WorldWideScience

Sample records for steroid hormone receptors

  1. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  2. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    Science.gov (United States)

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  4. Variations in steroid hormone receptor content throughout age and menopausal periods, and menstrual cycle in breast cancer patients

    International Nuclear Information System (INIS)

    Nikolic-Vukosavljevic, D.; Vasiljevic, N.; Brankovic-Magic, M.; Polic, D.

    1996-01-01

    Variations in steroid hormone receptor contents throughout age and menopausal periods define three breast carcinoma groups: younger pre-menopausal carcinomas (aged up to 45), middle-aged carcinomas (aged up to 45), middle-aged carcinomas (pre-, peri-, and postmenopausal aged 45-59) and older postmenopausal carcinomas (aged over 59). Age-related steroid hormone receptor contents within pre-menopausal and postmenopausal carcinoma groups are characterized by the important increase of both receptor contents, while menopausal-related steroid hormone receptor contents within middle-aged carcinoma group (aged 45-59) are characterized by the important decrease of progesterone receptor content and estrogen receptor functionality. No variations in steroid hormone receptor contents throughout menstrual cycle within the follicular and the luteal phases were obtained. The important cycle within the follicular and the luteal phases were obtained. The important decrease of estrogen receptor content in the mid-cycle phase versus the peri-menstrual phase was found. Variations in steroid hormone receptor contents throughout age and menopausal periods, as well as throughout menstrual cycle could nod be associated with variations in the blood steroid hormone concentrations. However, important association between steroid hormone receptor contents and the blood steroid hormone concentrations was found within the luteal phase carcinoma group and within older postmenopausal carcinoma group. It is interesting that within carcinoma group with the highest concentration of progesterone, progesterone receptor content increases with an increase of the ration of estradiol and progesterone blood concentrations, while within carcinoma group with the lowest steroid hormone concentration and the highest content of estrogen receptor content, estrogen receptor content decreases with an increase of either the blood estradiol concentration or the ratio of the blood estradiol and progesterone blood

  5. Status of sex steroid hormone receptors in large bowel cancer

    NARCIS (Netherlands)

    Meggouh, F.; Lointier, P.; Pezet, D.; Saez, S.

    1991-01-01

    To determine the potential role of sex steroid hormones in the development of colorectal tumors in humans, specific androgen (AR), estrogen (ER), and progesterone (PGR) receptors were investigated in normal mucosa (NM) and in tumor (T) paired biopsy specimens from 94 patients. Androgen receptors

  6. Steroidal Hormone Receptor Expression in Male Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Homaei-Shandiz

    2014-01-01

    Full Text Available Introduction: The etiology of male breast cancer is unclear, but hormonal levels may play a role in development of this disease. It seems that the risk of male breast cancer related to increased lifelong exposure to estrogen or reduced androgen. The aim of this study was to investigate the expression of the steroid hormone receptors including estrogen receptor (ER and progesterone receptor (PR in Iranian cases with male breast cancer. Methods: This is a prospective review of 18 cases of male breast cancer in in Omid Hospital, Mashhad, North East of Iran, between October 2001 and October 2006. ER and PR were measured by immunohistochemistry. Clinicopathologic features and family history were obtained by interview. Data were analyzed with SPSS 13 using descriptive statistics.  Results: The median age was 63.2 year. All the cases were infiltrating ductal carcinoma. A high rate of expression of ER (88.8% and PR (66.6% was found in the studied cases. Conclusion: Cancers of the male breast are significantly more likely than cancers of the female breast to express hormonal receptors.

  7. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark

    2005-01-01

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  8. Preparation of directly iodinated steroid hormones and related directly halogenated compounds

    International Nuclear Information System (INIS)

    Sahadevan, V.

    1981-01-01

    The preparation of directly iodinated radioactive steroid hormones is described for use in radioimmunoassays or radiolocalization and treatment of human breast tumours. The radioactive iodinated steroid hormone is prepared by reacting a parent steroid hormone with an alkali metal iodide containing radioactive 123 I, 125 I, 130 I or 131 I in the presence of hydrogen peroxide or chloramine-T. The parent steroid hormones include the adrenal corticosteroids, the estrogens, the progestogens, the progestins and the diuretic and antidiuretic agents. The radioactive iodinated steroid hormone is prepared by iodinating the parent steroid hormone directly on the cyclopentanophenanthrene nucleus. The radioactive iodinated steroid hormones have the same antigenicity and receptor site specificity as the parent steroid hormone. The invention is illustrated by 1) the method of iodination of estradiol-17β, 2) results for the percentage labelling of several steroids and steroid hormones, 3) results for the radioimmunoassay of 125 I-estradiol and 4) results for the binding of directly iodinated estradiol-17β in an estrogen receptor assay of human breast cancer. (U.K.)

  9. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  10. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  11. The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers

    Directory of Open Access Journals (Sweden)

    Thangesweran Ayakannu

    2013-01-01

    Full Text Available The “endocannabinoid system (ECS” comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2, some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed.

  12. Endocrinology of sex steroid hormones and cell dynamics in the periodontium.

    Science.gov (United States)

    Mariotti, Angelo; Mawhinney, Michael

    2013-02-01

    Numerous scientific studies assert the existence of hormone-sensitive periodontal tissues. Tissue specificity of hormone localization, identification of hormone receptors and the metabolism of hormones are evidence that periodontal tissues are targets for sex steroid hormones. Although the etiologies of periodontal endocrinopathies are diverse, periodontal pathologies are primarily the consequence of the actions and interactions of sex steroid hormones on specific cells found in the periodontium. This review provides a broad overview of steroid hormone physiology, evidence for the periodontium being a target tissue for sex steroid hormones and theories regarding the roles of sex steroid hormones in periodontal pathogenesis. Using this information, a teleological argument for the actions of steroid hormones in the periodontium is assessed.

  13. Steroid receptors and their ligands: Effects on male gamete functions

    International Nuclear Information System (INIS)

    Aquila, Saveria; De Amicis, Francesca

    2014-01-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  14. Steroid receptors and their ligands: Effects on male gamete functions

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Saveria; De Amicis, Francesca, E-mail: francesca.deamicis@unical.it

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  15. Towards the emerging crosstalk: ERBB family and steroid hormones.

    Science.gov (United States)

    D'Uva, Gabriele; Lauriola, Mattia

    2016-02-01

    Growth factors acting through receptor tyrosine kinases (RTKs) of ERBB family, along with steroid hormones (SH) acting through nuclear receptors (NRs), are critical signalling mediators of cellular processes. Deregulations of ERBB and steroid hormone receptors are responsible for several diseases, including cancer, thus demonstrating the central role played by both systems. This review will summarize and shed light on an emerging crosstalk between these two important receptor families. How this mutual crosstalk is attained, such as through extensive genomic and non-genomic interactions, will be addressed. In light of recent studies, we will describe how steroid hormones are able to fine-tune ERBB feedback loops, thus impacting on cellular output and providing a new key for understanding the complexity of biological processes in physiological or pathological conditions. In our understanding, the interactions between steroid hormones and RTKs deserve further attention. A system biology approach and advanced technologies for the analysis of RTK-SH crosstalk could lead to major advancements in molecular medicine, providing the basis for new routes of pharmacological intervention in several diseases, including cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    International Nuclear Information System (INIS)

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus

  17. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  18. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    Science.gov (United States)

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  19. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function.

    Directory of Open Access Journals (Sweden)

    Regina T Knapp

    Full Text Available Hsp70 binding protein 1 (HspBP1 and Bcl2-associated athanogene 1 (BAG-1, the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70 chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR, the mineralocorticoid receptor (MR, and the androgen receptor (AR. BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.

  20. Flow cytometric measurement of DNA level and steroid hormone receptor assay in breast cancer

    International Nuclear Information System (INIS)

    Zubrikhina, G.N.; Kuz'mina, Eh.V.; Bassalyk, L.S.; Murav'eva, N.I.

    1989-01-01

    DNA level measured by flow cytometry and estrogen and progesteron receptors assayed in tissue samples obtained from 85 malignant and 16 benign lesions of the breast. All the benign tumors revealed 2c DNA content and most of them were receptor-negative, while 74.1% of breast carcinomas displayed aneuploidy. Three patients (3.5%) had two lines of aneuploid cells. Many aneuploid tumors were receptor-negative. Preoperative radiation treatmet (14-20 Gy) did not significantly influence the level of steroid hormone receptors in tumors. Estrogen receptor level was higher in menopausal patients than in premenopausal ones

  1. Expression of sex steroid hormone-related genes in the embryo of the leopard gecko.

    Science.gov (United States)

    Endo, Daisuke; Kanaho, Yoh-Ichiro; Park, Min Kyun

    2008-01-01

    Sex steroid hormones are known to play a central role in vertebrate sex determination and differentiation. However, the tissues in which they are produced or received during development, especially around the period of sex determination of the gonads, have rarely been investigated. In this study, we identified the cDNA sequence, including the full-length of the coding region of cholesterol side-chain cleavage enzyme (P450scc), from the leopard gecko; a lizard with temperature-dependent sex determination. Embryonic expression analysis of two steroidogenic enzymes, P450scc and P450 aromatase (P450arom), and four sex steroid hormone receptors, androgen receptor, estrogen receptor alpha and beta, and progesterone receptor, was subsequently conducted. mRNA expression of both steroidogenic enzymes was observed in the brain and gonads prior to the temperature-sensitive period of sex determination. The mRNAs of the four sex steroid hormone receptors were also detected in the brain and gonads at all stages examined. These results suggest the existence of a gonad-independent sex steroid hormone signaling system in the developing leopard gecko brain.

  2. Removal of reproductive suppression reveals latent sex differences in brain steroid hormone receptors in naked mole-rats, Heterocephalus glaber.

    Science.gov (United States)

    Swift-Gallant, Ashlyn; Mo, Kaiguo; Peragine, Deane E; Monks, D Ashley; Holmes, Melissa M

    2015-01-01

    Naked mole-rats are eusocial mammals, living in large colonies with a single breeding female and 1-3 breeding males. Breeders are socially dominant, and only the breeders exhibit traditional sex differences in circulating gonadal steroid hormones and reproductive behaviors. Non-reproductive subordinates also fail to show sex differences in overall body size, external genital morphology, and non-reproductive behaviors. However, subordinates can transition to breeding status if removed from their colony and housed with an opposite-sex conspecific, suggesting the presence of latent sex differences. Here, we assessed the expression of steroid hormone receptor and aromatase messenger RNA (mRNA) in the brains of males and females as they transitioned in social and reproductive status. We compared in-colony subordinates to opposite-sex subordinate pairs that were removed from their colony for either 1 day, 1 week, 1 month, or until they became breeders (i.e., produced a litter). Diencephalic tissue was collected and mRNA of androgen receptor (Ar), estrogen receptor alpha (Esr1), progesterone receptor (Pgr), and aromatase (Cyp19a1) was measured using qPCR. Testosterone, 17β-estradiol, and progesterone from serum were also measured. As early as 1 week post-removal, males exhibited increased diencephalic Ar mRNA and circulating testosterone, whereas females had increased Cyp19a1 mRNA in the diencephalon. At 1 month post-removal, females exhibited increased 17β-estradiol and progesterone. The largest changes in steroid hormone receptors were observed in breeders. Breeding females had a threefold increase in Cyp19a1 and fivefold increases in Esr1 and Pgr, whereas breeding males had reduced Pgr and increased Ar. These data demonstrate that sex differences in circulating gonadal steroids and hypothalamic gene expression emerge weeks to months after subordinate animals are removed from reproductive suppression in their home colony.

  3. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  4. Microsomal receptor for steroid hormones: functional implications for nuclear activity.

    Science.gov (United States)

    Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J

    1988-01-01

    Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of

  5. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    Science.gov (United States)

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  6. Radioimmunoassay of steroid hormone

    International Nuclear Information System (INIS)

    Murakami, Tadashi

    1975-01-01

    Low acid pepsin treated gamma-globulin was applied to ammonium sulfate salting out method, which was a method to separate bound fraction from free one in radioimmunoassay of steroid hormone, and the effect of the separation and the standard curve were examined. Pepsin treated gamma-globulin was prepared in pH 1.5 to 5.5 and then the pepsin was completely removed. It had an effect to accelerate the precipitation in radioimmunoassay of steroid hormone labelled with 3 H. The effect of pepsin treated gamma-globulin to adhere free steroid hormone and to slat out bound one was compared with that of human gamma-globulin. Pepsin treated gamma-globulin, which was water soluble, could easier reach its optimal concentration, and the separation effect was better than human gamma-globulin. The standard curve of it was steeper, particularly in a small dose, and the reproducibility was also better. It could be applied not only to aldosterone and DOC, but also to the steroid hormones, such as progesterone and DHEA, and it seemed suitable for routine measurement method. (Kanao, N.)

  7. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2013-01-01

    Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.

  8. The First Fifteen Years of Steroid Receptor Research in Zebrafish; Characterization and Functional Analysis of the Receptors

    Directory of Open Access Journals (Sweden)

    Marcel J. M. Schaaf

    2017-07-01

    Full Text Available Steroid hormones regulate a wide range of processes in our body, and their effects are mediated by steroid receptors. In addition to their physiological role, these receptors mediate the effects of endocrine disrupting chemicals (EDCs and are widely used targets for dugs involved in the treatment of numerous diseases, ranging from cancer to inflammatory disorders. Over the last fifteen years, the zebrafish has increasingly been used as an animal model in steroid receptor research. Orthologues of all human steroid receptor genes appear to be present in zebrafish. All zebrafish steroid receptors have been characterized in detail, and their expression patterns have been analyzed. Functional studies have been performed using morpholino knockdown of receptor expression and zebrafish lines carrying mutations in one of their steroid receptor genes. To investigate the activity of the receptors in vivo, specific zebrafish reporter lines have been developed, and transcriptomic studies have been carried out to identify biomarkers for steroid receptor action. In this review, an overview of research on steroid receptors in zebrafish is presented, and it is concluded that further exploitation of the possibilities of the zebrafish model system will contribute significantly to the advancement of steroid receptor research in the next decade.

  9. Tritium-labelled steroids, their preparation and application for the determination and location of steroid tissular hormone receptors

    International Nuclear Information System (INIS)

    Jouquey, Alain; Raynaud, J.P.

    1977-01-01

    A product is prepared by the action of tritiated methanol on 11β-hydroxy-estra-4,9-dien-3,17-dione, the action of an aromatisation agent on the (11β)-11-methoxy- 3 H 3 -estra-4,9-dien-3,17-dione formed and the action of an ethynylation agent on the resulting (11β)-3-hydroxy-11-methoxy- 3 H 3 -estra-1,3,5(10)-trien-17-one giving (11β, 17α)-11-methoxy- 3 H 3 -19-norpregna-1,3,5(10)-trien-20-yne-3,17 diol, the free hydroxyl function or functions of this product may be etherified or esterified as the case may be. The tritiated methanol acts in the presence of perchloric acid. The aromatisation agent is palladium hydroxide and the operation is carried out in methanol. The ethynylation agent is acetylene and the reaction takes place in the presence of sodium t-amylate in toluene. This product allows the study and determination of the estrogen specific receptor present in the tissue cells of target organs for the action of estrogens: uterus, vagina, hypophysis, hypothalamus and tumours, of the breast and prostate for example, in both animals and man. Not being fixed by the plasma proteins binding such hormones as testosterone and estradiol in women the product is an ideal indicator of the tissular estrogen receptor with which it forms a complex of strong affinity and great stability, especially since it interacts with the tissular receptors of no other steroid hormone groups (glucocorticoids, androgen or progestogen mineralocorticosteroids) [fr

  10. Hormone receptor densities in relation to 10B neutron capture therapy

    International Nuclear Information System (INIS)

    Hechter, O.; Schwartz, I.L.

    1982-01-01

    This presentation is a theoretical discussion of the possibility that appropriate steroid-carborane derivatives might be used to selectively deliver boron-10 ( 10 B) to tumor cells with sex-hormone receptors in sufficient concentration for effective neutron capture theory (NCT) of hormone-dependent mammary and prostatic cancer. The results indicate the concentrations of androgen receptors (AR) and progesterone receptors (PR) in malignant prostatic cells or of estrogen receptors (ER) in malignant mammary cells are two low to achieve nuclear 10 B concentrations of 1 + g per g of tumor by using a steroid ligand coupled to a single carborane cage

  11. Steroid receptor expression in the fish inner earvaries with sex, social status, and reproductive state

    Directory of Open Access Journals (Sweden)

    Fernald Russell D

    2010-04-01

    Full Text Available Abstract Background Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR and aromatase in the main hearing organ of the inner ear (saccule in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations. Results We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes. Conclusions This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral

  12. Effect of long-term treatment with steroid hormones or tamoxifen on the progesterone receptor and androgen receptor in the endometrium of ovariectomized cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Cline J Mark

    2003-02-01

    Full Text Available Abstract The progesterone receptor (PR and androgen receptor (AR belong to the nuclear receptor superfamily. Two isoforms of PR (A and B have been identified with different functions. The expression of AR, each isoform of PR and their involvement in long-term effects on the endometrium after hormonal replacement therapy (HRT or tamoxifen (TAM treatment is not known. The aims of this study were to determine PR(A+B, PRB and AR distribution by immunohistochemistry in the macaque (Macaca fascicularis endometrium. Ovariectomized (OVX animals were orally treated continuously for 35 months with either conjugated equine estrogens (CEE; medroxyprogesterone acetate (MPA; the combination of CEE/MPA; or TAM. Treatment with CEE/MPA tended to down-regulate PR in the superficial glands, but increased it in the stroma. TAM treatment increased both the PR and PRB levels in the stroma. Overall, less than 20% of the cells were positive for the PRB isoform and less variation was observed after steroid treatment. AR was found in the stroma, mainly distributed in the basal layer of the endometrium in the OVX and steroid treated groups, but was absent in the TAM treated group. No AR was found in the glandular epithelium. The present data show that long-term hormone treatment affects the PR level, and also the ratio between PRA and PRB in the endometrium.

  13. Clinical study on postoperative steroid hormon replacement for preclinical Cushing's syndrome

    International Nuclear Information System (INIS)

    Furuta, Nozomu; Koide, Haruhisa; Sasaki, Hiroshi; Miki, Jun; Kimura, Takahiro; Egawa, Shin

    2009-01-01

    Diagnostic criteria for preclinical Cushing's syndrome (PCS) were reported in 1996. However, requirement of postoperative steroid hormone replacement is still controversial issue. In this study, we observed recent surgical cases retrospectively and evaluate the use of postoperative steroid hormone replacement. Eighteen patients with PCS underwent surgery from 1997 to 2007 in Jikei University Hospital. Thirteen of them received postoperative steroid hormone replacement. We investigated preoperative hormone activity by 131 I-adosterol scintigraphy and suppression of adrenocorticotropic hormone (ACTH) and evaluated the requirement of postoperative steroid hormone replacement. Preoperative serum cortisol was normal range in all patients. Serum ACTH was suppressed in 10 of them (56%). In 131 I-adosterol scintigraphy, accumulation in ipsilateral side was observed in all patients. Accumulation in contralateral side was observed in 13 patients whose serum ACTH had tendency to be suppressed. Mean period of steroid hormone replacement was 19.8 weeks. Patients with lower preoperative ACTH tended to require longer period until withdrawal of steroid hormone replacement. In addition, patients received steroid hormone replacement with higher starting dose significantly required longer period. Three of them had complications during tapering of steroid hormone. Postoperative adrenal insufficiency is important issue as postoperative management of PCS patients whose function of contralateral adrenal or pituitary gland is suppressed. 131 I-adosterol scintigraphy and preoperative serum ACTH were important factors to evaluate the requirement of postoperative steroid hormone replacement. Especially, patients with low preoperative serum ACTH tended to require long duration of postoperative steroid hormone replacement. On the other hand, patients with accumulation of contralateral side in 131 I-adosterol scintigraphy and without suppression of serum ACTH may not require steroid hormone

  14. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    International Nuclear Information System (INIS)

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.; Cederlund, E.; Gustafsson, J.A.; Joernvall, H.

    1988-01-01

    Purified rat liver glucocorticoid receptor was covalently charged with [ 3 H]glucocorticoid by photoaffinity labeling (UV irradiation of [ 3 H]triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with [ 3 H]dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with [ 3 H]triamcinolone acetonide and Cys-656 after affinity labeling with [ 3 H]dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. The patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A

  15. Effect of presurgical radiotherapy on the steroid receptor concentrations in primary breast carcinoma

    International Nuclear Information System (INIS)

    Janssens, J. Ph.; Bonte, J.; Drochmans, A.; Mulier, J.; Rutten, J.; Wittevrongel, C.; Loecker, W. de

    1981-01-01

    With age, oestradiol receptor concentrations increased in primary breast carcinoma while age did not seem to affect the progesterone receptor levels. Above the age of 70, all tumours examined proved to be hormone-dependent. Analysis by light microscope did not allow correlation of the receptor-positive tumours to any specific or predominant cellular structure. Presurgical radiotherapy of 20 gray significantly reduced the oestradiol and to an even greater extent the progesterone receptor concentrations in the tumours. Prebioptic irradiation with 8 gray accentuated the inhibition of steroid receptor proteins. This reduction in receptor concentration after radiotherapy should be taken into account when interpreting steroid receptor values. (author)

  16. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  17. Two panels of steroid receptor luciferase reporter cell lines for compound profiling

    Czech Academy of Sciences Publication Activity Database

    Sedlák, David; Paguio, A.; Bartůněk, Petr

    2011-01-01

    Roč. 14, č. 2 (2011), s. 248-266 ISSN 1386-2073 R&D Projects: GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear hormone receptor * steroid receptor * cell-based luciferase reporter assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2011

  18. Postmenopausal Serum Sex Steroids and Risk of Hormone Receptor-Positive and -Negative Breast Cancer : a Nested Case-Control Study

    NARCIS (Netherlands)

    James, Rebecca E.; Lukanova, Annekatrin; Dossus, Laure; Becker, Susen; Rinaldi, Sabina; Tjonneland, Anne; Olsen, Anja; Overvad, Kim; Mesrine, Sylvie; Engel, Pierre; Clavel-Chapelon, Francoise; Chang-Claude, Jenny; Vrieling, Alina; Boeing, Heiner; Schuetze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Krogh, Vittorio; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; Rodriguez, Laudina; Buckland, Genevieve; Sanchez, Maria-Jose; Amiano, Pilar; Ardanaz, Eva; Bueno-de-Mesquita, Bas; Ros, Martine M.; van Gils, Carla H.; Peeters, Petra H.; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J.; Allen, Naomi E.; Romieu, Isabelle; Siddiq, Afshan; Cox, David; Riboli, Elio; Kaaks, Rudolf

    2011-01-01

    Prediagnostic endogenous sex steroid hormone levels have well established associations with overall risk of breast cancer. While evidence toward the existence of distinct subtypes of breast cancer accumulates, few studies have investigated the associations of sex steroid hormone levels with risk of

  19. Postmenopausal serum sex steroids and risk of hormone receptor-positive and -negative breast cancer: a nested case-control study

    NARCIS (Netherlands)

    James, R.E.; Lukanova, A.; Dossus, L.; Becker, S.; Rinaldi, S.; Tjonneland, A.; Olsen, A.; Overvad, K.; Mesrine, S.; Engel, P.; Clavel-Chapelon, F.; Chang-Claude, J.; Vrieling, A.; Boeing, H.; Schutze, M.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Palli, D.; Krogh, V.; Panico, S.; Tumino, R.; Sacerdote, C.; Rodriguez, L.; Buckland, G.; Sanchez, M.J.; Amiano, P.; Ardanaz, E.; Bueno-de-Mesquita, B.; Ros, M.M.; Gils, C.H. van; Peeters, P.H.M.; Khaw, K.T.; Wareham, N.; Key, T.J.; Allen, N.E.; Romieu, I.; Siddiq, A.; Cox, D.; Riboli, E.; Kaaks, R.

    2011-01-01

    Prediagnostic endogenous sex steroid hormone levels have well established associations with overall risk of breast cancer. While evidence toward the existence of distinct subtypes of breast cancer accumulates, few studies have investigated the associations of sex steroid hormone levels with risk of

  20. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain

    Science.gov (United States)

    Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.

    2011-01-01

    Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111

  1. PET Imaging of Steroid Receptor Expression in Breast and Prostate Cancer

    NARCIS (Netherlands)

    Hospers, G. A. P.; Helmond, F. A.; Dierckx, R. A.; de Vries, Emma; de Vries, Erik

    2008-01-01

    The vast majority of breast and prostate cancers express specific receptors for steroid hormones, which play a pivotal role in tumor progression. Because of the efficacy of endocrine therapy combined with its relatively mild side-effects, this intervention has nowadays become the treatment of choice

  2. Steroid hormones in environmental matrices: extraction method comparison.

    Science.gov (United States)

    Andaluri, Gangadhar; Suri, Rominder P S; Graham, Kendon

    2017-11-09

    The U.S. Environmental Protection Agency (EPA) has developed methods for the analysis of steroid hormones in water, soil, sediment, and municipal biosolids by HRGC/HRMS (EPA Method 1698). Following the guidelines provided in US-EPA Method 1698, the extraction methods were validated with reagent water and applied to municipal wastewater, surface water, and municipal biosolids using GC/MS/MS for the analysis of nine most commonly detected steroid hormones. This is the first reported comparison of the separatory funnel extraction (SFE), continuous liquid-liquid extraction (CLLE), and Soxhlet extraction methods developed by the U.S. EPA. Furthermore, a solid phase extraction (SPE) method was also developed in-house for the extraction of steroid hormones from aquatic environmental samples. This study provides valuable information regarding the robustness of the different extraction methods. Statistical analysis of the data showed that SPE-based methods provided better recovery efficiencies and lower variability of the steroid hormones followed by SFE. The analytical methods developed in-house for extraction of biosolids showed a wide recovery range; however, the variability was low (≤ 7% RSD). Soxhlet extraction and CLLE are lengthy procedures and have been shown to provide highly variably recovery efficiencies. The results of this study are guidance for better sample preparation strategies in analytical methods for steroid hormone analysis, and SPE adds to the choice in environmental sample analysis.

  3. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Science.gov (United States)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  4. Steroid hormone signaling during development has a latent effect on adult male sexual behavior in the butterfly Bicyclus anynana.

    Science.gov (United States)

    Bear, Ashley; Prudic, Kathleen L; Monteiro, Antónia

    2017-01-01

    It is well established that steroid hormones regulate sexual behavior in vertebrates via organizational and activational effects. However, whether the organizational/activational paradigm applies more broadly to the sexual behavior of other animals such as insects is not well established. Here we describe the hormonal regulation of a sexual behavior in the seasonally polyphenic butterfly Bicyclus anynana is consistent with the characteristics of an organizational effect. By measuring hormone titer levels, quantifying hormone receptor gene expression in the brain, and performing hormone manipulations, we demonstrate steroid hormone signaling early in pupal development has a latent effect on adult male sexual behavior in B. anynana. These findings suggest the organizational/activational paradigm may be more highly conserved across animal taxa than previously thought.

  5. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U

    1988-01-01

    mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75......To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone...

  6. Radioimmunoassay (RIA) technique of steroid hormones in the laying hens, Gallus domesticus

    International Nuclear Information System (INIS)

    Ramli bin Abdullah

    1990-01-01

    The principle of radioimmunoassay (RIA) has been applied to many organic compounds of biological interest. In this work, commercially available antisera developed for various steroid hormones were used in the analysis of steroid hormones in the laying hens. The RIA procedure for plasma steroid hormones was divided into three phases: sample preparation, incubation of the antibody-3H-steroid complex with prepared samples and a standard curve and separation of antibody bound 3H-steroid from free 3H-steroid. Results showed that it is possible to use commercially available antiserum source for the determination of steroid hormones in this species. This approach has the advantage of savings in both time and money, by eliminating time losses in screening potential animals producing steroid antiserum and the costs of maintaining these animals

  7. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  8. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  9. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  10. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    Directory of Open Access Journals (Sweden)

    Stallcup Michael R

    2009-01-01

    Full Text Available Abstract Background Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. Methods We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95: African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. Results We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants. We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26. A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other

  11. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    International Nuclear Information System (INIS)

    Haiman, Christopher A; Stallcup, Michael R; Greene, Geoffrey L; Press, Michael F; Garcia, Rachel R; Hsu, Chris; Xia, Lucy; Ha, Helen; Sheng, Xin; Le Marchand, Loic; Kolonel, Laurence N; Henderson, Brian E

    2009-01-01

    Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP) suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95): African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls) nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants). We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26). A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other studies. Our findings suggest that common coding

  12. Modulation by steroid hormones of a "sexy" acoustic signal in an Oscine species, the Common Canary Serinus canaria.

    Science.gov (United States)

    Rybak, Fanny; Gahr, Manfred

    2004-06-01

    The respective influence of testosterone and estradiol on the structure of the Common Canary Serinus canaria song was studied by experimentally controlling blood levels of steroid hormones in males and analyzing the consequent effects on acoustic parameters. A detailed acoustic analysis of the songs produced before and after hormonal manipulation revealed that testosterone and estradiol seem to control distinct song parameters independently. The presence of receptors for testosterone and estradiol in the brain neural pathway controlling song production strongly suggests that the observed effects are mediated by a steroid action at the neuronal level.

  13. Activation of PPAR by Rosiglitazone Does Not Negatively Impact Male Sex Steroid Hormones in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Mansour

    2009-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR activation decreased serum testosterone (T in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2 in female rats. This implies modulation of female sex steroid hormones by PPAR. It is not clear if PPAR modulates sex steroid hormones in diabetic males. Because PPAR activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPAR activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPAR activation on serum and intratesticular T, luteinizing hormone (LH, follicle stimulating hormone (FSH and E2 concentrations in male Zucker diabetic fatty (ZDF rats treated with the PPAR agonist rosiglitazone (a thiazolidinedione. Treatment for eight weeks increased PPAR mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPAR activation. PPAR activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPAR activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPAR by rosiglitazone has no negative impact on sex hormones in male ZDF rats.

  14. Steroid hormones affect binding of the sigma ligand 11C-SA4503 in tumour cells and tumour-bearing rats

    International Nuclear Information System (INIS)

    Rybczynska, Anna A.; Elsinga, Philip H.; Sijbesma, Jurgen W.; Jong, Johan R. de; Vries, Erik F. de; Dierckx, Rudi A.; Waarde, Aren van; Ishiwata, Kiichi

    2009-01-01

    Sigma receptors are implicated in memory and cognitive functions, drug addiction, depression and schizophrenia. In addition, sigma receptors are strongly overexpressed in many tumours. Although the natural ligands are still unknown, steroid hormones are potential candidates. Here, we examined changes in binding of the sigma-1 agonist 11 C-SA4503 in C6 glioma cells and in living rats after modification of endogenous steroid levels. 11 C-SA4503 binding was assessed in C6 monolayers by gamma counting and in anaesthetized rats by microPET scanning. C6 cells were either repeatedly washed and incubated in steroid-free medium or exposed to five kinds of exogenous steroids (1 h or 5 min before tracer addition, respectively). Tumour-bearing male rats were repeatedly treated with pentobarbital (a condition known to result in reduction of endogenous steroid levels) or injected with progesterone. Binding of 11 C-SA4503 to C6 cells was increased (∝50%) upon removal and decreased (∝60%) upon addition of steroid hormones (rank order of potency: progesterone > allopregnanolone = testosterone = androstanolone > dehydroepiandrosterone-3-sulphate, IC 50 progesterone 33 nM). Intraperitoneally administered progesterone reduced tumour uptake and tumour-to-muscle contrast (36%). Repeated treatment of animals with pentobarbital increased the PET standardized uptake value of 11 C-SA4503 in tumour (16%) and brain (27%), whereas the kinetics of blood pool radioactivity was unaffected. The binding of 11 C-SA4503 is sensitive to steroid competition. Since not only increases but also decreases of steroid levels affect ligand binding, a considerable fraction of the sigma-1 receptor population in cultured tumour cells or tumour-bearing animals is normally occupied by endogenous steroids. (orig.)

