles are not only involved in environmental interactions but also widely used by industries. The biosynthesis of many of these volatiles in roses is not well understood. This thesis describes alternative pathways for the

  1. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels.

    Science.gov (United States)

    Weingärtner, Oliver; Bogeski, Ivan; Kummerow, Carsten; Schirmer, Stephan H; Husche, Constanze; Vanmierlo, Tim; Wagenpfeil, Gudrun; Hoth, Markus; Böhm, Michael; Lütjohann, Dieter; Laufs, Ulrich

    2017-05-01

    This double-blind, randomized, placebo-controlled, cross-over intervention-study was conducted in healthy volunteers to evaluate the effects of plant sterol ester supplemented margarine on cholesterol, non-cholesterol sterols and oxidative stress in serum and monocytes. Sixteen volunteers, average age 34 years, with no or mild hypercholesterolemia were subjected to a 4 week period of daily intake of 3g plant sterols per day supplied via a supplemented margarine on top of regular eating habits. After a wash-out period of one week, volunteers switched groups. Compared to placebo, a diet supplementation with plant sterols increased serum levels of plant sterols such as campesterol (+0.16±0.19mg/dL, p=0.005) and sitosterol (+0.27±0.18mg/dL, psynthesis such as desmosterol (+0.05±0.07mg/dL, p=0.006) as well as lathosterol (+0.11±0.16mg/dL, p=0.012). Cholesterol serum levels, however, were not changed significantly (+18.68±32.6mg/dL, p=0.052). These findings could not be verified in isolated circulating monocytes. Moreover, there was no effect on monocyte activation and no differences with regard to redox state after plant sterol supplemented diet. Therefore, in a population of healthy volunteers with no or mild hypercholesterolemia, consumption of plant sterol ester supplemented margarine results in increased concentrations of plant sterols and cholesterol synthesis markers without affecting total cholesterol in the serum, activation of circulating monocytes or redox state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Live-cell imaging of new polyene sterols for improved analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, M.; Solanko, K. A.; Szomek, M.

    2018-01-01

    brightness, significant photobleaching and excitation/emission in the ultraviolet region. Thus, special equipment is required to image such sterols. Here, we describe synthesis, characterization and intracellular imaging of new polyene sterols containing four conjugated double bonds in the sterol ring system....... We show that such analogues have red-shifted excitation and emission by ∼20 nm compared to DHE or CTL. The red shift was even more pronounced when preventing keto-enol tautomer equilibration by protecting the 3'-hydroxy group with acetate. We show that the latter analogue can be imaged...... on a conventional wide field microscope with a DAPI/filipin filter cube. The new polyene sterols show reduced photobleaching compared to DHE or CTL allowing for improved deconvolution microscopy of sterol containing cellular membranes....

  3. ENDOCANNABINOIDS AND EICOSAMOIDS: BIOSYNTHESIS AND INTERACTIONS WITH IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    Yu. K. Karaman

    2013-01-01

    Full Text Available The review is dedicated to modern concepts of arachidonic acid metabolites, i.e., endocannabinoids and eicosanoids, their biosynthetic pathways, cross-talk mechanisms and participation in immune response. New information from literature and own results include data concerning overlapping enzymatic pathways controlling biosynthesis of endocannabinoids and eicosanoids. Impact of synthetic cannabinoid receptor ligands upon production rates of proinflammatory cytokines and eicosanoids is discussed, as like as relationships among immune system reactivity and expression levels of cannabinoid receptors.

  4. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  5. Final Report on Regulation of Guaiacyl and Syringyl Monolignol Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent L. Chiang

    2006-03-09

    The focus of this research is to understand syringyl monolignol biosynthesis that leads to the formation of syringyl lignin, a type of lignin that can be easily removed during biomass conversion. We have achieved the three originally proposed goals for this project. (1) SAD and CAD genes (enzyme catalytic and kinetic properties) and their functional relevance to CAld5H/AldOMT pathway, (2) spatiotemporal expression patterns of Cald5H, AldOMT, SAD and CAD genes, and (3) functions of CAld5H, AldOMT, and SAD genes in vivo using transgenic aspen. Furthermore, we also found that microRNA might be involved in the upstream regulatory network of lignin biosynthesis and wood formation. The achievements are as below. (1) Based on biochemical and molecular studies, we discovered a novel syringyl-specific alcohol dehydrogenase (SAD) involved in monolignol biosynthesis in angiosperm trees. Through CAld5H/OMT/SAD mediation, syringyl monolignol biosynthesis branches out from guaiacyl pathway at coniferaldehyde; (2) The function of CAld5H gene in this syringyl monolignol biosynthesis pathway also was confirmed in vivo in transgenic Populus; (3) The proposed major monolignol biosynthesis pathways were further supported by the involving biochemical functions of CCR based on a detailed kinetic study; (4) Gene promoter activity analysis also supported the cell-type specific expression of SAD and CAD genes in xylem tissue, consistent with the cell-specific locations of SAD and CAD proteins and with the proposed pathways; (5) We have developed a novel small interfering RNA (siRNA)-mediated stable gene-silencing system in transgenic plants; (6) Using the siRNA and P. trichocarpa transformation/regeneration systems we are currently producing transgenic P. trichocarpa to investigate the interactive functions of CAD and SAD in regulating guaiacyl and syringyl lignin biosynthesis; (7) We have cloned for the first time from a tree species, P. trichocarpa, small regulatory RNAs termed micro

  6. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    Vanmierlo, Tim; Rutten, Kris; van Vark-van der Zee, Leonie C.; Friedrichs, Silvia; Bloks, Vincent W.; Blokland, Arjan; Ramaekers, Frans C.; Sijbrands, Eric; Steinbusch, Harry; Prickaerts, Jos; Kuipers, Folkert; Luetjohann, Dieter; Mulder, Monique

    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations

  7. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    T. Vanmierlo (Tim); K. Rutten (Kris); L.C. van Vark-van der Zee (Leonie); S. Friedrichs (Silvia); V.W. Bloks (Vincent ); A. Blokland (Arjan); F.C.S. Ramaekers (Franks); E.J.G. Sijbrands (Eric); H. Steinbusch; J. Prickaerts (Jos); F. Kuipers (Folkert); D. Lütjohann; M.T. Mulder (Monique)

    2011-01-01

    textabstractPlant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associ/+ mice for

  8. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  9. Distribution of sterol carrier protein2 (SCP2) in rat tissues and evidence for slow turnover in liver and adrenal cortex

    International Nuclear Information System (INIS)

    Kharroubi, A.; Chanderbhan, R.; Fiskum, G.; Noland, B.J.; Scallen, T.J.; Vahouny, G.V.

    1986-01-01

    Sterol carrier protein 2 (SCP 2 ) has been implicated in the regulation of the terminal stages of hepatic cholesterol biosynthesis, and in sterol utilization for adrenal steroid hormone and hepatic bile acid synthesis. In the present studies, a highly sensitive radioimmunoassay, using [ 125 I] SCP 2 , has been developed. Highest levels of SCP 2 were found in rat liver with progressively lower levels in intestinal mucosa, adrenal, kidney, lung and testis. SCP 2 levels were low or absent in heart, brain, skeletal muscle and serum. Liver SCP 2 was largely (44%) associated with the microsomal fraction, while in adrenal, 46% was associated with mitochondria, a distribution which is consistent with the proposed roles for SCP 2 in these tissues. Levels of SCP 2 in AS 30D hepatoma cells were only 5% of those in normal liver. In liver there was no indication of diurnal rhythm of SCP 2 in the cytosol and only slight variation of the microsomal SCP 2 levels. Fasting has only slight effects on SCP 2 concentration of rat liver microsomes and cytosol. Neither ACTH nor cycloheximide treatment of rats had a significant effect on SCP 2 distribution in the adrenal. In general, these findings indicate that SCP 2 has a low turn-over rate

  10. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  11. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  12. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico

    Science.gov (United States)

    Arcega-Cabrera, F.; Velázquez-Tavera, N.; Fargher, L.; Derrien, M.; Noreña-Barroso, E.

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g- 1) and fecal sterols (0.3-1690.18 μg g- 1). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate

  13. In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides.

    Science.gov (United States)

    Kalaitzis, John A; Cheng, Qian; Thomas, Paul M; Kelleher, Neil L; Moore, Bradley S

    2009-03-27

    Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways.

  14. Topical problems in the biosynthesis of red blood pigment

    International Nuclear Information System (INIS)

    Franck, B.

    1982-01-01

    Uroporphyrinogen III plays a key role in the biosynthesis of heme, the red pigment of blood. In vivo studies with specifically 14 C- and 3 H-labeled precursors have revealed that the formation of uroporphyrinogen III in the organism follows several primary and subsidiary pathways. Model experiments on the pattern of biosynthesis have led to simple and effective methods of synthesizing uroporphyrin analogs and have shwon that their production is strongly favored thermodynamically, The biologically important porphyrins thus available permit a mechanistic explanantion of the light-induced dermatoses in porphyria diseases and suggest promising medical applications in diagnosis and therapy. (orig.)

  15. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  16. Structure-activity relationships between sterols and their thermal stability in oil matrix.

    Science.gov (United States)

    Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi

    2018-08-30

    Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism.

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C; Sitbon, Folke

    2011-09-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels.

  18. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    Science.gov (United States)

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  19. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells [v1; ref status: indexed, http://f1000r.es/yx

    Directory of Open Access Journals (Sweden)

    Michael Hartmann

    2013-08-01

    Full Text Available We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL. By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1, shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL.

  20. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1997-06-01

    Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.

  1. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin.

    Science.gov (United States)

    Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin

    2018-01-26

    Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Synthesis of Molecularly Imprinted Polymer for Sterol Separation

    Directory of Open Access Journals (Sweden)

    Yuangsawad Ratanaporn

    2016-01-01

    Full Text Available Molecular imprinted polymer (MIP was prepared by bulk polymerization in acetone using acrylamide as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, stigmasterol as a template and benzoyl peroxide as an initiator. The obtained MIPs were characterized using a scanning electron microscope and a fourier transform infrared spectrophotometer. Performance in sterol adsorption of MIPs prepared under various conditions was investigated using a model solution of phytosterols in heptane, comparing with a nonimprinted polymer (NIP. Statistical analysis revealed that the amounts of crosslinker and template strongly affected the performance of MIP while the amount of solvent slightly affected the performance of MIP. MIP synthesized under the optimal condition had adsorption capacity of 1.28 mgsterols/gads which were 1.13 times of NIP.

  3. Cell-free transfer of sterols by plant fractions

    International Nuclear Information System (INIS)

    Morre, D.J.; Wilkinson, F.E.; Morre, D.M.; Moreau, P.; Sandelius, A.S.; Penel, C.; Greppin, H.