  15. Towards an understanding of the evolution of the chorioallantoic placenta: steroid biosynthesis and steroid hormone signaling in the chorioallantoic membrane of an oviparous reptile.

    Science.gov (United States)

    Cruze, Lori; Kohno, Satomi; McCoy, Michael W; Guillette, Louis J

    2012-09-01

    Amniotes, mammals, reptiles, and birds form common extraembryonic membranes during development to perform essential functions, such as protection, nutrient transfer, gas exchange, and waste removal. Together with the maternal uterus, extraembryonic membranes of viviparous (live-bearing) amniotes develop as an endocrine placenta that synthesizes and responds to steroid hormones critical for development. The ability of these membranes to synthesize and respond to steroid hormone signaling has traditionally been considered an innovation of placental amniotes. However, our laboratory recently demonstrated that this ability extends to the chorioallantoic membrane (CAM) of an oviparous (egg-laying) amniote, the domestic chicken, and we hypothesized that steroidogenic extraembryonic membranes could be an evolutionarily conserved characteristic of all amniotes because of similarities in basic structure, function, and shared evolutionary ancestry. In this study, we examined steroid hormone synthesis and signaling in the CAM of another oviparous amniote, the American alligator (Alligator mississippiensis). We quantified mRNA expression of a steroidogenic factor involved in the regulation of steroidogenesis (NR5A1), the key steroidogenic enzymes involved in the synthesis of progestins (HSD3B1), androgens (CYP17A1), and estrogens (CYP19A1), and the receptors involved in the signaling of progestins (PR), androgens (AR), estrogens (ESR1 and ESR2), and glucocorticoids (GR). Furthermore, we performed protein immunolocalization for PR and ESR1. Collectively, our findings indicate that the alligator CAM has the capability to regulate, synthesize, and respond to steroid hormone signaling, thus, supporting our hypothesis that the extraembryonic membranes of Amniota share a unifying characteristic, that is, the ability to synthesize and respond to steroid hormones.

  16. Advances in bioanalytical techniques to measure steroid hormones in serum.

    Science.gov (United States)

    French, Deborah

    2016-06-01

    Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC-MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC-MS/MS has now become a popular alternative owing to simplified sample preparation than for GC-MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum.

  17. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    OpenAIRE

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigeneti...

  18. Steroid hormones as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1988-01-01

    Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.

  19. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-01-01

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen

  20. Steroid hormone regulation of EMP2 expression and localization in the endometrium

    Directory of Open Access Journals (Sweden)

    Williams Carmen J

    2008-04-01

    Full Text Available Abstract Background The tetraspan protein epithelial membrane protein-2 (EMP2, which mediates surface display of diverse proteins, is required for endometrial competence in blastocyst implantation, and is uniquely correlated with poor survival from endometrial adenocarcinoma tumors. Because EMP2 is differentially expressed in the various stages of the murine and human estrous cycle, we tested the hypothesis that the steroid hormones progesterone and estrogen influence EMP2 expression and localization. Methods Frozen human proliferative and secretory endometrium were collected and analyzed for EMP2 expression using SDS-PAGE/Western blot analysis. The response of EMP2 to progesterone and estradiol was determined using a combination of real-time PCR, SDS-PAGE/Western blot analysis, and confocal immunofluorescence in the human endometrial carcinoma cell line RL95-2. To confirm the in vitro results, ovariectomized mice were treated with progesterone or estradiol, and EMP2 expression was analyzed using immunohistochemistry. Results Within normal human endometrium, EMP2 expression is upregulated in the secretory phase relative to the proliferative phase. To understand the role of steroid hormones on EMP2 expression, we utilized RL95-2 cells, which express both estrogen and progesterone receptors. In RL95-2 cells, both estradiol and progesterone induced EMP2 mRNA expression, but only progesterone induced EMP2 protein expression. To compare steroid hormone regulation of EMP2 between humans and mice, we analyzed EMP2 expression in ovarectomized mice. Similar to results observed in humans, progesterone upregulated endometrial EMP2 expression and induced EMP2 translocation to the plasma membrane. Estradiol did not promote translocation to the cell surface, but moderately induced EMP2 expression in cytoplasmic compartments in vivo. Conclusion These findings suggest that targeting of EMP2 to specific locations under the influence of these steroid hormones may

  1. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain.

    Science.gov (United States)

    Kerver, H N; Wade, J

    2015-03-01

    Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone. © 2014 British Society for Neuroendocrinology.

  2. Modulation by steroid hormones of a ''sexy'' acoustic signal in an Oscine species, the Common Canary Serinus canaria

    Directory of Open Access Journals (Sweden)

    Rybak Fanny

    2004-01-01

    Full Text Available The respective influence of testosterone and estradiol on the structure of the Common Canary Serinus canaria song was studied by experimentally controlling blood levels of steroid hormones in males and analyzing the consequent effects on acoustic parameters. A detailed acoustic analysis of the songs produced before and after hormonal manipulation revealed that testosterone and estradiol seem to control distinct song parameters independently. The presence of receptors for testosterone and estradiol in the brain neural pathway controlling song production strongly suggests that the observed effects are mediated by a steroid action at the neuronal level.

  3. Determination of steroid hormones in blood by GC-MS/MS

    DEFF Research Database (Denmark)

    Hansen, Martin; Jacobsen, Naja Wessel; Nielsen, Frederik Knud

    2011-01-01

    This paper presents the development, optimization and validation of a methodology to determine nine key steroid hormones (viz. pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, test......This paper presents the development, optimization and validation of a methodology to determine nine key steroid hormones (viz. pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, test...

  4. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Animal manure separation technologies diminish the environmental burden of steroid hormones

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Popovic, Olga

    2015-01-01

    environmental risks associated with the release of steroid hormones to adjacent waterways. To assess the potential benefit of these technologies in reducing the level of release of steroid hormones to adjacent waterways, distribution profiles of nine steroid hormones (pregnenolone, progesterone......Newly developed treatment technologies are capable of separating livestock manure into a liquid fraction and a solid fraction using sedimentation, mechanical, and/or chemical methods. These technologies offer a potential means of distributing nutrients to agricultural lands without the unwanted...

  6. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    Science.gov (United States)

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids.

    Science.gov (United States)

    Scott, Alexander P

    2012-11-01

    The consensus view is that vertebrate-type steroids are present in mollusks and perform hormonal roles which are similar to those that they play in vertebrates. Although vertebrate steroids can be measured in molluscan tissues, a key question is 'Are they formed endogenously or they are picked up from their environment?'. The present review concludes that there is no convincing evidence for biosynthesis of vertebrate steroids by mollusks. Furthermore, the 'mollusk' genome does not contain the genes for key enzymes that are necessary to transform cholesterol in progressive steps into vertebrate-type steroids; nor does the mollusk genome contain genes for functioning classical nuclear steroid receptors. On the other hand, there is very strong evidence that mollusks are able to absorb vertebrate steroids from the environment; and are able to store some of them (by conjugating them to fatty acids) for weeks to months. It is notable that the three steroids that have been proposed as functional hormones in mollusks (i.e. progesterone, testosterone and 17β-estradiol) are the same as those of humans. Since humans (and indeed all vertebrates) continuously excrete steroids not just via urine and feces, but via their body surface (and, in fish, via the gills), it is impossible to rule out contamination as the sole reason for the presence of vertebrate steroids in mollusks (even in animals kept under supposedly 'clean laboratory conditions'). Essentially, the presence of vertebrate steroids in mollusks cannot be taken as reliable evidence of either endogenous biosynthesis or of an endocrine role. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. Steroid hormones affect binding of the sigma ligand {sup 11}C-SA4503 in tumour cells and tumour-bearing rats

    Energy Technology Data Exchange (ETDEWEB)

    Rybczynska, Anna A.; Elsinga, Philip H.; Sijbesma, Jurgen W.; Jong, Johan R. de; Vries, Erik F. de; Dierckx, Rudi A.; Waarde, Aren van [University of Groningen, Nuclear Medicine and Molecular Imaging, University of Groningen Medical Center, Groningen (Netherlands); Ishiwata, Kiichi [Tokyo Metropolitan Institute of Gerontology, Positron Medical Center, Tokyo (Japan)

    2009-07-15

    Sigma receptors are implicated in memory and cognitive functions, drug addiction, depression and schizophrenia. In addition, sigma receptors are strongly overexpressed in many tumours. Although the natural ligands are still unknown, steroid hormones are potential candidates. Here, we examined changes in binding of the sigma-1 agonist {sup 11}C-SA4503 in C6 glioma cells and in living rats after modification of endogenous steroid levels. {sup 11}C-SA4503 binding was assessed in C6 monolayers by gamma counting and in anaesthetized rats by microPET scanning. C6 cells were either repeatedly washed and incubated in steroid-free medium or exposed to five kinds of exogenous steroids (1 h or 5 min before tracer addition, respectively). Tumour-bearing male rats were repeatedly treated with pentobarbital (a condition known to result in reduction of endogenous steroid levels) or injected with progesterone. Binding of {sup 11}C-SA4503 to C6 cells was increased ({proportional_to}50%) upon removal and decreased ({proportional_to}60%) upon addition of steroid hormones (rank order of potency: progesterone > allopregnanolone = testosterone = androstanolone > dehydroepiandrosterone-3-sulphate, IC{sub 50} progesterone 33 nM). Intraperitoneally administered progesterone reduced tumour uptake and tumour-to-muscle contrast (36%). Repeated treatment of animals with pentobarbital increased the PET standardized uptake value of {sup 11}C-SA4503 in tumour (16%) and brain (27%), whereas the kinetics of blood pool radioactivity was unaffected. The binding of {sup 11}C-SA4503 is sensitive to steroid competition. Since not only increases but also decreases of steroid levels affect ligand binding, a considerable fraction of the sigma-1 receptor population in cultured tumour cells or tumour-bearing animals is normally occupied by endogenous steroids. (orig.)

  9. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans.

    Science.gov (United States)

    Miyakawa, Hitoshi; Toyota, Kenji; Hirakawa, Ikumi; Ogino, Yukiko; Miyagawa, Shinichi; Oda, Shigeto; Tatarazako, Norihisa; Miura, Toru; Colbourne, John K; Iguchi, Taisen

    2013-01-01

    Juvenile hormone is an essential regulator of major developmental and life history events in arthropods. Most of the insects use juvenile hormone III as the innate juvenile hormone ligand. By contrast, crustaceans use methyl farnesoate. Despite this difference that is tied to their deep evolutionary divergence, the process of this ligand transition is unknown. Here we show that a single amino-acid substitution in the receptor Methoprene-tolerant has an important role during evolution of the arthropod juvenile hormone pathway. Microcrustacea Daphnia pulex and D. magna share a juvenile hormone signal transduction pathway with insects, involving Methoprene-tolerant and steroid receptor coactivator proteins that form a heterodimer in response to various juvenoids. Juvenile hormone-binding pockets of the orthologous genes differ by only two amino acids, yet a single substitution within Daphnia Met enhances the receptor's responsiveness to juvenile hormone III. These results indicate that this mutation within an ancestral insect lineage contributed to the evolution of a juvenile hormone III receptor system.

  10. Extracellular and intracellular steroid binding proteins

    International Nuclear Information System (INIS)

    Wagner, R.K.

    1978-01-01

    Steroid hormone binding proteins can be measured, after the removal of endogenous steroids, as specific complexes with radio-labelled hormones. In this study all the requirements for a quantitative determination of steroid hormone binding proteins are defined. For different methods, agargel electrophoresis, density gradient centrifugation, equilibrium dialysis and polyacrylamide electrophoresis have been evaluated. Agar electrophoresis at low temperature was found to be the simplest and most useful procedure. With this method the dissociation rates of high affinity complexes can be assessed and absolute binding protein concentrations can be determined. The dissociation rates of the oestradiol-oestrogen receptor complex and the R-5020-progestin receptor complex are low (1-2% per h run time.) In contrast, that of complexes between androgen receptor and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one (DHT), progestin receptor and progesterone, corticosteroid binding globulin (CBG) and cortisol or progesterone and sex hormone binding globulin (SHBG) and DHT were hign (16-27% per h run time). Target tissue extracts (cytosols) contain, besides soluble tissue proteins, large amounts of plasma proteins. The extent of this plasma contamination can be determined by measuring the albumin concentration in cytosols by immunodiffusion. In cytosols of 4 different human target tissues the albumin content varied from 20-30% corresponding to an even higher whole plasma concentration. Steroid binding plasma proteins, such as CBG and SHBG are constituents of this containment. (author)

  11. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development

    Science.gov (United States)

    Schulz, Kalynn M.; Sisk, Cheryl L.

    2016-01-01

    Adolescence is a developmental period characterized by dramatic changes in cognition, risk-taking and social behavior. Although gonadal steroid hormones are well-known mediators of these behaviors in adulthood, the role gonadal steroid hormones play in shaping the adolescent brain and behavioral development has only come to light in recent years. Here we discuss the sex-specific impact of gonadal steroid hormones on the developing adolescent brain. Indeed, the effects of gonadal steroid hormones during adolescence on brain structure and behavioral outcomes differs markedly between the sexes. Research findings suggest that adolescence, like the perinatal period, is a sensitive period for the sex-specific effects of gonadal steroid hormones on brain and behavioral development. Furthermore, evidence from studies on male sexual behavior suggests that adolescence is part of a protracted postnatal sensitive period that begins perinatally and ends following adolescence. As such, the perinatal and peripubertal periods of brain and behavioral organization likely do not represent two discrete sensitive periods, but instead are the consequence of normative developmental timing of gonadal hormone secretions in males and females. PMID:27497718

  12. Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects.

    Science.gov (United States)

    Scott, Alexander P

    2013-02-01

    In assessing the evidence as to whether vertebrate sex steroids (e.g. testosterone, estradiol, progesterone) have hormonal actions in mollusks, ca. 85% of research papers report at least one biological effect; and 18 out of 21 review papers (published between 1970 and 2012) express a positive view. However, just under half of the research studies can be rejected on the grounds that they did not actually test steroids, but compounds or mixtures that were only presumed to behave as steroids (or modulators of steroids) on the basis of their effects in vertebrates (e.g. Bisphenol-A, nonylphenol and sewage treatment effluents). Of the remaining 55 papers, some can be criticized for having no statistical analysis; some for using only a single dose of steroid; others for having irregular dose-response curves; 40 out of the 55 for not replicating the treatments; and 50 out of 55 for having no within-study repetition. Furthermore, most studies had very low effect sizes in comparison to fish-based bioassays for steroids (i.e. they had a very weak 'signal-to-noise' ratio). When these facts are combined with the fact that none of the studies were conducted with rigorous randomization or 'blinding' procedures (implying the possibility of 'operator bias') one must conclude that there is no indisputable bioassay evidence that vertebrate sex steroids have endocrinological or reproductive roles in mollusks. The only observation that has been independently validated is the ability of estradiol to trigger rapid (1-5 min) lysosomal membrane breakdown in hemocytes of Mytilus spp. This is a typical 'inflammatory' response, however, and is not proof that estradiol is a hormone - especially when taken in conjunction with the evidence (discussed in a previous review) that mollusks have neither the enzymes necessary to synthesize vertebrate steroids nor nuclear receptors with which to respond to them. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  13. In vitro binding of steroid hormones by natural and purified fibers

    International Nuclear Information System (INIS)

    Shultz, T.D.; Howie, B.J.

    1986-01-01

    The in vitro binding of estrone, estradiol-17β, estriol, testosterone, dihydrotestosterone, and estrone-3-glucuronide by wheat, oat and corn brans, oat hulls, cellulose, lignin, and cholestyramine resin was measured. Steroid binding was carried out by mixing 50 mg of binding substance with varying substrate quantities (0.037 μCi; 0.50-2.51 pmol/incubation) of 3 H-estrone, 3 H-estradiol-17β, 3 H-estriol, 3 H-estrone-3-glucuronide, 4 H-testosterone, and 370 C for 1 hr with shaking. Following centrifugation of the reaction mixture, a 1 ml aliquot was analyzed for radioactivity. The extent of steroid sequestration was characteristic and reproducible for each hormone. Cholestyramine bound an average of 90% of all the steroids tested, whereas cellulose bound the least (12%). Of the other substances tested, lignin bound 87%; wheat and oat grans, 45% each; corn bran, 44%; and oat hulls, 32% of the unconjugated hormones. The conjugated steroid was less likely to bind than the unconjugated steroids. Lignin appeared to be an important component in the interaction with steroid hormones. The results support the hydrophobic of nature of adsorption and suggest that the components of the fiber in diet should be considered separately when evaluating in vivo metabolic effects. Implications include the possible modification of hormone-dependent cancer risk through dietary intervention

  14. Dietary modification of metabolic pathways via nuclear hormone receptors.

    Science.gov (United States)

    Caiozzi, Gianella; Wong, Brian S; Ricketts, Marie-Louise

    2012-10-01

    Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  16. 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-05-15

    The persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro. Since TCDD acts through binding to the aryl hydrocarbon receptor (AHR), and the AHR has been identified as an important factor in ovarian function, we also conducted experiments to confirm the presence and activation of the AHR in our tissue culture system. To do so, we exposed mouse antral follicles for 96 h to a series of TCDD doses previously shown to have effects on ovarian tissues and cells in culture, which also encompass environmentally relevant and pharmacological exposures (0.1–100 nM), to determine a dose response for TCDD in our culture system for growth, hormone production, and expression of the Ahr and Cyp1b1. The results indicate that TCDD decreases progesterone, androstenedione, testosterone, and estradiol levels in a non-monotonic dose response manner without altering growth of antral follicles. The addition of pregnenolone substrate (10 μM) restores hormone levels to control levels. Additionally, Cyp1b1 levels were increased by 3–4 fold regardless of the dose of TCDD exposure, evidence of AHR activation. Overall, these data indicate that TCDD may act prior to pregnenolone formation and through AHR transcriptional control of Cyp1b1, leading to decreased hormone levels without affecting growth of antral follicles. -- Highlights: ►TCDD disrupts sex steroid hormone levels, but not growth of antral follicles. ►Pregnenolone co-treatment by-passes TCDD-induced steroid hormone disruption. ►TCDD affects steroid hormone levels through an AHR pathway in antral follicles.

  17. Beyond the HPA-axis: The role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD.

    Science.gov (United States)

    Fenchel, Daphna; Levkovitz, Yechiel; Vainer, Ella; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis, which plays a major role in the response to stress, and the hypothalamic-pituitary-gonadal (HPG) axis are closely linked with the ability to inhibit the other. Testosterone, a product of the HPG, has many beneficial effects beyond its functions as a sex hormone including anti-anxiety properties. In this study we examined the effect of stress exposure on gonadal hormones, and their efficacy in modulating anxiety-like response in an animal model of PTSD. Male rats were exposed to predator scent stress, followed by analysis of brain expression of androgen receptor (AR) receptor and estrogen receptor α (ERα). The behavioral effects of immediate treatment with testosterone, testosterone receptor antagonist (flutamide) or vehicle were evaluated using the elevated plus-maze, acoustic startle response and trauma-cue response. Levels of circulating corticosterone and testosterone were also measured after treatment. The behavioral effects of delayed testosterone treatment were explored in the same manner. We report that animals whose behavior was extremely disrupted (EBR) selectively displayed significant down-regulation of AR and ERα in the hippocampus. Immediate treatment with flutamide or delayed treatment with testosterone significantly increased prevalence rates of minimal behavioral response (MBR) and decreased prevalence of EBR with favorable behavioral results. Testosterone levels were higher in control un-exposed animals, while corticosterone was higher in control exposed animals. This study suggests that gonadal steroid hormones are involved in the neurobiological response to predator scent stress and thus warrant further study as a potential therapeutic avenue for the treatment of anxiety-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  18. Sex steroid receptor expression in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Mehrad, Mitra; Trejo Bittar, Humberto E; Yousem, Samuel A

    2017-08-01

    Usual interstitial pneumonia (UIP) is characterized by progressive scarring of the lungs and is associated with high morbidity and mortality despite therapeutic interventions. Sex steroid receptors have been demonstrated to play an important role in chronic lung conditions; however, their significance is unknown in patients with UIP. We retrospectively reviewed 40 idiopathic UIP cases for the expression of hormonal receptors. Forty cases including 10 normal lung, 10 cryptogenic organizing pneumonia, 10 idiopathic organizing diffuse alveolar damage, 7 hypersensitivity pneumonitis, and 3 nonspecific interstitial pneumonitis served as controls. Immunohistochemistry for estrogen receptor α, progesterone receptor (PR), and androgen receptor was performed in all groups. Expression of these receptors was assessed in 4 anatomic/pathologic compartments: alveolar and bronchiolar epithelium, arteries/veins, fibroblastic foci/airspace organization, and old scar. All UIPs (100%) stained positive for PR in myofibroblasts in the scarred areas, whereas among the control cases, only 1 nonspecific interstitial pneumonitis case stained focally positive and the rest were negative. PR was positive in myocytes of the large-sized arteries within the fibrotic areas in 31 cases (77.5%). PR was negative within the alveolar and bronchial epithelium, airspace organization, and center of fibroblastic foci; however, weak PR positivity was noted in the peripheral fibroblasts of the fibroblastic foci where they merged with dense fibrous connective tissue scar. All UIP and control cases were negative for androgen receptor and estrogen receptor α. This is the first study to show the expression of PR within the established fibrotic areas of UIP, indicating that progesterone may have profibrotic effects in UIP patients. Hormonal therapy by targeting PR could be of potential benefit in patients with UIP/IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Serum-sex steroids, gonadotrophins and sex hormone-binding globulin inprostatic hyperplasia

    International Nuclear Information System (INIS)

    Ansari, Mohammad A. Jalil; Begum, D.; Islam, F.

    2008-01-01

    Benign prostatic hyperplasia (BPH) develops in elderly males when serumandrogens are relatively lower than in healthy younger males, but is not wellunderstood whether and how sex steroids are altered in prostatic hyperplasia.It is also uncertain that whether there is any change in sex steroids levelsin males older than 40 years of age. The use of androgens in elderly males isoften discouraged because of the probable worsening effect of androgens onprostatism. This study aimed to determine the relationship between prostatichyperplasia and sex steroid levels and whether there is any significantchange in these hormones after the age of 40 years. We studied healthy malesof >40 years with (n=92) or without (n=93) clinical prostatic hyperplasia.Serum testosterone, estradiol, gonadotrophins and sex hormone-bindingglobulin (SHBG) were compared. The hormones and SHGB were also correlatedwith age. No significant difference was found in any hormone in cases withprostatic hyperplasia as compared with the controls. There was no significantage-related change in any hormone except estradiol where as a negativecorrelation (P<0.003) with age was found. Serum sex steroids and SHGBremained unchanged in symptomatic prostatic hyperplasia and except forestrdoil there was no significant age-related change in serum testosterone,gonadotrophins and SHGB in healthy males after the fourth decade. Morestudies are needed to confirm the age-related decline of estrogens in males.(author)

  20. Parasites and steroid hormones: corticosteroid and sex steroid synthesis, their role in the parasite physiology and development.

    Directory of Open Access Journals (Sweden)

    Marta C. Romano

    2015-06-01

    Full Text Available In many cases parasites display highly complex life cycles that include establishment of the larva or adults within host organs, but even in those that have only one host reciprocal intricate interactions occur. A bulk of evidence indicates that steroid hormones influence the development and course of parasitic infections, the host gender susceptibility to the infection and the associate differences in immunological response are good examples of the host-parasite interplay. However, the capacity of these organisms to synthesize their own steroidogenic hormones still has more questions than answers. It is now well known that many parasites synthesize ecdysteroids, but limited information is available on sex steroid and corticosteroid synthesis. This review intends to summarize some of the existing information in the field. In many but not all parasitosis the host hormonal environment determines the susceptibility, the course and severity of parasite infections. In most cases the infection disturbs the host environment, and activate immune responses that finally affect the endocrine system. Furthermore, sex steroids and corticosteroids may also directly modify the parasite reproduction and molting. Available information indicates that parasites synthesize some steroid hormones like ecdysteroids and sex steroids and the presence and activity of related enzymes have been demonstrated. More recently, the synthesis of corticosteroid like compounds has been shown in Taenia solium and tapeworms and in Taenia crassiceps WFU cysticerci. Deeper knowledge of the endocrine properties of parasites will contribute to understand their reproduction and reciprocal interactions with the host, and also may contribute to design tools to combat the infection in some clinical situations.

  1. Steroid hormone profile in female polar bears (Ursus maritimus)

    DEFF Research Database (Denmark)

    Gustavson, Lisa; Jenssen, Bjørn Munro; Bytingsvik, Jenny

    2015-01-01

    The polar bear is an iconic Arctic species, threatened by anthropogenic impacts such as pollution and climate change. Successful reproduction of polar bears depends on a functioning steroid hormone system, which is susceptible to effects of persistent organic pollutants. The present study...... is the first study to report circulating concentrations of nine steroid hormones (i.e., estrogens, androgens and progestagens) in female polar bears (Ursus maritimus). The aim of the study was to investigate the effects of age, condition, location and reproductive status on steroid profile in female polar...... bears. Levels of pregnenolone (PRE), progesterone, androstenedione (AN), dehydroepiandrosterone (DHEA), testosterone, dihydrotestosterone, estrone (E1), 17α-estradiol (αE2) and 17β-estradiol (βE2) were quantified in blood (serum) of free-living female polar bears (n = 15) from Svalbard, Norway, by gas...

  2. Steroid signaling system responds differently to temperature and hormone manipulation in the red-eared slider turtle (Trachemys scripta elegans), a reptile with temperature-dependent sex determination.

    Science.gov (United States)

    Ramsey, M; Crews, D

    2007-01-01

    Many reptiles, including the red-eared slider turtle (Trachemys scripta elegans), exhibit temperature-dependent sex determination (TSD). Temperature determines gonadal sex during the middle of embryogenesis, or the temperature-sensitive period (TSP), when gonadal sex is labile to both temperature and hormones--particularly estrogen. The biological actions of steroid hormones are mediated by their receptors as defined here as the classic transcriptional regulation of target genes. To elucidate estrogen action during sex determination, we examined estrogen receptor alpha (Esr1, hereafter referred to as ERalpha), estrogen receptor beta (Esr2, hereafter referred to as ERbeta), and androgen receptor (Ar, hereafter referred to as AR) expression in slider turtle gonads before, during and after the TSP, as well as following sex reversal via temperature or steroid hormone manipulation. ERalpha and AR levels spike at the female-producing temperature while ovarian sex is determined, but none of the receptors exhibited sexually dimorphic localization within the gonad prior to morphological differentiation. All three receptors respond differentially to sex-reversing treatments. When shifted to female-producing temperatures, embryos maintain ERalpha and AR expression while ERbeta is reduced. When shifted to male-producing temperatures, medullary expression of all three receptors is reduced. Feminization via estradiol (E(2)) treatment at a male-producing temperature profoundly changed the expression patterns for all three receptors. ERalpha and ERbeta redirected to the cortex in E(2)-created ovaries, while AR medullary expression was transiently reduced. Although warmer incubation temperature and estrogen result in the same endpoint (ovarian development), our results indicate different steroid signaling patterns between temperature- and estrogen-induced feminization. 2007 S. Karger AG, Basel

  3. Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats.

    Directory of Open Access Journals (Sweden)

    Rajib Mukherjee

    Full Text Available Caveolin-1 (CAV1 is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2 and androgen (dihydrotestosterone, DHT had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL and uncoupling protein 1 (UCP1 in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1.

  4. Psychological, social, and spiritual effects of contraceptive steroid hormones.

    Science.gov (United States)

    Klaus, Hanna; Cortés, Manuel E

    2015-08-01

    Governments and society have accepted and enthusiastically promoted contraception, especially contraceptive steroid hormones, as the means of assuring optimal timing and number of births, an undoubted health benefit, but they seldom advert to their limitations and side effects. This article reviews the literature on the psychological, social, and spiritual impact of contraceptive steroid use. While the widespread use of contraceptive steroid hormones has expanded life style and career choices for many women, their impact on the women's well-being, emotions, social relationships, and spirituality is seldom mentioned by advocates, and negative effects are often downplayed. When mentioned at all, depression and hypoactive sexual desire are usually treated symptomatically rather than discontinuing their most frequent pharmacological cause, the contraceptive. The rising incidence of premarital sex and cohabitation and decreased marriage rates parallel the use of contraceptive steroids as does decreased church attendance and/or reduced acceptance of Church teaching among Catholics. Lay summary: While there is wide, societal acceptance of hormonal contraceptives to space births, their physical side effects are often downplayed and their impact on emotions and life styles are largely unexamined. Coincidental to the use of "the pill" there has been an increase in depression, low sexual desire, "hook-ups," cohabitation, delay of marriage and childbearing, and among Catholics, decreased church attendance and reduced religious practice. Fertility is not a disease. Birth spacing can be achieved by natural means, and the many undesirable effects of contraception avoided.

  5. Psychological, social, and spiritual effects of contraceptive steroid hormones

    Science.gov (United States)

    Klaus, Hanna; Cortés, Manuel E.

    2015-01-01

    Governments and society have accepted and enthusiastically promoted contraception, especially contraceptive steroid hormones, as the means of assuring optimal timing and number of births, an undoubted health benefit, but they seldom advert to their limitations and side effects. This article reviews the literature on the psychological, social, and spiritual impact of contraceptive steroid use. While the widespread use of contraceptive steroid hormones has expanded life style and career choices for many women, their impact on the women's well-being, emotions, social relationships, and spirituality is seldom mentioned by advocates, and negative effects are often downplayed. When mentioned at all, depression and hypoactive sexual desire are usually treated symptomatically rather than discontinuing their most frequent pharmacological cause, the contraceptive. The rising incidence of premarital sex and cohabitation and decreased marriage rates parallel the use of contraceptive steroids as does decreased church attendance and/or reduced acceptance of Church teaching among Catholics. Lay summary: While there is wide, societal acceptance of hormonal contraceptives to space births, their physical side effects are often downplayed and their impact on emotions and life styles are largely unexamined. Coincidental to the use of “the pill” there has been an increase in depression, low sexual desire, “hook-ups,” cohabitation, delay of marriage and childbearing, and among Catholics, decreased church attendance and reduced religious practice. Fertility is not a disease. Birth spacing can be achieved by natural means, and the many undesirable effects of contraception avoided. PMID:26912936

  6. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    Science.gov (United States)

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-09-20

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.

  7. Steroid hormones and persistent organic pollutants in plasma from North-eastern Atlantic pilot whales

    DEFF Research Database (Denmark)

    Hoydal, Katrin S; Styrishave, Bjarne; Ciesielski, Tomasz M

    2017-01-01

    Persistent organic pollutants (POPs) are known to have endocrine disruptive effects, interfering with endogenous steroid hormones. The present study examined nine steroid hormones and their relationships with the concentrations of selected POPs in pilot whales (Globicephala melas) from the Faroe...

  8. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja

    2016-01-01

    's vulnerability for mood disorders is linked to sex-steroid dynamics by investigating the effects of a pharmacologically induced fluctuation in ovarian sex steroids on the brain response to monetary rewards. In a double-blinded placebo controlled study, healthy women were randomized to receive either placebo...... or the gonadotropin-releasing hormone agonist (GnRHa) goserelin, which causes a net decrease in sex-steroid levels. Fifty-eight women performed a gambling task while undergoing functional MRI at baseline, during the mid-follicular phase, and again following the intervention. The gambling task enabled us to map...