    1990-01-01

    Microsomes from etiolated hypocotyls of soybean or leaves of light-grown spinach radiolabeled in vivo with [ 3 H]acetate or in vitro with [ 3 H]squalene or [ 3 H]cholesterol as donor transferred radioactivity to unlabeled acceptor membranes immobilized on nitrocellulose. Most efficient transfer was with plasma membrane or tonoplast as the acceptor. The latter were highly purified by aqueous two-phase partition (plasma membrane) and preparative free-flow electrophoresis (tonoplast and plasma membrane). Plasma membrane- and tonoplast-free microsomes and purified mitochondria were less efficient acceptors. Sterol transfer was verified by thin-layer chromatography of extracted lipids. Transfer was time- and temperature-dependent, required ATP but was not promoted by cytosol. The nature of the donor (endoplasmic reticulum, Golgi apparatus or both) and of the transfer mechanism is under investigation

  4. Biosynthesis and metabolic fate of phenylalanine in conifers

    Directory of Open Access Journals (Sweden)

    María Belén Pascual

    2016-07-01

    Full Text Available The amino acid phenylalanine (Phe is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  5. Biosynthesis and Metabolic Fate of Phenylalanine in Conifers.

    Science.gov (United States)

    Pascual, María B; El-Azaz, Jorge; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The amino acid phenylalanine (Phe) is a critical metabolic node that plays an essential role in the interconnection between primary and secondary metabolism in plants. Phe is used as a protein building block but it is also as a precursor for numerous plant compounds that are crucial for plant reproduction, growth, development, and defense against different types of stresses. The metabolism of Phe plays a central role in the channeling of carbon from photosynthesis to the biosynthesis of phenylpropanoids. The study of this metabolic pathway is particularly relevant in trees, which divert large amounts of carbon into the biosynthesis of Phe-derived compounds, particularly lignin, an important constituent of wood. The trunks of trees are metabolic sinks that consume a considerable percentage of carbon and energy from photosynthesis, and carbon is finally immobilized in wood. This paper reviews recent advances in the biosynthesis and metabolic utilization of Phe in conifer trees. Two alternative routes have been identified: the ancient phenylpyruvate pathway that is present in microorganisms, and the arogenate pathway that possibly evolved later during plant evolution. Additionally, an efficient nitrogen recycling mechanism is required to maintain sustained growth during xylem formation. The relevance of phenylalanine metabolic pathways in wood formation, the biotic interactions, and ultraviolet protection is discussed. The genetic manipulation and transcriptional regulation of the pathways are also outlined.

  6. The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease

    Science.gov (United States)

    Sabeva, Nadezhda S.; Liu, Jingjing; Graf, Gregory A.

    2014-01-01

    Purpose of review This review summarizes recent developments in the activity, regulation, and physiology of the ABCG5 ABCG8 (G5G8) transporter and the use of its xenobiotic substrates, phytosterols, as cholesterol lowering agents in the treatment of cardiovascular disease. Recent progress has significant implications for the role of G5G8 and its substrates in complications associated with features of the metabolic syndrome. Recent findings Recent reports expand the clinical presentation of sitosterolemia to include platelet and adrenal dysfunction. The G5G8 sterol transporter is critical to hepatobiliary excretion of cholesterol under nonpathological conditions and has been linked to the cholesterol gallstone susceptibility. Finally, the cardiovascular benefits of cholesterol lowering through the use of phytosterol supplements were offset by vascular dysfunction, suggesting that alternative strategies to reduced cholesterol absorption offer greater benefit. Summary Insulin resistance elevates G5G8 and increases susceptibility to cholesterol gallstones. However, this transporter is critical for the exclusion of phytosterols from the absorptive pathways in the intestine. Challenging the limits of this protective mechanism through phytosterol supplementation diminishes the cardioprotective benefits of cholesterol lowering in mouse models of cardiovascular disease. PMID:19306529

  7. Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid.

    Science.gov (United States)

    McReynolds, Melanie R; Wang, Wenqing; Holleran, Lauren M; Hanna-Rose, Wendy

    2017-07-07

    NAD + biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD + biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD + biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD + biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD + biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD + from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD + levels and partially reversed NAD + -dependent phenotypes caused by mutation of pnc-1 , which encodes a nicotinamidase required for NAD + salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD + homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD + biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD + biosynthesis creates novel possibilities for manipulating NAD + biosynthetic pathways, which is key for the future of therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Multicomponent synthesis of 4,4-dimethyl sterol analogues and their effect on eukaryotic cells.

    Science.gov (United States)

    Alonso, Fernando; Cirigliano, Adriana M; Dávola, María Eugenia; Cabrera, Gabriela M; García Liñares, Guadalupe E; Labriola, Carlos; Barquero, Andrea A; Ramírez, Javier A

    2014-06-01

    Most sterols, such as cholesterol and ergosterol, become functional only after the removal of the two methyl groups at C-4 from their biosynthetic precursors. Nevertheless, some findings suggest that 4,4-dimethyl sterols might be involved in specific physiological processes. In this paper we present the synthesis of a collection of analogues of 4,4-dimethyl sterols with a diamide side chain and a preliminary analysis of their in vitro activity on selected biological systems. The key step for the synthesis involves an Ugi condensation, a versatile multicomponent reaction. Some of the new compounds showed antifungal and cytotoxic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Reduced absorption and enhanced synthesis of cholesterol in patients with cystic fibrosis: a preliminary study of plasma sterols.

    Science.gov (United States)

    Gelzo, Monica; Sica, Concetta; Elce, Ausilia; Dello Russo, Antonio; Iacotucci, Paola; Carnovale, Vincenzo; Raia, Valeria; Salvatore, Donatello; Corso, Gaetano; Castaldo, Giuseppe

    2016-09-01

    Low cholesterol is typically observed in the plasma of patients with cystic fibrosis (CF) contrasting with the subcellular accumulation of cholesterol demonstrated in CF cells and in mice models. However, the homeostasis of cholesterol has not been well investigated in patients with CF. We studied the plasma of 26 patients with CF and 33 unaffected controls campesterol and β-sitosterol as markers of intestinal absorption and lathosterol as a marker of de novo cholesterol biosynthesis by gas chromatography (GC-FID and GC-MS). Plasma campesterol and β-sitosterol results were significantly (p=0.01) lower while plasma lathosterol was significantly higher (p=0.001) in patients with CF as compared to control subjects. Plasma cholesterol results were significantly lower (p=0.01) in CF patients. Our data suggest that the impaired intestinal absorption of exogenous sterols in patients with CF stimulates the endogenous synthesis of cholesterol, but the levels of total cholesterol in plasma remain lower. This may be due to the CFTR dysfunction that reduces cholesterol blood excretion causing the accumulation of cholesterol in liver cells and in other tissues contributing to trigger CF chronic inflammation.

  10. Zincophorin – biosynthesis in Streptomyces griseus and antibiotic properties

    Directory of Open Access Journals (Sweden)

    Walther, Elisabeth

    2016-11-01

    Full Text Available Zincophorin is a polyketide antibiotic that possesses potent activity against Gram-positive bacteria, including human pathogens. While a number of total syntheses of this highly functionalized natural product were reported since its initial discovery, the genetic basis for the biosynthesis of zincophorin has remained unclear. In this study, the co-linearity inherent to polyketide pathways was used to identify the zincophorin biosynthesis gene cluster in the genome of the natural producer HKI 0741. Interestingly, the same locus is fully conserved in the streptomycin-producing actinomycete IFO 13350, suggesting that the latter bacterium is also capable of zincophorin biosynthesis. Biological profiling of zincophorin revealed a dose-dependent inhibition of the Gram-positive bacterium . The antibacterial effect, however, is accompanied by cytotoxicity. Antibiotic and cytotoxic activities were completely abolished upon esterification of the carboxylic acid group in zincophorin.

  11. Purine biosynthesis de novo by lymphocytes in gout

    International Nuclear Information System (INIS)

    Kamoun, P.; Chanard, J.; Brami, M.; Funck-Brentano, J.L.

    1978-01-01

    A method of measurement in vitro of purine biosynthesis de novo in human circulating blood lymphocytes is proposed. The rate of early reactions of purine biosynthesis de novo was determined by the incorporation of [ 14 C]formate into N-formyl glycinamide ribonucleotide when the subsequent reactions of the metabolic pathway were completely inhibited by the antibiotic azaserine. Synthesis of 14 C-labelled N-formyl glycinamide ribonucleotide by lymphocytes was measured in healthy control subjects and patients with primary gout or hyperuricaemia secondary to renal failure, with or without allopurinol therapy. The average synthesis was higher in gouty patients without therapy than in control subjects, but the values contained overlap the normal range. In secondary hyperuricaemia the synthesis was at same value as in control subjects. These results are in agreement with the inconstant acceleration of purine biosynthesis de novo in gouty patients as seen by others with measurement of [ 14 C]glycine incorporation into urinary uric acid. (author)

  12. Methoxypyrazines biosynthesis and metabolism in grape: A review.

    Science.gov (United States)

    Lei, Yujuan; Xie, Sha; Guan, Xueqiang; Song, Changzheng; Zhang, Zhenwen; Meng, Jiangfei

    2018-04-15

    This review summarizes research on the discovery, biosynthesis, accumulation, transport, and metabolism of 3-alkyl-2-methoxypyrazines (MPs) in grape. The MPs are a family of potent volatile compounds distributed throughout biological kingdoms. These compounds impart herbaceous/green/vegetal sensory attributes to certain varieties of wine. Generally, high levels of MPs in wine are derived mainly from the corresponding grapes. Although two pathways for MPs biosynthesis have been proposed, only the final step and the enzymes that catalyze it has been confirmed in grape, and the metabolic intermediates and key enzymes involved in other steps are still unknown. The limited understanding of MPs metabolism has restricted research on these compounds, and some empirical results cannot be explained by the current knowledge of MPs metabolism. This review provides insights into research on MPs biosynthesis and metabolism, and proposes directions for further research on this important class of flavour/odour compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Bo [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Song, Youngwoo; Kim, Changhee [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-03-07

    Highlights: • Kirenol inhibits the adipogenic transcription factors and lipogenic enzymes. • Kirenol stimulates the Wnt/β-catenin signaling pathway components. • Kirenol inhibits adipogenesis through activation of the Wnt/β-catenin signaling pathway. - Abstract: Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/β-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/β-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), β-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3β (GSK3β) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of β-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/β-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.

  14. Fatty acid and sterol composition of fenugreek seed (Trigonella foenum-graecum L.

    Directory of Open Access Journals (Sweden)

    Mustafa Kıralan

    2017-12-01

    Full Text Available Oil content, fatty acid and sterol composition of fenugreek seeds obtained from three different provinces were investigated. Oil was obtained from fenugreek seeds by solvent extraction and oil content was determined between 7.01-8.82%. Fenugreek seed oils were determined to be rich of unsaturated fatty acids according to gas chromatography results. Especially, linoleic acid was the most important of the fatty acids and varied between 45.10-46.19%. Total sterol content of oils varied from 8 681.54 to 9 591.70 ppm. The major sterol was β- sitosterol, and it was found to be between 59.94-68.24% of the total sterols.

  15. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis.

    Science.gov (United States)

    Korber, Martina; Klein, Isabella; Daum, Günther

    2017-12-01

    Sterols are essential lipids of all eukaryotic cells, appearing either as free sterols or steryl esters. Besides other regulatory mechanisms, esterification of sterols and hydrolysis of steryl esters serve to buffer both an excess and a lack of free sterols. In this review, the esterification process, the storage of steryl esters and their mobilization will be described. Several model organisms are discussed but the focus was set on mammals and the yeast Saccharomyces cerevisiae. The contribution of imbalanced cholesterol homeostasis to several human diseases, namely Wolman disease, cholesteryl ester storage disease, atherosclerosis and Alzheimer's disease, Niemann-Pick type C and Tangier disease is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 46_ _267 - 278__Aminu- Biosynthesis

    African Journals Online (AJOL)

    User

    ISSN 2006 – 6996. BIOSYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDY OF .... the excitation of surface Plasmon vibration with. AgNPs. ... Thin films of the sample were prepared on a carbon ... The resulting film on the SEM.

  17. Traditional herbal medicines: potential degradation of sterols and sterolins by microbial contaminants

    OpenAIRE

    S. Govender; M. van de Venter; D. du Plessis-Stoman; T. G. Downing

    2010-01-01

    Medicinal plants with a high content of sterols and sterolins, such as Bulbine natalensis (rooiwortel) and Hypoxis hemerocallidea (African potato), are commonly and inappropriately used in South Africa for the treatment of HIV/AIDS due to the inaccessibility of antiretroviral drugs. This study investigated the presence of active compounds, such as sterols and sterolins, in the herbal medicines. The research was carried out in the Nelson Mandela Metrop...

  18. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....

  19. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    Science.gov (United States)

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as

  1. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast

    DEFF Research Database (Denmark)

    Burr, Risa; Stewart, Emerson V; Shao, Wei

    2016-01-01

    -binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis....... In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid...

  2. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. In Vitro and In Vivo Anticancer Effects of Sterol Fraction from Red Algae Porphyra dentata

    Directory of Open Access Journals (Sweden)

    Katarzyna Kazłowska

    2013-01-01

    Full Text Available Porphyra dentata, an edible red macroalgae, is used as a folk medicine in Asia. This study evaluated in vitro and in vivo the protective effect of a sterol fraction from P. dentata against breast cancer linked to tumor-induced myeloid derived-suppressor cells (MDSCs. A sterol fraction containing cholesterol, β-sitosterol, and campesterol was prepared by solvent fractionation of methanol extract of P. dentata  in silica gel column chromatography. This sterol fraction in vitro significantly inhibited cell growth and induced apoptosis in 4T1 cancer cells. Intraperitoneal injection of this sterol fraction at 10 and 25 mg/kg body weight into 4T1 cell-implanted tumor BALB/c mice significantly inhibited the growth of tumor nodules and increased the survival rate of mice. This sterol fraction significantly decreased the reactive oxygen species (ROS and arginase activity of MDSCs in tumor-bearing mice. Therefore, the sterol fraction from P. dentata showed potential for protecting an organism from 4T1 cell-based tumor genesis.

  4. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    Science.gov (United States)

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  5. Glycolipid biosynthesis in cyanobacteria

    International Nuclear Information System (INIS)

    Van Dusen, W.J.; Jaworski, J.G.

    1987-01-01

    The biosynthesis of monogalactosyldiacyl-glycerol (MGDG) was studied in five different cyanobacteria. Previous work has shown Anabaena variabilis to synthesize both MGDG and monoglucosyl-diacylglycerol (MG1cDG) with MG1cDG being the precursor of MGDG. They have examined four other cyanobacteria to determine if a similar relationship exists. The cyanobacteria studied were Anabaena variabilis, Chlorogloeopsis sp., Schizothrix calcicola, Anacystis nidulans, and Anacystis marina. Each were grown in liquid culture and lipids were labeled with 14 C]CO 2 for 20 min., 1.0 hr, 1.0 hr + 10 hr chase. Glycolipids were analyzed by initial separation of MGDG and MG1cDG by TLC followed by further analysis by HPLC. Complete separation of molecular species was obtained isocratically on an ODS column. All of the cyanobacteria labeled 16-C and 18-C fatty acids except for A. marina which labeled only 14-C and 16-C fatty acids. Desaturation of the fatty acids could be observed in the 1.0 hr and chase experiments. All were capable of labeling both MG1cDG and MGDG with the precursor-product relationship being observed. There does not appear to be a direct relationship between the epimerization of the sugar moiety and fatty acid desaturation

  6. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  7. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  8. Engineering of Glucosinolate Biosynthesis

    DEFF Research Database (Denmark)

    Møldrup, Morten Emil; Salomonsen, Bo; Halkier, Barbara Ann

    2012-01-01

    -efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana...... here will be beneficial to elucidate and engineer other plant biosynthetic pathways....

  9. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in sorghum bicolor

    Science.gov (United States)

    The phenylpropanoid biosynthesis pathway that generates lignin subunits represents a significant target to alter the abundance and composition of lignin. The major regulators of phenylpropanoid metabolism are myb transcription factors, which have been shown to modulate secondary cell wall compositi...

  10. Differential control of the cholesterol biosynthetic pathway in tumor versus liver: evidence for decontrolled tumor cholesterogenesis in a cell-free system

    International Nuclear Information System (INIS)

    Azrolan, N.

    1987-01-01

    Cholesterol biosynthesis was characterized in cell-free post-mitochondrial supernatant (PMS) systems prepared from both normal rat liver and Morris hepatoma 3924A. Per cell, the rate of cholesterol synthesis from either 14 C-citrate of 14 -acetate in the hepatoma system was 9-fold greater than that observed in the liver system. Furthermore, the ratio of sterol-to-fatty acid synthesis rates from 14 C-citrate was more than 3-fold greater in the tumor than in the normal liver system. Incubations using radiolabeled acetate and mevalonate have demonstrated the loss of a normally rate-limiting control site within the early portion of the cholesterol biosynthetic pathway in the tumor system. Upon analysis of the steady-state levels of early lipogenic intermediates, the specific site of decontrol in the tumor was identified as the 3-hydroxy-3-methylglutaryl-CoA → mevalonate site of this pathway. In contrast, this reaction appeared to retain its rate-limiting properties in the cell-free system from normal liver

  11. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    Science.gov (United States)

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  12. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  13. Biosynthesis of anthocyanins and their regulation in colored grapes.

    Science.gov (United States)

    He, Fei; Mu, Lin; Yan, Guo-Liang; Liang, Na-Na; Pan, Qiu-Hong; Wang, Jun; Reeves, Malcolm J; Duan, Chang-Qing

    2010-12-09

    Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  14. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  15. Phase behaviour of sterols and vitamins in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Gerszt R.

    2000-01-01

    Full Text Available Extraction with supercritical solvents has been used in different areas, such as petroleum desasphaltation, descaffeination of coffee and tea and in the separation of other types of natural products. The supercritical solvent most frequently utilized in the extraction of natural products is carbon dioxide (CO2 due to its several advantages over other solvents such as low cost, atoxicity and volatility. The design, evaluation and optimization of a supercritical extraction that is based on phase equilibrium require phase equilibrium data. This type of data is very scarce for natural compounds like sterols and vitamins. These natural compounds are produced synthetically, but nowadays interest in their extraction from natural sources is increasing. Therefore, the objective of this work is to study the thermodynamic modelling equilibrium of systems containing vitamins A, D, E and K, using the predictive LCVM model. The sensitivity of critical properties in the calculation of the phase behavior was also studied. This study proved that the choice of a group contribution method to calculate thermodynamic properties is very important for obtaining good results in the phase equilibrium calculations.

  16. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols.

    Science.gov (United States)

    Midzak, Andrew; Papadopoulos, Vassilios

    2014-09-01

    Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  18. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  19. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters

    NARCIS (Netherlands)

    Lin, Y.; Knol, D.; Menéndez-Carreño, M.; Blom, W.A.M.; Matthee, J.; Janssen, H.G.; Trautwein, E.A.

    2016-01-01

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median

  20. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    Science.gov (United States)

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  1. ODORANT1 Regulates Fragrance Biosynthesis in Petunia FlowersW⃞

    Science.gov (United States)

    Verdonk, Julian C.; Haring, Michel A.; van Tunen, Arjen J.; Schuurink, Robert C.

    2005-01-01

    Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production and emission are regulated is unknown. By targeted transcriptome analyses, we identified ODORANT1 (ODO1), a member of the R2R3-type MYB family, as a candidate for the regulation of volatile benzenoids in Petunia hybrida cv W115 (Mitchell) flowers. These flowers are only fragrant in the evening and at night. Transcript levels of ODO1 increased before the onset of volatile emission and decreased when volatile emission declined. Downregulation of ODO1 in transgenic P. hybrida Mitchell plants strongly reduced volatile benzenoid levels through decreased synthesis of precursors from the shikimate pathway. The transcript levels of several genes in this pathway were reduced by suppression of ODO1 expression. Moreover, ODO1 could activate the promoter of the 5-enol-pyruvylshikimate-3-phosphate synthase gene. Flower pigmentation, which is furnished from the same shikimate precursors, was not influenced because color and scent biosynthesis occur at different developmental stages. Our studies identify ODO1 as a key regulator of floral scent biosynthesis. PMID:15805488

  2. Regulation of cell wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  3. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts

    DEFF Research Database (Denmark)

    Berzina, Zane; Solanko, Lukasz M; Mehadi, Ahmed S

    2018-01-01

    /LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous...... but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM...

  4. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  5. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    Science.gov (United States)

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  6. Tyrosine biosynthesis, metabolism, and catabolism in plants.