  9. The impact of genetics and hormonal contraceptives on the steroid profile in female athletes

    Directory of Open Access Journals (Sweden)

    Jenny Erkander Mullen

    2014-04-01

    Full Text Available The steroid module of the Athlete Biological Passport (ABP, the newest innovation in doping testing, is currently being finalized for implementation. Several factors, other than doping, can affect the longitudinal steroid profile. In this study we investigated the effect of hormonal contraceptives as well as the effect of three polymorphisms on female steroid profiles in relation to doping controls.The study population consisted of 79 female elite athletes between the ages of 18 to 45. Hormonal contraceptives were used by 32 % of the subjects. A full urinary steroid profile was obtained using World Anti-Doping Agency accredited methods. In addition all subjects were genotyped for copy number variation of UGT2B17 and SNPs in UGT2B7 and CYP17.Subjects using hormonal contraceptives excreted 40 % less epitestosterone as compared to non-users (p = 0.005 but showed no difference in testosterone excretion. When removing individuals homozygous for the deletion in UGT2B17, the testosterone to epitestosterone (T/E ratio was 29 % higher in the hormonal contraceptives group (p = 0.016. In agreement with previous findings in men, copy number variation of UGT2B17 had significant effect on female urinary testosterone excretion and therefore also the T/E ratio. Subjects homozygous for the T allele of CYP17 showed a lower urinary epitestosterone concentration than the other CYP17 genotypes. It is of great importance that the athlete’s steroidal passport can compensate for all possible normal variability in steroid profiles from women. Therefore, considering the large impact of hormonal contraceptives on female steroid profiles, we suggest that the use of hormonal contraceptives should be a mandatory question on the doping control form.

  10. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort.

    Science.gov (United States)

    Emaus, Marleen J; Peeters, Petra H M; Bakker, Marije F; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Romieu, Isabelle; Ferrari, Pietro; Dossus, Laure; Boutron-Ruault, Marie Christine; Baglietto, Laura; Fortner, Renée T; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Polidoro, Silvia; Skeie, Guri; Lund, Eiliv; Weiderpass, Elisabete; Quirós, J Ramón; Travier, Noémie; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Winkvist, Anna; Wennberg, Maria; Bueno-de-Mesquita, H Bas; Khaw, Kay-Tee; Travis, Ruth C; Key, Timothy J; Aune, Dagfinn; Gunter, Marc; Riboli, Elio; van Gils, Carla H

    2016-01-01

    The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk. This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk. A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors. After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk. This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk. © 2016 American Society for Nutrition.

  11. Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones

    International Nuclear Information System (INIS)

    Rodriguez-Navas, Carlos; Björklund, Erland; Halling-Sørensen, Bent; Hansen, Martin

    2013-01-01

    In this study we evaluate and demonstrate the occurrence of nine natural and one synthetic steroid hormone, including estrogens, androgens and progestagens in biogas final digestate byproduct (digestion liquid) commonly used as an agricultural fertilizer. We investigated two biogas sites that utilize different anaerobic digestion technologies (mesophilic and thermophilic) from swine manure and other organic wastes. Individual hormone concentration levels were observed up to 1478 ng g −1 dry weight or 22.5 mg kg −1 N with estrone and progesterone reaching highest concentration levels. Evaluation of the potential environmental burden through the application in agriculture was also assessed on the basis of predicted environmental concentrations. This study indicates that the biogas digestion process does not completely remove steroid hormones from livestock manure and use of final digestate byproduct on croplands contributes to the environmental emission of hormones. -- Eight steroid hormones were found in biogas digestate byproduct in the ng g −1 dm levels. Anaerobic digestion processes do not completely remove steroid hormones from organic waste residues

  12. The corpus luteum of the dog: source and target of steroid hormones?

    Science.gov (United States)

    Papa, P C; Hoffmann, B

    2011-08-01

    Aim of this paper is to review our present understanding on the endocrine control of luteal function in the bitch and to add some new data generated in our laboratories in support of the hypothesis of a paracrine/autocrine role of corpus luteum (CL) derived steroid hormones. Luteal lifespan in non-pregnant dogs often exceeds that of pregnant dogs, where luteal regression terminates in a rapid luteolysis, immediately prior to parturition. In non-pregnant dogs, luteal regression occurs independently of a uterine luteolysin and in spite of increased gonadotropic support during the last third of dioestrus. The CL is the only source of progesterone (P(4)) maintaining pregnancy, and they have the capacity to synthesize oestrogens as substantiated by expression of the CYP19 (aromatase) gene observed in this study. Our data demonstrated that lutein and non-lutein cells of the canine CL express in a rather constant manner the progesterone receptor (PR) and the oestrogen receptor, classifying them as targets for an autocrine/paracrine activity of CL-derived steroids. Therefore, a functional role of P(4) within a positive loop feedback system, including StAR and 3β-hydroxysteroid dehydrogenase, has been postulated. © 2011 Blackwell Verlag GmbH.

  13. Twenty Years of Brassinosteroids : Steroidal Plant Hormones Warrant Better Crops for the XXI Century

    NARCIS (Netherlands)

    Khripach, V.; Zhabinskii, V.; Groot, de C.P.G.M.

    2000-01-01

    The discovery of brassinosteroids (BS) just over 20 years ago opened a new era in studies of bio-regulation in living organisms. Previously, the only known role of steroids as hormones was in animals and fungi; now a steroidal hormone in plants had been added. Progress in brassinosteroid research

  14. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression

    Directory of Open Access Journals (Sweden)

    Cushla R. McCarthny

    2018-01-01

    Full Text Available Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF. This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/− on hippocampal NMDA-R expression. Wild-type and BDNF+/− mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT treatment. Dorsal (DHP and ventral hippocampus (VHP were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/− mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.

  15. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities

    Science.gov (United States)

    Bartelt-Hunt, Shannon; Snow, Daniel D.; Damon-Powell, Teyona; Miesbach, David

    2011-04-01

    Wastewater impoundments at concentrated animal feeding operations (CAFOs) represent a potential source of veterinary pharmaceuticals and steroid hormone contamination to shallow groundwater. This study investigates the occurrence of seventeen veterinary pharmaceuticals and thirteen steroid hormones and hormone metabolites in lagoons and adjacent groundwater at operating swine and beef cattle facilities. These sites were chosen because subsurface geology and previous monitoring of nitrate, ammonia and chloride levels in shallow ground water strongly indicated direct infiltration, and as such represent worst cases for ground water contamination by waste water. Pharmaceutical compounds detected in samples obtained from cattle facilities include sulfamerazine; sulfamethazine; erythromycin; monensin; tiamulin; and sulfathiazole. Lincomycin; ractopamine; sulfamethazine; sulfathiazole; erythromycin; tiamulin and sulfadimethoxine were detected in wastewater samples obtained from swine facilities. Steroid hormones were detected less frequently than veterinary pharmaceuticals in this study. Estrone, testosterone, 4-androstenedione, and androsterone were detected in wastewater impoundments at concentrations ranging from 30 to 3600 ng/L, while only estrone and testosterone were detected in groundwater samples at concentrations up to 390 ng/L. The co-occurrence of veterinary pharmaceutical and steroid hormone contamination in groundwater at these locations and the correlation between pharmaceutical occurrence in lagoon wastewater and hydraulically downgradient groundwater indicates that groundwater underlying some livestock wastewater impoundments is susceptible to contamination by veterinary pharmaceuticals and steroid hormones originating in wastewater lagoons.

  16. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities.

    Science.gov (United States)

    Bartelt-Hunt, Shannon; Snow, Daniel D; Damon-Powell, Teyona; Miesbach, David

    2011-04-25

    Wastewater impoundments at concentrated animal feeding operations (CAFOs) represent a potential source of veterinary pharmaceuticals and steroid hormone contamination to shallow groundwater. This study investigates the occurrence of seventeen veterinary pharmaceuticals and thirteen steroid hormones and hormone metabolites in lagoons and adjacent groundwater at operating swine and beef cattle facilities. These sites were chosen because subsurface geology and previous monitoring of nitrate, ammonia and chloride levels in shallow ground water strongly indicated direct infiltration, and as such represent worst cases for ground water contamination by waste water. Pharmaceutical compounds detected in samples obtained from cattle facilities include sulfamerazine; sulfamethazine; erythromycin; monensin; tiamulin; and sulfathiazole. Lincomycin; ractopamine; sulfamethazine; sulfathiazole; erythromycin; tiamulin and sulfadimethoxine were detected in wastewater samples obtained from swine facilities. Steroid hormones were detected less frequently than veterinary pharmaceuticals in this study. Estrone, testosterone, 4-androstenedione, and androsterone were detected in wastewater impoundments at concentrations ranging from 30 to 3600ng/L, while only estrone and testosterone were detected in groundwater samples at concentrations up to 390ng/L. The co-occurrence of veterinary pharmaceutical and steroid hormone contamination in groundwater at these locations and the correlation between pharmaceutical occurrence in lagoon wastewater and hydraulically downgradient groundwater indicates that groundwater underlying some livestock wastewater impoundments is susceptible to contamination by veterinary pharmaceuticals and steroid hormones originating in wastewater lagoons. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Interactions between hormones and epilepsy.

    Science.gov (United States)

    Taubøll, Erik; Sveberg, Line; Svalheim, Sigrid

    2015-05-01

    There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly proconvulsant. The monthly fluctuations in hormone levels of estrogen and progesterone are the basis for catamenial epilepsy described elsewhere in this issue. Androgens are mainly anticonvulsant, but the effects are more varied, probably because of its metabolism to, among others, estradiol. The mechanisms for the effects of sex steroid hormones on brain excitability are related to both classical, intracellularly mediated effects, and non-classical membrane effects due to binding to membrane receptors. The latter are considered the most important in relation to epilepsy. The different sex steroids can also be further metabolized within the brain to different neurosteroids, which are even more potent with regard to their effect on excitability. Estrogens potentiate glutamate responses, primarily by potentiating NMDA receptor activity, but also by affecting GABA-ergic mechanisms and altering brain morphology by increasing dendritic spine density. Progesterone and its main metabolite 5α-pregnan-3α-ol-20-one (3α-5α-THP) act mainly to enhance postsynaptic GABA-ergic activity, while androgens enhance GABA-activated currents. Seizures and epileptic discharges also affect sex steroid hormones. There are close anatomical connections between the temporolimbic system and the hypothalamus controlling the endocrine system. Several studies have shown that epileptic activity, especially mediated through the amygdala, alters reproductive function, including reduced ovarian cyclicity in females and altered sex steroid hormone levels in both genders. Furthermore, there is an asymmetric

  18. Localización extra nuclear de receptores esteroides y activación de mecanismos no genómicos Extra nuclear localization of steroid receptors and non genomic activation mechanisms

    Directory of Open Access Journals (Sweden)

    María Cecilia Bottino

    2010-04-01

    Full Text Available Los receptores de hormonas esteroides han sido considerados históricamente como factores de transcripción nucleares. Sin embargo, en los últimos años surgieron evidencias que indican que su activación desencadena eventos rápidos, independientes de la transcripción y que involucran a diferentes segundos mensajeros; muchos de estos receptores han sido localizados en la membrana celular. Por otra parte, se han caracterizado varios receptores de hormonas esteroides noveles, de estructura molecular diferente al receptor clásico, localizados principalmente en la membrana celular. Esta revisión enfoca los diferentes efectos iniciados por los glucocorticoides, mineralocorticoides, andrógenos, estrógenos y progesterona, y los posibles receptores involucrados en los mismos.Steroid hormone receptors have been historically considered as nuclear transcription factors. Nevertheless, in the last years, many of them have been detected in the cellular membrane. It has been postulated that their activation can induce transcription independent rapid events involving different second messengers. In addition, several novel steroid hormone receptors, showing a different molecular structure than the classical ones, have also been characterized and most of them are also located in the plasmatic membrane. This review focuses on the variety of effects initiated by glucocorticoids, mineralocorticoids, androgens, estrogens and progesterone, and the possible receptors involved mediating these effects.

  19. Expression of steroid receptors in ameloblasts during amelogenesis in rat incisors

    Directory of Open Access Journals (Sweden)

    Sophia Houari

    2016-11-01

    Full Text Available Endocrine disrupting chemicals (EDCs play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA, one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH. In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30, of ketosteroid receptors (ERs, AR, PGR, GR, MR, of the retinoid receptor RXRα and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR, whereas the others were 13 to 612 fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step towards understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  20. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors.

    Science.gov (United States)

    Houari, Sophia; Loiodice, Sophia; Jedeon, Katia; Berdal, Ariane; Babajko, Sylvie

    2016-01-01

    Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  1. Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow.

    Science.gov (United States)

    Taylor, Angela E; Keevil, Brian; Huhtaniemi, Ilpo T

    2015-08-01

    The recent onslaught of mass spectrometry (MS) to measurements of steroid hormones, including demands that they should be the only acceptable method, has confused clinicians and scientists who have relied for more than 40 years on a variety of immunoassay (IA) methods in steroid hormone measurements. There is little doubt that MS methods with their superior specificity will be the future method of choice in many clinical and research applications of steroid hormone measurement. However, the majority of steroid measurements are currently, and will continue to be, carried out using various types of IAs for several reasons, including their technical ease, cost and availability of commercial reagents. Speedy replacement of all IAs with MS is an unrealistic and unnecessary goal, because the availability of MS measurements is limited by cost, need of expensive equipment, technical demands and lack of commercial applications. Furthermore, IAs have multiple well-known advantages that vindicate their continuing use. The purpose of this article is to elucidate the advantages and limitations of the MS and IA techniques from two angles, i.e. promotion of MS and defence of IA. The purpose of the text is to give the reader an unbiased view about the current state and future trends of steroid analysis and to help him/her choose the correct assay method to serve his/her diagnostic and research needs. © 2015 European Society of Endocrinology.

  2. Salivary steroid hormone response to whole-body cryotherapy in elite rugby players.

    Science.gov (United States)

    Grasso, D; Lanteri, P; Di Bernardo, C; Mauri, C; Porcelli, S; Colombini, A; Zani, V; Bonomi, F G; Melegati, G; Banfi, G; Lombardi, G

    2014-01-01

    Saliva represents a low stress, not-invasively collected matrix that allows steroid hormone monitoring in athletes by reflecting type, intensity and duration of exercise. Whole body cryotherapy (WBC) consists of short whole-body exposures to extremely cold air (-110° to -140°C) which, despite being initially used to treat inflammatory diseases, is currently acquiring increasing popularity in sports medicine. Cryostimulation practice is now widely accepted as an effective treatment to accelerate muscle recovery in rugby players. The aim of this work was to study the changes of steroid hormones in saliva of rugby players after both 2 and 14 consecutive WBC sessions, in order to investigate the effects of the treatment on their salivary steroid hormonal profile. Twenty-five professional rugby players, belonging to the Italian National Team, underwent a 7-day cryotherapy protocol consisting of 2 daily sessions. Saliva samples were taken in the morning prior to the start of the WBC, in the evening after the end of the second WBC, and in the morning of the day after the last WBC session. The samples were analyzed for cortisol, DHEA, testosterone and estradiol using competitive enzyme-linked immunosorbent assays. Cortisol and DHEA showed a reduction already after the 2 WBC sessions of the first day; after 14 consecutive WBC sessions cortisol, DHEA, and estradiol levels decreased, while testosterone increased as did the testosterone to cortisol ratio. These results were confirmed by the fact that the majority of subjects showed variations exceeding the critical difference (CD). In conclusion, we found that WBC acutely affects the salivary steroid hormone profile, and the results are evident already after only one twice-daily session. Most significantly, after one-week of consecutive twice-daily WBC sessions, all the hormones were modified. This is the first experimental report that links changes in the hormonal asset to WBC.

  3. Comparative study between phenol and imidazole derivatives in radiolabeling of some steroid hormones

    International Nuclear Information System (INIS)

    Sallam, Kh.M.

    2010-01-01

    A phenol or imidazole ring is rarely present in steroid hormones, So, the molecule of steroid hormone requires chemical modification by addition of an iodinable residue like phenol or imedazole. So that the comparative study between phenol derivatives, include tyrosine methyl ester (TME) and tyramine, and imidazole derivatives, like histamine and histedine methyl ester (HME), for radiolabeling of some steroid hormones include estradiol and testosterone is the aim of the present study. The conjugation step was carried using mixed anhydride method and followed by radioiodination using iodogen as an oxidizing agent. Purification step was carried out using high performance liquid chromatography (HPLC). Optimization and validation of the tracer were carried out. Immunoreactivity of the all obtained tracers was check by using specific polyclonal antibodies. The results indicated that imidazols derivatives are more suitable from immunoreactivity view and storage period.

  4. Review of hormonal treatment of breast cancer | Abdulkareem ...

    African Journals Online (AJOL)

    This critical review focuses on the role of steroid hormones and their receptors in the development and treatment of breast cancer, with special reference to estrogen receptors, as well as mechanisms of receptor.ligand interactions, response or resistance to hormonal therapy against breast cancer, in conjunction with other ...

  5. 3D model of amphioxus steroid receptor complexed with estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael E., E-mail: mbaker@ucsd.edu [Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States); Chang, David J. [Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693 (United States)

    2009-08-28

    The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.

  6. Sex steroids and neurogenesis.

    Science.gov (United States)

    Heberden, Christine

    2017-10-01

    The brain has long been known as a dimorphic organ and as a target of sex steroids. It is also a site for their synthesis. Sex steroids in numerous ways can modify cerebral physiology, and along with many processes adult neurogenesis is also modulated by sex steroids. This review will focus on the effects of the main steroids, estrogens, androgens and progestogens, and unveil some aspects of their partly disclosed mechanisms of actions. Gonadal steroids act on different steps of neurogenesis: cell proliferation seems to be increased by estrogens only, while androgens and progestogens favor neuronal renewal by increasing cell survival; differentiation is a common target. Aging is characterized by a cognitive deficiency, paralleled by a decrease in the rate of neuronal renewal and in the levels of circulating gonadal hormones. Therefore, the effects of gonadal hormones on the aging brain are important to consider. The review will also be expanded to related molecules which are agonists to the nuclear receptors. Sex steroids can modify adult neuronal renewal and the extensive knowledge of their actions on neurogenesis is essential, as it can be a leading pathway to therapeutic perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids.

    Science.gov (United States)

    Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R

    2008-09-01

    Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.

  8. Biosynthesis and metabolism of steroid hormones by human adrenal carcinomas

    OpenAIRE

    Brown, J.W.; Fishman, L.M.

    2000-01-01

    Over a 15-year period, our university-based laboratory obtained 125 adrenal tumors, of which 15 (12%) were adrenal cortical carcinomas. Of these, 6 (40% of the carcinomas) occurred in patients with clear clinical manifestations of steroid hormone excess. Adrenal cortical carcinoma cells derived from the surgically resected tumors in 4 of these patients were isolated and established in primary culture. Radiotracer steroid interconversion studies were carried out with these cultures and also on...

  9. The Role of Steroid Hormones on the Modulation of Neuroinflammation by Dietary Interventions

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Vasconcelos

    2016-02-01

    Full Text Available Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain.The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer´s and Parkinson´s diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, whilst metabolic syndromes, like diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact on the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, like calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.

  10. Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry.

    Science.gov (United States)

    Matysik, Silke; Liebisch, Gerhard

    2017-12-01

    A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  12. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    Science.gov (United States)

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-08-01

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  13. Persistent organochlorine pollutants with endocrine activity and blood steroid hormone levels in middle-aged men.

    Directory of Open Access Journals (Sweden)

    Elise Emeville

    Full Text Available BACKGROUND: Studies relating long-term exposure to persistent organochlorine pollutants (POPs with endocrine activities (endocrine disrupting chemicals on circulating levels of steroid hormones have been limited to a small number of hormones and reported conflicting results. OBJECTIVE: We examined the relationship between serum concentrations of dehydroepiandrosterone, dehydroepiandrosterone sulphate, androstenedione, androstenediol, testosterone, free and bioavailable testosterone, dihydrotestosterone, estrone, estrone sulphate, estradiol, sex-hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone as a function of level of exposure to three POPs known to interfere with hormone-regulated processes in different way: dichlorodiphenyl dichloroethene (DDE, polychlorinated biphenyl (PCB congener 153, and chlordecone. METHODS: We collected fasting, morning serum samples from 277 healthy, non obese, middle-aged men from the French West Indies. Steroid hormones were determined by gas chromatography-mass spectrometry, except for dehydroepiandrosterone sulphate, which was determined by immunological assay, as were the concentrations of sex-hormone binding globulin, follicle-stimulating hormone and luteinizing hormone. Associations were assessed by multiple linear regression analysis, controlling for confounding factors, in a backward elimination procedure, in multiple bootstrap samples. RESULTS: DDE exposure was negatively associated to dihydrotestosterone level and positively associated to luteinizing hormone level. PCB 153 was positively associated to androstenedione and estrone levels. No association was found for chlordecone. CONCLUSIONS: These results suggested that the endocrine response pattern, estimated by determining blood levels of steroid hormones, varies depending on the POPs studied, possibly reflecting differences in the modes of action generally attributed to these compounds. It remains to be investigated whether

  14. DAF as a therapeutic target for steroid hormones: implications for host-pathogen interactions.

    Science.gov (United States)

    Nowicki, Bogdan; Nowicki, Stella

    2013-01-01

    In this chapter, we present a concise historic prospective and a summary of accumulated knowledge on steroid hormones, DAF expression, and therapeutic implication of steroid hormone treatment on multiple pathologies, including infection and the host-pathogen interactions. DAF/CD55 plays multiple physiologic functions including tissue protection from the cytotoxic complement injury, an anti-inflammatory function due to its anti-adherence properties which enhance transmigration of monocytes and macrophages and reduce tissue injury. DAF physiologic functions are essential in many organ systems including pregnancy for protection of the semiallogeneic fetus or for preventing uncontrolled infiltration by white cells in their pro- and/or anti-inflammatory functions. DAF expression appears to have multiple regulatory tissue-specific and/or menstrual cycle-specific mechanisms, which involve complex signaling mechanisms. Regulation of DAF expression may involve a direct or an indirect effect of at least the estrogen, progesterone, and corticosteroid regulatory pathways. DAF is exploited in multiple pathologic conditions by pathogens and viruses in chronic tissue infection processes. The binding of Escherichia coli bearing Dr adhesins to the DAF/CD55 receptor is DAF density dependent and triggers internalization of E. coli via an endocytic pathway involving CD55, lipid rafts, and microtubules. Dr+ E. coli or Dr antigen may persist in vivo in the interstitium for several months. Further understanding of such processes should be instrumental in designing therapeutic strategies for multiple conditions involving DAF's protective or pathologic functions and tailoring host expression of DAF.

  15. Neuroactive Steroids: Receptor Interactions and Responses

    Directory of Open Access Journals (Sweden)

    Kald Beshir Tuem

    2017-08-01

    Full Text Available Neuroactive steroids (NASs are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs. NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA, N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.

  16. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Cathey, T.M.; Chung, Kyung W. (Univ. of Oklahoma, Oklahoma City (USA))

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  17. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    International Nuclear Information System (INIS)

    Cathey, T.M.; Chung, Kyung W.

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy

  18. Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system.

    Science.gov (United States)

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W

    2014-10-07

    The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.

  19. Over-the-Counter "Adrenal Support" Supplements Contain Thyroid and Steroid-Based Adrenal Hormones.

    Science.gov (United States)

    Akturk, Halis Kaan; Chindris, Ana Maria; Hines, Jolaine M; Singh, Ravinder J; Bernet, Victor J

    2018-03-01

    To assess whether dietary supplements that are herbal and/or animal-derived products, marketed for enhancing metabolism or promoting energy, "adrenal fatigue," or "adrenal support," contain thyroid or steroid hormones. Twelve dietary adrenal support supplements were purchased. Pregnenolone, androstenedione, 17-hydroxyprogesterone, cortisol, cortisone, dehydroepiandrosterone sulfate, synthetic glucocorticoids (betamethasone, dexamethasone, fludrocortisone, megestrol acetate, methylprednisolone, prednisolone, prednisone, budesonide, and triamcinolone acetonide) levels were measured twice in samples in a blinded fashion. This study was conducted between February 1, 2016, and November 1, 2016. Among steroids, pregnenolone was the most common hormone in the samples. Budesonide, 17-hydroxyprogesterone, androstenedione, cortisol, and cortisone were the others in order of prevalence. All the supplements revealed a detectable amount of triiodothyronine (T3) (63-394.9 ng/tablet), 42% contained pregnenolone (66.12-205.2 ng/tablet), 25% contained budesonide (119.5-610 ng/tablet), 17% contained androstenedione (1.27-7.25 ng/tablet), 8% contained 17-OH progesterone (30.09 ng/tablet), 8% contained cortisone (79.66 ng/tablet), and 8% contained cortisol (138.5 ng/tablet). Per label recommended doses daily exposure was up to 1322 ng for T3, 1231.2 ng for pregnenolone, 1276.4 ng for budesonide, 29 ng for androstenedione, 60.18 ng for 17-OH progesterone, 277 ng for cortisol, and 159.32 ng for cortisone. All the supplements studied contained a small amount of thyroid hormone and most contained at least 1 steroid hormone. This is the first study that measured thyroid and steroid hormones in over-the-counter dietary "adrenal support" supplements in the United States. These results may highlight potential risks of hidden ingredients in unregulated supplements. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  20. The role of steroids in the development of post-partum mental disorders.

    Science.gov (United States)

    Paskova, Andrea; Jirak, Roman; Mikesova, Michaela; Adamcova, Karolina; Fartakova, Zdenka; Horakova, Vladimira; Koucky, Michal; Hill, Martin; Hruskovicova, Hana; Starka, Luboslav; Duskova, Michaela; Parizek, Antonin

    2014-09-01

    Unfavorable post-partum changes to mental well-being affect more than half of all women, and are a risk to the health of both mother and baby. Their effects place strains on health and social systems. Currently, no generally accepted theory exists of the causes and mechanisms of post-partum mental disorders. Literature search up to 2012, using PubMed and search words: neuroactive steroids, post-partum mental disorders, depression, corticotropin-releasing hormone and estrogens. There are several theories for post-partum depression. One is that autoimmune diseases are involved. Others revolve around genes responsible or that lead to increased disposition to the disorder. It is likely however that the process is associated with the separation of the placenta and the fetal zone of fetal adrenal gland, the main sources of corticotropin-releasing hormone and sexual and neuroactive steroids during pregnancy, and the ability of the receptor system to adapt to these changes. The central nervous system is able to produce neurosteroids, but the drop in levels of peripheral steroids likely leads to a sudden deficit in neuroinhibitory steroids modulating ionotropic receptors in the brain. Post-partum depression is a multifactorial disease with unknown etiology. It is probably associated with sudden changes in the production of hormones influencing the nervous system, and on the other hand the ability of the receptor system to adapt to these changes. When the relative changes in concentrations of hormones, rather than their absolute levels, is likely more important.

  1. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents

    Science.gov (United States)

    Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.

    2015-01-01

    Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs. PMID:26286657

  2. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    Science.gov (United States)

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  3. Regucalcin expression in bovine tissues and its regulation by sex steroid hormones in accessory sex glands.

    Directory of Open Access Journals (Sweden)

    Laura Starvaggi Cucuzza

    Full Text Available Regucalcin (RGN is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle.

  4. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height.

    Science.gov (United States)

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-04-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin(®)) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean duration of 4.1 yr. The anabolic steroid hormone was started approximately 1 yr after initiation of treatment with the GnRH analog. The mean pubertal height gain from onset of puberty till adult height was significantly greater in the combination treatment group (33.9 cm) than in the untreated group (26.4 cm) (ppenis and pubic hair is promoted by the anabolic steroid hormone, no psychosocial problems arose because of delayed puberty. No clinically significant adverse events appeared. Combined treatment with GnRH analog and anabolic steroid hormone significantly increased height gain during puberty and adult height in boys who entered puberty with a short stature, since the period until epiphyseal closure was extended due to deceleration of the bone age maturation by administration of the GnRH analog and the growth rate at this time was maintained by the anabolic steroid hormone.

  5. Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study.

    Directory of Open Access Journals (Sweden)

    Pei-Chi Yang

    2010-01-01

    Full Text Available Acute effects of sex steroid hormones likely contribute to the observation that post-pubescent males have shorter QT intervals than females. However, the specific role for hormones in modulating cardiac electrophysiological parameters and arrhythmia vulnerability is unclear. Here we use a computational modeling approach to incorporate experimentally measured effects of physiological concentrations of testosterone, estrogen and progesterone on cardiac ion channel targets. We then study the hormone effects on ventricular cell and tissue dynamics comprised of Faber-Rudy computational models. The "female" model predicts changes in action potential duration (APD at different stages of the menstrual cycle that are consistent with clinically observed QT interval fluctuations. The "male" model predicts shortening of APD and QT interval at physiological testosterone concentrations. The model suggests increased susceptibility to drug-induced arrhythmia when estradiol levels are high, while testosterone and progesterone are apparently protective. Simulations predict the effects of sex steroid hormones on clinically observed QT intervals and reveal mechanisms of estrogen-mediated susceptibility to prolongation of QT interval. The simulations also indicate that acute effects of estrogen are not alone sufficient to cause arrhythmia triggers and explain the increased risk of females to Torsades de Pointes. Our results suggest that acute effects of sex steroid hormones on cardiac ion channels are sufficient to account for some aspects of gender specific susceptibility to long-QT linked arrhythmias.

  6. Colonic transit in rats: effect of ovariectomy, sex steroid hormones, and pregnancy

    International Nuclear Information System (INIS)

    Ryan, J.P.; Bhojwani, A.

    1986-01-01

    In vitro studies suggest that the female sex steroid hormones [estrogen (E) and progesterone (P)] can affect the myoelectric and mechanical activity of colonic smooth muscle. The present study was designed to examine the influence of the hormones on colonic transit in vivo. Transit was assessed by quantifying the distribution within the colon of a radiolabeled marker (0.5 μCi Na 2 51 CrO 4 ), using the geometric center method of analysis. Studies were performed with adult male rats and the following groups of female rats: nonpregnant, ovariectomized, ovariectomy plus hormone pretreatment, and pregnant (day 18). Hormone-pretreated animals were studied 24 h following the fourth injection. The data can be summarized as follows. 1) Colonic transit was affected by the timing of the estrus cycle. 2) Ovariectomy eliminated the biphasic transit pattern observed in estruscycling females and resulted in a geometric center value comparable with that of the metestrus-diestrus animals. 3) E + P pretreatment of ovariectomized rats resulted in a significant decrease in the geometric center compared with the untreated ovariectomized rats. 4) The geometric center value in pregnant anials and hormone-pretreated animals. 5) Adult male rats had a geometric center value of 4.12 +/- 0.29. The results suggest that a relation exists between colonic transit and the circulating levels of the steroid hormones

  7. Assessing reproductive status in elasmobranch fishes using steroid hormones extracted from skeletal muscle tissue

    Science.gov (United States)

    Prohaska, Bianca K.; Tsang, Paul C. W.; Driggers, William B.; Hoffmayer, Eric R.; Wheeler, Carolyn R.; Brown, A. Christine; Sulikowski, James A.

    2013-01-01

    Elasmobranch fishes (sharks, skates, and rays) are particularly susceptible to anthropogenic threats, making a thorough understanding of their life history characteristics essential for proper management. Historically, elasmobranch reproductive data have been collected by lethal sampling, an approach that is problematic for threatened and endangered species. However, recent studies have demonstrated that non-lethal approaches can be as effective as lethal ones for assessment of the reproductive status of an animal. For example, plasma has been used to examine concentrations of steroid hormones. Additionally, skeletal muscle tissue, which can be obtained non-lethally and with minimal stress, can also be used to quantify concentrations of steroid hormones. Skeletal muscle progesterone, testosterone, and estradiol concentrations were determined to be statistically significant indicators of reproductive status in the oviparous Leucoraja erinacea, the yolk-dependent viviparous Squalus acanthias, and the yolk-sac placental viviparous Rhizoprionodon terraenovae. The results of the present study demonstrate that steroid hormones present in non-lethally harvested skeletal muscle tissue can be used as reliable indicators of reproductive status in elasmobranchs. PMID:27293612

  8. Enrichment of steroid hormones in water with porous and hydrophobic polymer-based SPE followed by HPLC-UV determination.