    Science.gov (United States)

    Schenck, Craig A; Maeda, Hiroshi A

    2018-05-01

    L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Studies on the Utilization, Metabolism and Function of Sterols in the House-Fly, Musca Domestica; Utilisation. Metabolisme et fonctions des sterols chez la mouche domestique (Musca Domestica); Izuchenie usvoeniya, metabolizma i funktsii sterinov v organizme domashnej mukhi Musca Domestica; Estudios sobre la asimilacion, el metabolismo y la funcion de los esteroles in la mosca comun (Musca Domestica)

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, W. E. [United States Department of Agriculture, Agricultural Research Service, Entomology Research Division, Beltsville, MD (United States)

    1963-09-15

    Insects generally have been found to require a dietary source of sterol for normal larval growth and metamorphosis. Our work has pointed to two additional physiological roles for sterols in the housefly, Musca domestica L.: (1) A dietary source of sterol is essential for sustained viable egg production in the female fly; on a sterol-deficient diet eggs are produced but hatch and viability are low. (2) Cholesterol is also involved in the mobilization and utilization of nutrient reserves associated with the initiation of ovarian maturation in the female fly. The quantitative sterol requirements for the above physiological processes and the metabolic conversions that occur during growth, metamorphosis and reproduction have been studied in this insect, using C{sup 14}- and H{sup 3}-labelled sterols in conjunction with a variety of analytical tools, including reverse isotope dilution, gasliquid chromatography and spectroscopy, and employing aseptic rearing techniques and semi-defined larval and Adult diets. Both C{sup 14}-cholesterol and H{sup 3}-{beta}- sitosterol have been used as a source df sterol in either the larval or the adult diet of the house fly, and the pattern of utilization and metabolism was found to be almost identical for these two sterols. However, there was no detectable conversion of {beta}-sitosterol to cholesterol. Sub-minimal quantities of cholesterol have also been used in the larval diet in combination with ''sparing sterols'' such as choies tanol, which will fulfill in part but not entirely the sterol requirement of this insect. The utilization and fate of the 'sparing sterol' has been investigated using C{sup 14} cholestanol, and the metabolism of the minute quantity of essential cholesterol is currently under study using high-specific-activity C{sup 14} cholesterol. - Other species of insects, including the German cockroach (Blattella germanica), have been examined in relation to the patterns of utilization and the metabolic pathways for

  8. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  9. Sterol composition of shellfish species commonly consumed in the United States

    Directory of Open Access Journals (Sweden)

    Katherine M. Phillips

    2012-10-01

    Full Text Available Background: Shellfish can be a component of a healthy diet due to a low fat and high protein content, but the cholesterol content of some species is often cited as a reason to limit their consumption. Data on levels of non-cholesterol sterols in commonly consumed species are lacking. Objective: Shellfish were sampled and analyzed to update sterol data in the United States Department of Agriculture (USDA National Nutrient Database for Standard Reference. Design: Using a nationwide sampling plan, raw shrimp and sea scallops, canned clams, and steamed oysters, blue crab, and lobster were sampled from 12 statistically selected supermarkets across the United States in 2007-08. For each species, four composites were analyzed, each comprised of samples from three locations; shrimp and scallops from six single locations were also analyzed separately. Using validated analytical methodology, 14 sterols were determined in total lipid extracts after saponification and derivatization to trimethylsilyethers, using gas chromatography for quantitation and mass spectrometry for confirmation of components. Results: Crab, lobster, and shrimp contained significant cholesterol (96.2–27 mg/100 g; scallops and clams had the lowest concentrations (23.4–30.1 mg/100 g. Variability in cholesterol among single-location samples of shrimp was low. The major sterols in the mollusks were brassicasterol (12.6–45.6 mg/100 g and 24-methylenecholesterol (16.7–41.9 mg/100 g, with the highest concentrations in oysters. Total non-cholesterol sterols were 46.5–75.6 mg/100 g in five single-location scallops samples, but 107 mg/100 g in the sixth, with cholesterol also higher in that sample. Other prominent non-cholesterol sterols in mollusks were 22-dehydrocholesterol, isofucosterol, clionasterol, campesterol, and 24-norcholesta-5,22-diene-3β-ol (4–21 mg/100 g. Conclusions: The presence of a wide range of sterols, including isomeric forms, in shellfish makes the analysis

  10. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease.

    Science.gov (United States)

    Gylling, Helena; Plat, Jogchum; Turley, Stephen; Ginsberg, Henry N; Ellegård, Lars; Jessup, Wendy; Jones, Peter J; Lütjohann, Dieter; Maerz, Winfried; Masana, Luis; Silbernagel, Günther; Staels, Bart; Borén, Jan; Catapano, Alberico L; De Backer, Guy; Deanfield, John; Descamps, Olivier S; Kovanen, Petri T; Riccardi, Gabriele; Tokgözoglu, Lale; Chapman, M John

    2014-02-01

    This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled

  11. Changes in the sterol compositions of milk thistle oil (Silybium marianum L.) during seed maturation

    Energy Technology Data Exchange (ETDEWEB)

    Harrabi, S.; Curtis, S.; Hayet, F.; Mayer, P.M.

    2016-07-01

    In this study, the total lipid content and sterol compositions were determined during the development of milk thistle seeds. The oil content increased to a maximum value of 36±1.7% and then declined to reach a value of 30.5±0.9% at full maturity. The sterol content of milk thistle seeds was affected by the ripening degree of the seeds. At the early stages of seed maturation, Δ7 -stigmastenol was the most abundant sterol followed by β-sitosterol. However, at full maturity, β-sitosterol was the most predominant sterol (46.50±0.8%). As the seed developed, campesterol and stigmasterol amounts increased, while Δ7 -avenasterol content decreased. It can be concluded that milk thistle seed oil has a characteristic sterol pattern comparable to the ones elucidated for olive oil and corn oil. The extracted oil from milk thistle seeds is rich in phytosterols and could be used in foodpreparation and human nutrition. (Author)

  12. Traditional herbal medicines: potential degradation of sterols and sterolins by microbial contaminants

    Directory of Open Access Journals (Sweden)

    S. Govender

    2010-01-01

    Full Text Available Medicinal plants with a high content of sterols and sterolins, such as Bulbine natalensis (rooiwortel and Hypoxis hemerocallidea (African potato, are commonly and inappropriately used in South Africa for the treatment of HIV/AIDS due to the inaccessibility of antiretroviral drugs. This study investigated the presence of active compounds, such as sterols and sterolins, in the herbal medicines. The research was carried out in the Nelson Mandela Metropole area. The effect of microbial contaminants isolated from the medicines on sterols and sterolins of rooiwortel extracts was assessed. Sterols and sterolins were detected in rooiwortel, raw African potatoes and one ready-made mixture. Co-incubation of rooiwortel with bacteria (Bacillus spp. and Pseudomonas putida and fungi (Aspergillus spp., Penicillium spp. and Mucor spp. that were isolated from these samples increased the rate of degradation of sterols and sterolins over time, with slower degradation at 4°C than at 28°C.

  13. Plasma sterols and depressive symptom severity in a population-based cohort.

    Directory of Open Access Journals (Sweden)

    Basar Cenik

    Full Text Available Convergent evidence strongly suggests major depressive disorder is heterogeneous in its etiology and clinical characteristics. Depression biomarkers hold potential for identifying etiological subtypes, improving diagnostic accuracy, predicting treatment response, and personalization of treatment. Human plasma contains numerous sterols that have not been systematically studied. Changes in cholesterol concentrations have been implicated in suicide and depression, suggesting plasma sterols may be depression biomarkers. Here, we investigated associations between plasma levels of 34 sterols (measured by mass spectrometry and scores on the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR16 scale in 3117 adult participants in the Dallas Heart Study, an ethnically diverse, population-based cohort. We built a random forest model using feature selection from a pool of 43 variables including demographics, general health indicators, and sterol concentrations. This model comprised 19 variables, 13 of which were sterol concentrations, and explained 15.5% of the variation in depressive symptoms. Desmosterol concentrations below the fifth percentile (1.9 ng/mL, OR 1.9, 95% CI 1.2-2.9 were significantly associated with depressive symptoms of at least moderate severity (QIDS-SR16 score ≥10.5. This is the first study reporting a novel association between plasma concentrations cholesterol precursors and depressive symptom severity.

  14. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    Biotechnology Division, Applied Science Department, University of ... Abstract. In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic ... example of the biosynthesis using fungi was that the cell-.

  15. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  16. Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla.

    Science.gov (United States)

    Gu, Fenglin; Chen, Yonggan; Hong, Yinghua; Fang, Yiming; Tan, Lehe

    2017-12-01

    High-performance liquid chromatography-mass spectrometry (LC-MS) was used for comprehensive metabolomic fingerprinting of vanilla fruits prepared from the curing process. In this study, the metabolic changes of vanilla pods and vanilla beans were characterized using MS-based metabolomics to elucidate the biosynthesis of vanillin. The vanilla pods were significantly different from vanilla beans. Seven pathways of vanillin biosynthesis were constructed, namely, glucovanillin, glucose, cresol, capsaicin, vanillyl alcohol, tyrosine, and phenylalanine pathways. Investigations demonstrated that glucose, cresol, capsaicin, and vanillyl alcohol pathway were detected in a wide range of distribution in microbial metabolism. Thus, microorganisms might have participated in vanillin biosynthesis during vanilla curing. Furthermore, the ion strength of glucovanillin was stable, which indicated that glucovanillin only participated in the vanillin biosynthesis during the curing of vanilla.

  17. Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul; Lein, Wolfgang

    2004-01-01

    Purine nucleotides are essential components to sustain plant growth and development. In plants they are either synthesized "de novo" during the process of purine biosynthesis or are recycled from purine bases and purine nucleosides throughout the salvage pathway. Comparison between animals...... biosynthesis pathway in plants, and the in planta functional analysis of PRPP (5-phosphoribosyl-1-pyrophoshate) amidotransferase (ATase), catalyzing the first committed step of the "de novo" purine biosynthesis. The cloning of the genes involved in the purine biosynthesis pathway was attained by a screening...... strategy with heterologous cDNA probes and by using S. cerevisiae mutants for complementation. Southern hybridization showed a complex genomic organization for these genes in solanaceous species and their organ- and developmental specific expression was analyzed by Northern hybridization. The specific role...

  18. Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of Huntington's Disease: A Targeted GC-MS/MS Sterol Analysis.

    Science.gov (United States)

    Kreilaus, Fabian; Spiro, Adena S; Hannan, Anthony J; Garner, Brett; Jenner, Andrew M

    2015-01-01

    Cholesterol has essential functions in neurological processes that require tight regulation of synthesis and metabolism. Perturbed cholesterol homeostasis has been demonstrated in Huntington's disease, however the exact role of these changes in disease pathogenesis is not fully understood. This study aimed to comprehensively examine changes in cholesterol biosynthetic precursors, metabolites and oxidation products in the striatum and cortex of the R6/1 transgenic mouse model of Huntington's disease. We also aimed to characterise the progression of the physical phenotype in these mice. GC-MS/MS was used to quantify a broad range of sterols in the striatum and cortex of R6/1 and wild type mice at 6, 12, 20, 24 and 28 weeks of age. Motor dysfunction was assessed over 28 weeks using the RotaRod and the hind-paw clasping tests. 24(S)-Hydroxycholesterol and 27-hydroxycholesterol were the major cholesterol metabolites that significantly changed in R6/1 mice. These changes were specifically localised to the striatum and were detected at the end stages of the disease. Cholesterol synthetic precursors (lathosterol and lanosterol) were significantly reduced in the cortex and striatum by 6 weeks of age, prior to the onset of motor dysfunction, as well as the cognitive and affective abnormalities previously reported. Elevated levels of desmosterol, a substrate of delta(24)-sterol reductase (DHCR24), were also detected in R6/1 mice at the end time-point. Female R6/1 mice exhibited a milder weight loss and hind paw clasping phenotype compared to male R6/1 mice, however, no difference in the brain sterol profile was detected between sexes. Several steps in cholesterol biosynthetic and metabolic pathways are differentially altered in the R6/1 mouse brain as the disease progresses and this is most severe in the striatum. This provides further insights into early molecular mediators of HD onset and disease progression and identifies candidate molecular targets for novel therapeutic

  19. Transcriptional Responses and Gentiopicroside Biosynthesis in Methyl Jasmonate-Treated Gentiana macrophylla Seedlings.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Cao

    Full Text Available Gentiana macrophylla, a medicinal plant with significant pharmacological properties, contains the bioactive compound gentiopicroside. Methyl jasmonate (MeJA is an effective elicitor for enhancing the production of such compounds. However, little is known about MeJA-mediated biosynthesis of gentiopicroside. We investigated this phenomenon as well as gene expression profiles to determine the molecular mechanisms for MeJA-mediated gentiopicroside biosynthesis and regulation in G. macrophylla. Our HPLC results showed that Gentiana macrophylla seedlings exposed to MeJA had significantly higher concentrations of gentiopicroside when compared with control plants. We used RNA sequencing to compare transcriptional profiles in seedlings treated for 5 d with either 0 μmol L-1 MeJA (C or 250 μmol L-1 MeJA (M5 and detected differentially expressed genes (DEGs. In total, 77,482 unique sequences were obtained from approximately 34 million reads. Of these, 48,466 (57.46% sequences were annotated based on BLASTs performed against public databases. We identified 5,206 DEGs between the C and M5 samples, including genes related to the α-lenolenic acid degradation pathway, JA signaling pathway, and gentiopicroside biosynthesis. Expression of numerous enzyme genes in the glycolysis pathway was significantly up-regulated. Many genes encoding transcription factors (e.g. ERF, bHLH, MYB, and WRKY also responded to MeJA elicitation. Rapid acceleration of the glycolysis pathway that supplies precursors for IPP biosynthesis and up-regulates the expression of enzyme genes in that IPP pathway are probably most responsible for MeJA stimulation of gentiopicroside synthesis. Our qRT-PCR results showed that the expression profiles of 12 gentiopicroside biosynthesis genes were consistent with the RNA-Seq data. These results increase our understanding about how the gentiopicroside biosynthesis pathway in G. macrophylla responds to MeJA.

  20. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells.

    Directory of Open Access Journals (Sweden)

    Christine Rauer

    Full Text Available Sterol regulatory element-binding proteins (SREBPs-1c and -2, which were initially discovered as master transcriptional regulators of lipid biosynthesis and uptake, were recently identified as novel transcriptional regulators of the sodium-iodide symporter gene in the thyroid, which is essential for thyroid hormone synthesis. Based on this observation that SREBPs play a role for thyroid hormone synthesis, we hypothesized that another gene involved in thyroid hormone synthesis, the thyroid peroxidase (TPO gene, is also a target of SREBP-1c and -2. Thyroid epithelial cells treated with 25-hydroxycholesterol, which is known to inhibit SREBP activation, had about 50% decreased mRNA levels of TPO. Similarly, the mRNA level of TPO was reduced by about 50% in response to siRNA mediated knockdown of both, SREBP-1 and SREBP-2. Reporter gene assays revealed that overexpression of active SREBP-1c and -2 causes a strong transcriptional activation of the rat TPO gene, which was localized to an approximately 80 bp region in the intron 1 of the rat TPO gene. In vitro- and in vivo-binding of both, SREBP-1c and SREBP-2, to this region in the rat TPO gene could be demonstrated using gel-shift assays and chromatin immunoprecipitation. Mutation analysis of the 80 bp region of rat TPO intron 1 revealed two isolated and two overlapping SREBP-binding elements from which one, the overlapping SRE+609/InvSRE+614, was shown to be functional in reporter gene assays. In connection with recent findings that the rat NIS gene is also a SREBP target gene in the thyroid, the present findings suggest that SREBPs may be possible novel targets for pharmacological modulation of thyroid hormone synthesis.

  1. Biosynthesis of Tropolones in Streptomyces spp: Interweaving Biosynthesis and Degradation of Phenylacetic Acid and Hydroxylations on Tropone Ring.

    Science.gov (United States)

    Chen, Xuefei; Xu, Min; Lü, Jin; Xu, Jianguo; Wang, Yemin; Lin, Shuangjun; Deng, Zixin; Tao, Meifeng

    2018-04-13

    Tropolonoids are important natural products that contain a unique seven-membered aromatic tropolone core and exhibit remarkable biological activities. 3,7-Dihydroxytropolone (DHT) isolated from Streptomyces species is a multiply hydroxylated tropolone exhibiting antimicrobial, anticancer, and antiviral activities. Herein, we determined the DHT biosynthetic pathway by heterologous expression, gene deletion, and bioconversion. Nine trl genes and some of the aerobic phenylacetic acid degradation pathway genes ( paa ) located outside of the trl biosynthetic gene cluster are required for the heterologous production of DHT. The trlA gene encodes a single-domain protein homologous to the C-terminal enoyl-CoA hydratase domain of PaaZ. TrlA truncates the phenylacetic acid catabolic pathway and redirects it towards the formation of heptacyclic intermediates. TrlB is a 3-deoxy-D-arabino-heptulosonic acid-7-phosphate (DAHP) synthase homolog. TrlH is an unusual bifunctional protein bearing an N-terminal prephenate dehydratase domain and a C-terminal chorismate mutase domain. TrlB and TrlH enhanced de novo biosynthesis of phenylpyruvate, thereby providing abundant precursor for the prolific production of DHT in Streptomyces Six seven-membered carbocyclic compounds were identified from the gene deletion mutants of trlC , trlD , trlE , and trlF Four of these chemicals, including 1,4,6-cycloheptatriene-1-carboxylic acid, tropone, tropolone and 7-hydroxytropolone, were verified as key biosynthetic intermediates. TrlF is required for the conversion of 1,4,6-cycloheptatriene-1-carboxylic acid into tropone. Monooxygenases TrlE and TrlCD catalyze the regioselective hydroxylations of tropone to afford DHT. This study reveals a natural association of anabolism of chorismate and phenylpyruvate, catabolism of phenylacetic acid, and biosynthesis of tropolones in Streptomyces spp. IMPORTANCE Tropolonoids are promising drug lead compounds because of their versatile bioactivities attributed to

  2. Novel Hedgehog pathway targets against basal cell carcinoma

    International Nuclear Information System (INIS)

    Tang, Jean Y.; So, P.-L.; Epstein, Ervin H.

    2007-01-01

    The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting that agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence

  3. Following Intracellular Cholesterol Transport by Linear and Non-Linear Optical Microscopy of Intrinsically Fluorescent Sterols

    DEFF Research Database (Denmark)

    Wustner, D.

    2012-01-01

    Elucidation of intracellular cholesterol transport is important for understanding the molecular basis of several metabolic and neuronal diseases, like atheroclerosis or lysosomal storage disorders. Progress in this field depends crucially on the development of new technical approaches to follow...... is on recent developments in imaging technology to follow the intracellular fate of intrinsically fluorescent sterols as faithful cholesterol markers. In particular, UV-sensitive wide field and multiphoton microscopy of the sterol dehydroergosterol, DHE, is explained and new methods of quantitative image...... analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented....

  4. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce J. Grattan

    2013-01-01

    Full Text Available While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.

  5. Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway.

    Directory of Open Access Journals (Sweden)

    José Peña

    Full Text Available The rearrangement of intracellular membranes has been long reported to be a common feature in diseased cells. In this study, we used dengue virus (DENV to study the role of the unfolded protein response (UPR and sterol-regulatory-element-binding-protein-2 (SREBP-2 pathway in the rearrangement and expansion of the endoplasmic reticulum (ER early after infection. Using laser scanning confocal and differential interference contrast microscopy, we demonstrate that rearrangement and expansion of the ER occurs early after DENV-2 infection. Through the use of mouse embryonic fibroblast cells deficient in XBP1 and ATF6, we show that ER rearrangement early after DENV infection is independent of the UPR. We then demonstrate that enlargement of the ER is independent of the SREBP-2 activation and upregulation of 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway. We further show that this ER rearrangement is not inhibited by the treatment of DENV-infected cells with the cholesterol-inhibiting drug lovastatin. Using the transcription inhibitor actinomycin D and the translation elongation inhibitor cycloheximide, we show that de novo viral protein synthesis but not host transcription is necessary for expansion and rearrangement of the ER. Lastly, we demonstrate that viral infection induces the reabsorption of lipid droplets into the ER. Together, these results demonstrate that modulation of intracellular membrane architecture of the cell early after DENV-2 infection is driven by viral protein expression and does not require the induction of the UPR and SREBP-2 pathways. This work paves the way for further study of virally-induced membrane rearrangements and formation of cubic membranes.

  6. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.

    Science.gov (United States)

    Paramsothy, Pathmaja; Knopp, Robert H; Kahn, Steven E; Retzlaff, Barbara M; Fish, Brian; Ma, Lina; Ostlund, Richard E

    2011-11-01

    The rise in LDL with egg feeding in lean insulin-sensitive (LIS) participants is 2- and 3-fold greater than in lean insulin-resistant (LIR) and obese insulin-resistant (OIR) participants, respectively. We determined whether differences in cholesterol absorption, synthesis, or both could be responsible for these differences by measuring plasma sterols as indexes of cholesterol absorption and endogenous synthesis. Plasma sterols were measured by gas chromatography-mass spectrometry in a random subset of 34 LIS, 37 LIR, and 37 OIR participants defined by the insulin sensitivity index (S(I)) and by BMI criteria selected from a parent group of 197 participants. Cholestanol and plant sterols provide a measure of cholesterol absorption, and lathosterol provides a measure of cholesterol synthesis. The mean (±SD) ratio of plasma total absorption biomarker sterols to cholesterol was 4.48 ± 1.74 in LIS, 3.25 ± 1.06 in LIR, and 2.82 ± 1.08 in OIR participants. After adjustment for age and sex, the relations of the absorption sterol-cholesterol ratios were as follows: LIS > OIR (P LIR (P OIR (P = 0.11). Lathosterol-cholesterol ratios were 0.71 ± 0.32 in the LIS participants, 0.95 ± 0.47 in the LIR participants, and 1.29 ± 0.55 in the OIR participants. After adjustment for age and sex, the relations of lathosterol-cholesterol ratios were as follows: LIS sterol concentrations were positively associated with S(I) and negatively associated with obesity, whereas lathosterol correlations were the opposite. Cholesterol absorption was highest in the LIS participants, whereas cholesterol synthesis was highest in the LIR and OIR participants. Therapeutic diets for hyperlipidemia should emphasize low-cholesterol diets in LIS persons and weight loss to improve S(I) and to decrease cholesterol overproduction in LIR and OIR persons.