    Science.gov (United States)

    Hu, Yinfen; Zhang, Man; Tong, Changlun; Wu, Jianmin; Liu, Weiping

    2013-10-01

    There have been great concerns about the persistence of steroid hormones in surface water. Since the concentrations of these compounds in water samples are usually at a trace level, the efficient enrichment of steroid hormones is vital for further analysis. In this work, a porous and hydrophobic polymer was synthesized and characterized. The composition of solvent used as porogen in the synthetic process was shown to have an effect on the morphology of the polymer, which was successfully used as an SPE sorbent for simultaneously enriching steroid hormones in surface water samples. The recoveries of the steroid hormones on the custom-made polymer ranged from 93.4 to 106.2%, whereas those on commercialized ENVI-18, LC-18, and Oasis HLB ranged from 54.8 to 104.9, 66 to 93.6, and 77.2 to 106%, respectively. Five types of steroid hormones were simultaneously measured using HPLC-UV after they were enriched by the custom-made sorbent. Based on these findings, the SPE-HPLC method was developed. The LODs of this method for estriol, estradiol, estrone, androstenedione, progesterone were 0.07, 0.43, 0.61, 0.27, and 0.42 μg/L, respectively, while precision and reproducibility RSDs were <6.40 and 7.49%, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Steroid-binding receptors in fungi: implication for systemic mycoses

    Directory of Open Access Journals (Sweden)

    Mostafa chadeganipour

    2015-03-01

    Full Text Available It has been shown that some of the mycotic infections especially systemic mycoses show increased male susceptibility and some steroids have been known to influence the immune response. Researchers found that some fungi including yeasts use "message molecules" including hormones to elicit certain responses, especially in the sexual cycle, but until recently no evidence was available to link specific hormonal evidence to this pronounced sex ratio. More evidence needed to demonstrate that a steroid (s might in some manner influence the pathogenicity of the fungus in vivo. Therefore, the aim of this review paper is to shed some light on this subject along with effort to make mycologists more aware of this research as a stimulus for the explore of new ideas and design further research in this area of medical mycology.

  10. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    Science.gov (United States)

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. TeBG- and CBG-bound steroid hormones in rabbits are available for influx into uterus in vivo

    International Nuclear Information System (INIS)

    Chaudhuri, G.; Steingold, K.A.; Pardridge, W.M.; Judd, H.L.

    1988-01-01

    The metabolic clearance rate (MCR) of gonadal or adrenal steroid hormones in rabbits often does not bear the expected inverse relationship with hormone binding to testosterone-binding globulin (TeBG) or corticosteroid-binding globulin (CBG). This suggests TeBG or CBG may not impede steroid hormone delivery to tissues. The effects of rabbit plasma proteins on the influxes of 3 H-labeled steroids from the circulation into the rabbit uterus were measured in vivo using a tissue sampling single-injection technique. In the absence of plasma proteins, estradiol (E 2 ) and testosterone (T) were freely diffusible through the uterine microvasculature (i.e., extraction >80%). The extractions of dihydrostestosterone (DHT) and corticosterone (B) ranged from 60 to 72%, while that of cortisol (F) was reduced at 40%. Rabbit serum exerted no inhibition of the influxes of the steroids tested. The influxes of T and B greatly exceeded the rates that would be expected if only the free and albumin-bound fractions estimated in vitro were diffusible in vivo. However, the extraction of [ 3 H]corticosteroid-binding globulin or bovine [ 3 H]albumin were low, consistent with little, if any, extravascular uptake of the plasma proteins. The results indicate both albumin-bound and globulin-bound steroid hormone are available for transport into the uterus in the rabbit in vivo without significant exodus of the plasma protein, per se

  12. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR Alpha 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2001-08-01

    Identification of a new class of steroid hormone receptors. Nature, 331: 91-94, 1988. 4. Vanacker , J. M ., Pettersson, K., Gustafsson, J. A., and...Lippman, M . E., Thompson, E. B., Simon, R., Barlock, A., Green, L., Huff, K. K., Do, H. M ., Aitken, S. C., and Warren, R. Estrogen receptor status: an...important variable in predicting response to endocrine therapy in metastatic breast cancer. Eur J Cancer, 16: 323-331, 1980. 2. Clark, G. M . and

  13. Investigating effects of steroid hormones on lateralization of brain and behavior

    NARCIS (Netherlands)

    Beking, Tess; Geuze, Reint; Groothuis, Ton; Rogers, Lesley; Vallortigara, Giorgio

    Steroid hormones have been proposed to influence the development of lateralisation of brain and behaviour. We briefly describe the available hypotheses explaining this influence. These are all based on human data. However, experimental testing is almost exclusively limited to other animal models. As

  14. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    International Nuclear Information System (INIS)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E.

    1989-01-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4'-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit 3 H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations

  15. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  16. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin F B Costantino

    2008-06-01

    Full Text Available The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.

  17. Steroid hormones and brain development: some guidelines for understanding actions of pseudohormones and other toxic agents

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, B.S.

    1987-10-01

    Gonadal, adrenal, and thyroid hormones affect the brain directly, and the sensitivity to hormones begins in embryonic life with the appearance of hormone receptor sites in discrete populations of neurons. Because the secretion of hormones is also under control by its neural and pituitary targets, the brain-endocrine axis during development is in a delicately balanced state that can be upset in various ways, and any agent that disrupts normal hormone secretion can upset normal brain development. Moreover, exogenous substances that mimic the actions of natural hormones can also play havoc with CNS development and differentiation. This paper addresses these issues in the following order: First, actions of glucocorticoids on the developing nervous system related to cell division dendritic growth and neurotransmitter phenotype will be presented followed by a discussion of the developmental effects of synthetic steroids. Second, actions of estrogens related to brain sexual differentiation will be described, followed by a discussion of the actions of the nonsteroidal estrogen, diethylstilbestrol, as an example of exogenous estrogenic substances. The most important aspect of the potency of exogenous estrogens appears to be the degree to which they either bypass protective mechanisms or are subject to transformations to more active metabolites. Third, agents that influence hormone levels or otherwise modify the neuroendocrine system, such as nicotine, barbiturates, alcohol, opiates, and tetrahydrocannabinol, will be noted briefly to demonstrate the diversity of toxic agents that can influence neural development and affect personality, cognitive ability, and other aspects of behavior. 53 references.

  18. Steroid hormones level in milk of non-pregnant and pregnant river buffalos at various gestational trimesters

    Directory of Open Access Journals (Sweden)

    Yaser Shahbazi

    2011-09-01

    Full Text Available Background: Milk is a valuable sources of nutrition in the human diet however; there are reports on safety of milk steroid hormones contain. This study designed to determine the level of steroid hormones including estrone (E1, 17β-estradiol (E2, and estriol (E3 in raw and pasteurized milk from non-pregnant and pregnant buffalos.Methods: Steroids was extracted using liquid extraction, enzymatical deconjugation, and C18 solid-phase extraction from collected milk samples. Estrogens were analyzed using high performance liquid chromatography equipped by fluorescence detector.Results: Free E1 (554.1±77.0 ng/L and deconjugated E1 (701.6±44.7 ng/L was found highest level estrogen followed by E2, while E3 level was under the detection limit (10 ng/L. The lowest E1: 554.1±77.0 and E2: 28.1±4.4ng/L estrogens level were determined in raw milk from non-pregnant and highest E1: 1014.7±123.8 and E2: 108.2±9.1 ng/L estrogens were found in milk of animals in the third trimester of gestation. The estrogens concentration in pasteurized milk did not show significant (P>0.05 differences with those in raw milk.Conclusion: As buffalo milk poses more fat than cow's milk, it may contain higher level of steroid hormones. Since consumption of buffalo's milk with higher amount of steroidal hormones could be considered one of the potential risk factors for carcinogenesis.

  19. Ovarian steroids alter dopamine receptor populations in the medial preoptic area of female rats: implications for sexual motivation, desire, and behaviour.

    Science.gov (United States)

    Graham, M Dean; Gardner Gregory, James; Hussain, Dema; Brake, Wayne G; Pfaus, James G

    2015-12-01

    Dopamine (DA) transmission in the medial preoptic area (mPOA) plays a critical role in the control of appetitive sexual behaviour in the female rat. We have shown previously that a DA D1 receptor (D1R)-mediated excitatory state appears to occur in females primed with estradiol benzoate (EB) and progesterone (P), whereas a DA D2 receptor (D2R)-mediated inhibitory state appears to occur in females primed only with EB. The present experiment employed three techniques to better understand what changes occur to DA receptors (DARs) in the mPOA under different hormonal profiles. Ovariectomized females were randomly assigned to one of three steroid treatment groups: EB + P (10 and 500 μg, respectively), EB + Oil, or the control (Oil + Oil), with hormone injections administered at 48 and 4 h prior to euthanizing. First, the number of neurons in the mPOA that contained D1R or D2R was assessed using immunohistochemistry. Second, the mPOA and two control areas (the prelimbic cortex and caudate putamen) were analysed for DAR protein levels using western blot, and DAR functional binding levels using autoradiography. Ovarian steroid hormones affected the two DAR subtypes in opposite ways in the mPOA. All three techniques supported previous behavioural findings that females primed with EB have a lower D1R : D2R ratio, and thus a D2R-mediated system, and females primed with EB + P have a higher D1R : D2R ratio, and thus a D1R-mediated system. This provides strong evidence for a DA-driven pathway of female sexual motivation, desire, and behaviour that is modified by different hormone priming regimens. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

    1983-01-01

    Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of [ 14 C]progesterone, [ 14 C]testosterone, and 17 beta-[ 14 C]estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue

  1. Sex steroid hormone determination of the maternal brain: effects beyond reproduction.

    Science.gov (United States)

    Kinsley, C H; Meyer, E; Rafferty, K A

    2012-10-01

    Herein we discuss the effects of hormones on reproduction, but with a focus on the ripples that emanate from the main effects. That is, the role of hormones in reproductive events is both well-known and well accepted; less studied and understood are effects that appear to be ancillary to the primary objectives of the hormonal effects, which support, complement and extend their primary effects. We present evidence for how the hormonal stimulation of pregnancy constructs the maternal brain; makes it more efficient; enhances cognition; regulates stress responsiveness; modifies sensory systems (we discuss mainly olfaction); neurogenesis; and learning. Thus, steroid and other hormones and neuropeptides restructure the nervous system, particularly of females, to produce and regulate maternal behavior as well as behaviors and physiological systems that contribute to and support what is arguably the primary function of the hormones: survival and effective nurturance of the female's metabolic and genetic investment.

  2. Circulating and intraprostatic sex steroid hormonal profiles in relation to male pattern baldness and chest hair density among men diagnosed with localized prostate cancers.

    Science.gov (United States)

    Zhou, Cindy Ke; Stanczyk, Frank Z; Hafi, Muhannad; Veneroso, Carmela C; Lynch, Barlow; Falk, Roni T; Niwa, Shelley; Emanuel, Eric; Gao, Yu-Tang; Hemstreet, George P; Zolfghari, Ladan; Carroll, Peter R; Manyak, Michael J; Sesterhenn, Isabell A; Levine, Paul H; Hsing, Ann W; Cook, Michael B

    2017-12-01

    -specific sex hormone metabolism, implying that other sex steroid hormone-related factors (eg, androgen receptor) play important roles in organ-specific androgenic actions, and that other overlapping pathways may be involved in associations between the two complex conditions. © 2017 Wiley Periodicals, Inc.

  3. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  4. Steroid Hormone Vitamin D: Implications for Cardiovascular Disease.

    Science.gov (United States)

    Demer, Linda L; Hsu, Jeffrey J; Tintut, Yin

    2018-05-25

    Understanding of vitamin D physiology is important because about half of the population is being diagnosed with deficiency and treated with supplements. Clinical guidelines were developed based on observational studies showing an association between low serum levels and increased cardiovascular risk. However, new randomized controlled trials have failed to confirm any cardiovascular benefit from supplementation in the general population. A major concern is that excess vitamin D is known to cause calcific vasculopathy and valvulopathy in animal models. For decades, administration of vitamin D has been used in rodents as a reliable experimental model of vascular calcification. Technically, vitamin D is a misnomer. It is not a true vitamin because it can be synthesized endogenously through ultraviolet exposure of the skin. It is a steroid hormone that comes in 3 forms that are sequential metabolites produced by hydroxylases. As a fat-soluble hormone, the vitamin D-hormone metabolites must have special mechanisms for delivery in the aqueous bloodstream. Importantly, endogenously synthesized forms are carried by a binding protein, whereas dietary forms are carried within lipoprotein particles. This may result in distinct biodistributions for sunlight-derived versus supplement-derived vitamin D hormones. Because the cardiovascular effects of vitamin D hormones are not straightforward, both toxic and beneficial effects may result from current recommendations. © 2018 American Heart Association, Inc.

  5. The effect of radio- and chemotherapy on the hormonal status of breast cancer patients taking account of the level of receptors in tumor

    International Nuclear Information System (INIS)

    Bassalyk, L.S.; Koposova, T.L.; Murav'eva, N.I.; Gershtejn, E.S.; Smirnova, K.D.; Kuz'mina, Z.V.

    1986-01-01

    A study was made of the content of the steroid and peptide hormones in the blood of 115 patients with Stage 3 a, b, c breast cancer (54 patients at the reproductive age and 61 in the menopause) before treatment and during radio- and chemotherapy. Data on the concentration of the steroid hormones in the patients' blood were compared with the presence of the respective receptors in tumor. Before treatment a significant rise of the estradiol concentration was noted in the blood of the menopause patients, that of prolactin both in the menopause patients and in the patients with preserved menstruation. A raised testosterone concentration was also noted in the patients with preserved menstruation. After radiotherapy the blood prolactin level, particularly in the patients with preserved menstruation, increased more than 2-fold. There was no correlation between the levels of the steroid and peptide hormones during therapy and its efficasy. The prolactin level can be used as a criterion of efficasy of antytumor therapy, its stable rise in operated patients during therapy being an unfavourable prognostic sign

  6. [Neurological and psychiatric aspects of some endocrine diseases. The role of neurosteroids and neuroactive steroids].

    Science.gov (United States)

    Aszalós, Zsuzsa

    2007-10-14

    Regardless of their origin, neuroactive steroids are capable of modifying neural activities by modulating different types of membrane receptors. Neurosteroids are synthesized de novo in neurones and glia. Steroidogenic enzymes are found in the central nervous system. Classical steroid receptors are localized in the cytoplasm, they exert regulatory actions on the genome, and their activation causes medium- and long-term effects. Non-classical receptors are located within the membrane and act as mediators of short-term effects. Other important players are co-repressors and co-activators that can interfere with or enhance the activity of steroid receptors. Beyond their function in stress, corticosteroids play a very important role in fear, anxiety, and memory functions. Patients with Cushing's syndrome frequently develop mood disorder, reversible brain atrophy with transient memory loss, rarely delirium or psychosis. Well-known peripheral symptom is steroidal myopathy. In patients with Addison's disease the main signs are weakness of muscles, lack of energy, decreased mental functions and reduced quality of life. Estrogen and progesterone have their own respective hormone receptors, whereas allopregnanolone acts via the GABA receptors. These hormones have significant role in the development of brain, the architecture of neural circuits and dendrites, density of axonal connections, and the number of neurons. They influence maturation, neuroprotection, seizures, cognitive functions, mood, anxiety, pain, and restitution of peripheral nerves. Androgens also affect cognitive functions, pain, anxiety, mood, and additionally aggression.

  7. Maintenance of prolactin receptors in human breast cancer

    International Nuclear Information System (INIS)

    Ben-David, M.; Dror, Y.; Biran, S.

    1981-01-01

    Breast tissue specimens of 110 women with various stages of breast cancer were tested in vitro to determine their specific binding sites for human prolactin. In contrast to the case of steroid receptors, binding sites for prolactin were found in the vast majority of breast cancer tissue. Distribution profiles giving amount of prolactin receptor and their affinity coefficients were found to be similar in the tissues of women whose ages, hormonal status, or stage of breast cancer varied. These findings show that in contrast to steroid receptors, human breast cancer tissue maintains binding sites for prolactin. The findings also indicate that there may be a higher dependency of breast cancer on prolactin than on steroids. Clinical trials must be carried out to determine the role of ''positive'' prolactin receptors in prognosis and prediction of response to future hormone therapy. (author)

  8. Hmrbase: a database of hormones and their receptors

    Science.gov (United States)

    Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS

    2009-01-01

    Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s) on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online data submission, Drug

  9. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel)

    2008-01-01

    textabstractThe luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein

  10. Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones

    DEFF Research Database (Denmark)

    Rodriguez-Navas, Carlos; Björklund, Erland; Halling-Sørensen, Bent

    2013-01-01

    that utilize different anaerobic digestion technologies (mesophilic and thermophilic) from swine manure and other organic wastes. Individual hormone concentration levels were observed up to 1478 ng g(-1) dry weight or 22.5 mg kg(-1) N with estrone and progesterone reaching highest concentration levels....... Evaluation of the potential environmental burden through the application in agriculture was also assessed on the basis of predicted environmental concentrations. This study indicates that the biogas digestion process does not completely remove steroid hormones from livestock manure and use of final digestate......In this study we evaluate and demonstrate the occurrence of nine natural and one synthetic steroid hormone, including estrogens, androgens and progestagens in biogas final digestate byproduct (digestion liquid) commonly used as an agricultural fertilizer. We investigated two biogas sites...

  11. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong (Pitt); (Xiamen)

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  12. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R K; Bissell, M J

    2000-06-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.

  13. The Role of Steroid Hormones on the Modulation of Neuroinflammation by Dietary Interventions

    OpenAIRE

    Andrea Rodrigues Vasconcelos; João Victor eCabral-Costa; Caio Henrique Mazucanti; Cristoforo eScavone; Elisa Mitiko Kawamoto

    2016-01-01

    Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain.The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role ...

  14. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1

    NARCIS (Netherlands)

    Zwijsen, R.M.L.; Buckle, R.S.; Hijmans, E.M.; Loomans, C.J.M.; Bernards, R.A.

    1998-01-01

    The estrogen receptor (ER) is an important regulator of growth and differentiation of breast epithelium. Transactivation by ER depends on a leucine-rich motif, which constitutes a ligand-regulated binding site for steroid receptor coactivators (SRCs). Cyclin D1 is frequently amplified in breast

  15. Lonidamine affects testicular steroid hormones in immature mice

    International Nuclear Information System (INIS)

    Traina, Maria Elsa; Guarino, Maria; Natoli, Alessia; Romeo, Antonella; Urbani, Elisabetta

    2007-01-01

    The effects on the hypothalamus-pituitary-testicular axis of the well-known antispermatogenic drug lonidamine (LND) has not been elucidated so far. In the present study, the possible changes of the testicular steroid hormones were evaluated in immature mice for a better characterization of the LND adverse effects both in its use as antitumoral agent and male contraceptive. Male CD1 mice were orally treated on postnatal day 28 (PND28) with LND single doses (0 or 100 mg/kg b.w.) and euthanized every 24 h from PND29 to PND32, on PND35 and on PND42 (1 and 2 weeks after the administration, respectively). Severe testicular effects were evidenced in the LND treated groups, including: a) significant testis weight increase, 24 h and 48 h after dosing; b) sperm head counts decrease (more than 50% of the control) on PND29-32; c) damage of the tubule morphology primarily on the Sertoli cell structure and germ cell exfoliation. All these reproductive endpoints were recovered on PND42. At the same time, a significant impairment of the testicular steroid balance was observed in the treated mice, as evidenced by the decrease of testosterone (T) and androstenedione (ADIONE) and the increase of 17OH-progesterone (17OH-P4) on the first days after dosing, while the testicular content of 17β-estradiol (E2) was unchanged. The hormonal balance was not completely restored afterwards, as levels of T, ADIONE and 17OH-P4 tended to be higher in the treated mice than in the controls, on PND35 and PND42. These data showed for the first time that LND affects intratesticular steroids in experimental animals. However further data are needed both to elucidate the mechanism responsible for the impairment of these metabolic pathways and to understand if the androgens decrease observed after LND administration could be partially involved in the testicular damage

  16. The Somatic Reproductive Tissues of C. elegans Promote Longevity through Steroid Hormone Signaling

    Science.gov (United States)

    Yamawaki, Tracy M.; Berman, Jennifer R.; Suchanek-Kavipurapu, Monika; McCormick, Mark; Gaglia, Marta Maria; Lee, Seung-Jae; Kenyon, Cynthia

    2010-01-01

    In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12. PMID:20824162

  17. The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling.

    Directory of Open Access Journals (Sweden)

    Tracy M Yamawaki

    2010-08-01

    Full Text Available In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12.

  18. Steroid hormones in biosolids and poultry litter: a comparison of potential environmental inputs.

    Science.gov (United States)

    Bevacqua, Christine E; Rice, Clifford P; Torrents, Alba; Ramirez, Mark

    2011-05-01

    Steroid hormones can act as potent endocrine disruptors when released into the environment. The main sources of these chemicals are thought to be wastewater treatment plant discharges and waste from animal feeding operations. While these compounds have frequently been found in wastewater effluents, few studies have investigated biosolids or manure, which are routinely land applied, as potential sources. This study assessed the potential environmental contribution of steroid hormones from biosolids and chicken litter. Hormone concentrations in samples of limed biosolids collected at a waste treatment plant over a four year period ranged from farms had averages of 41.4ng/g dry weight E1, 63.4ng/g dry weight progesterone, and 19.2ng/g dry weight E1-sulfate (E1-S). Other analytes studied were 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), testosterone, E2-3-sulfate (E2-3-S), and E2-17-sulfate (E2-17-3). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Divergence in sex steroid hormone signaling between sympatric species of Japanese threespine stickleback.

    Directory of Open Access Journals (Sweden)

    Jun Kitano

    Full Text Available Sex steroids mediate the expression of sexually dimorphic or sex-specific traits that are important both for mate choice within species and for behavioral isolation between species. We investigated divergence in sex steroid signaling between two sympatric species of threespine stickleback (Gasterosteus aculeatus: the Japan Sea form and the Pacific Ocean form. These sympatric forms diverge in both male display traits and female mate choice behaviors, which together contribute to asymmetric behavioral isolation in sympatry. Here, we found that plasma levels of testosterone and 17β-estradiol differed between spawning females of the two sympatric forms. Transcript levels of follicle-stimulating hormone-β (FSHβ gene were also higher in the pituitary gland of spawning Japan Sea females than in the pituitary gland of spawning Pacific Ocean females. By contrast, none of the sex steroids examined were significantly different between nesting males of the two forms. However, combining the plasma sex steroid data with testis transcriptome data suggested that the efficiency of the conversion of testosterone into 11-ketotestosterone has likely diverged between forms. Within forms, plasma testosterone levels in males were significantly correlated with male body size, a trait important for female mate choice in the two sympatric species. These results demonstrate that substantial divergence in sex steroid signaling can occur between incipient sympatric species. We suggest that investigation of the genetic and ecological mechanisms underlying divergence in hormonal signaling between incipient sympatric species will provide a better understanding of the mechanisms of speciation in animals.

  20. Thyroid Hormone Receptor Mutations in Cancer and Resistance to Thyroid Hormone: Perspective and Prognosis

    Directory of Open Access Journals (Sweden)

    Meghan D. Rosen

    2011-01-01

    Full Text Available Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.

  1. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    Science.gov (United States)

    Hansen, R K; Bissell, M J

    2010-01-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527

  2. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors

    Czech Academy of Sciences Publication Activity Database

    Jurášek, M.; Džubák, P.; Sedlák, David; Dvořáková, H.; Hajduch, M.; Bartůněk, Petr; Drasar, P.

    2013-01-01

    Roč. 78, č. 3 (2013), s. 356-361 ISSN 0039-128X R&D Projects: GA MŠk(CZ) LC06077; GA ČR(CZ) GAP503/11/0616; GA ČR(CZ) GAP304/10/1951 Institutional support: RVO:68378050 Keywords : click chemistry * steroid ribbons * cytotoxic activity * steroid receptor reporter assay * 2,6-bis((1H-1,2,3-triazol-1-yl)methyl)pyridine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.716, year: 2013

  3. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  4. Two simple cleanup methods combined with LC-MS/MS for quantification of steroid hormones in in vivo and in vitro assays

    DEFF Research Database (Denmark)

    Weisser, Johan Juhl; Hansen, Cecilie Hurup; Poulsen, Rikke

    2016-01-01

    Measuring both progestagens, androgens, corticosteroids as well as estrogens with a single method makes it possible to investigate the effects of endocrine-disrupting chemicals (EDCs) on the main pathways in the mammalian steroidogenesis. This paper presents two simple methods for the determination...... of the major steroid hormones in biological matrixes using liquid chromatography tandem mass spectrometry (LC-MS(2)). A novel method was developed for the determination of 14 steroids in the H295R in vitro assay without the need for solid phase extraction (SPE) purification prior to LC-MS(2) analysis....... The in vitro assay was validated by exposing H295R cells to prochloraz for inhibiting steroid hormone secretion and by exposing cells to forskolin for inducing steroid hormone secretion. The developed method fulfills the recommendations for the H295R assay suggested by the OECD. Furthermore, a simple off...

  5. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Directory of Open Access Journals (Sweden)

    Carmen Ghisleni

    Full Text Available Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women. Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  6. Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China.

    Science.gov (United States)

    Zhang, Feng-Song; Xie, Yun-Feng; Li, Xue-Wen; Wang, Dai-Yi; Yang, Lin-Sheng; Nie, Zhi-Qiang

    2015-12-15

    Steroid hormones released from manure agricultural application are a matter of global concern. The residual levels of steroid hormones were studied in a typical intensive vegetable cultivation area in northeast China, with a long history of heavy manure application. Seven steroids (estrone, 17α-estradiol, 17β-estradiol, estriol, testosterone, androstendione and progesterone) were analyzed from soil sampled from vegetable greenhouses, from sediments and water from the adjacent drainage ditch and from the groundwater. The results showed that target steroids were detected in the soil samples, with detection frequencies varying from 3.13 to 100%. The steroid concentrations varied substantially in soils, ranging from below the detection limit to 109.7μg·kg(-1). Three steroids-progesterone, androstendione and estrone-were found to have relatively high residue concentrations in soil, with maximum concentrations of 109.7, 9.83 and 13.30μg·kg(-1), respectively. In adjacent groundwater, all the steroids, with the exception of estrone, were detected in one or more of the 13 groundwater samples. The concentrations of steroids in groundwater ranged from below the method detection limit to 2.38ng·L(-1). Six of the seven (excluding androstendione) were detected in drainage ditch water samples, with concentrations ranging from below the detection limit to 14ng·L(-1). Progesterone, androstendione and estrone accumulated relatively easily in soils; their concentrations in groundwater were lower than those of other steroids. The concentrations of testosterone and estriol were relatively low in soil, while in groundwater were higher than those of other steroids. The residual levels of steroids in soil and groundwater showed a clear spatial variation in the study area. The residual levels of steroid hormones in soil varied substantially between differently planted greenhouses. Copyright © 2015. Published by Elsevier B.V.

  7. Embryonic treatment with xenobiotics disrupts steroid hormone profiles in hatchling red-eared slider turtles (Trachemys scripta elegans).

    Science.gov (United States)

    Willingham, E; Rhen, T; Sakata, J T; Crews, D

    2000-01-01

    Many compounds in the environment capable of acting as endocrine disruptors have been assayed for their developmental effects on morphogenesis; however, few studies have addressed how such xenobiotics affect physiology. In the current study we examine the effects of three endocrine-disrupting compounds, chlordane, trans-nonachlor, and the polychlorinated biphenyl (PCB) mixture Aroclor 1242, on the steroid hormone concentrations of red-eared slider turtle (Trachemys scripta elegans) hatchlings treated in ovo. Basal steroid concentrations and steroid concentrations in response to follicle-stimulating hormone were examined in both male and female turtles treated with each of the three compounds. Treated male turtles exposed to Aroclor 1242 or chlordane exhibited significantly lower testosterone concentrations than controls, whereas chlordane-treated females had significantly lower progesterone, testosterone, and 5[alpha]-dihydrotestosterone concentrations relative to controls. The effects of these endocrine disruptors extend beyond embryonic development, altering sex-steroid physiology in exposed animals. Images Figure 1 Figure 2 PMID:10753091

  8. Simultaneous analysis of fourteen endogenous steroid hormones by liquid chromatography tandem mass spectrometry with atmospheric pressure photoionization

    Science.gov (United States)

    Product Description: To understand how some chemicals affect the endocrine system, controlled lab experiments often monitor how chemicals impact natural steroid hormones in fish. Current methods can target only one or two hormones in a single sample, limiting the information that...

  9. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications.

    Science.gov (United States)

    Moravek, Molly B; Yin, Ping; Ono, Masanori; Coon, John S; Dyson, Matthew T; Navarro, Antonia; Marsh, Erica E; Chakravarti, Debabrata; Kim, J Julie; Wei, Jian-Jun; Bulun, Serdar E

    2015-01-01

    Uterine leiomyoma is the most common benign tumor in women and is thought to arise from the clonal expansion of a single myometrial smooth muscle cell transformed by a cellular insult. Leiomyomas cause a variety of symptoms, including abnormal uterine bleeding, pelvic pain, bladder or bowel dysfunction, and recurrent pregnancy loss, and are the most common indication for hysterectomy in the USA. A slow rate of cell proliferation, combined with the production of copious amounts of extracellular matrix, accounts for tumor expansion. A common salient feature of leiomyomas is their responsiveness to steroid hormones, thus providing an opportunity for intervention. A comprehensive search of PUBMED was conducted to identify peer-reviewed literature published since 1980 pertinent to the roles of steroid hormones and somatic stem cells in leiomyoma, including literature on therapeutics that target steroid hormone action in leiomyoma. Reviewed articles were restricted to English language only. Studies in both animals and humans were reviewed for the manuscript. Estrogen stimulates the growth of leiomyomas, which are exposed to this hormone not only through ovarian steroidogenesis, but also through local conversion of androgens by aromatase within the tumors themselves. The primary action of estrogen, together with its receptor estrogen receptor α (ERα), is likely mediated via induction of progesterone receptor (PR) expression, thereby allowing leiomyoma responsiveness to progesterone. Progesterone has been shown to stimulate the growth of leiomyoma through a set of key genes that regulate both apoptosis and proliferation. Given these findings, aromatase inhibitors and antiprogestins have been developed for the treatment of leiomyoma, but neither treatment results in complete regression of leiomyoma, and tumors recur after treatment is stopped. Recently, distinct cell populations were discovered in leiomyomas; a small population showed stem-progenitor cell properties, and

  10. Sex steroid-related candidate genes in psychiatric disorders.

    Science.gov (United States)

    Westberg, Lars; Eriksson, Elias

    2008-07-01

    Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid-induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid-related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function.

  11. Distinctly different dynamics and kinetics of two steroid receptors at the same response elements in living cells.

    Directory of Open Access Journals (Sweden)

    Hatice Z Nenseth

    Full Text Available Closely related transcription factors (TFs can bind to the same response elements (REs with similar affinities and activate transcription. However, it is unknown whether transcription is similarly orchestrated by different TFs bound at the same RE. Here we have compared the recovery half time (t1/2, binding site occupancy and the resulting temporal changes in transcription upon binding of two closely related steroid receptors, the androgen and glucocorticoid receptors (AR and GR, to their common hormone REs (HREs. We show that there are significant differences at all of these levels between AR and GR at the MMTV HRE when activated by their ligands. These data show that two TFs bound at the same RE can have significantly different modes of action that can affect their responses to environmental cues.

  12. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Mamta Kalra; Jary Mayes; Senait Assefa; Anil K Kaul; Rashmi Kaul

    2008-01-01

    The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERα alone until 1996 when ERβ isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC. 2008 The WJG Press. All rights reserved.

  13. Intracellular actions of steroid hormones and their therapeutic value, including the potential of radiohalosteroids against ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J.A. (Chicago Univ. (United States). Dept. of Obstetrics and Gynecology); Scharl, A. (Koeln Univ., Cologne (Germany). Frauen-Klinik); Kullander, S. (Lund Univ. (Sweden). Womens Hospital Malmoe); Beckmann, M.W. (Johann Wolfgang von Goethe Univ., Frankfurt am Main (Germany). Zentrum fuer Frauenheilkunde und Geburtshilfe)

    1992-01-01

    With recombinant cDNA technology, yeast and cultured animal cells can be made to express mammalian cDNA steroid receptors from cDNA clones that contain deletions and substitutions. Among the leading problems addressed in these models is the characterization of sequences that promote association or interaction with other transcription regulating molecules, including oncogene products. Recently it has been found that heat shock proteins may serve not only to stabilize the receptor proteins but also to precondition the activation imparted by ligand binding. Aberrant receptor proteins can be found in ovarian cancer. Whether aberrant receptor proteins are associated with transformation in general or with a variable clinical response to steroidal or anti-steroidal therapy is not known. Even after chemotherapy, steroid receptors are expressed in the metastases of ovarian cancers seen clinically, and they may have potential use for localization and treatment of receptor-rich cancers. Radioligand pharmaceuticals appropriate for imaging or for site-directed radiocytotoxicity can be sequestered to the nuclei of receptor-rich cancers. Initial clinical imaging and therapy trials with such pharmaceuticals have been approved and begun. In the use of halogenated estrogen radiopharmaceuticals, liver metabolism and enterohepatic recirculation are important considerations. Ascites prolongs retention of radiohalogenated estrogen in the abdominal cavity. Distant metastases have been localized with [[sup 123]I]-estrogen in breast cancer patients in pre-operative procedures. Receptor-mediated cytotoxicity occurs when estrogen receptor radioligand pharmaceuticals that are Auger electron emitters are used in vitro. (au) (119 refs., 3 figs.).

  14. Comprehensive Analysis of Hormone and Genetic Variation in 36 Genes Related to Steroid Hormone Metabolism in Pre- and Postmenopausal Women from the Breast and Prostate Cancer Cohort Consortium (BPC3)

    DEFF Research Database (Denmark)

    Beckmann, L.; Husing, A.; Setiawan, V. W.

    2011-01-01

    Context: Sex steroids play a central role in breast cancer development.Objective: This study aimed to relate polymorphic variants in 36 candidate genes in the sex steroid pathway to serum concentrations of sex steroid hormones and SHBG.Design: Data on 700 genetic polymorphisms were combined...

  15. Strategies for the Assessment of Metabolic Profiles of Steroid Hormones in View of Diagnostics and Drug Monitoring: Analytical Problems and Challenges.

    Science.gov (United States)

    Plenis, Alina; Oledzka, Ilona; Kowalski, Piotr; Baczek, Tomasz

    2016-01-01

    During the last few years there has been a growing interest in research focused on the metabolism of steroid hormones despite that the study of metabolic hormone pathways is still a difficult and demanding task because of low steroid concentrations and a complexity of the analysed matrices. Thus, there has been an increasing interest in the development of new, more selective and sensitive methods for monitoring these compounds in biological samples. A lot of bibliographic databases for world research literature were structurally searched using selected review question and inclusion/exclusion criteria. Next, the reports of the highest quality were selected using standard tools (181) and they were described to evaluate the advantages and limitations of different approaches in the measurements of the steroids and their metabolites. The overview of the analytical challenges, development of methods used in the assessment of the metabolic pathways of steroid hormones, and the priorities for future research with a special consideration for liquid chromatography (LC) and capillary electrophoresis (CE) techniques have been presented. Moreover, many LC and CE applications in pharmacological and psychological studies as well as endocrinology and sports medicine, taking into account the recent progress in the area of the metabolic profiling of steroids, have been critically discussed. The latest reports show that LC systems coupled with mass spectrometry have the predominant position in the research of steroid profiles. Moreover, CE techniques are going to gain a prominent position in the diagnosis of hormone levels in the near future.

  16. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  17. Different stress modalities result in distinct steroid hormone responses by male rats

    Directory of Open Access Journals (Sweden)

    M.L. Andersen

    2004-06-01

    Full Text Available Since both paradoxical sleep deprivation (PSD and stress alter male reproductive function, the purpose of the present study was to examine the influence of PSD and other stressors (restraint, electrical footshock, cold and forced swimming, N = 10 per group on steroid hormones in adult Wistar male rats. Rats were submitted to chronic stress for four days. The stressors (footshock, cold and forced swimming were applied twice a day, for periods of 1 h at 9:00 and 16:00 h. Restrained animals were maintained in plastic cylinders for 22 h/day whereas PSD was continuous. Hormone determination was measured by chemiluminescent enzyme immunoassay (testosterone, competitive immunoassay (progesterone and by radioimmunoassay (corticosterone, estradiol, estrone. The findings indicate that PSD (13.7 ng/dl, footshock (31.7 ng/dl and cold (35.2 ng/dl led to lower testosterone levels compared to the swimming (370.4 ng/dl and control (371.4 ng/dl groups. However, progesterone levels were elevated in the footshock (4.5 ng/ml and PSD (5.4 ng/ml groups compared to control (1.6 ng/ml, swimming (1.1 ng/ml, cold (2.3 ng/ml, and restrained (1.2 ng/ml animals. Estrone and estradiol levels were reduced in the PSD, footshock and restraint groups compared to the control, swimming and cold groups. A significant increase in corticosterone levels was found only in the PSD (299.8 ng/ml and footshock (169.6 ng/ml groups. These changes may be thought to be the full steroidal response to stress of significant intensity. Thus, the data suggest that different stress modalities result in distinct steroid hormone responses, with PSD and footshock being the most similar.

  18. Building a better hormone therapy?: How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline

    Science.gov (United States)

    Frick, Karyn M.

    2012-01-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women. PMID:22289043

  19. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    Science.gov (United States)

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  20. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  1. Sex Steroid Hormones Matter for Learning and Memory: Estrogenic Regulation of Hippocampal Function Inmale and Female Rodents

    Science.gov (United States)

    Frick, Karyn M.; Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.

    2015-01-01

    Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17ß-estradiol (E[subscript 2]), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes…

  2. The neurobiology and addiction potential of anabolic androgenic steroids and the effects of growth hormone.

    Science.gov (United States)

    Grönbladh, Alfhild; Nylander, Erik; Hallberg, Mathias

    2016-09-01

    Anabolic androgenic steroids (AAS) are substances that mimic the hormone testosterone, and primarily act via the androgen receptor. In addition to their physiological effect on muscle tissue and growth, research from the last decade has shown that AAS have a pronounced impact on the central nervous system. A large number of studies have demonstrated that AAS affect the mesolimbic reward system in the brain. However, whether the direct effects of AAS on endorphins, dopamine, serotonin and GABA etc. and on the corresponding and related systems lead to dependence needs to be further elucidated. According to recent studies, the prevalence of AAS dependence among AAS users has been estimated to be approximately 30%, and polysubstance use, of both pharmaceutical drugs and narcotics, within this group is common. The present review primarily discusses AAS in the context of addiction and dependence, and further addresses the issue of using multiple substances, i.e. stimulants and opiates in combination with AAS. In addition, aspects of the treatment of AAS dependence, the connection between AAS abuse and cognition, and AAS-induced neurotoxicity are presented. Currently, performance enhancing drugs are frequently used in combination with AAS. Therefore, a large section on growth hormone and insulin-like growth factor is also included. Copyright © 2016. Published by Elsevier Inc.

  3. Sex steroid hormones during the ovarian cycle of an all-female, parthenogenetic lizard and their correlation with pseudosexual behavior.

    Science.gov (United States)

    Moore, M C; Whittier, J M; Crews, D

    1985-11-01

    Cnemidophorus uniparens is a unisexual lizard that reproduces by parthenogenesis. Individuals of this species display male-like and female-like copulatory behaviors during different phases of the ovarian cycle suggesting that these pseudocopulatory behaviors are hormonally activated. To learn more about both the endocrinology of parthenogenesis and the possible hormonal activation of male-like copulatory behavior in female individuals, we (1) characterized changes in plasma levels of the sex steroid hormones progesterone, 5 alpha-dihydrotestosterone, testosterone, and 17 beta-estradiol during the ovarian cycle in both free-living and captive individuals, and (2) measured sex steroid hormones in plasma collected from captive individuals immediately after they expressed male-like or female-like copulatory behavior. In general, the pattern of secretion of ovarian hormones in C. uniparens appears to be similar to that of other oviparous vertebrates with similar reproductive cycles. Estradiol is elevated only during the preovulatory phase, whereas progesterone increases slightly during vitellogenesis and then increases dramatically following ovulation. Circulating levels of androgen are very low and are generally below the sensitivity of our radioimmunoassay at all stages of the ovarian cycle. The hormonal correlates of female-like copulatory behavior suggest that, as in other vertebrates, female receptivity is activated by a synergism of estradiol and progesterone. There is no evidence that the hormonal cycle has been altered to produce elevated levels of androgens during the phase of the cycle when male-like behavior is expressed. Rather it seems more likely that the central nervous system has evolved a novel response to a typical pattern of ovarian steroid hormone secretion. At present, the best hormonal correlate of male-like behavior is that changes in plasma levels of progesterone closely parallel changes in probability of expressing male-like behavior.

  4. Redistribution and persistence of microorganisms and steroid hormones after soil-injection of swine slurry

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, Tina B.; Forslund, Anita

    2014-01-01

    Typhimurium Bacteriophage 28B (phage 28B), Escherichia coli, steroid hormones and other slurry components (water, volatile solids, chloride and mineral N) determined in and around the injection slit. The two experiments at Silstrup and Estrup differed with respect to slurry solid content (6.3 vs. 0...

  5. Hormone receptor expression in male breast cancers | Akosa ...

    African Journals Online (AJOL)

    Male breast cancers are rare but have been found in higher proportions in Black Africans. Prognostic factors for breast cancers include tumour size, grade and stage, and hormone receptor status. The hormone receptor status is an invaluable guide in the use of adjuvant endocrine therapy, but none of the reports available ...

  6. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    International Nuclear Information System (INIS)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M.

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  7. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.

  8. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  10. Efficacy of chemotherapy after hormone therapy for hormone receptor-positive metastatic breast cancer.

    Science.gov (United States)

    Mori, Ryutaro; Nagao, Yasuko

    2014-01-01

    According to the guidelines for metastatic breast cancer, hormone therapy for hormone receptor-positive metastatic breast cancer without life-threatening metastasis should be received prior to chemotherapy. Previous trials have investigated the sensitivity of chemotherapy for preoperative breast cancer based on the efficacy of neoadjuvant hormone therapy. In this retrospective study, we investigated the efficacy of chemotherapy for metastatic breast cancer in hormone therapy-effective and hormone therapy-ineffective cases. Patients who received chemotherapy after hormone therapy for metastatic breast cancer between 2006 and 2013 at our institution were investigated. A total of 32 patients received chemotherapy after hormone therapy for metastatic breast cancer. The median patient age was 59 years, and most of the primary tumors exhibited a T2 status. A total of 26 patients had an N(+) status, while 7 patients had human epidermal growth factor receptor 2-positive tumors. A total of 13 patients received clinical benefits from hormone therapy, with a rate of clinical benefit of subsequent chemotherapy of 30.8%, which was not significantly different from that observed in the hormone therapy-ineffective patients (52.6%). A total of 13 patients were able to continue the hormone therapy for more than 1 year, with a rate of clinical benefit of chemotherapy of 38.5%, which was not significantly different from that observed in the short-term hormone therapy patients (47.4%). The luminal A patients were able to continue hormone therapy for a significantly longer period than the non-luminal A patients (median survival time: 17.8 months vs 6.35 months, p = 0.0085). However, there were no significant differences in the response to or duration of chemotherapy. The efficacy of chemotherapy for metastatic breast cancer cannot be predicted based on the efficacy of prior hormone therapy or tumor subtype, and clinicians should administer chemotherapy in all cases of

  11. Profiles of Steroid Hormones in Canine X-Linked Muscular Dystrophy via Stable Isotope Dilution LC-MS/MS.

    Directory of Open Access Journals (Sweden)

    Helio A Martins-Júnior

    Full Text Available Golden retriever muscular dystrophy (GRMD provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD. The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR versus GRMD-gene carrier (CaGR and affected female dogs (AfCR. Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS. To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients.

  12. Revisiting available knowledge on teleostean thyroid hormone receptors.

    Science.gov (United States)

    Lazcano, Iván; Orozco, Aurea

    2018-03-21

    Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Pigments, parasites and personalitiy: towards a unifying role for steroid hormones?

    Directory of Open Access Journals (Sweden)

    Silje Kittilsen

    Full Text Available A surging interest in the evolution of consistent trait correlations has inspired research on pigment patterns as a correlate of behavioural syndromes, or "animal personalities". Associations between pigmentation, physiology and health status are less investigated as potentially conserved trait clusters. In the current study, lice counts performed on farmed Atlantic salmon Salmo salar naturally infected with ectoparasitic sea lice Lepeophtheirus salmonis showed that individual fish with high incidence of black melanin-based skin spots harboured fewer female sea lice carrying egg sacs, compared to less pigmented fish. There was no significant association between pigmentation and lice at other developmental stages, suggesting that host factors associated with melanin-based pigmentation may modify ectoparasite development to a larger degree than settlement. In a subsequent laboratory experiment a strong negative correlation between skin spots and post-stress cortisol levels was revealed, with less pigmented individuals showing a more pronounced cortisol response to acute stress. The observation that lice prevalence was strongly increased on a fraction of sexually mature male salmon which occurred among the farmed fish further supports a role for steroid hormones as mediators of reduced parasite resistance. The data presented here propose steroid hormones as a proximate cause for the association between melanin-based pigmentation and parasites. Possible fundamental and applied implications are discussed.

  14. [FEMALE STEROID HORMONES - MODULATORS OF IMMUNE RESPONSE TO GENITAL CHLAMYDIA TRACHOMATIS INFECTION.

    Science.gov (United States)

    Kovachev, E; Ivanov, S; Bechev, B; Angelova, M; Grueva, E; Kolev, N; Ivanova, V

    In the recent years according to WHO, genital chlamydia is the mos't common sexually transmitted infection. Chlamydia Trachomatis is an intracellular parasite which target are the tubular epithelial cells of the urethra, endocervix, endometrium, endosalpinx, conjunctiva, synovial lining of the joints, Glisson's capsule of the liver Our study, as well as some international researches, shows that in the cases of genital chlamydia there are changes in the ovarian hormones (estradiol and progesterone), their impact on the immune system and their importance for the development and the complications of the infection with Chlamydia trachomatis. The physiological level of the steroid hormones in its turn contributes for the normalization of the local immunity and reduces the possibility of recurrences.

  15. The regulation of steroid receptors by epigallocatechin-3-gallate in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hallman K

    2017-05-01

    Full Text Available Kelly Hallman,* Katie Aleck,* Meghan Quigley, Brigitte Dwyer, Victoria Lloyd, Monica Szmyd, Sumi Dinda Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center for Biomedical Research, Oakland University, Rochester, MI, USA *These authors contributed equally to this work Abstract: It has been reported that phytoestrogen epigallocatechin gallate (EGCG suppresses cancer cell proliferation and may have antitumor properties. In this study, we analyzed the effects of EGCG on estrogen receptor α (ERα and progesterone receptor in hormone-dependent T-47D breast cancer cells. Western blot analysis revealed EGCG induced a concentration-dependent decrease in ERα protein levels, with a 56% reduction occurring with 60 µM EGCG when compared to controls. Downregulation of ERα protein levels was observed after 24-hour co-treatment of T-47D cells with 60 µM EGCG and 10 nM 17β-estradiol (E2. The proliferative effect of E2 on cell viability was reversed when treated in combination with EGCG. In contrast, the combination of EGCG with the pure ER antagonist, ICI 182, 780, showed no further reduction in cell number as only 5% of the cells were viable after 6 days of treatment. These studies may provide further understanding of the interactions among flavonoids and steroid receptors in breast cancer cells. Keywords: phytoestrogen, ER, PR, T-47D, antiestrogens

  16. Cellular localization of steroid hormone-regulated proteins during sexual development in achlya

    International Nuclear Information System (INIS)

    Brunt, S.A.; Silver, J.C.

    1986-01-01

    In the fungus Achlya ambisexualis sexual development in the male strain E87 is controlled by the steroid hormone antheridiol. To investigate the effects of antheridiol on the synthesis and/or accumulation of specific cellular proteins we have analyzed [ 35 S]methionine-labeled proteins from control and hormone-treated cells using both one-dimensional (1D) and two-dimensional (2D) PAGE. The addition of the hormone antheridiol to vegetatively growing cells of Achlya E87 was found to result in changes in the synthesis and/or accumulation of at least 16 specific proteins, which could be localized to the cytoplasmic, nuclear or cell was/cell membrane fractions. The most prominent changes observed in the hormone-treated cells included the appearance in the cytoplasmic fraction of labeled proteins at 28.4 and 24.3kD which were not detectable in control cells, and a significant enrichment in the labeling of a 24.3kD protein in the cell wall/cell membrane fraction. Quantitative changes in the [ 35 S]methionine labeling of several other proteins were noted in all three cell fractions

  17. Application of hormone receptor assay for clinical chemistry

    International Nuclear Information System (INIS)

    Sato, Seiya

    1978-01-01

    A conception of hormone receptors was explained to understand radioreceptor assay (RRA), and various problems in the operation of this method were described mainly. The principle of RRA is the same as that of RIA and CPBA, and measured values by RRA resembled to those by bioassay more closely than those by RIA. However, the sensitivity of RRA was inferior to that of RIA. It was important in using this method especially for measurement of peptide hormone not to deactivate biological the base by radioactivation. As the significance of this method in clinical chemistry, it was mentioned that this method was one kind of experiment to observe the biological activity of hormones, and that properties analysis of receptors, studies on action mechanism, the structure and function of hormone, the pathological analysis of endocrine abnormalities, and the development of drugs and treatment methods for receptors may become possible by this method. The other usefulness of this method was also mentioned. (Kanao, N.)

  18. Application of hormone receptor assay for clinical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S [Kitasato Univ. Hospital, Sagamihara, Kanagawa (Japan)

    1978-06-01

    A conception of hormone receptors was explained to understand radioreceptor assay (RRA), and various problems in the operation of this method were described mainly. The principle of RRA is the same as that of RIA and CPBA, and measured values by RRA resembled to those by bioassay more closely than those by RIA. However, the sensitivity of RRA was inferior to that of RIA. It was important in using this method especially for measurement of peptide hormone not to deactivate biological the base by radioactivation. As the significance of this method in clinical chemistry, it was mentioned that this method was one kind of experiment to observe the biological activity of hormones, and that properties analysis of receptors, studies on action mechanism, the structure and function of hormone, the pathological analysis of endocrine abnormalities, and the development of drugs and treatment methods for receptors may become possible by this method. The other usefulness of this method was also mentioned.

  19. Application of 3H-labelled silation reagents to determine the kinetic and equilibrium constants of the silylation reactions for mass spectrometry of steroid hormones

    International Nuclear Information System (INIS)

    Struckmeyer, H.F.

    1976-01-01

    Using the 3 H-labelled silation agents hexamethyl disilazane, trimethyl chlorosilane, and bis-(trimethylsilyl-) acetamide, the silation rate and efficiency of the silation of hydroxyl-substituted steroids was controlled. To determine the reactivity and specificity, 5d-androstane derivatives with defined keto- and hydroxyl groups were used. It was found that the silation process is best reproducible at room temperature. Steroid hormone silation is quantitative and reproducible with BSA, but less reproducible with HMDS with TMCS additives. The reaction rate increases with increasing amounts of TMCS, but a decomposition of the steroid hormones is observed at the same time. At a reaction temperature of 22 0 C, the experiment proceeds optimally with regard to reaction rate and steroid loss due to decomposition. The silated steroids are stable. (AJ) [de

  20. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome

    OpenAIRE

    Deng, Yuying; Zhang, Yifei; Li, Shengxian; Zhou, Wenzhong; Ye, Lei; Wang, Lihua; Tao, Tao; Gu, Junjie; Yang, Zuwei; Zhao, Dandan; Gu, Weiqiong; Hong, Jie; Ning, Guang; Liu, Wei; Wang, Weiqing

    2017-01-01

    The study explored differences in the steroidogenic pathway between obese and nonobese women with polycystic ovary syndrome (PCOS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1044 women with PCOS (including 350 lean, 312 overweight and 382 obese) and 366 control women without PCOS (including 203 lean, 32 overweight and 131 obese) were enrolled. The differences in steroid hormones were amplified in lean PCOS versus lean controls compared with obese PCOS versus obese contro...

  1. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'

    NARCIS (Netherlands)

    Kurakula, Kondababu; Hamers, Anouk A. J.; de Waard, Vivian; de Vries, Carlie J. M.

    2013-01-01

    Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in

  2. Effects of ionizing irradiation on the estradiol and progesterone receptors in rat mammary tumors

    International Nuclear Information System (INIS)

    Janssens, J.P.; Wittevrongel, C.; Van Dam, J.; Goddeeris, P.; Lauwerijns, J.M.; De Loecker, W.

    1981-01-01

    The determination of estradiol and progesterone receptor concentrations in mammary tumors is useful in predicting the hormone responsiveness. As this assay is carried out on tumor tissue which may have been subjected to radiotherapy, the possibility of an ionizing irradiation affecting the steroid receptor levels in neoplastic tissue should be taken into account. The steroid receptor concentrations are examined in dimethylbenz(a)anthracene-induced tumors os Sprague-Dawley rats. The estradiol and the progesterone receptor titers become reduced significantly after treatment with 20 Gray while an application with 7 Gray does not affect the titer values. After treatment of the tumor with 20 Gray, the steroid receptor concentrations decrease progressively, reaching a maximal reduction 20 to 30 days after exposure. As radiation treatment affects the receptor concentrations, this should be kept in mind when interpreting the steroid receptor concentrations

  3. CLONING AND IN VITRO EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR α FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    Science.gov (United States)

    In vitro screening assays designed to identify hormone mimics or antagonists typically use mammalian (rat, human) estrogen (ER) and androgen receptors (AR). Although we know that the amino acid sequences of steroid receptors in nonmammalian vertebrates are not identical to the ma...

  4. Effect of rejuvenation hormones on spermatogenesis.

    Science.gov (United States)

    Moss, Jared L; Crosnoe, Lindsey E; Kim, Edward D

    2013-06-01

    To review the current literature for the effect of hormones used in rejuvenation clinics on the maintenance of spermatogenesis. Review of published literature. Not applicable. Men who have undergone exogenous testosterone (T) and/or anabolic androgenic steroid (AAS) therapies. None. Semen analysis, pregnancy outcomes, and time to recovery of spermatogenesis. Exogenous testosterone and anabolic androgenic steroids suppress intratesticular testosterone production, which may lead to azoospermia or severe oligozoospermia. Therapies that protect spermatogenesis involve human chorionic gonadotropin (hCG) therapy and selective estrogen receptor modulators (SERMs). The studies examining the effect of human growth hormone (HGH) on infertile men are uncontrolled and unconvincing, but they do not appear to negatively impact spermatogenesis. At present, routine use of aromatase inhibitors is not recommended based on a lack of long-term data. The use of hormones for rejuvenation is increasing with the aging of the Baby Boomer population. Men desiring children at a later age may be unaware of the side-effect profile of hormones used at rejuvenation centers. Testosterone and anabolic androgenic steroids have well-established detrimental effects on spermatogenesis, but recovery may be possible with cessation. Clomiphene citrate, human growth hormone (HGH)/insulin-like growth factor-1 (IGF-1), human chorionic gonadotropin (hCG), and aromatase inhibitors do not appear to have significant negative effects on sperm production, but quality data are lacking. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β

    International Nuclear Information System (INIS)

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J.

    1989-01-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine → cytosine replacement in the codon for amino acid 340 resulted in a glycine → arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule

  6. Rapid and sensitive analysis of phthalate metabolites, bisphenol A, and endogenous steroid hormones in human urine by mixed-mode solid-phase extraction, dansylation, and ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry.

    Science.gov (United States)

    Wang, He-xing; Wang, Bin; Zhou, Ying; Jiang, Qing-wu

    2013-05-01

    Steroid hormone levels in human urine are convenient and sensitive indicators for the impact of phthalates and/or bisphenol A (BPA) exposure on the human steroid hormone endocrine system. In this study, a rapid and sensitive method for determination of 14 phthalate metabolites, BPA, and ten endogenous steroid hormones in urine was developed and validated on the basis of ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry. The optimized mixed-mode solid phase-extraction separated the weakly acidic or neutral BPA and steroid hormones from acidic phthalate metabolites in urine: the former were determined in positive ion mode with a methanol/water mobile phase containing 10 mM ammonium formate; the latter were determined in negative ion mode with a acetonitrile/water mobile phase containing 0.1 % acetic acid, which significantly alleviated matrix effects for the analysis of BPA and steroid hormones. Dansylation of estrogens and BPA realized simultaneous and sensitive analysis of the endogenous steroid hormones and BPA in a single chromatographic run. The limits of detection were less than 0.84 ng/mL for phthalate metabolites and less than 0.22 ng/mL for endogenous steroid hormones and BPA. This proposed method had satisfactory precision and accuracy, and was successfully applied to the analyses of human urine samples. This method could be valuable when investigating the associations among endocrine-disrupting chemicals, endogenous steroid hormones, and relevant adverse outcomes in epidemiological studies.

  7. Impact of androgenic/antiandrogenic compounds (AAC) on human sex steroid metabolizing key enzymes

    International Nuclear Information System (INIS)

    Allera, A.; Lo, S.; King, I.; Steglich, F.; Klingmueller, D.

    2004-01-01

    Various pesticides, industrial pollutants and synthetic compounds, to which human populations are exposed, are known or suspected to interfere with endogenous sex hormone functions. Such interference potentially affect the development and expression of the male and female reproductive system or both. Chemicals in this class are thus referred to as endocrine disruptors (ED). This emphazises on the relevance of screening ED for a wide range of sex hormone-mimicking effects. These compounds are believed to exert influence on hormonal actions predominantly by (i) interfering with endogenous steroids in that they functionally interact with plasma membrane-located receptors as well as with nuclear receptors both for estrogens and androgens or (ii) affecting the levels of sex hormones as a result of their impact on steroid metabolizing key enzymes. Essential sex hormone-related enzymes within the endocrine system of humans are aromatase, 5α-reductase 2 as well as specific sulfotransferases and sulfatases (so-called phase I and phase II enzymes, respectively). Using suitable human tissues and human cancer cell lines (placenta, prostate, liver and JEG-3, lymph node carcinoma of prostate (LnCaP) cells) we investigated the impact of 10 widely used chemicals suspected of acting as ED with androgenic or antiandrogenic activity (so-called AAC) on the activity of these sex hormone metabolizing key enzymes in humans. In addition, the respective effects of six substances were also studied as positive controls due to their well-known specific hormonal agonistic/antagonistic activities. The aim of this report and subsequent investigations is to improve human health risk assessment for AAC and other ED

  8. Influence of disease activity on steroid hormone levels in peripheral blood of patients with rheumatoid arthritis

    NARCIS (Netherlands)

    van den Brink, H. R.; Blankenstein, M. A.; Koppeschaar, H. P.; Bijlsma, J. W.

    1993-01-01

    The steroid hormone status of 27 female patients (15 premenopausal and 12 postmenopausal) and 11 male patients with rheumatoid arthritis (RA) was investigated before and after a clinically significant deterioration in disease activity. In postmenopausal patients the serum level of cortisol decreased

  9. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols.

    Science.gov (United States)

    Midzak, Andrew; Papadopoulos, Vassilios

    2014-09-01

    Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    International Nuclear Information System (INIS)

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang; Yuan, Ye; Zhao, Bao-Quan; Chao, Xi-Juan; Zhu, Ben-Zhan

    2012-01-01

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10 −9 M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  11. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Tang, Yuan [Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Yanzheng Street, Chongqing 400038 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye; Zhao, Bao-Quan [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  12. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    Directory of Open Access Journals (Sweden)

    Annika Mohr

    Full Text Available Immunohistochemistry (IHC is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1, progesterone receptor (PGR, prolactin receptor (PRLR and growth hormone receptor (GHR gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  13. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    Science.gov (United States)

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  14. 17β-estradiol induces non-genomic effects in renal intercalated cells through the G-protein coupled estrogen receptor 1

    DEFF Research Database (Denmark)

    Hofmeister, Marlene Vind; Damkier, Helle Hasager; Christensen, Birgitte Mønster

    2012-01-01

    Steroid hormones such as 17β-estradiol (E2) are known to modulate ion transporter expression in the kidney through classic intracellular receptors. Steroid hormones are also known to cause rapid nongenomic responses in a variety of nonrenal tissues. However, little is known about renal short......-term effects of steroid hormones. Here, we studied the acute actions of E2 on intracellular Ca(2+) signaling in isolated distal convoluted tubules (DCT2), connecting tubules (CNT), and initial cortical collecting ducts (iCCD) by fluo 4 fluorometry. Physiological concentrations of E2 induced transient increases...

  15. Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments.

    Science.gov (United States)

    Singh, Simrat P; Azua, Arlette; Chaudhary, Amit; Khan, Shabana; Willett, Kristine L; Gardinali, Piero R

    2010-02-01

    The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home of many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Because, large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of septic systems, a comprehensive survey of selected human waste contamination markers was conducted in three areas to assess water quality with respect to non-traditional micro-constituents. This study documents the occurrence and distribution of fifteen hormones and steroids and five commonly detected pharmaceuticals in surface water samples collected from different near shore environments along South Florida between 2004 and 2006. The compounds most frequently detected were: cholesterol, caffeine, estrone, DEET, coprostanol, biphenol-A, beta-estradiol, and triclosan. The concentration detected for estrone and beta-estradiol were up to 5.2 and 1.8 ng/L, respectively. Concentrations of caffeine (5.5-68 ng/L) and DEET (4.8-49 ng/L) were generally higher and more prevalent than were the steroids. Distribution of microconstituents was site specific likely reflecting a diversity of sources. In addition to chemical analysis, the yeast estrogen screen assay was used to screen the samples for estrogen equivalency. Overall, the results show that water collected from inland canals and restricted circulation water bodies adjacent to heavily populated areas had high concentrations of multiple steroids, pharmaceuticals, and personal care products while open bay waters were largely devoid of the target analytes.

  16. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  17. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.

    Directory of Open Access Journals (Sweden)

    Andrea D Coviello

    Full Text Available Sex hormone-binding globulin (SHBG is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8 × 10(-106, PRMT6 (rs17496332, 1p13.3, p = 1.4 × 10(-11, GCKR (rs780093, 2p23.3, p = 2.2 × 10(-16, ZBTB10 (rs440837, 8q21.13, p = 3.4 × 10(-09, JMJD1C (rs7910927, 10q21.3, p = 6.1 × 10(-35, SLCO1B1 (rs4149056, 12p12.1, p = 1.9 × 10(-08, NR2F2 (rs8023580, 15q26.2, p = 8.3 × 10(-12, ZNF652 (rs2411984, 17q21.32, p = 3.5 × 10(-14, TDGF3 (rs1573036, Xq22.3, p = 4.1 × 10(-14, LHCGR (rs10454142, 2p16.3, p = 1.3 × 10(-07, BAIAP2L1 (rs3779195, 7q21.3, p = 2.7 × 10(-08, and UGT2B15 (rs293428, 4q13.2, p = 5.5 × 10(-06. These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5 × 10(-08, women p = 0.66, heterogeneity p = 0.003. Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion

  18. Structure and proteolysis of the growth hormone receptor on rat hepatocytes

    International Nuclear Information System (INIS)

    Yamada, K.; Lipson, K.E.; Donner, D.B.