  7. Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men

    Science.gov (United States)

    Cederberg, Henna; Gylling, Helena; Miettinen, Tatu A.; Paananen, Jussi; Vangipurapu, Jagadish; Pihlajamäki, Jussi; Kuulasmaa, Teemu; Stančáková, Alena; Smith, Ulf; Kuusisto, Johanna; Laakso, Markku

    2013-01-01

    We investigated the levels of non-cholesterol sterols as predictors for the development of hyperglycemia (an increase in the glucose area under the curve in an oral glucose tolerance test) and incident type 2 diabetes in a 5-year follow-up study of a population-based cohort of Finnish men (METSIM Study, N = 1,050) having non-cholesterol sterols measured at baseline. Additionally we determined the association of 538,265 single nucleotide polymorphisms (SNP) with non-cholesterol sterol levels in a cross-sectional cohort of non-diabetic offspring of type 2 diabetes (the Kuopio cohort of the EUGENE2 Study, N = 273). We found that in a cross-sectional METSIM Study the levels of sterols indicating cholesterol absorption were reduced as a function of increasing fasting glucose levels, whereas the levels of sterols indicating cholesterol synthesis were increased as a function of increasing 2-hour glucose levels. A cholesterol synthesis marker desmosterol significantly predicted an increase, and two absorption markers (campesterol and avenasterol) a decrease in the risk of hyperglycemia and incident type 2 diabetes in a 5-year follow-up of the METSIM cohort, mainly attributable to insulin sensitivity. A SNP of ABCG8 was associated with fasting plasma glucose levels in a cross-sectional study but did not predict hyperglycemia or incident type 2 diabetes. In conclusion, the levels of some, but not all non-cholesterol sterols are markers of the worsening of hyperglycemia and type 2 diabetes. PMID:23840693

  8. Genomic Influence in the Prevention of Cardiovascular Diseases with a Sterol-Based Treatment

    Directory of Open Access Journals (Sweden)

    Ismael San Mauro Martín

    2018-04-01

    Full Text Available Raised serum cholesterol concentration is a well-established risk factor in cardiovascular disease. In addition, genetic load may have an indirect influence on cardiovascular risk. Plant-based sterol-supplemented foods are recommended to help reduce the serum low-density lipoprotein cholesterol level. The objective was to analyse the influence of different polymorphisms in hypercholesterolemia patients following a dietary treatment with plant sterols. A randomised double-blind cross-over controlled clinical trial was carried out in 45 people (25 women. Commercial milk, containing 2.24 g of sterols, was ingested daily during a 3-week period, and then the same amount of skim milk, without sterols, was consumed daily during the 3-week placebo phase. Both phases were separated by a washout period of 2 weeks. At the beginning and end of each phase, blood draws were performed. Genes LIPC C-514T and APOA5 C56G are Ser19Trp carriers and greatly benefit from sterol intake in the diet. LIPC C-514T TT homozygous carriers had lower low-density lipoprotein cholesterol (LDL-c levels than CC homozygote and CT heterozygote carriers after the ingestion of plant sterols (p = 0.001. These two genes also showed statistically significant changes in total cholesterol levels (p = 0.025; p = 0.005, and no significant changes in high-density lipoprotein (HDL cholesterol levels (p = 0.032; p = 0.003, respectively. No statistically significant differences were observed for other genes. Further studies are needed to establish which genotype combinations would be the most protective against hypercholesterolemia.

  9. Preferential campesterol incorporation into various tissues in apolipoprotein E*3-Leiden mice consuming plant sterols or stanols

    NARCIS (Netherlands)

    Plat, J.; Jong, A.de; Volger, O.L.; Princen, H.M.G.; Mensink, R.P.

    2008-01-01

    Intestinal absorption of plant sterols and stanols is much lower as compared with that of cholesterol; and therefore, serum concentrations are low. Circulating plant sterols and stanols are incorporated into tissues. However, hardly any data are available about tissue distributions of individual

  10. Sterol patterns of cultured zooxanthellae isolated from marine invertebrates: Synthesis of gorgosterol and 23-desmethylgorgosterol by aposymbiotic algae.

    Science.gov (United States)

    Withers, N W; Kokke, W C; Fenical, W; Djerassi, C

    1982-06-01

    QUANTITATIVE STEROL COMPOSITIONS OF CULTURED ZOOXANTHELLAE ISOLATED FROM VARIOUS PACIFIC AND ATLANTIC INVERTEBRATE HOSTS: Zoanthus sociatus (a zoanthid), Oculina diffusa (a scleractian coral), Tridacna gigas (a giant clam), Melibe pilosa (a nudibranch), and Aiptasia pulchella (a sea anemone) are reported. The results clearly demonstrate large differences in sterol patterns of zooxanthellae and that there is no obvious relationship between the taxonomic affiliation of the host and the sterol pattern of its isolated symbiont. The sterols of the zooxanthellae of O. diffusa (Cnidaria) and T. gigas (Mollusca) are qualitatively equivalent. Based on the structures of the two major free sterols synthesized by each alga, the zooxanthellae from different hosts were separated into three distinct groups. It was also found that an aposymbiotic alga can synthesize the unique marine sterols gorgosterol and 23-desmethylgorgosterol. Most of the sterols were identified by using mass spectroscopy and 360-MHz proton magnetic resonance. Spectroscopic data are reported for four novel sterols-(23,24R)-dimethyl-5alpha-cholest-(22E)-en-3beta-o l, 23-methyl-5alpha-cholest-22E-en-3beta-ol, cholesta-5,14-dien-3beta-ol, and 4alpha-methyl-5alpha-cholesta-8(14)-24-dien-3beta-ol.

  11. A LONG CHAIN ALCOHOL AND TWO STEROL COMPOUNDS FROM THE HEXANE EXTRACT OF STEM BARK OF Aglaia odorata Lour. (Meliaceae

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2010-06-01

    Full Text Available A long chain alcohol, 1-eicosanol together with two sterols, β-sitosterol and stigmasterol had been isolated from hexane extract of stem bark of pacar cina (Aglaia odorata Lour (Meliaceae. These structures had been established based on spectroscopic data (IR and NMR and by comparison to those of standard compounds.   Keywords: Aglaia odorata Lour, Alcohol, Meliaceae, Sterol

  12. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Lund, F. W.; Lomholt, M. A.; Solanko, L. M.

    2012-01-01

    to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter...

  13. Triglycerides, fatty acids, sterols, mono- and disaccharides and sugar alcohols in human milk and current types of infant formula milk

    NARCIS (Netherlands)

    Huisman, M; vanBeusekom, CM; Nijeboer, HJ; Muskiet, FAJ; Boersma, ER

    Objective: To investigate differences in the fatty acid composition, sterols, minor carbohydrates and sugar alcohols between human and formula milk. Design: We analyzed the concentrations of triglycerides, sterols, di- and monosaccharides and sugar alcohols, as well as the fatty acid composition of

  14. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle

    NARCIS (Netherlands)

    Vliet, A.K. van; Nègre-Arrariou, P.; Thiel, G.C.F. van; Bolhuis, P.A.; Cohen, L.H.

    1996-01-01

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 ± 6 nM and 4.0 ± 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 ± 38 nM). Through

  15. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua

    OpenAIRE

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-01-01

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of t...

  16. Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Massimiliano; Edery, Patrick [Hospices Civils de Lyon, Genetic Department, Referral Centre for Developmental Abnormalities, Femme-Mere-Enfant Hospital, Bron (France); INSERM U1028 UMR CNRS 5,292, UCBL, CRNL TIGER Team, CH le Vinater, Bron (France); Hall, Christine M. [Retired from Department of Radiology, Great Ormond Street Hospital, London (United Kingdom); Bouvier, Raymonde; Collardeau-Frachon, Sophie [Hospices Civils de Lyon, Department of Pathology, CBPE, Bron (France); Le Breton, Frederique [Hospices Civils de Lyon, Department of Pathology, Croix-Rousse Hospital, Lyon (France); Bucourt, Martine [AP-HP, Foetopathology Unit, Jean Verdier Hospital, Bondy (France); Cordier, Marie Pierre [Hospices Civils de Lyon, Genetic Department, Referral Centre for Developmental Abnormalities, Femme-Mere-Enfant Hospital, Bron (France); Vianey-Saban, Christine [Hospices Civils de Lyon, Department of Inborn Errors of Metabolism and Neonatal Screening, CBPE, Bron (France); Parenti, Giancarlo; Andria, Generoso [Federico II University, Department of Translational Medical Sciences, Section of Pediatrics, Naples (Italy); Le Merrer, Martine [AP-HP, Genetic Department, Referal Centre for Skeletal Dysplasias, Institut Imagine, Necker-Enfants Malades Hospital, Paris (United Kingdom); Offiah, Amaka C. [Stephenson Wing Sheffield Children' s NHS Foundation Trust Western Bank, Radiology Department, Children' s Hospital, Academic Unit of Child Health Room C4, Sheffield (United Kingdom)

    2015-07-15

    Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis. (orig.)

  17. Radiographic features of the skeleton in disorders of post-squalene cholesterol biosynthesis

    International Nuclear Information System (INIS)

    Rossi, Massimiliano; Edery, Patrick; Hall, Christine M.; Bouvier, Raymonde; Collardeau-Frachon, Sophie; Le Breton, Frederique; Bucourt, Martine; Cordier, Marie Pierre; Vianey-Saban, Christine; Parenti, Giancarlo; Andria, Generoso; Le Merrer, Martine; Offiah, Amaka C.

    2015-01-01

    Disorders of post-squalene cholesterol biosynthesis are inborn errors of metabolism characterised by multiple congenital abnormalities, including significant skeletal involvement. The most frequent and best-characterised example is the Smith-Lemli-Opitz syndrome. Nine other disorders are known, namely autosomal-recessive Antley-Bixler syndrome, Greenberg dysplasia, X-linked dominant chondrodysplasia punctata, X-linked recessive male emopamil-binding protein deficiency, CHILD syndrome, CK syndrome, sterol C4 methyloxidase-like deficiency, desmosterolosis and lathosterolosis. This study provides an overview of the radiologic features observed in these diseases. A common pattern of limb abnormalities is recognisable, including polydactyly, which is typically post-axial and rarely interdigital and can involve all four limbs, and syndactyly of the toes. Chondrodysplasia punctata is specifically associated with a subgroup of disorders of cholesterol biosynthesis (Greenberg dysplasia, CHILD syndrome, X-linked dominant chondrodysplasia punctata, male emopamil-binding protein deficiency). The possible occurrence of epiphyseal stippling in the Smith-Lemli-Opitz syndrome, initially reported, does not appear to be confirmed. Stippling is also associated with other congenital disorders such as chromosomal abnormalities, brachytelephalangic chondrodysplasia punctata (X-linked recessive chondrodysplasia punctata, disruptions of vitamin K metabolism, maternal autoimmune diseases), rhizomelic chondrodysplasia punctata (peroxisomal disorders) and lysosomal storage disorders. In the differential diagnosis of epiphyseal stippling, a moth-eaten appearance of bones, asymmetry, or presence of a common pattern of limb abnormalities indicate inborn errors of cholesterol biosynthesis. We highlight the specific differentiating radiologic features of disorders of post-squalene cholesterol biosynthesis. (orig.)