    1987-01-01

    125 I-Labeled human growth hormone is isolated in high molecular weight (M/sub r/) (300,000, 220,000, and 130,000) and low molecular weight complexes on rat hepatocytes after affinity labeling. The time-dependent formation of low molecular weight complexes occurred at the expense of the higher molecular weight species and was inhibited by low temperature or inhibitors of serine proteinases. Exposure to reducing conditions induced loss of M/sub r/ 300,000 and 220,000 species and augmented the amount of M/sub r/ 130,000 complexes. The molecular weight of growth hormone (22,000) suggests that binding had occurred with species of M/sub r/ 280,000, 200,000, and 100,000. Two-dimensional gel electrophoresis demonstrated that the 100,000-dalton receptor subunit is contained in both the 280,000- and 200-000-dalton species. Reduction of interchain disulfide bonds in the growth hormone receptor did not alter its elution from gel filtration columns, but intact, high molecular weight receptor constituents were separated from lower molecular weight degradation products. Digestion of affinity-labeled growth hormone-receptor complexes with neuraminidase increased the mobility of receptor constituents on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These observations show that the growth hormone receptor is degraded by hepatic serine proteinases to low molecular weight degradation products which can be separated from intact receptor by gel filtration. Intact hormone-receptor complexes are aggregates of 100,000-dalton sialoglycoprotein subunits held together by interchain disulfide bonds and by noncovalent forces

  19. Molecular characterization of a genetic variant of the steroid hormone-binding globulin gene in heterozygous subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D.O.; Catterall, J.F. [Population Council, New York, NY (United States); Carino, C. [Instituto National de la Nutricion, Mexico City, MX (United States)] [and others

    1995-04-01

    Steroid hormone-binding globulin in human serum displays different isoelectric focusing (IEF) patterns among individuals, suggesting genetic variation in the gene for this extracellular steroid carrier protein. Analysis of allele frequencies and family studies suggested the existence of two codominant alleles of the gene. Subsequent determination of the molecular basis of a variant of the gene was carried out using DNA from homozygous individuals from a single Belgian family. It was of interest to characterize other variant individuals to determine whether all variants identified by IEF phenotyping were caused by the same mutation or whether other mutations occurred in the gene in different populations. Previous studies identified Mexican subjects who were heterozygous for the variant IEF phenotype. Denaturing gradient gel electrophoresis was used to localize the mutation in these subjects and to purify the variant allele for DNA sequence analysis. The results show that the mutation in this population is identical to that identified in the Belgian family, and no other mutations were detected in the gene. These data represent the first analysis of steroid hormone-binding globulin gene variation in heterozygous subjects and further support the conclusion of biallelism of the gene worldwide. 11 refs., 2 figs., 1 tab.

  20. Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters.

    Science.gov (United States)

    Barr, Fiona D; Krohmer, Lori J; Hamilton, Joshua W; Sheldon, Lynn A

    2009-08-26

    Chronic exposure to inorganic arsenic (iAs) found in the environment is one of the most significant and widespread environmental health risks in the U.S. and throughout the world. It is associated with a broad range of health effects from cancer to diabetes as well as reproductive and developmental anomalies. This diversity of diseases can also result from disruption of metabolic and other cellular processes regulated by steroid hormone receptors via aberrant transcriptional regulation. Significantly, exposure to iAs inhibits steroid hormone-mediated gene activation. iAs exposure is associated with disease, but is also used therapeutically to treat specific cancers complicating an understanding of iAs action. Transcriptional activation by steroid hormone receptors is accompanied by changes in histone and non-histone protein post-translational modification (PTM) that result from the enzymatic activity of coactivator and corepressor proteins such as GRIP1 and CARM1. This study addresses how iAs represses steroid receptor-regulated gene transcription. PTMs on histones H3 and H4 at the glucocorticoid receptor (GR)-activated mouse mammary tumor virus (MMTV) promoter were identified by chromatin immunoprecipitation analysis following exposure to steroid hormone+/-iAs. Histone H3K18 and H3R17 amino acid residues had significantly different patterns of PTMs after treatment with iAs. Promoter interaction of the coactivator CARM1 was disrupted, but the interaction of GRIP1, a p160 coactivator through which CARM1 interacts with a promoter, was intact. Over-expression of CARM1 was able to fully restore and GRIP1 partially restored iAs-repressed transcription indicating that these coactivators are functionally associated with iAs-mediated transcriptional repression. Both are essential for robust transcription at steroid hormone regulated genes and both are associated with disease when inappropriately expressed. We postulate that iAs effects on CARM1 and GRIP1 may underlie some

  1. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  2. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    International Nuclear Information System (INIS)

    Katzenellenbogen, John A.

    2007-01-01

    Summary of Progress The specific aims of this project can be summarized as follows: Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor γ (PPARγ), a new nuclear hormone receptor target for tumor imaging and hormone therapy. Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail in the report, we made excellent progress on all three of these aims; the highlights of our progress are the following: (1) we have prepared the first fluorine-18 labeled analogs of ligands for the PPARγ receptor and used these in tissue distribution studies in rats; (2) we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems; (3) we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats; (4) we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity; and (5) we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core

  3. Effect of Immunoactive Drugs on Postresuscitation Processes in the Brain and Steroid Hormones

    Directory of Open Access Journals (Sweden)

    Yu. V. Zarzhetsky

    2014-01-01

    Full Text Available Objective: to evaluate the effects of the immunostimulants panavir and derinate on a postresuscitation process in animals of different sexes.Material and methods. The investigation was made on 200—250-g albino rats of both sexes in winter. Circulation  was  stopped  by  intrathoracic  ligation  of  the  cardiac  vascular  bundle  in  ethersteroid hormones were assessed in the postresuscitation period. The investigation used two immunoactive drugs: panavir 0.02 mg/kg and derinate 150 μg/kg. Either agent was intramuscularly injected twice: at 3 0 minutes after resuscitation and on the following day.Results. The injected drugs were ascertained to have a positive effect on functional recovery of the brain. Their use was shown to modify the sex steroid hormone  profiles  in  both  males  and  females  in  the  early postresuscitation period.Conclusion. The findings suggest that the immunoactive agents are able to affect the nervous and  endocrine  systems  in  critical  conditions.

  4. Studies on the steroid hormone precursors of two tropical wild yams (Dioscorea bulbifera and Dioscorea manganotiana)

    International Nuclear Information System (INIS)

    Oboh, G.; Ekperigin, M.M.; Akindahunsi, A.A.

    2001-09-01

    Dioscorea bulbifera and Dioscorea manganotiana were evaluated for their potential as a source of saponin and sapogenin. The levels of these steroid hormone precursors were determined by solvent extraction and characterized by froth test, haemolytic test, colour, taste and TLC analysis. The saponin content of both yams were 1.04±0.08% (dioscorea bulbifera) and 1.58±0.26% (Dioscorea manganotiana). The sapogenin content of Dioscorea manganotiana was 6.04±0.06mg/g, while that of dioscerea bulbifera was 3.36±0.37mg/g. The saponin had a dark-brown colour, bitter taste, frothing ability and haemolysed blood. TLC analysis gave a purple spot with R f ranging from 0.55 to 0.56. Since the wild yams used for the present study are neither consumed by man nor used for livestock feeding, coupled with their relative abundance and low cost, they hold a good promise with respect to sourcing precursors for commercial production of steroid hormones. (author)

  5. Protective Effects of Fetal Zone Steroids Are Comparable to Estradiol in Hyperoxia-Induced Cell Death of Immature Glia.

    Science.gov (United States)

    Hübner, Stephanie; Sunny, Donna E; Pöhlke, Christine; Ruhnau, Johanna; Vogelgesang, Antje; Reich, Bettina; Heckmann, Matthias

    2017-05-01

    Impaired neurodevelopment in preterm infants is caused by prematurity itself; however, hypoxia/ischemia, inflammation, and hyperoxia contribute to the extent of impairment. Because preterm birth is accompanied by a dramatic decrease in 17β-estradiol (E2) and progesterone, preliminary clinical studies have been carried out to substitute these steroids in preterm infants; however, they failed to confirm significantly improved neurologic outcomes. We therefore hypothesized that the persistently high postnatal production of fetal zone steroids [mainly dehydroepiandrosterone (DHEA)] until term could interfere with E2-mediated protection. We investigated whether E2 could reduce hyperoxia-mediated apoptosis in three immature glial cell types and detected the involved receptors. Thereafter, we investigated protection by the fetal zone steroids DHEA, 16α-hydroxy-DHEA, and androstenediol. For DHEA, the involved receptors were evaluated. We examined aromatases, which convert fetal zone steroids into more estrogenic compounds. Finally, cotreatment was compared against single hormone treatment to investigate synergism. In all cell types, E2 and fetal zone steroids resulted in significant dose-dependent protection, whereas the mediating receptors differed. The neuroprotection by fetal zone steroids highly depended on the cell type-specific expression of aromatases, the receptor repertoire, and the potency of the fetal zone steroids toward these receptors. No synergism in fetal zone steroid and E2 cotreatment was detected in two of three cell types. Therefore, E2 supplementation may not be beneficial with respect to neuroprotection because fetal zone steroids circulate in persistently high concentrations until term in preterm infants. Hence, a refined experimental model for preterm infants is required to investigate potential treatments. Copyright © 2017 Endocrine Society.

  6. Steroidal hormones and other endocrine active compounds in shallow groundwater in nonagricultural areas of Minnesota—Study design, methods, and data, 2009–10

    Science.gov (United States)

    Erickson, Melinda L.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a study on the occurrence of steroidal hormones and other endocrine active compounds in shallow groundwater in nonagricultural areas of Minnesota during 2009–10. This report describes the study design and methods, and presents the data collected on steroidal hormones and other related compounds. Environmental and quality-control samples were collected from 40 wells as part of this study. Samples were analyzed by the U.S. Geological Survey National Water Quality Laboratory for 16 steroidal hormones and 4 other related compounds, of which all but 2 compounds are endocrine active compounds. Most of the water samples did not contain detectable concentrations of any of the 20 compounds analyzed. Water samples from three wells had detectable concentrations of one or more compounds. Bisphenol A was detected in samples from three wells, and trans-diethylstilbestrol was detected in one of the samples in which bisphenol A also was detected.

  7. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  8. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    Science.gov (United States)

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  9. The influence of a steroid hormone and of physical exercise on protein metabolism in rats

    International Nuclear Information System (INIS)

    Menschikowski, M.; Jung, K.; Junghans, P.; Petzke, K.J.; Albrecht, V.; Akademie der Wissenschaften der DDR, Potsdam

    1989-01-01

    The influence of an anabolic steroid hormone preparation and of a physical exercise training program was studied on the nitrogen and protein metabolism in rats with the help of the 15 N tracer technique and the emission spectrometric 15 N isotope analysis. For the determination of the dynamic parameters of the protein metabolism graphic (stochastic) and computer-aided compartmental methods wer compared. Using the area method as a stochastic approach the animals showed significant differences in the protein turnover parameters under the influence of hormone treatment and (or) physical stress by swimming exercise in comparison to the controls. (author)

  10. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  11. Mind Over Matter: Anabolic Steroids

    Science.gov (United States)

    ... Download PDF 830.69 KB Anabolic steroids are artificial versions of a hormone that's in all of us—testosterone. Some people take anabolic steroid pills or injections to try to build muscle faster. The Brain's Response to Anabolic Steroids Hi, ...

  12. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  13. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa.

    Science.gov (United States)

    Manickum, Thavrin; John, Wilson

    2015-07-01

    The availability of national test centers to offer a routine service for analysis and quantitation of some selected steroid hormones [natural estrogens (17-β-estradiol, E2; estrone, E1; estriol, E3), synthetic estrogen (17-α-ethinylestradiol, EE2), androgen (testosterone), and progestogen (progesterone)] in wastewater matrix was investigated; corresponding internationally used chemical- and immuno-analytical test methods were reviewed. The enzyme-linked immunosorbent assay (ELISA) (immuno-analytical technique) was also assessed for its suitability as a routine test method to quantitate the levels of these hormones at a sewage/wastewater treatment plant (WTP) (Darvill, Pietermaritzburg, South Africa), over a 2-year period. The method performance and other relevant characteristics of the immuno-analytical ELISA method were compared to the conventional chemical-analytical methodology, like gas/liquid chromatography-mass spectrometry (GC/LC-MS), and GC-LC/tandem mass spectrometry (MSMS), for quantitation of the steroid hormones in wastewater and environmental waters. The national immuno-analytical ELISA technique was found to be sensitive (LOQ 5 ng/L, LOD 0.2-5 ng/L), accurate (mean recovery 96%), precise (RSD 7-10%), and cost-effective for screening and quantitation of these steroid hormones in wastewater and environmental water matrix. A survey of the most current international literature indicates a fairly equal use of the LC-MS/MS, GC-MS/MS (chemical-analytical), and ELISA (immuno-analytical) test methods for screening and quantitation of the target steroid hormones in both water and wastewater matrix. Internationally, the observed sensitivity, based on LOQ (ng/L), for the steroid estrogens E1, E2, EE2, is, in decreasing order: LC-MSMS (0.08-9.54) > GC-MS (1) > ELISA (5) (chemical-analytical > immuno-analytical). At the national level, the routine, unoptimized chemical-analytical LC-MSMS method was found to lack the required sensitivity for meeting environmental

  14. 17β-trenbolone, an anabolic–androgenic steroid as well as an environmental hormone, contributes to neurodegeneration

    International Nuclear Information System (INIS)

    Ma, Fucui; Liu, Daicheng

    2015-01-01

    Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neurodegenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry the mutant genes. Other risk factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental hormone as well as an anabolic–androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain, especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone. Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and continually. Identification of such environmental risk factors will help us take early prevention measure to slow down the onset of neurodegenerative disorders. - Highlights: • The widely used anabolic–androgenic steroid 17β-trenbolone has neurotoxicity. • 17β-trenbolone crosses the blood brain barrier and placental barrier. • Rat has high level of

  15. 17β-trenbolone, an anabolic–androgenic steroid as well as an environmental hormone, contributes to neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fucui, E-mail: mafucui@hotmail.com [Wenzhou Institute of Biomaterials and Engineering, No. 16 Xinshan Road, Hi-tech Industry Park, Wenzhou (China); Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014 (China); Liu, Daicheng, E-mail: liudch@sdnu.edu.cn [Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014 (China)

    2015-01-01

    Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neurodegenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry the mutant genes. Other risk factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental hormone as well as an anabolic–androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain, especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone. Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and continually. Identification of such environmental risk factors will help us take early prevention measure to slow down the onset of neurodegenerative disorders. - Highlights: • The widely used anabolic–androgenic steroid 17β-trenbolone has neurotoxicity. • 17β-trenbolone crosses the blood brain barrier and placental barrier. • Rat has high level of

  16. Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays.

    Science.gov (United States)

    Houtman, Corine J; Sterk, Saskia S; van de Heijning, Monique P M; Brouwer, Abraham; Stephany, Rainer W; van der Burg, Bart; Sonneveld, Edwin

    2009-04-01

    Anabolic androgenic steroids (AAS) are a class of steroid hormones related to the male hormone testosterone. They are frequently detected as drugs in sport doping control. Being similar to or derived from natural male hormones, AAS share the activation of the androgen receptor (AR) as common mechanism of action. The mammalian androgen responsive reporter gene assay (AR CALUX bioassay), measuring compounds interacting with the AR can be used for the analysis of AAS without the necessity of knowing their chemical structure beforehand, whereas current chemical-analytical approaches may have difficulty in detecting compounds with unknown structures, such as designer steroids. This study demonstrated that AAS prohibited in sports and potential designer AAS can be detected with this AR reporter gene assay, but that also additional steroid activities of AAS could be found using additional mammalian bioassays for other types of steroid hormones. Mixtures of AAS were found to behave additively in the AR reporter gene assay showing that it is possible to use this method for complex mixtures as are found in doping control samples, including mixtures that are a result of multi drug use. To test if mammalian reporter gene assays could be used for the detection of AAS in urine samples, background steroidal activities were measured. AAS-spiked urine samples, mimicking doping positive samples, showed significantly higher androgenic activities than unspiked samples. GC-MS analysis of endogenous androgens and AR reporter gene assay analysis of urine samples showed how a combined chemical-analytical and bioassay approach can be used to identify samples containing AAS. The results indicate that the AR reporter gene assay, in addition to chemical-analytical methods, can be a valuable tool for the analysis of AAS for doping control purposes.

  17. A Simple Thin Layer Chromatography Method for Separation of Selected Natural Steroid Hormones

    International Nuclear Information System (INIS)

    Nowakowska, J.; Rudnicka-Litka, K.; Ciura, K.; Pikul, P.; Piotrowicz, J.

    2015-01-01

    Chromatographic properties of seven steroids: estrogens (β-estradiol and estrone), androgens (testosterone, methyltestosterone, trans-androsterone), progesterone and cholesterol have been studied by planar chromatography with usage of High Performance Thin Layer Chromatography (HPTLC) and Thin Layer Chromatography (TLC) plates. Normal, reversed and cyano-bonded silica stationary phases were tested with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier varied from 0 to 100 % (v/v). This study reports the optimization of steroid hormones separation. Principal Component Analysis (PCA) based on calculated molecular descriptors quantitatively differentiating solutes was performed in order to investigate the similarity and dissimilarity between tested compounds. The separation abilities of mobile and stationary phases were compared based on separation factor α. Chromatographic retention data and possible retention mechanisms also were discussed. (author)

  18. The formation and transformation of hormones in maternal, placental and fetal compartments: biological implications.

    Science.gov (United States)

    Pasqualini, Jorge R; Chetrite, Gérard S

    2016-07-01

    The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.

  19. Transcription factor Brn-3α mRNA in cancers, relationship with AR, ER receptors and AKT/m-TOR pathway components

    Science.gov (United States)

    Spirina, L. V.; Gorbunov, A. K.; Chigevskaya, S. Y.; Usynin, Y. A.; Kondakova, I. V.; Slonimskaya, E. M.; Usynin, E. A.; Choinzonov, E. L.; Zaitseva, O. S.

    2017-09-01

    Transcription factors POU4F1 (neurogenic factor Brn-3α) play a pivotal role in cancers development. The aim of the study was to reveal the Brn-3α expression, AR, ER expression in cancers development, association with AKT/mTOR pathway activation. 30 patients with locally advanced prostate cancer, 20 patients with papillary thyroid cancer, T2-3N0-1M0 stages and 40 patients with renal cell cancer T2-3N0M0-1 were involved into the study. The expressions of Brn-3α, AR, ERα, components of AKT/m-TOR signaling pathway genes were performed by real-time PCR. The dependence of Brn-3α expression on mRNA levels of steroid hormone receptors and components of AKT/m-TOR signaling pathway in studied cancers were shown. High levels of mRNA of nuclear factor, steroid hormone receptors were found followed by the activation of this signaling pathway in prostate cancer tissue. The reduction of transcription factor Brn-3α was accompanied with tumor invasive growth with increasing rates of AR, ER and 4E-BP1 mRNA. Thyroid cancer development happened in a case of a Brn-3α and steroid hormone receptors decrease. The activation of AKT/m-TOR signaling pathway was established in the metastatic renal cancers, accompanied with the increase of ER mRNA. But there was no correlation between the steroid receptor and Brn-3α. One-direction changes of Brn-3α were observed in the development of prostate and thyroid cancer due to its effect on the steroid hormone receptors and the activation of AKT/m-TOR signaling pathway components. The influence of this factor on the development of the kidney cancer was mediated through m-TOR activity modifications, the key enzyme of oncogenesis.

  20. In situ relationship between energy reserves and steroid hormone levels in Nereis diversicolor (O.F. Müller) from clean and contaminated sites.

    Science.gov (United States)

    Mouneyrac, C; Pellerin, J; Moukrim, A; Ait Alla, A; Durou, C; Viault, N

    2006-10-01

    The aim of this study was to investigate, in situ, the temporal effects of urban effluent discharge on energy reserves and steroid hormone levels in the intrasedimentary worm Nereis diversicolor. Results have shown no differences in energy reserves (glycogen, lipids) in organisms originating from a contaminated site (Oued Souss) and a comparatively clean site (Oualidia). Both sites are located on the Moroccan Atlantic coast. In contrast, steroid hormone (progesterone, testosterone, and 17beta-estradiol) levels were significantly decreased in animals from Oued Souss. The differences in the responses suggest that organisms from the polluted site have been exposed to endocrine disruptors.

  1. ent-Steroids: novel tools for studies of signaling pathways.

    Science.gov (United States)

    Covey, Douglas F

    2009-07-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.

  2. ent-Steroids: Novel Tools for Studies of Signaling Pathways

    OpenAIRE

    Covey, Douglas F.

    2008-01-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of natu...

  3. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action

    Directory of Open Access Journals (Sweden)

    Kathleen A. O'Leary

    2017-10-01

    Full Text Available Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL to increased risk for aggressive cancers that express estrogen receptor α (ERα. However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61+ luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer.

  4. Prolactin Alters the Mammary Epithelial Hierarchy, Increasing Progenitors and Facilitating Ovarian Steroid Action.

    Science.gov (United States)

    O'Leary, Kathleen A; Shea, Michael P; Salituro, Stephanie; Blohm, Courtney E; Schuler, Linda A

    2017-10-10

    Hormones drive mammary development and function and play critical roles in breast cancer. Epidemiologic studies link prolactin (PRL) to increased risk for aggressive cancers that express estrogen receptor α (ERα). However, in contrast to ovarian steroids, PRL actions on the mammary gland outside of pregnancy are poorly understood. We employed the transgenic NRL-PRL model to examine the effects of PRL alone and with defined estrogen/progesterone exposure on stem/progenitor activity and regulatory networks that drive epithelial differentiation. PRL increased progenitors and modulated transcriptional programs, even without ovarian steroids, and with steroids further raised stem cell activity associated with elevated canonical Wnt signaling. However, despite facilitating some steroid actions, PRL opposed steroid-driven luminal maturation and increased CD61 + luminal cells. Our findings demonstrate that PRL can powerfully influence the epithelial hierarchy alone and temper the actions of ovarian steroids, which may underlie its role in the development of breast cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    International Nuclear Information System (INIS)

    Han, Ji Seung; Crowe, David L

    2010-01-01

    The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies

  6. Elevated Steroid Hormone Production in the db/db Mouse Model of Obesity and Type 2 Diabetes.

    Science.gov (United States)

    Hofmann, Anja; Peitzsch, Mirko; Brunssen, Coy; Mittag, Jennifer; Jannasch, Annett; Frenzel, Annika; Brown, Nicholas; Weldon, Steven M; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning

    2017-01-01

    Obesity and type 2 diabetes have become a major public health problem worldwide. Steroid hormone dysfunction appears to be linked to development of obesity and type 2 diabetes and correction of steroid abnormalities may offer new approaches to therapy. We therefore analyzed plasma steroids in 15-16 week old obese and diabetic db/db mice using liquid chromatography-tandem mass spectrometry. Lean db/+ served as controls. Db/db mice developed obesity, hyperglycemia, hyperleptinemia, and hyperlipidemia. Hepatic triglyceride storage was increased and adiponectin and pancreatic insulin were lowered. Aldosterone, corticosterone, 11-deoxycorticosterone, and progesterone were respectively increased by 3.6-, 2.9-, 3.4, and 1.7-fold in db/db mice compared to controls. Ratios of aldosterone-to-progesterone and corticosterone-to-progesterone were respectively 2.0- and 1.5-fold higher in db/db mice. Genes associated with steroidogenesis were quantified in the adrenal glands and gonadal adipose tissues. In adrenals, Cyp11b2 , Cyp11b1 , Cyp21a1 , Hsd3b1 , Cyp11a1 , and StAR were all significantly increased in db/db mice compared with db/+ controls. In adipose tissue, no Cyp11b2 or Cyp11b1 transcripts were detected and no differences in Cyp21a1 , Hsd3b1 , Cyp11a1 , or StAR expression were found between db/+ and db/db mice. In conclusion, the present study showed an elevated steroid hormone production and adrenal steroidogenesis in the db/db model of obesity and type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Molecular characterization of kiss2 and differential regulation of reproduction-related genes by sex steroids in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis).

    Science.gov (United States)

    Wang, Bin; Liu, Quan; Liu, Xuezhou; Xu, Yongjiang; Song, Xuesong; Shi, Bao

    2017-11-01

    Kisspeptin (Kiss) plays a critical role in mediating gonadal steroid feedback to the gonadotropin-releasing hormone (GnRH) neurons in mammals. However, little information regarding the regulation of kisspeptin gene by sex steroids is available in teleosts. In this study, we examined the direct actions of estradiol (E2) and testosterone (T) on hypothalamic expression of kisspeptin and other key factors involved in reproductive function of half-smooth tongue sole. As a first step, a partial-length cDNA of kiss2 was identified from the brain of tongue sole and kiss2 transcript levels were shown to be widely expressed in various tissues, notably in the ovary. Then, the actions of sex steroids on kiss2 and other reproduction-related genes were evaluated using a primary hypothalamus culture system. Our results showed that neither kiss2 nor its receptor kiss2r mRNA levels were significantly altered by sex steroids. Moreover, sex steroids did not modify hypothalamic expression of gonadotropin-inhibitory hormone (gnih) and its receptor gnihr mRNAs, either. However, E2 markedly stimulated both gnrh2 and gnrh3 mRNAs levels. Overall, this study provides insights into the role of sex steroids in the reproductive function of Pleuronectiform teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The relationship between plasma steroid hormone concentrations and the reproductive cycle in the Northern Pacific rattlesnake, Crotalus oreganus.

    Science.gov (United States)

    Lind, Craig M; Husak, Jerry F; Eikenaar, Cas; Moore, Ignacio T; Taylor, Emily N

    2010-05-01

    We describe the reproductive cycle of Northern Pacific rattlesnakes (Crotalus oreganus) by quantifying steroid hormone concentrations and observing reproductive behaviors in free-ranging individuals. Additionally, we examined reproductive tissues from museum specimens. Plasma steroid hormone concentrations were quantified for both male and female snakes throughout the active season (March-October). We measured testosterone (T), 5alpha-dihydrotestosterone (DHT), and corticosterone (B) concentrations in both sexes and 17beta-estradiol (E2) and progesterone (P) in females only. We observed reproductive behaviors (e.g., consortship, courtship, and copulation) in the field and measured testis and follicle size in male and female snakes from museum collections to relate steroid hormone concentrations to the timing of reproductive events. Our study revealed that C. oreganus in central California exhibits a bimodal pattern of breeding, with most mating behavior occurring in the spring and some incidences of mating behavior observed in late summer/fall. Each breeding period corresponded with elevated androgen (T or DHT) levels in males. Testes were regressed in the spring when the majority of reproductive behavior was observed in this population, and they reached peak volume in August and September during spermatogenesis. Although we did not detect seasonal variation in female hormone concentrations, some females had high E2 in the spring and fall, coincident with mating and with increased follicle size (indicating vitellogenesis) in museum specimens. Females with high E2 concentrations also had high T and DHT concentrations. Corticosterone concentrations in males and females were not related either to time of year or to concentrations of any other hormones quantified. Progesterone concentrations in females also did not vary seasonally, but this likely reflected sampling bias as females tended to be underground, and thus unobtainable, in summer months when P would be

  9. The Role of Estrogen Related Receptor in Modulating Estrogen Receptor Mediated Transcription in Breast Cancer Cells

    Science.gov (United States)

    2005-04-01

    tumors correlates with an unfavorable prognosis (Ariazi 2002; Lu 2001; Suzuki 2004; Vanacker 1999). The transcriptional activity of ERRa is not inhibited...SA. 101:6570-5. Needham, M ., S. Raines, J. McPheat, C. Stacey, J. Ellston, S. Hoare, and M . Parker. 2000. Differential interaction of steroid hormone...R. Graves, M . Wright, and B.M. Spiegelman. 1998. A cold- inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829- 39

  10. Biosynthesis and metabolism of steroid hormones by human adrenal carcinomas

    Directory of Open Access Journals (Sweden)

    Brown J.W.

    2000-01-01

    Full Text Available Over a 15-year period, our university-based laboratory obtained 125 adrenal tumors, of which 15 (12% were adrenal cortical carcinomas. Of these, 6 (40% of the carcinomas occurred in patients with clear clinical manifestations of steroid hormone excess. Adrenal cortical carcinoma cells derived from the surgically resected tumors in 4 of these patients were isolated and established in primary culture. Radiotracer steroid interconversion studies were carried out with these cultures and also on mitochondria isolated from homogenized tissues. Large tumors had the lowest steroidogenic activities per weight, whereas small tumors had more moderately depressed enzyme activities relative to cells from normal glands. In incubations with pregnenolone as substrate, 1 mM metyrapone blocked the synthesis of corticosterone and cortisol and also the formation of aldosterone. Metyrapone inhibition was associated with a concomitant increase in the formation of androgens (androstenedione and testosterone from pregnenolone. Administration of metyrapone in vivo before surgery in one patient resulted in a similar increase in plasma androstenedione, though plasma testosterone levels were not significantly affected. In cultures of two of four tumors examined, dibutyryl cAMP stimulated 11ß-hydroxylase activity modestly; ACTH also had a significant stimulatory effect in one of these tumors. Unlike results obtained with normal or adenomatous adrenal cortical tissues, mitochondria from carcinomatous cells showed a lack of support of either cholesterol side-chain cleavage enzyme complex or steroid 11ß-hydroxylase activity by Krebs cycle intermediates (10 mM isocitrate, succinate or malate. This finding is consistent with the concept that these carcinomas may tend to function predominantly in an anaerobic manner, rather than through the oxidation of Krebs cycle intermediates.

  11. Endogenous steroid hormone levels in early pregnancy and risk of testicular cancer in the offspring: a nested case-referent study.

    Science.gov (United States)

    Holl, Katsiaryna; Lundin, Eva; Surcel, Heljä-Marja; Grankvist, Kjell; Koskela, Pentti; Dillner, Joakim; Hallmans, Göran; Wadell, Göran; Olafsdottir, Gudridur H; Ogmundsdottir, Helga M; Pukkala, Eero; Lehtinen, Matti; Stattin, Pär; Lukanova, Annekatrin

    2009-06-15

    According to the leading hypothesis on testicular cancer (TC) etiology exposure to a specific pattern of steroid hormones in utero, in particular, to high levels of estrogens and low levels of androgens is the major determinant of TC risk in the offspring. We performed a case-referent study nested within Finnish, Swedish and Icelandic maternity cohorts exploiting early pregnancy serum samples to evaluate the role of maternal endogenous steroid hormones with regard to the risk of TC. TC cases and referents were aged between 0 and 25 years. For each case-index mother pair, three or four matched referent-referent mother pairs were identified using national population registries. First trimester or early second trimester sera were retrieved from the index mothers of 73 TC cases and 286 matched referent mothers, and were tested for dehydroepiandrosterone sulfate (DHEAS), androstenedione, testosterone, estradiol, estrone, and sex hormone binding globulin (SHBG). Offspring of mothers with high DHEAS levels had a significantly decreased risk of TC (OR for highest vs. lowest DHEAS quartile, 0.18 (95% CI 0.06-0.58). In contrast, offspring of mothers with high androstenedione levels had an increased risk of TC (OR 4.1; 95% CI 1.2-12.0). High maternal total estradiol level also tended to be associated with an increased risk of TC in the offspring (OR 32; 95% CI 0.98-1,090). We report the first direct evidence that interplay of maternal steroid hormones in the early pregnancy is important in the etiology of TC in the offspring. Copyright 2008 UICC.

  12. Steroid receptor profiling of vinclozolin and its primary metabolites

    International Nuclear Information System (INIS)

    Molina-Molina, Jose-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernandez, Mariana-Fatima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolas; Balaguer, Patrick

    2006-01-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERα and ERβ). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR >> PR > GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERβ. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process

  13. Steroid receptor profiling of vinclozolin and its primary metabolites.

    Science.gov (United States)

    Molina-Molina, José-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernández, Mariana-Fátima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolás; Balaguer, Patrick

    2006-10-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERalpha and ERbeta). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR>PR>GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERbeta. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.

  14. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    Science.gov (United States)

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  16. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro

    NARCIS (Netherlands)

    von Lindern, M.; Zauner, W.; Mellitzer, G.; Steinlein, P.; Fritsch, G.; Huber, K.; Löwenberg, B.; Beug, H.

    1999-01-01

    Although erythropoietin (Epo) is essential for the production of mature red blood cells, the cooperation with other factors is required for a proper balance between progenitor proliferation and differentiation. In avian erythroid progenitors, steroid hormones cooperate with tyrosine kinase receptors

  17. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams

    Science.gov (United States)

    Writer, Jeffrey H.; Ryan, Joseph N.; Barber, Larry B.

    2011-01-01

    Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (Kom, L kg–1) for 17β-estradiol (102.5–2.8 L kg–1), 17α-ethynylestradiol (102.5–2.9 L kg–1), 4-nonylphenol (103.4–4.6 L kg–1), 4-nonylphenolmonoethoxylate (103.5–4.0 L kg–1), and 4-nonylphenoldiethoxylate (103.9–4.3 L kg–1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17β-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for

  18. EP3 receptors inhibit antidiuretic-hormone-dependent sodium transport across frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Nielsen, Robert

    1999-01-01

    Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+......Antidiuretic hormone; tight epithelium; prostaglandin receptors; sulprostone; misoprostol; cAMP; cellular Ca2+...

  19. Stable isotope labeling – Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids

    International Nuclear Information System (INIS)

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d_5-Girard reagent P (d_5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related

  20. Stable isotope labeling – Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi, E-mail: yqfeng@whu.edu.cn

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d{sub 5}-Girard reagent P (d{sub 5}-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones

  1. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs.

    Science.gov (United States)

    Tantawy, Mohamed A; Nafie, Mohamed S; Elmegeed, Gamal A; Ali, Ibrahim A I

    2017-08-01

    Steroids are polycyclic compounds that have a wide range of biological activities. They are bio-synthesized from cholesterol through a series of enzyme-mediated transformations, so they are highly lipophilic and readily enter most cells to interact with intracellular receptors, making them ideal vehicles for targeting a broad array of pathologies. New curative agents for cancers have been developed from several steroidal derivatives. Some biologically important properties of modified steroids are dependent on structural features of the steroid moiety and their side chains. Therefore, chemical derivatization of steroids provides a way to modify their function, and many structure-activity relationships have been confirmed by such synthetic modifications. Several studies demonstrate that steroidal heterocyclic derivatives can be effective in the prevention and treatment of many types of hormone-dependent cancers. The present review is a concise report on steroidal heterocyclic derivatives, with special emphasis on steroid heterocyclic derivatives with 5 membered rings or six-membered rings having interesting therapeutic potential as enzyme inhibitors and cytotoxic drugs to be used as candidates for anti-cancer drug development. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hormone action. Part I. Peptide hormones

    International Nuclear Information System (INIS)

    Birnbaumer, L.; O'Malley, B.W.

    1985-01-01

    The major sections of this book on the hormonal action of peptide hormones cover receptor assays, identification of receptor proteins, methods for identification of internalized hormones and hormone receptors, preparation of hormonally responsive cells and cell hybrids, purification of membrane receptors and related techniques, assays of hormonal effects and related functions, and antibodies in hormone action

  3. Hormones and the blood-brain barrier.

    Science.gov (United States)

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  4. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone

    International Nuclear Information System (INIS)

    Koenig, R.J.; Brent, G.A.; Warne, R.L.; Larsen, P.R.; Moore, D.D.

    1987-01-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. The authors have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. They show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor

  5. Selective suppression of endothelial cytokine production by progesterone receptor

    OpenAIRE

    Goddard, Lauren M.; Ton, Amy N.; Org, Tõnis; Mikkola, Hanna K.A.; Iruela-Arispe, M. Luisa

    2013-01-01

    Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequenc...

  6. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor.

    Science.gov (United States)

    Troppmann, Britta; Kleinau, Gunnar; Krause, Gerd; Gromoll, Jörg

    2013-01-01

    BACKGROUND In recent years it became evident that several types of the luteinizing hormone/choriogonadotrophin receptor (LHCGR) exist. In addition to the classical receptor type known in rodents, an LHCGR type containing an additional exon is present in primates and humans. This specific exon 6A introduces a hitherto unknown regulatory pathway of the LHCGR at the transcriptional level which can lead to the expression of an alternative protein covering the extracellular part only. Furthermore, an LHCGR type lacking exon 10 at the mRNA and protein levels has been described in the New World primate lineage, giving rise to an additional receptor type in which amino acids of the extracellular hinge region connecting the leucine-rich repeat domain and transmembrane domain are missing. METHODS Topic-related information was retrieved by systematic searches using Medline/PubMed. Structural homology models were retrieved from a glycoprotein hormone receptors web application and from recent publications. RESULTS In a novel approach, we combine functional aspects with three-dimensional properties of the LHCGR and the different receptor types to deduce causative relationships between these two parameters. On this basis, the physiological impact and patho-physiological consequences of the different LHCGR types are inferred. CONCLUSIONS The complex system of different LHCGR types and two corresponding hormones (LH and CG) represents a major challenge for future studies on selective hormone binding, signal transduction and receptor regulation. The presence of these naturally occurring LHCGR types requires re-examining of our present view on receptor function, experimental set-ups and data interpretation, but also offers new clinical approaches to interfere with LH/CG action in humans.

  7. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary.

    Science.gov (United States)

    Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J

    2011-06-01

    Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.

  8. Receptor localization of steroid hormones and drugs: discoveries through the use of thaw-mount and dry-mount autoradiography

    Directory of Open Access Journals (Sweden)

    Stumpf W.E.

    1998-01-01

    Full Text Available The history of receptor autoradiography, its development and applications, testify to the utility of this histochemical technique for localizing radiolabeled hormones and drugs at cellular and subcellular sites of action in intact tissues. Localization of diffusible compounds has been a challenge that was met through the introduction of the "thaw-mount" and "dry-mount" autoradiographic techniques thirty years ago. With this cellular receptor autoradiography, used alone or combined with other histochemical techniques, sites of specific binding and deposition in vivo and in vitro have been characterized. Numerous discoveries, some reviewed in this article, provided information that led to new concepts and opened new areas of research. As an example, in recent years more than fifty target tissues for vitamin D have been specified, challenging the conventional view about the main biological role of vitamin D. The functions of most of these vitamin D target tissues are unrelated to the regulation of systemic calcium homeostasis, but pertain to the (seasonal regulation of endo- and exocrine secretion, cell proliferation, reproduction, neural, immune and cardiovascular responses, and adaptation to stress. Receptor autoradiography with cellular resolution has become an indispensable tool in drug research and development, since information can be obtained that is difficult or impossible to gain otherwise

  9. Effects of Evolocumab on Vitamin E and Steroid Hormone Levels: Results From the 52-Week, Phase 3, Double-Blind, Randomized, Placebo-Controlled DESCARTES Study.

    Science.gov (United States)

    Blom, Dirk J; Djedjos, C Stephen; Monsalvo, Maria Laura; Bridges, Ian; Wasserman, Scott M; Scott, Rob; Roth, Eli

    2015-09-25

    Vitamin E transport and steroidogenesis are closely associated with low-density lipoproteins (LDLs) metabolism, and evolocumab can lower LDL cholesterol (LDL-C) to low levels. To determine the effects of evolocumab on vitamin E and steroid hormone levels. After titration of background lipid-lowering therapy per cardiovascular risk, 901 patients with an LDL-C ≥2.0 mmol/L were randomized to 52 weeks of monthly, subcutaneous evolocumab, or placebo. Vitamin E, cortisol, adrenocorticotropic hormone, and gonadal hormones were analyzed at baseline and week 52. In a substudy (n=100), vitamin E levels were also measured in serum, LDL, high-density lipoprotein, and red blood cell membranes at baseline and week 52. Absolute vitamin E decreased in evolocumab-treated patients from baseline to week 52 by 16% but increased by 19% when normalized for cholesterol. In the substudy, vitamin E level changes from baseline to week 52 mirrored the changes in the lipid fraction, and red blood cell membrane vitamin E levels did not change. Cortisol in evolocumab-treated patients increased slightly from baseline to week 52, but adrenocorticotropic hormone and the cortisol:adrenocorticotropic hormone ratio did not change. No patient had a cortisol:adrenocorticotropic hormone ratio <3.0 (nmol/pmol). Among evolocumab-treated patients, gonadal hormones did not change from baseline to week 52. Vitamin E and steroid changes were consistent across subgroups by minimum postbaseline LDL-C <0.4 and <0.6 mmol/L. As expected, vitamin E levels changed similarly to lipids among patients treated for 52 weeks with evolocumab. No adverse effects were observed in steroid or gonadal hormones, even at very low LDL-C levels. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01516879. © 2015 American Heart Association, Inc.

  10. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling.

    Science.gov (United States)

    Lisse, Thomas S; Hewison, Martin; Adams, John S

    2011-03-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    Science.gov (United States)

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  12. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  13. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  14. Rapid determination of natural steroidal hormones in saliva for the clinical diagnoses

    Directory of Open Access Journals (Sweden)

    Oh Jin-Aa

    2012-03-01

    Full Text Available Abstract Background Saliva samples are easily collectable and non-invasive, and the monitoring of natural steroidal hormones, such as estrone (E1, 17β-estradiol (E2, estriol (E3, progesterone (P, and testosterone (T, in saliva has attracted much attention due to its numerous potential clinical and health-related applications. Because E1, E2, E3, P and T are useful indicators in numerous clinical and health-related diagnoses, there is a need for simultaneous determination. Results A gas chromatography-mass spectrometric assay was developed for rapid simultaneous determination of E1, E2, E3, P and T in saliva for clinical diagnoses. Extraction was achieved with a liquid extraction using 3.0 mL of pentane. The extract was dried and silylated with N-methyl-N-(trimethylsilyl trifluoroacetamide/NH4I (100:2 under a catalysis of 1.5% dithioerythritol for 10 min at 90°C. The accuracy of the analytes was in the range of 96% to 112% at concentrations of 0.05 and 0.10 μg/L (5.0 and 10.0 μg/L for E3, respectively, with relative standard deviations of less than 11%. The lowest quantification limits were from 0.002 to 0.6 μg/L for 1.0 mL of saliva. Conclusion Natural steroidal hormones were detected in the concentration ranges of nd to 0.2 μg/L in human saliva. The salivary testosterone values in the patients with prostatic carcinoma were significantly lower than in normal males. The method may useful in numerous clinical and health-related diagnoses.

  15. Evolutionary aspects of growth hormones and prolactins and their receptors

    International Nuclear Information System (INIS)

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of 125 I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of 125 I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum

  16. New Insights on Steroid Biotechnology

    DEFF Research Database (Denmark)

    Fernandez-Cabezon, Lorena; Galán, Beatriz; García, José L.

    2018-01-01

    Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currentl...

  17. Differences in postmortem stability of sex steroid receptor immunoreactivity in rat brain

    NARCIS (Netherlands)

    Fodor, Mariann; van Leeuwen, Fred W.; Swaab, Dick F.

    2002-01-01

    Difficulties in demonstrating sex steroid receptors in the human brain by immunohistochemistry (IHC) may depend on postmortem delay and a long fixation time. The effect of different postmortem times was therefore studied in rat brain kept in the skull at room temperature for 0, 6, or 24 hr after

  18. Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family.

    Science.gov (United States)

    Pecenova, L; Farkas, Robert

    2016-07-01

    Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

  19. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co...

  20. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor regulating C. elegans development and lifespan

    Science.gov (United States)

    Mahanti, Parag; Bose, Neelanjan; Bethke, Axel; Judkins, Joshua C.; Wollam, Joshua; Dumas, Kathleen J.; Zimmerman, Anna M.; Campbell, Sydney L.; Hu, Patrick J.; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    SUMMARY Small-molecule ligands of nuclear hormone receptors (NHRs) govern the transcriptional regulation of metazoan development, cell differentiation, and metabolism. However, the physiological ligands of many NHRs remain poorly characterized primarily due to lack of robust analytical techniques. Using comparative metabolomics, we identified endogenous steroids that act as ligands of the C. elegans NHR, DAF-12, a vitamin-D and liver-X receptor homolog regulating larval development, fat metabolism, and lifespan. The identified molecules feature unexpected chemical modifications and include only one of two DAF-12 ligands reported earlier, necessitating a revision of previously proposed ligand biosynthetic pathways. We further show that ligand profiles are regulated by a complex enzymatic network including the Rieske oxygenase DAF-36, the short-chain dehydrogenase DHS-16, and the hydroxysteroid dehydrogenase, HSD-1. Our results demonstrate the advantages of comparative metabolomics over traditional candidate-based approaches and provide a blueprint for the identification of ligands for other C. elegans and mammalian NHRs. PMID:24411940

  1. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  2. Bisphenol A and hormone-associated cancers: current progress and perspectives.

    Science.gov (United States)

    Gao, Hui; Yang, Bao-Jun; Li, Nan; Feng, Li-Min; Shi, Xiao-Yu; Zhao, Wei-Hong; Liu, Si-Jin

    2015-01-01

    Bisphenol A (BPA), a carbon-based synthetic compound, exhibits hormone-like properties and is present ubiquitously in the environment and in human tissues due to its widespread use and biological accumulation. BPA can mimic estrogen to interact with estrogen receptors α and β, leading to changes in cell proliferation, apoptosis, or migration and thereby, contributing to cancer development and progression. At the genetic level, BPA has been shown to be involved in multiple oncogenic signaling pathways, such as the STAT3, MAPK, and PI3K/AKT pathways. Moreover, BPA may also interact with other steroid receptors (such as androgen receptor) and plays a role in prostate cancer development. This review summarizes the current literature regarding human exposure to BPA, the endocrine-disrupting effects of BPA, and the role of BPA in hormone-associated cancers of the breast, ovary, and prostate.

  3. Liquid-chromatography mass spectrometry (LC-MS) of steroid hormone metabolites and its applications

    Science.gov (United States)

    Penning, Trevor M.; Lee, Seon-Hwa; Jin, Yi; Gutierrez, Alejandro; Blair, Ian A.

    2010-01-01

    Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-Electrospray Ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5α–dihydrotestosterone(DHT)-17β-glucuronide, DHT-17β-sulfate, and tibolone-17β-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable-isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740 attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16α-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16α-hydroxy-E1 from 5 pg/mL to 2,000 pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment. PMID:20083198

  4. Evaluation of estrogen receptor alpha and beta and progesterone receptor expression and correlation with clinicopathologic factors and proliferative marker Ki-67 in breast cancers

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Caldeira, José R F; Felipes, Joice

    2008-01-01

    To elucidate the molecular profile of hormonal steroid receptor status, we analyzed ER-alpha, ER-beta, and PGR mRNA and protein expression in 80 breast carcinomas using reverse transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical analysis. Qualitative ana...

  5. Identification and Transcriptional Modulation of the Largemouth Bass, Micropterus salmoides, Vitellogenin Receptor During Oocyte Development by Insulin and Sex Steroids1

    Science.gov (United States)

    Dominguez, Gustavo A.; Quattro, Joseph M.; Denslow, Nancy D.; Kroll, Kevin J.; Prucha, Melinda S.; Porak, Wesley F.; Grier, Harry J.; Sabo-Attwood, Tara L.

    2012-01-01

    ABSTRACT Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E2), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E2 or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E2 or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues. PMID:22786822

  6. Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial.

    Science.gov (United States)

    Johnston, Stephen Rd; Kilburn, Lucy S; Ellis, Paul; Dodwell, David; Cameron, David; Hayward, Larry; Im, Young-Hyuck; Braybrooke, Jeremy P; Brunt, A Murray; Cheung, Kwok-Leung; Jyothirmayi, Rema; Robinson, Anne; Wardley, Andrew M; Wheatley, Duncan; Howell, Anthony; Coombes, Gill; Sergenson, Nicole; Sin, Hui-Jung; Folkerd, Elizabeth; Dowsett, Mitch; Bliss, Judith M

    2013-09-01

    The optimum endocrine treatment for postmenopausal women with advanced hormone-receptor-positive breast cancer that has progressed on non-steroidal aromatase inhibitors (NSAIs) is unclear. The aim of the SoFEA trial was to assess a maximum double endocrine targeting approach with the steroidal anti-oestrogen fulvestrant in combination with continued oestrogen deprivation. In a composite, multicentre, phase 3 randomised controlled trial done in the UK and South Korea, postmenopausal women with hormone-receptor-positive breast cancer (oestrogen receptor [ER] positive, progesterone receptor [PR] positive, or both) were eligible if they had relapsed or progressed with locally advanced or metastatic disease on an NSAI (given as adjuvant for at least 12 months or as first-line treatment for at least 6 months). Additionally, patients had to have adequate organ function and a WHO performance status of 0-2. Participants were randomly assigned (1:1:1) to receive fulvestrant (500 mg intramuscular injection on day 1, followed by 250 mg doses on days 15 and 29, and then every 28 days) plus daily oral anastrozole (1 mg); fulvestrant plus anastrozole-matched placebo; or daily oral exemestane (25 mg). Randomisation was done with computer-generated permuted blocks, and stratification was by centre and previous use of an NSAI as adjuvant treatment or for locally advanced or metastatic disease. Participants and investigators were aware of assignment to fulvestrant or exemestane, but not of assignment to anastrozole or placebo. The primary endpoint was progression-free survival (PFS). Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, numbers NCT00253422 (UK) and NCT00944918 (South Korea). Between March 26, 2004, and Aug 6, 2010, 723 patients underwent randomisation: 243 were assigned to receive fulvestrant plus anastrozole, 231 to fulvestrant plus placebo, and 249 to exemestane. Median PFS was 4·4 months (95% CI 3·4-5·4) in patients assigned to

  7. Beyond the reproductive effect of sex steroids: their role during immunity to helminth parasite infections.

    Science.gov (United States)

    Hernández-Bello, R; Nava-Castro, K; Muñiz-Hernández, S; Nava-Luna, P; Trejo-Sánchez, Itztli; Tiempos-Guzmán, N; Mendoza-Rodríguez, Y; Morales-Montor, J

    2012-10-01

    During the helminth infections, the immune system tends to be modulated by host's sex hormones. Actually, many studies show the reciprocal relationship between sex steroids, the immune system and the elimination or establishment of helminth parasites. Is well known that innate immune response determines the type of adaptive immune response, so the effects in the innate immune response by hormones may affect subsequent adaptive immunity. The sex steroids as estrogens, progesterone and testosterone regulate growth, differentiation, survival and function of many cell types that could be involved in process like homeostasis and immunity, but also have a direct effect on the helminthes, that may probably be mediated by specific receptors on these parasites. Sex steroids, parasites and immunity are closely connected, and their interconnection is involved in the maintenance of elimination or establishment of helminthes in an immunocompetent host. For that reason, understanding the action's mechanisms of sex steroids on immune cells and its direct effect on helminth parasites is important for further progress in the development of novel therapies for chronic helminth diseases associated to immune dysregulation. In this review, we will describe the effects of sex steroids on the immune response during helminth infections as well as the direct effect in these parasites, and the possible implications of these effects on the incidence of several helminth infections.

  8. Effect of composting on the fate of steroids in beef cattle manure

    Science.gov (United States)

    In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary...

  9. Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.

    Science.gov (United States)

    Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira

    2018-01-01

    Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.

  10. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    Science.gov (United States)

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  11. Hypochlorite Oxidation of Select Androgenic Steroids

    Science.gov (United States)

    Steroid hormones are vital for regulation of various biological functions including sexual development. Elevated concentrations of natural and synthetic androgenic steroids have been shown to adversely affect normal development in indigenous aqueous species. Androgens and their s...

  12. C-peptide, IGF-I, sex-steroid hormones and adiposity : a cross-sectional study in healthy women within the European Prospective Investigation into Cancer and Nutrition (EPIC)

    NARCIS (Netherlands)

    Bezemer, ID; Rinaldi, S; Dossus, L; van Gils, CH; Peeters, PHM; Noord, PAH; Bueno-de-Mesquita, HB; Johnsen, SP; Overvad, K; Olsen, A; Tjonneland, A; Boeing, H; Lahmann, PH; Linseisen, J; Nagel, G; Allen, N; Roddam, A; Bingham, S; Khaw, KT; Kesse, E; Tehard, B; Clavel-Chapelon, F; Agudo, A; Ardanaz, E; Quiros, [No Value; Amiano, P; Martinez-Garcia, C; Tormo, MJ; Pala, [No Value; Panico, S; Vineis, P; Palli, D; Tumino, R; Trichopoulou, A; Baibas, N; Zilis, D; Hemon, B; Norat, T; Riboli, E; Kaaks, R

    Objectives: The risk of some cancers is positively associated with body weight, which may influence circulating levels of sex-steroid hormones, insulin and IGF-I. Interrelationships between these hormones and the associations with adiposity were evaluated in healthy women participating in the

  13. Stress-induced release of anterior pituitary hormones: Effect of H3 receptor-mediated inhibition of histaminergic activity or posterior hypothalamic lesion

    DEFF Research Database (Denmark)

    Knigge, U.; Søe-Jensen, P.; Jørgensen, Henrik

    1999-01-01

    Histamine receptors, corticotropin, *Gb-endorphin, prolactin, adrenal steroids, stress, endotoxin, serotonin......Histamine receptors, corticotropin, *Gb-endorphin, prolactin, adrenal steroids, stress, endotoxin, serotonin...

  14. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  15. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism.

    Science.gov (United States)

    Amselem, S; Sobrier, M L; Duquesnoy, P; Rappaport, R; Postel-Vinay, M C; Gourmelen, M; Dallapiccola, B; Goossens, M

    1991-01-01

    In addition to its classical effects on growth, growth hormone (GH) has been shown to have a number of other actions, all of which are initiated by an interaction with specific high affinity receptors present in a variety of tissues. Purification of a rabbit liver protein via its ability to bind GH has allowed the isolation of a cDNA encoding a putative human growth hormone receptor that belongs to a new class of transmembrane receptors. We have previously shown that this putative growth hormone receptor gene is genetically linked to Laron dwarfism, a rare autosomal recessive syndrome caused by target resistance to GH. Nevertheless, the inability to express the corresponding full-length coding sequence and the lack of a test for growth-promoting function have hampered a direct confirmation of its role in growth. We have now identified three nonsense mutations within this growth hormone receptor gene, lying at positions corresponding to the amino terminal extremity and causing a truncation of the molecule, thereby deleting a large portion of both the GH binding domain and the full transmembrane and intracellular domains. Three independent patients with Laron dwarfism born of consanguineous parents were homozygous for these defects. Two defects were identical and consisted of a CG to TG transition. Not only do these results confirm the growth-promoting activity of this receptor but they also suggest that CpG doublets may represent hot spots for mutations in the growth hormone receptor gene that are responsible for hereditary dwarfism. Images PMID:1999489

  16. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A-like inhibitor of differentiation 1 (EID1

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2008-01-01

    Full Text Available Transcriptional activation (TA mediated by the effect of thyroid hormones on target genes requires co-activator proteins such as the early region 1A (E1A associated 300 kDa binding protein (p300 and the cAMP response element binding protein (CREB binding protein (CBP, known as the p300/CBP complex, which acetylate histones 3 and 4 to allow transcriptional machinery access to the target gene promoter. Little is known on the role of p300 in thyroid hormone receptor (TR mediated TA but the E1A-like inhibitor of differentiation 1 (EID1, an inhibitor of p300 histone acetyltransferase (HAT, is a functional homolog of E1A and may inhibit myogenic differentiation factor D (MyoD transcriptional activity and reduces muscle cell differentiation. We evaluated the influence of EID1 on TR-mediated transcriptional activity using transfection and mammalian two-hybrid studies to show that EID1 may partially reduces TA activity of the TR receptor, probably due to p300 blockage since EID1 mutants cannot reduce TR-mediated TA. The EID1 does not affect the function of p160 co-activator proteins (160 kDa proteins of steroid receptor co-activators and is functionally independent of co-repressor proteins or TR binding. Summarizing, EID1 reduces TR-mediated transcriptional activity by blocking p300 and may play an important role in thyroid receptor activity in muscle and other tissues.

  17. Fecal steroid hormones reveal reproductive state in female blue whales sampled in the Gulf of California, Mexico.

    Science.gov (United States)

    Valenzuela-Molina, Marcia; Atkinson, Shannon; Mashburn, Kendall; Gendron, Diane; Brownell, Robert L

    2018-05-15

    Steroid hormone assessment using non-invasive sample collection techniques can reveal the reproductive status of aquatic mammals and the physiological mechanisms by which they respond to changes in their environment. A portion of the eastern North Pacific blue whale (Balaenoptera musculus) population that seasonally visits the Gulf of California, Mexico has been monitored using photo-identified individuals for over 30 years. The whales use the area in winter-early spring for nursing their calves and feeding and it therefore is well suited for fecal sample collection. Using radioimmunoassays in 25 fecal samples collected between 2009 and 2012 to determine reproductive state and stress, we validated three steroid hormones (progesterone, corticosterone and cortisol) in adult female blue whales. Females that were categorized as pregnant had higher mean fecal progesterone metabolite concentrations (1292.6 ± 415.6 ng·g -1 ) than resting and lactating females (14.0 ± 3.7 ng·g -1 ; 23.0 ± 5.4 ng·g -1 , respectively). Females classified as pregnant also had higher concentrations of corticosterone metabolites (37.5 ± 9.9 ng·g -1 ) than resting and lactating females (17.4 ± 2.0 ng·g -1 ; 16.8 ± 2.8 ng·g -1 , respectively). In contrast, cortisol metabolite concentrations showed high variability between groups and no significant relationship to reproductive state. We successfully determined preliminary baseline parameters of key steroid hormones by reproductive state in adult female blue whales. The presence of pregnant or with luteal activity and known lactating females confirms that the Gulf of California is an important winter-spring area for the reproductive phase of these blue whales. The baseline corticosterone levels we are developing will be useful for assessing the impact of the increasing coastal development and whale-watching activities on the whales in the Gulf of California. Copyright © 2018 Elsevier Inc. All

  18. Sex steroid receptors and apoptosis-related proteins are differentially expressed in polycystic ovaries of adult dogs.

    Science.gov (United States)

    Chuffa, Luiz Gustavo de Almeida; Lupi Júnior, Luiz Antonio; da Maia Lima, Alfredo Feio

    2016-02-01

    In Polycystic Ovaries (PCOs), the dynamics of sex hormone receptors and follicle-related apoptotic signaling remain unknown. In this study, we investigated the expression of androgen receptors (AR), estrogen receptors (ERα and ERβ), and apoptosis-related molecules (BAX, active caspase-3, Bcl-2 and Survivin) on different follicular stages of PCOs in adult dogs. Clinical evidences of high estradiol and testosterone levels, persistent estrus and vaginal discharge were observed. Inhibin B immunolabeling was increased in primary and 2 to 5-mm follicles, and a marked epithelial hyperplasia was common in the ovarian surface. Ovarian epithelia and primary follicles showed low expression of AR, ERα, and ERβ, whereas a moderate immunoexpression of AR was found in theca cells of secondary follicles and cysts. In PCOs, growing follicles displayed ERα expression, and secondary follicles exhibited higher ERβ expression. In addition, while few ERα-positive cells were found in the cysts, ERβ was moderately expressed in growing follicles and cysts. BAX was upregulated in the ovarian epithelium, primary follicles, and in the wall of follicular cysts. Active caspase-3 was significantly downregulated in the epithelium, primary follicles, and follicular cysts, whereas growing follicles had a strong immunoexpression in the granulosa cells. Bcl-2 and survivin were increased in the epithelium and primary follicles, and only survivin was upregulated in secondary and growing follicles. While Bcl-2 had a diffuse immunexpression in the follicular cysts, survivin was overexpressed by these cells. We concluded that sex steroid receptors and apoptotic proteins are differentially expressed in the follicles of adult dogs with PCOs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    Science.gov (United States)

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  20. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives

    Science.gov (United States)

    Gao, Hui; Yang, Bao-Jun; Li, Nan; Feng, Li-Min; Shi, Xiao-Yu; Zhao, Wei-Hong; Liu, Si-Jin

    2015-01-01

    Abstract Bisphenol A (BPA), a carbon-based synthetic compound, exhibits hormone-like properties and is present ubiquitously in the environment and in human tissues due to its widespread use and biological accumulation. BPA can mimic estrogen to interact with estrogen receptors α and β, leading to changes in cell proliferation, apoptosis, or migration and thereby, contributing to cancer development and progression. At the genetic level, BPA has been shown to be involved in multiple oncogenic signaling pathways, such as the STAT3, MAPK, and PI3K/AKT pathways. Moreover, BPA may also interact with other steroid receptors (such as androgen receptor) and plays a role in prostate cancer development. This review summarizes the current literature regarding human exposure to BPA, the endocrine-disrupting effects of BPA, and the role of BPA in hormone-associated cancers of the breast, ovary, and prostate. PMID:25569640

  1. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    International Nuclear Information System (INIS)

    Schvartz, I.; Hazum, E.

    1987-01-01

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, [azidobenzoyl-D-Lys6]GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors

  2. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  3. In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand [18F]FPS.

    Science.gov (United States)

    Waterhouse, Rikki N; Chang, Raymond C; Atuehene, Nana; Collier, Thomas Lee

    2007-07-01

    Sigma-1 receptors are widely expressed in the mammalian brain and also in organs of the immune, endocrine and reproductive systems. Based on behavioral and pharmacological assessments, sigma-1 receptors are important in memory and cognitive processes, and are thought to be involved in specific psychiatric illnesses, including schizophrenia, depression, and drug addiction. It is thought that specific neuroactive steroids are endogenous ligands for these sites. In addition, several sigma-1 receptor binding steroids including progesterone, dihydroepiandrosterone (DHEA), and testosterone are being examined clinically for specific therapeutic purposes; however, their mechanisms of action have not been clearly defined. We previously described the high affinity sigma-1 receptor selective PET tracer [(18)F]FPS. This study examines the effect of neuroactive steroids on [(18)F]FPS binding in vitro and in vivo. Inhibition constants were determined in vitro for progesterone, testosterone, DHEA, estradiol, and estriol binding to the [(18)F]FPS labeled receptor. The affinity order (K(i) values) for these steroids ranged from 36 nM for progesterone to >10,000 nM for estrodiol and estriol. Biodistribution studies revealed that i.v. coadministration of progesterone (10 mg/kg), testosterone (20 mg/kg), or DHEA (20 mg/kg) significantly decreased [(18)F]FPS uptake (%ID/g) by up to 50% in nearly all of eight brain regions examined. [(18)F]FPS uptake in several peripheral organs that express sigma-1 receptors (heart, spleen, muscle, lung) was also reduced (54-85%). These studies clearly demonstrate that exogenously administered steroids can occupy sigma-1 receptors in vivo, and that [(18)F]FPS may provide an effective tool for monitoring sigma-1 receptor occupancy of specific therapeutic steroids during clinical trials.

  4. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  5. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  6. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  7. The effects of oestrogens and their receptors on cardiometabolic health.