  18. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    Science.gov (United States)

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425

  19. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  20. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu; Gehring, Christoph A; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2014-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  1. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Fikadu G Tafesse

    2015-10-01

    Full Text Available The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  2. Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria.

    Science.gov (United States)

    Méjean, Annick; Paci, Guillaume; Gautier, Valérie; Ploux, Olivier

    2014-12-01

    Freshwater cyanobacteria produce secondary metabolites that are toxic to humans and animals, the so-called cyanotoxins. Among them, anatoxin-a and homoanatoxin-a are potent neurotoxins that are agonists of the nicotinic acetylcholine receptor. These alkaloids provoke a rapid death if ingested at low doses. Recently, the cluster of genes responsible for the biosynthesis of these toxins, the ana cluster, has been identified in Oscillatoria sp. PCC 6506, and a biosynthetic pathway was proposed. This biosynthesis was reconstituted in vitro using purified enzymes confirming the predicted pathway. One of the enzymes, AnaB a prolyl-acyl carrier protein oxidase, was crystallized and its three dimensional structure solved confirming its reaction mechanism. Three other ana clusters have now been identified and sequenced in other cyanobacteria. These clusters show similarities and some differences suggesting a common evolutionary origin. In particular, the cluster from Cylindrospermum stagnale PCC 7417, possesses an extra gene coding for an F420-dependent oxidoreductase that is likely involved in the biosynthesis of dihydroanatoxin-a. This review summarizes all these new data and discusses them in relation to the production of anatoxins in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample.

    Science.gov (United States)

    Li, Yan; Ye, Dezan; Shao, Zongze; Cui, Chengbin; Che, Yongsheng

    2012-02-01

    A new polyoxygenated sterol, sterolic acid (1), three new breviane spiroditerpenoids, breviones I-K (2-4), and the known breviones (5-8), were isolated from the crude extract of a Penicillium sp. obtained from a deep sea sediment sample that was collected at a depth of 5115 m. The structures of 1-4 were elucidated primarily by NMR experiments, and 1 was further confirmed by X-ray crystallography. The absolute configurations of 2 and 3 were deduced by comparison of their CD spectra with those of the model compounds. Compounds 2 and 5 showed significant cytotoxicity against MCF-7 cells, which is comparable to the positive control cisplatin.

  4. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae.

    OpenAIRE

    Lorenz, R T; Parks, L W

    1990-01-01

    The hypocholesterolemic drug lovastatin (mevinolin) was found to be very effective in lowering the sterol levels of the wild-type yeast Saccharomyces cerevisiae. Lovastatin dramatically decreased the steryl ester content from 2.62 to 0.8 micrograms/mg (dry weight), whereas the free sterol content decreased only from 2.79 to 2.24 micrograms/mg (dry weight) when lovastatin was present in the medium at 10 micrograms/ml. At higher concentrations (100 micrograms/ml), lovastatin nearly abolished th...

  5. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis

    Science.gov (United States)

    Henry-Kirk, Rebecca A.

    2012-01-01

    Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple. Abbreviations:ANOVAanalysis of varianceANRanthocyanidin reductaseDADdiode array detectorDAFBdays after full bloomDFRdihydroflavonol reductaseLARleucoanthocyanidin reductaseLC-MSliquid chromatography/mass spectrometryPAproanthocyanidinqPCRreal-time quantitative PCR PMID:22859681

  6. The regulation and biosynthesis of antimycins

    Directory of Open Access Journals (Sweden)

    Ryan F. Seipke

    2013-11-01

    Full Text Available Antimycins (>40 members were discovered nearly 65 years ago but the discovery of the gene cluster encoding antimycin biosynthesis in 2011 has facilitated rapid progress in understanding the unusual biosynthetic pathway. Antimycin A is widely used as a piscicide in the catfish farming industry and also has potent killing activity against insects, nematodes and fungi. The mode of action of antimycins is to inhibit cytochrome c reductase in the electron transport chain and halt respiration. However, more recently, antimycin A has attracted attention as a potent and selective inhibitor of the mitochondrial anti-apoptotic proteins Bcl-2 and Bcl-xL. Remarkably, this inhibition is independent of the main mode of action of antimycins such that an artificial derivative named 2-methoxyantimycin A inhibits Bcl-xL but does not inhibit respiration. The Bcl-2/Bcl-xL family of proteins are over-produced in cancer cells that are resistant to apoptosis-inducing chemotherapy agents, so antimycins have great potential as anticancer drugs used in combination with existing chemotherapeutics. Here we review what is known about antimycins, the regulation of the ant gene cluster and the unusual biosynthetic pathway.

  7. Biosynthesis of plasmenylcholine in guinea pig heart

    International Nuclear Information System (INIS)

    Wientzek, M.; Choy, P.C.

    1986-01-01

    In some mammalian hearts, up to 40% of the choline phosphoglyceride (CPG) exists as plasmenylcholine (1-alkenyl-2-acyl-glycero-3-phosphocholine). Although the majority of diacylphosphatidylcholine (PC) in mammalian hearts is synthesized from choline via the CDP-choline pathway, the formation of plasmenylcholine from choline was not known. In this study, they investigated the biosynthesis of plasmenyl-choline in the isolated guinea pig heart by perfusion with [ 3 H]choline. Labelled choline containing metabolites and labelled plasmenylcholine were isolated and determined at different perfusion time points. Significant amounts of labelling were found only in choline, phosphocholine, CDP-choline, plasmenyl-choline and PC. In addition, a precursor-product relationship was observed between the labelling of CDP-choline and plasmenylcholine. Such a relationship was not observed between choline and plasmenylcholine. Hence, they postulate that the incorporation of choline into plasmenylcholine is via the CDP-choline pathway and not via base exchange. The ability to condense 1-alkenyl-2-acyl-glycerol with CDP-choline was also demonstrated in vitro with guinea pig heart microsomes

  8. Prevalence of the Ancient Wood-Ljungdahl Pathway in a Subseafloor Olivine Community

    Science.gov (United States)

    Smith, A. R.; Mueller, R.; Fisk, M. R.; Mason, O. U.; Popa, R.; Kieft, B.; Colwell, F. S.

    2018-05-01

    The ancient Wood-Ljungdahl pathway used for biosynthesis and energy generation was found to be the predominant metabolic pathway in a microbial community from olivine grains incubated in the Juan de Fuca subseafloor aquifer.

  9. Effect of parenteral serum plant sterols on liver enzymes and cholesterol metabolism in a patient with short bowel syndrome.

    Science.gov (United States)

    Hallikainen, Maarit; Huikko, Laura; Kontra, Kirsi; Nissinen, Markku; Piironen, Vieno; Miettinen, Tatu; Gylling, Helena

    2008-01-01

    Hepatobiliary complications are common during parenteral nutrition. Lipid moiety in commercially available solutions contains plant sterols. It is not known whether plant sterols in parenteral nutrition interfere with hepatic function in adults. We detected how different amounts of plant sterols in parenteral nutrition solution affected serum plant sterol concentrations and liver enzymes during a 1.5-year follow-up in a patient with short bowel syndrome. Serum lipid, plant sterol, and liver enzyme levels were measured regularly during the transition from Intralipid (100% soy-based intravenous fat emulsion) to ClinOleic (an olive oil-based intravenous fat emulsion with 80% olive oil, 20% soy oil and lower plant sterols); the lipid supply was also gradually increased from 20 to 35 g/d. Plant sterols in parenteral nutrition solution and serum were measured with gas-liquid chromatography. During infusion of soy-based intravenous fat emulsion (30 g/d, total plant sterols 87 mg/d), the concentrations of sitosterol, campesterol, and stigmasterol were 4361, 1387, and 378 microg/dL, respectively, and serum liver enzyme values were >or= 2.5 times above upper limit of normal. After changing to olive oil-based intravenous fat emulsion (20-35 g/d, plant sterols 37-65 mg/d), concentrations decreased to 2148 to 2251 microg/dL for sitosterol, 569-297 microg/dL for campesterol, and 95-55 microg/dL for stigmasterol. Concomitantly, liver enzyme values decreased to 1.4 to 1.8 times above upper limit of normal at the end of follow-up. The nutrition status of the patient improved. The amount of plant sterols in lipid emulsion affects serum liver enzyme levels more than the amount of lipid.

  10. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  11. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  12. Cholesterol biosynthesis in polychlorinated biphenyl-treated rats

    International Nuclear Information System (INIS)

    Kling, D.; Gamble, W.

    1982-01-01

    After administration of polychlorinated biphenly (PCB) at 0.055 (w/w) of the diet to Wistar rats for 30 days, followed by intraperitioneal injection of tritiated water, [ 14 C]mevalonate, and [ 14 C]acetate, there was a decrease in cholesterol biosynthesis in rat liver. No significant change in cholesterol formation was observed when PCB was administered at 0.01% (w/w) of the diet. In vitro inhibition of cholesterol synthesis by rat liver microsomes was observed with PCB. Squalene 2,3-oxidocyclase activity of rat liver microsomes was not significantly altered. Desmosterol delta 24 reductase activity was inhibited only at relatively high concentrations of PCB. There was increased incorporation of radioactivity into squalene and lanosterol, in vitro, in the presence of PCB. The primary inhibition of cholesterol biosynthesis appears to be at the demethylation and rearrangement reactions between lanosterol and cholesterol in the biosynthetic pathway

  13. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    Science.gov (United States)

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  15. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans.

    Science.gov (United States)

    Wang, Yongkang; Song, Xiaodan; Zhang, Yongjun; Wang, Bochu; Zou, Xiang

    2016-08-22

    Polymalic acid (PMA) is a novel polyester polymer that has been broadly used in the medical and food industries. Its monomer, L-malic acid, is also a potential C4 platform chemical. However, little is known about the mechanism of PMA biosynthesis in the yeast-like fungus, Aureobasidium pullulans. In this study, the effects of different nitrogen concentration on cell growth and PMA biosynthesis were investigated via comparative transcriptomics and proteomics analyses, and a related signaling pathway was also evaluated. A high final PMA titer of 44.00 ± 3.65 g/L (49.9 ± 4.14 g/L of malic acid after hydrolysis) was achieved in a 5-L fermentor under low nitrogen concentration (2 g/L of NH4NO3), which was 18.3 % higher yield than that obtained under high nitrogen concentration (10 g/L of NH4NO3). Comparative transcriptomics profiling revealed that a set of genes, related to the ribosome, ribosome biogenesis, proteasome, and nitrogen metabolism, were significantly up- or down-regulated under nitrogen sufficient conditions, which could be regulated by the TOR signaling pathway. Fourteen protein spots were identified via proteomics analysis, and were found to be associated with cell division and growth, energy metabolism, and the glycolytic pathway. qRT-PCR further confirmed that the expression levels of key genes involved in the PMA biosynthetic pathway (GLK, CS, FUM, DAT, and MCL) and the TOR signaling pathway (GS, TOR1, Tap42, and Gat1) were upregulated due to nitrogen limitation. Under rapamycin stress, PMA biosynthesis was obviously inhibited in a dose-dependent manner, and the transcription levels of TOR1, MCL, and DAT were also downregulated. The level of nitrogen could regulate cell growth and PMA biosynthesis. Low concentration of nitrogen was beneficial for PMA biosynthesis, which could upregulate the expression of key genes involved in the PMA biosynthesis pathway. Cell growth and PMA biosynthesis might be mediated by the TOR signaling pathway in

  16. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.

    Science.gov (United States)

    Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A

    2016-04-01

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of

  17. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    Science.gov (United States)

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  18. DGAT enzymes and triacylglycerol biosynthesis

    OpenAIRE

    Yen, Chi-Liang Eric; Stone, Scot J.; Koliwad, Suneil; Harris, Charles; Farese, Robert V.

    2008-01-01

    Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, ...

  19. Purine biosynthesis in archaea: variations on a theme

    Directory of Open Access Journals (Sweden)

    Brown Anne M

    2011-12-01

    Full Text Available Abstract Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected or Enzyme Commission (E. C. numbers (57 proteins, 7.7%. There were also 57 proteins (7.7% assigned overly generic names and 78 proteins (10.6% without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is

  20. Synthesis of steryl ferulates with various sterol structures and comparison of their antioxidant activity

    Science.gov (United States)

    Steryl ferulates extracted from corn and rice differ in the structures of the phytosterol head groups, which had a significant impact on their activity as antioxidants in soybean oil used for frying. An improved method was used to synthesize steryl ferulates from commercial sterols to better underst...

  1. Investigation of oxidation attack sites in sterols: Thermodynamics of hydrogen atom transfer

    Czech Academy of Sciences Publication Activity Database

    Škorňa, P.; Lengyel, Jozef; Rimarčík, J.; Klein, E.

    2014-01-01

    Roč. 1038, JUN 2014 (2014), s. 26-32 ISSN 2210-271X R&D Projects: GA ČR(CZ) GA14-27047S Institutional support: RVO:61388955 Keywords : sterol * steroid * oxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.545, year: 2014

  2. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...

  3. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.

    The plant sterolsβ-sitosterol and sitostanol are

  4. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Rogoziński, Tomasz; Perkowski, Juliusz

    2017-06-27

    Wood compounds, especially sterols, are connected with the level of contamination with microscopic fungi. Within this study, tests were conducted on wood dust samples collected at various work stations in a pine and birch timber conversion plant. Their contamination with mycobiota was measured as the concentration of ergosterol (ERG) by ultra performance liquid chromatography (UPLC). Another aim of this study was to assess the effect of contamination with microscopic fungi on the sterol contents in wood dusts. Analyses were conducted on five sterols: desmosterol, cholesterol, lanosterol, stigmasterol, and β-sitosterol using UPLC and their presence was confirmed using gas chromatography/mass spectrometry (GC/MS). The results of chemical analyses showed the greatest contamination with mycobiota in birch wood dust. We also observed varied contents of individual sterols depending on the wood dust type. Their highest concentration was detected in birch dust. The discriminant analysis covering all tested compounds as predictors showed complete separation of all tested wood dust types. The greatest discriminatory power was found for stigmasterol, desmosterol, and ergosterol.

  5. Plant sterols for adults with hypercholesterolemia treated with or without medication (statins

    Directory of Open Access Journals (Sweden)

    Raquel Bernácer

    2015-07-01

    Full Text Available Hypercholesterolemia is the most common coronary risk factor among the Spanish population; 37.4% of the Spanish adult population have cholesterol levels between 190 and 240 mg/dl. Foods enriched with plant sterols (PS can effectively reduce plasma cholesterol in patients with high levels. However, its effectiveness and safety in adults with moderate hypercholesterolemia who are on medication (statins or not has been less studied. The aim of this review is to establish the possible role of plant sterols in the control of hypercholesterolemia, as well as how safe they are for people with moderate hypercholesterolemia treated with statins. The main studies were looked at, regardless of design, language or publication date which studied the connection between “plant sterols” and “hypercholesterolemia”, using Pubmed/Medline, SCOPUS and Google Scholar databases. The studies brought together in this review show that an intake of between 2 and 3g/day of plant sterols effectively reduces plasma cholesterol levels in patients with hypercholesterolemia. Both clinical studies and available meta-analyses do not indicate any problems related to the drug-nutrient interaction associated with the use of plant sterol-enriched foods. In patients with moderate hypercholesterolemia where the use of statins is not justified a healthy diet, exercise and foods high in PS can provide the best therapeutic approach.

  6. Parameters for Martini sterols and hopanoids based on a virtual-site description

    NARCIS (Netherlands)

    Melo, M. N.; Ingolfsson, H. I.; Marrink, S. J.

    2015-01-01

    Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the

  7. The Biological Activity of alpha-Mangostin, a Larvicidal Botanic Mosquito Sterol Carrier Protein-2 Inhibitor

    Science.gov (United States)

    2010-01-01

    it is known that esterase aids in the detoxiÞcation of or- ganophosphates ( Hemingway and Ransom 2000). In- terestingly, we found that -mangostin...Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J. Biol. Chem. 276: 48058Ð48065. Hemingway

  8. A model for evolution and regulation of nicotine biosynthesis regulon in tobacco.

    Science.gov (United States)

    Kajikawa, Masataka; Sierro, Nicolas; Hashimoto, Takashi; Shoji, Tsubasa

    2017-06-03

    In tobacco, the defense alkaloid nicotine is produced in roots and accumulates mainly in leaves. Signaling mediated by jasmonates (JAs) induces the formation of nicotine via a series of structural genes that constitute a regulon and are coordinated by JA-responsive transcription factors of the ethylene response factor (ERF) family. Early steps in the pyrrolidine and pyridine biosynthesis pathways likely arose through duplication of the polyamine and nicotinamide adenine dinucleotide (NAD) biosynthetic pathways, respectively, followed by recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon. Transcriptional regulation of nicotine biosynthesis by ERF and cooperatively-acting MYC2 transcription factors is implied by the frequency of cognate cis-regulatory elements for these factors in the promoter regions of the downstream structural genes. Indeed, a mutant tobacco with low nicotine content was found to have a large chromosomal deletion in a cluster of closely related ERF genes at the nicotine-controlling NICOTINE2 (NIC2) locus.

  9. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  10. Oxygen and the evolution of metabolic pathways

    Science.gov (United States)

    Jahnke, L. L.

    1986-01-01

    While a considerable amount of evidence has been accumulated about the history of oxygen on this planet, little is known about the relative amounts to which primitive cells might have been exposed. One clue may be found in the metabolic pathways of extant microorganisms. While eucaryotes are principally aerobic organisms, a number are capable of anaerobic growth by fermentation. One such eucaryotic microorganism, Saccharomyces cerevisiae, will grow in the complete absence of oxygen when supplemented with unsaturated fatty acid and sterol. Oxygen-requiring enzymes are involved in the synthesis of both of these compounds. Studies have demonstrated that the oxidative desaturation of palmitic acid and the conversion of squalene to sterols occur in the range of 10-(3) to 10(-2) PAL. Thus, if the oxygen requirements of these enzymatic processes are an indication, eucaryotes might be more primitive than anticipated from the microfossil record. Results of studies on the oxygen requirements for sterol and unsaturated fatty acid synthesis in a more primitive procaryotic system are also discussed.

  11. Synthesis of Hydroxylated Sterols in Transgenic Arabidopsis Plants Alters Growth and Steroid Metabolism1[C][W][OA

    Science.gov (United States)

    Beste, Lisa; Nahar, Nurun; Dalman, Kerstin; Fujioka, Shozo; Jonsson, Lisbeth; Dutta, Paresh C.; Sitbon, Folke

    2011-01-01

    To explore mechanisms in plant sterol homeostasis, we have here increased the turnover of sterols in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum) plants by overexpressing four mouse cDNA encoding cholesterol hydroxylases (CHs), hydroxylating cholesterol at the C-7, C-24, C-25, or C-27 positions. Compared to the wild type, the four types of Arabidopsis transformant showed varying degrees of phenotypic alteration, the strongest one being in CH25 lines, which were dark-green dwarfs resembling brassinosteroid-related mutants. Gas chromatography-mass spectrometry analysis of extracts from wild-type Arabidopsis plants revealed trace levels of α and β forms of 7-hydroxycholesterol, 7-hydroxycampesterol, and 7-hydroxysitosterol. The expected hydroxycholesterol metabolites in CH7-, CH24-, and CH25 transformants were identified and quantified using gas chromatography-mass spectrometry. Additional hydroxysterol forms were also observed, particularly in CH25 plants. In CH24 and CH25 lines, but not in CH7 ones, the presence of hydroxysterols was correlated with a considerable alteration of the sterol profile and an increased sterol methyltransferase activity in microsomes. Moreover, CH25 lines contained clearly reduced levels of brassinosteroids, and displayed an enhanced drought tolerance. Equivalent transformations of potato plants with the CH25 construct increased hydroxysterol levels, but without the concomitant alteration of growth and sterol profiles observed in Arabidopsis. The results suggest that an increased hydroxylation of cholesterol and/or other sterols in Arabidopsis triggers compensatory processes, acting to maintain sterols at adequate levels. PMID:21746809

  12. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moï se, Alexander R.; Al-Babili, Salim; Wurtzel, Eleanore T.

    2014-01-01

    precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological

  13. Low-Molecular-Weight Metabolites from Diatoms: Structures, Biological Roles and Biosynthesis

    Directory of Open Access Journals (Sweden)

    Valentin Stonik

    2015-06-01

    Full Text Available Diatoms are abundant and important biological components of the marine environment that biosynthesize diverse natural products. These microalgae are rich in various lipids, carotenoids, sterols and isoprenoids, some of them containing toxins and other metabolites. Several groups of diatom natural products have attracted great interest due to their potential practical application as energy sources (biofuel, valuable food constituents, and prospective materials for nanotechnology. In addition, hydrocarbons, which are used in climate reconstruction, polyamines which participate in biomineralization, new apoptotic agents against tumor cells, attractants and deterrents that regulate the biochemical communications between marine species in seawaters have also been isolated from diatoms. However, chemical studies on these microalgae are complicated by difficulties, connected with obtaining their biomass, and the influence of nutrients and contaminators in their environment as well as by seasonal and climatic factors on the biosynthesis of the corresponding natural products. Overall, the number of chemically studied diatoms is lower than that of other algae, but further studies, particularly those connected with improvements in the i