    Science.gov (United States)

    Morselli, Eugenia; Santos, Roberta S; Criollo, Alfredo; Nelson, Michael D; Palmer, Biff F; Clegg, Deborah J

    2017-06-01

    Cardiovascular disease (CVD) is one of the leading causes of mortality in developed countries. The incidence of CVD is sexually dimorphic, and research has focused on the contribution of sex steroids to the development and progression of the cardiometabolic syndrome, which is defined as a clustering of interrelated risk factors that promote the development of atherosclerosis (which can lead to CVD) and type 2 diabetes mellitus. Data are inconclusive as to how sex steroids and their respective receptors increase or suppress the risk of developing the cardiometabolic syndrome and thus CVD. In this Review, we discuss the potential role, or roles, of sex hormones in cardiometabolic health by first focusing on the influence of oestrogens and their receptors on the risk of developing cardiometabolic syndrome and CVD. We also highlight what is known about testosterone and its potential role in protecting against the development of the cardiometabolic syndrome and CVD. Given the inconclusive nature of the data regarding the direct effects of each sex hormone, we advocate and highlight the importance of studying the relative levels and the ratio of sex hormones to each other, as well as the use of cross sex hormone therapy and its effect on cardiometabolic health.

  8. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  9. Steroids and Autoimmunity.

    Science.gov (United States)

    Trombetta, Amelia Chiara; Meroni, Marianna; Cutolo, Maurizio

    2017-01-01

    From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs. © 2017 S. Karger AG, Basel.

  10. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    Science.gov (United States)

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  11. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...... receptors have been cloned and for many receptors the endogenous ligand has been identified. In this review, we will give an update about the current knowledge of all Drosophila neuropeptide and protein hormone receptors, and discuss their phylogenetic relationships. Udgivelsesdato: 2006-Feb...

  12. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators

    Science.gov (United States)

    Padmanabhan, Vasantha; Sarma, Hiren N.; Savabieasfahani, Mozhgan; Steckler, Teresa L.; Veiga-Lopez, Almudena

    2014-01-01

    The inappropriate programming of developing organ systems by exposure to excess native or environmental steroids, particularly the contamination of our environment and our food sources with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major concern. Studies with native steroids have found that in utero exposure of sheep to excess testosterone, an estrogen precursor, results in low birth weight offspring and leads to an array of adult reproductive / metabolic deficits manifested as cycle defects, functional hyperandrogenism, neuroendocrine / ovarian defects, insulin resistance, and hypertension. Furthermore, the severity of reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely facilitated via aromatization to estradiol. Similarly, exposure to environmental steroid imposters such as bisphenol A (BPA) and methoxychlor (MXC) from days 30-90 of gestation had long-term but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/ml BPA, culminated in low birth-weight offspring. These female offspring were hypergonadotropic during early postnatal life and characterized by severely dampened preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels, which approximated twice the highest levels found in human maternal circulation of industrialized nations. These findings provide evidence in support of developmental origin of adult reproductive and metabolic diseases and highlight the risk posed by exposure to environmental endocrine

  13. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects.

    NARCIS (Netherlands)

    Giltay, E.J.; Kho, K.H.; Blansjaar, B.A.; Verbeek, M.M.; Geurtz, P.B.; Geleijnse, J.M.; Gooren, L.J.G.

    2005-01-01

    There is a close relationship between the brain and the endocrine system. The brain expresses receptors for sex steroids and is capable of metabolizing these hormones. We explored (1) sex differences in homovanillic acid (HVA), a metabolite of the neurotransmitter dopamine, and (2) the effects of

  14. The sex difference of plasma homovanillic acid is unaffected by cross-sex hormone administration in transsexual subjects

    NARCIS (Netherlands)

    Giltay, E.J.; Kho, King H.; Blansjaar, B.A.; Verbeek, M.M.; Geurtz, P.B.H.; Geleijnse, J.M.

    2005-01-01

    There is a close relationship between the brain and the endocrine system. The brain expresses receptors for sex steroids and is capable of metabolizing these hormones. We explored (1) sex differences in homovanillic acid (HVA), a metabolite of the neurotransmitter dopamine, and (2) the effects of

  15. A comprehensive curated resource for follicle stimulating hormone signaling

    Directory of Open Access Journals (Sweden)

    Sharma Jyoti

    2011-10-01

    Full Text Available Abstract Background Follicle stimulating hormone (FSH is an important hormone responsible for growth, maturation and function of the human reproductive system. FSH regulates the synthesis of steroid hormones such as estrogen and progesterone, proliferation and maturation of follicles in the ovary and spermatogenesis in the testes. FSH is a glycoprotein heterodimer that binds and acts through the FSH receptor, a G-protein coupled receptor. Although online pathway repositories provide information about G-protein coupled receptor mediated signal transduction, the signaling events initiated specifically by FSH are not cataloged in any public database in a detailed fashion. Findings We performed comprehensive curation of the published literature to identify the components of FSH signaling pathway and the molecular interactions that occur upon FSH receptor activation. Our effort yielded 64 reactions comprising 35 enzyme-substrate reactions, 11 molecular association events, 11 activation events and 7 protein translocation events that occur in response to FSH receptor activation. We also cataloged 265 genes, which were differentially expressed upon FSH stimulation in normal human reproductive tissues. Conclusions We anticipate that the information provided in this resource will provide better insights into the physiological role of FSH in reproductive biology, its signaling mediators and aid in further research in this area. The curated FSH pathway data is freely available through NetPath (http://www.netpath.org, a pathway resource developed previously by our group.

  16. Requirement for specific gravity and creatinine adjustments for urinary steroids and luteinizing hormone concentrations in adolescents.

    Science.gov (United States)

    Singh, Gurmeet K S; Balzer, Ben W R; Desai, Reena; Jimenez, Mark; Steinbeck, Katharine S; Handelsman, David J

    2015-11-01

    Urinary hormone concentrations are often adjusted to correct for hydration status. We aimed to determine whether first morning void urine hormones in growing adolescents require adjustments and, if so, whether urinary creatinine or specific gravity are better adjustments. The study population was adolescents aged 10.1 to 14.3 years initially who provided fasting morning blood samples at 0 and 12 months (n = 343) and first morning urine every three months (n = 644). Unadjusted, creatinine and specific gravity-adjusted hormonal concentrations were compared by Deming regression and Bland-Altman analysis and grouped according to self-rated Tanner stage or chronological age. F-ratios for self-rated Tanner stages and age groups were used to compare unadjusted and adjusted hormonal changes in growing young adolescents. Correlations of paired serum and urinary hormonal concentration of unadjusted and creatinine and specific gravity-adjusted were also compared. Fasting first morning void hormone concentrations correlated well and were unbiased between unadjusted or adjusted by either creatinine or specific gravity. Urine creatinine concentration increases with Tanner stages, age and male gender whereas urine specific gravity was not influenced by Tanner stage, age or gender. Adjustment by creatinine or specific gravity of urinary luteinizing hormone, estradiol, testosterone, dihydrotestosterone and dehydroepiandrosterone concentrations did not improve correlation with paired serum concentrations. Urine steroid and luteinizing hormone concentrations in first morning void samples of adolescents are not significantly influenced by hydration status and may not require adjustments; however, if desired, both creatinine and specific gravity adjustments are equally suitable. © The Author(s) 2015.

  17. Lectin-like receptor for alpha 1-acid glycoprotein in the epithelium of the rat prostate gland and seminal vesicles

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1996-01-01

    by mannose and N-Acetyl-D-glucosamine. RESULTS: In vitro the receptor was also inhibited by the steroid hormones cortisone, aldosterone, progesterone, and estradiol, but not by testosterone. A significant regional variation in the expression of AGP-lectin receptor and in the localization of AGP was seen...

  18. Supercritical fluid chromatography applied to the highly selective isolation of urinary steroid hormones prior to GC/MS analysis.

    Science.gov (United States)

    Doué, Mickael; West, Caroline; Bichon, Emmanuelle; Le Bizec, Bruno; Lesellier, Eric

    2018-06-01

    To assess the presence of prohibited anabolic substances used to promote growth in livestock, calf urine is the most relevant matrix. However, the sample preparation methods (required to remove unwanted matrix components and fractionate isobaric species that may be unresolved by gas chromatography- mass spectrometry GC/MS) are long and complex. In this context, semi-preparative supercritical fluid chromatography (SFC) was considered to possibly simplify the sample preparation in reducing the number of procedures. Fifteen stationary phases were screened with SFC combined with UV and evaporative light-scattering detection (ELSD), among which two columns (Cosmosil π-NAP and Princeton DIOL) were retained for their ability to isolate steroid hormones from other matrix components and, for the second column, for the additional possibility to fractionate steroid hormones into different families (estrogens, mono-hydroxylated and di-hydroxylated androgens). The fractions were further analysed with GC/MS showing the benefit of class fractionation. The final method allows for significant time, solvent and money savings compared to the previously widely used method (solid-phase extraction combined with semi-preparative high-performance liquid chromatography). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster.

    Science.gov (United States)

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime

    2017-10-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain.

    Science.gov (United States)

    Ishimoto, Hiroshi; Wang, Zhe; Rao, Yi; Wu, Chun-Fang; Kitamoto, Toshihiro

    2013-01-01

    The biological actions of steroid hormones are mediated primarily by their cognate nuclear receptors, which serve as steroid-dependent transcription factors. However, steroids can also execute their functions by modulating intracellular signaling cascades rapidly and independently of transcriptional regulation. Despite the potential significance of such "non-genomic" steroid actions, their biological roles and the underlying molecular mechanisms are not well understood, particularly with regard to their effects on behavioral regulation. The major steroid hormone in the fruit fly Drosophila is 20-hydroxy-ecdysone (20E), which plays a variety of pivotal roles during development via the nuclear ecdysone receptors. Here we report that DopEcR, a G-protein coupled receptor for ecdysteroids, is involved in activity- and experience-dependent plasticity of the adult central nervous system. Remarkably, a courtship memory defect in rutabaga (Ca²⁺/calmodulin-responsive adenylate cyclase) mutants was rescued by DopEcR overexpression or acute 20E feeding, whereas a memory defect in dunce (cAMP-specific phosphodiestrase) mutants was counteracted when a loss-of-function DopEcR mutation was introduced. A memory defect caused by suppressing dopamine synthesis was also restored through enhanced DopEcR-mediated ecdysone signaling, and rescue and phenocopy experiments revealed that the mushroom body (MB)--a brain region central to learning and memory in Drosophila--is critical for the DopEcR-dependent processing of courtship memory. Consistent with this finding, acute 20E feeding induced a rapid, DopEcR-dependent increase in cAMP levels in the MB. Our multidisciplinary approach demonstrates that DopEcR mediates the non-canonical actions of 20E and rapidly modulates adult conditioned behavior through cAMP signaling, which is universally important for neural plasticity. This study provides novel insights into non-genomic actions of steroids, and opens a new avenue for genetic

  1. A novel role for ecdysone in Drosophila conditioned behavior: linking GPCR-mediated non-canonical steroid action to cAMP signaling in the adult brain.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ishimoto

    Full Text Available The biological actions of steroid hormones are mediated primarily by their cognate nuclear receptors, which serve as steroid-dependent transcription factors. However, steroids can also execute their functions by modulating intracellular signaling cascades rapidly and independently of transcriptional regulation. Despite the potential significance of such "non-genomic" steroid actions, their biological roles and the underlying molecular mechanisms are not well understood, particularly with regard to their effects on behavioral regulation. The major steroid hormone in the fruit fly Drosophila is 20-hydroxy-ecdysone (20E, which plays a variety of pivotal roles during development via the nuclear ecdysone receptors. Here we report that DopEcR, a G-protein coupled receptor for ecdysteroids, is involved in activity- and experience-dependent plasticity of the adult central nervous system. Remarkably, a courtship memory defect in rutabaga (Ca²⁺/calmodulin-responsive adenylate cyclase mutants was rescued by DopEcR overexpression or acute 20E feeding, whereas a memory defect in dunce (cAMP-specific phosphodiestrase mutants was counteracted when a loss-of-function DopEcR mutation was introduced. A memory defect caused by suppressing dopamine synthesis was also restored through enhanced DopEcR-mediated ecdysone signaling, and rescue and phenocopy experiments revealed that the mushroom body (MB--a brain region central to learning and memory in Drosophila--is critical for the DopEcR-dependent processing of courtship memory. Consistent with this finding, acute 20E feeding induced a rapid, DopEcR-dependent increase in cAMP levels in the MB. Our multidisciplinary approach demonstrates that DopEcR mediates the non-canonical actions of 20E and rapidly modulates adult conditioned behavior through cAMP signaling, which is universally important for neural plasticity. This study provides novel insights into non-genomic actions of steroids, and opens a new avenue for

  2. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  3. Pharmacology of anabolic steroids.

    Science.gov (United States)

    Kicman, A T

    2008-06-01

    Athletes and bodybuilders have recognized for several decades that the use of anabolic steroids can promote muscle growth and strength but it is only relatively recently that these agents are being revisited for clinical purposes. Anabolic steroids are being considered for the treatment of cachexia associated with chronic disease states, and to address loss of muscle mass in the elderly, but nevertheless their efficacy still needs to be demonstrated in terms of improved physical function and quality of life. In sport, these agents are performance enhancers, this being particularly apparent in women, although there is a high risk of virilization despite the favourable myotrophic-androgenic dissociation that many xenobiotic steroids confer. Modulation of androgen receptor expression appears to be key to partial dissociation, with consideration of both intracellular steroid metabolism and the topology of the bound androgen receptor interacting with co-activators. An anticatabolic effect, by interfering with glucocorticoid receptor expression, remains an attractive hypothesis. Behavioural changes by non-genomic and genomic pathways probably help motivate training. Anabolic steroids continue to be the most common adverse finding in sport and, although apparently rare, designer steroids have been synthesized in an attempt to circumvent the dope test. Doping with anabolic steroids can result in damage to health, as recorded meticulously in the former German Democratic Republic. Even so, it is important not to exaggerate the medical risks associated with their administration for sporting or bodybuilding purposes but to emphasize to users that an attitude of personal invulnerability to their adverse effects is certainly misguided.

  4. Use of hormone receptors in scintigraphy of the ovaries

    International Nuclear Information System (INIS)

    Kairento, A.L.; Karonen, S.L.; Adlercreutz, H.

    1981-01-01

    Based on the mechanism of hormone receptors, luteinizing hormone (LH) labelled with 123-iodine was used as tracer in scintigraphy of rabbit ovaries. The ovaries were visualized in static pictures 6-15 min after injection except in the case where the rabbit was pre-injected with 10 μg of cold LH. 3.1% of the injected activity was found in the ovaries 14 h after injection. (orig.) [de

  5. Do differences in age specific androgenic steroid hormone levels account for differing prostate cancer rates between Arabs and Caucasians?

    Science.gov (United States)

    Kehinde, Elijah O; Akanji, Abayomi O; Al-Hunayan, Adel; Memon, Anjum; Luqmani, Yunus; Al-Awadi, Khaleel A; Varghese, Ramani; Bashir, Abdul Aziz; Daar, Abdallah S

    2006-04-01

    Factors responsible for the low incidence of clinical prostate cancer in the Arab population remain unclear, but may be related to differences in androgenic steroid hormone metabolism between Arabs and other populations, especially as prostate cancer is believed to be androgen dependent. We therefore measured the levels of serum androgenic steroids and their binding proteins in Arab men and compared results obtained with values reported for Caucasian populations to determine if any differences could at least partially account for differences in incidence of prostate cancer rates between the two populations. Venous blood samples were obtained from 327 unselected apparently healthy indigenous Arab men (Kuwaitis and Omanis) aged 15-79 years. Samples were also obtained from 30 Arab men with newly diagnosed prostate cancer. Serum levels of total testosterone (TT), sex hormone binding globulin (SHBG), derived free androgen index (FAI); adrenal C19 -steroids, dehydroepiandrosterone sulfate (DHEAS) and androstenedione (ADT) were determined by chemiluminescent immunoassay. Age specific reference intervals, mean and median for each analyte were determined. Frequency distribution pattern for each hormone was plotted. The reference range for hormones with normal distribution was mean +/- 2SD and 2.5-97.5% for those with non-normal distribution. The mean serum levels of the hormones in Arab men with prostate cancer were compared with values in healthy age-matched Arab men. There was a significant decrease between the 21-29 years age group and the 70-79 years age group for TT (-38.77%), DHEAS (-70%), ADT (-36%) and FAI (-63.25%), and an increase for SHBG (+64%). The calculated reference ranges are TT (2.73-30.45 nmol/L), SHBG (6.45-65.67 nmol/L), FAI (14.51-180.34), DHEAS (0.9-11.0 micromol/L) and ADT (0.54-4.26 ng/mL). The mean TT, SHBG, DHEAS and ADT in Arab men were significantly lower than those reported for Caucasians especially in the 21-29 years age group. Arab men with

  6. Ouabain interactions with the α4 isoform of the sodium pump trigger non-classical steroid hormone signaling and integrin expression in spermatogenic cells.

    Science.gov (United States)

    Upmanyu, Neha; Dietze, Raimund; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-11-01

    In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (-34T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering.

    Science.gov (United States)

    Mohammadi, Hiwa; Joghataei, Mohammad Taghi; Rahimi, Zohreh; Faghihi, Faezeh; Khazaie, Habibolah; Farhangdoost, Hashem; Mehrpour, Masoud

    2017-12-01

    Developmental stuttering is known to be a sexually dimorphic and male-biased speech motor control disorder. In the present case-control study, we investigated the relationship between developmental stuttering and steroid hormones. Serum levels of testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), oestradiol, progesterone, cortisol, and sex hormone binding globulin (SHBG), as well as the 2nd/4th digit ratio (2D:4D), an indicator of prenatal testosterone level, were compared between children who stutter (CWS) and children who do not stutter (CWNS). Moreover, two SNPs (CYP17 -34 T:C (MSP AI) and CYP19 T:C (Trp:Arg)) of cytochrome P450, which is involved in steroid metabolism pathways, were analysed between the groups. Our results showed significantly higher levels of testosterone, DHT, and oestradiol in CWS in comparison with CWNS. The severity of stuttering was positively correlated with the serum levels of testosterone, DHEA, and cortisol, whereas no association was seen between the stuttering and digit ratio, progesterone, or SHBG. The CYP17CC genotype was significantly associated with the disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  9. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.

    2016-01-01

    the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin...

  10. Maternal steroids and contaminants in common tern eggs: A mechanism of endocrine disruption?

    Science.gov (United States)

    French, J.B.; Nisbet, I.C.T.; Schwabl, H.

    2001-01-01

    We looked for evidence for the hypothesis that exposure of female birds to polychlorinated biphenyls (PCBs) results in alteration of blood steroid hormone concentrations and alters subsequent hormone transfer of steroids to eggs. Eggs of three-egg clutches were collected from a PCB-exposed common tern (Sterna hirundo) colony (Ram Island, Buzzards Bay, MA, USA) and from a relatively clean colony (Bodkin Island, Chesapeake Bay, MD, USA), and were analyzed for concentrations of organochlorine contaminants and steroid hormones (17β-estradiol, 5α-dihydrotestosterone, testosterone and androstenedione). There was no relationship between total PCBs and steroid concentrations considering all eggs together, considering eggs of different laying order or considering differences between sequentially laid eggs in a clutch. Similarly, concentrations of di- and tri-chlorinated biphenyls and steroids in eggs were not related. The concentrations of PCBs, mercury and selenium were below estimated thresholds for toxicity to embryos. Maternal steroids, except estradiol, were present in yolk of all eggs, with increasing concentrations in the second and third eggs laid. Our data provided no evidence for a maternal toxicological event that might alter the amount of maternal steroid hormone transferred to eggs.

  11. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Guedes-Alonso, Rayco; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2017-12-15

    Steroid hormones produce adverse effects on biota as well as bioaccumulation in fish and seafood, making it necessary to develop methodologies to evaluate these compounds in samples related to the food chain. This work presents an analytical method for evaluating 15 steroid hormones in fish tissue. It is based on microwave-assisted extraction and solid-phase extraction coupled to ultra-high-performance liquid chromatography tandem mass spectrometry (MAE-SPE-UHPLC-MS/MS). The proposed method shows appropriate detection limits (0.14-49.0ngg -1 ), recoveries in the range of 50% and good repeatability. After optimization, the method was applied to different tissues from two small fishes of the Canary Islands that constitute an important level of the food web (Boops boops and Sphoeroides marmoratus) and were exposed to the outfall of the Las Palmas de Gran Canaria wastewater treatment plant. The concentrations of eight detected compounds ranged from below the quantification limits to 3.95μgg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 11-Deoxycortisol is a corticosteroid hormone in the lamprey

    Science.gov (United States)

    Close, D.A.; Yun, S.-S.; McCormick, S.D.; Wildbill, A.J.; Li, W.

    2010-01-01

    Corticosteroid hormones are critical for controlling metabolism, hydromineral balance, and the stress response in vertebrates. Although corticosteroid hormones have been well characterized in most vertebrate groups, the identity of the earliest vertebrate corticosteroid hormone has remained elusive. Here we provide evidence that 11-deoxycortisol is the corticosteroid hormone in the lamprey, a member of the agnathans that evolved more than 500 million years ago. We used RIA, HPLC, and mass spectrometry analysis to determine that 11-deoxycortisol is the active corticosteroid present in lamprey plasma. We also characterized an 11-deoxycortisol receptor extracted from sea lamprey gill cytosol. The receptor was highly specific for 11-deoxycortisol and exhibited corticosteroid binding characteristics, including DNA binding. Furthermore, we observed that 11-deoxycortisol was regulated by the hypothalamus-pituitary axis and responded to acute stress. 11-Deoxycortisol implants reduced sex steroid concentrations and upregulated gill Na+, K+-ATPase, an enzyme critical for ion balance. We show here that 11-deoxycortisol functioned as both a glucocorticoid and a mineralocorticoid in the lamprey. Our findings indicate that a complex and highly specific corticosteroid signaling pathway evolved at least 500 million years ago with the arrival of the earliest vertebrate.

  13. Expression profile and prognostic role of sex hormone receptors in gastric cancer

    International Nuclear Information System (INIS)

    Gan, Lu; He, Jian; Zhang, Xia; Zhang, Yong-Jie; Yu, Guan-Zhen; Chen, Ying; Pan, Jun; Wang, Jie-Jun; Wang, Xi

    2012-01-01

    Increasing interest has been devoted to the expression and possible role of sex hormone receptors in gastric cancer, but most of these findings are controversial. In the present study, the expression profile of sex hormone receptors in gastric cancer and their clinicopathological and prognostic value were determined in a large Chinese cohort. The mRNA and protein expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), progesterone receptor (PR), and androgen receptor (AR) in primary gastric tumors and corresponding adjacent normal tissues from 60 and 866 Chinese gastric cancer patients was detected by real-time quantitative PCR and immunohistochemistry method, respectively. The expression profile of the four receptors was compared and their associations with clinicopathological characteristics were assessed by using Chi-square test. The prognostic value of the four receptors in gastric cancer was evaluated by using univariate and multivariate Cox regression analysis. The presence of ERα, ERβ, PR, and AR in both gastric tumors and normal tissues was confirmed but their expression levels were extremely low except for the predominance of ERβ. The four receptors were expressed independently and showed a decreased expression pattern in gastric tumors compared to adjacent normal tissues. The positive expression of the four receptors all correlated with high tumor grade and intestinal type, and ERα and AR were also associated with early TNM stage and thereby a favorable outcome. However, ERα and AR were not independent prognostic factors for gastric cancer when multivariate survival analysis was performed. Our findings indicate that the sex hormone receptors may be partly involved in gastric carcinogenesis but their clinicopathological and prognostic significance in gastric cancer appears to be limited

  14. Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor.

    Science.gov (United States)

    Penning, Trevor M; Bauman, David R; Jin, Yi; Rizner, Tea Lanisik

    2007-02-01

    Pairs of hydroxysteroid dehydrogenases (HSDs) govern ligand access to steroid receptors in target tissues and act as molecular switches. By acting as reductases or oxidases, HSDs convert potent ligands into their cognate inactive metabolites or vice versa. This pre-receptor regulation of steroid hormone action may have profound effects on hormonal response. We have identified the HSDs responsible for regulating ligand access to the androgen receptor (AR) in human prostate. Type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) acts solely as a reductase to convert 5alpha-dihydrotestosterone (DHT), a potent ligand for the AR (K(d)=10(-11)M for the AR), to the inactive androgen 3alpha-androstanediol (K(d)=10(-6)M for the AR); while RoDH like 3alpha-HSD (a short-chain dehydrogenase/reductase (SDR)) acts solely as an oxidase to convert 3alpha-androstanediol back to 5alpha-DHT. Our studies suggest that aldo-keto reductase (AKRs) and SDRs function as reductases and oxidases, respectively, to control ligand access to nuclear receptors.

  15. Neuroprotective effects of testosterone metabolites and dependency on receptor action on the morphology of somatic motoneurons following the death of neighboring motoneurons.

    Science.gov (United States)

    Cai, Yi; Chew, Cory; Muñoz, Fernando; Sengelaub, Dale R

    2017-06-01

    Partial depletion of spinal motoneuron populations induces dendritic atrophy in neighboring motoneurons, and treatment with testosterone is neuroprotective, attenuating induced dendritic atrophy. In this study we examined whether the protective effects of testosterone could be mediated via its androgenic or estrogenic metabolites. Furthermore, to assess whether these neuroprotective effects were mediated through steroid hormone receptors, we used receptor antagonists to attempt to prevent the neuroprotective effects of hormones after partial motoneuron depletion. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected rats were treated with either dihydrotestosterone or estradiol, alone or in combination with their respective receptor antagonists, or left untreated. Four weeks later, motoneurons innervating the ipsilateral vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Compared with intact normal animals, partial motoneuron depletion resulted in decreased dendritic length in remaining quadriceps motoneurons. Dendritic atrophy was attenuated with both dihydrotestosterone and estradiol treatment to a degree similar to that seen with testosterone, and attenuation of atrophy was prevented by receptor blockade. Together, these findings suggest that neuroprotective effects on motoneurons can be mediated by either androgenic or estrogenic hormones and require action via steroid hormone receptors, further supporting a role for hormones as neurotherapeutic agents in the injured nervous system. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 691-707, 2017. © 2016 Wiley Periodicals, Inc.

  16. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    Science.gov (United States)

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  17. Androgen Receptor Signaling in Bladder Cancer

    Science.gov (United States)

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  18. Androgen Receptor Signaling in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-02-01

    Full Text Available Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.

  19. Role of Peripheral Alpha2 Adrenergic Receptors in Tonic Pain During Different Stages of Estrous Cycle in Rats

    OpenAIRE

    AR Abyazi Shelmani; M Taherianfard

    2007-01-01

    Introduction: Estrogen and progesterone are supposed to modify pain sensitivity. However, the actual role of each of these steroid hormones in this respect is not well known. Plasma concentrations of these hormones show variation during estrous cycle. The role of alpha2 receptors in tonic pain has been pointed out. The aim of the present study was to investigate the agonist and antagonist effect of alpha2 adrenergic receptors on tonic pain sensitivity during all stages of estrous cycle in fem...

  20. Cloning and initial characterization of nuclear and membrane progesterone receptors in the Fathead Minnow, Pimephales promelas

    Science.gov (United States)

    Both native progestagens and synthetic progestins have important effects on reproduction that are mediated through progesterone receptors (PRs). They regulate gamete maturation and can serve as precursors for other steroid hormones in vertebrates and act as reproductive pheromone...

  1. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    Science.gov (United States)

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-05-01

    With increased life expectancy, women will spend over three decades of life postmenopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  2. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    Science.gov (United States)

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  3. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    Science.gov (United States)

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However

  4. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  5. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  6. Expression, purification and crystallization of the ancestral androgen receptor-DHT complex.

    Science.gov (United States)

    Colucci, Jennifer K; Ortlund, Eric A

    2013-09-01

    Steroid receptors (SRs) are a closely related family of ligand-dependent nuclear receptors that mediate the transcription of genes critical for development, reproduction and immunity. SR dysregulation has been implicated in cancer, inflammatory diseases and metabolic disorders. SRs bind their cognate hormone ligand with exquisite specificity, offering a unique system to study the evolution of molecular recognition. The SR family evolved from an estrogen-sensitive ancestor and diverged to become sensitive to progestagens, corticoids and, most recently, androgens. To understand the structural mechanisms driving the evolution of androgen responsiveness, the ancestral androgen receptor (ancAR1) was crystallized in complex with 5α-dihydrotestosterone (DHT) and a fragment of the transcriptional mediator/intermediary factor 2 (Tif2). Crystals diffracted to 2.1 Å resolution and the resulting structure will permit a direct comparison with its progestagen-sensitive ancestor, ancestral steroid receptor 2 (AncSR2).

  7. Sex steroids and the GH axis: Implications for the management of hypopituitarism.

    Science.gov (United States)

    Birzniece, Vita; Ho, Ken K Y

    2017-02-01

    Growth hormone (GH) regulates somatic growth, substrate metabolism and body composition. Sex hormones exert profound effect on the secretion and action of GH. Estrogens stimulate the secretion of GH, but inhibit the action of GH on the liver, an effect that occurs when administered orally. Estrogens suppress GH receptor signaling by stimulating the expression proteins that inhibit cytokine receptor signaling. This effect of estrogens is avoided when physiological doses of estrogens are administered via a non-oral route. Estrogen-like compounds, such as selective estrogen receptor modulators, possess dual properties of inhibiting the secretion as well as the action of GH. In contrast, androgens stimulate GH secretion, driving IGF-1 production. In the periphery, androgens enhance the action of GH. The differential effects of estrogens and androgens influence the dose of GH replacement in patients with hypopituitarism on concomitant treatment with sex steroids. Where possible, a non-oral route of estrogen replacement is recommended for optimizing cost-benefit of GH replacement in women with GH deficiency. Adequate androgen replacement in conjunction with GH replacement is required to achieve the full anabolic effect in men with hypopituitarism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hormone patterns in early human gestation

    International Nuclear Information System (INIS)

    Mishell, D.R. Jr.; Thorneycroft, I.H.; Nagata, Y.; Murata, T.; Nakamura, R.M.

    1974-01-01

    Accurate measurement of the low concentration of gonadotropins and steroid hormones present in human serum has been made possible by the development of sensitive radioimmunoassay (RIA) techniques. With the use of RIA FSH and LH, progesterone and 17OH-progesterone have been previously measured in early normal pregnancy. In order to determine the daily pattern of hormone levels in early normal pregnancy, gonadotropins as well as steroid hormone levels were measured in serum samples obtained daily from three women from the time of the last menstrual period prior to conception throughout the first few months of gestation. To further identify the steroid hormone pattern in early normal pregnancy, concentrations of estradiol, progesterone, and 17OH-progesterone were measured in individual serum samples obtained from a group of 158 women with apparently normal gestations who subsequently had therapeutic abortions. (auth)

  9. Desensitization of parathyroid hormone receptors on cultured bone cells

    International Nuclear Information System (INIS)

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D.

    1990-01-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. [Nle8,Nle18,Tyr34]bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with [125I]PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself

  10. Ablation of Steroid Receptor Coactivator-3 resembles the human CACT metabolic myopathy

    OpenAIRE

    York, Brian; Reineke, Erin L.; Sagen, Jørn V.; Nikolai, Bryan C.; Zhou, Suoling; Louet, Jean-Francois; Chopra, Atul R.; Chen, Xian; Reed, Graham; Noebels, Jeffrey; Adesina, Adekunle M.; Yu, Hui; Wong, Lee-Jun C.; Tsimelzon, Anna; Hilsenbeck, Susan

    2012-01-01

    Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypog...

  11. The Hypercoagulable state in Hyperthyroidism is mediated via the Thyroid Hormone β Receptor pathway

    NARCIS (Netherlands)

    Elbers, Laura P. B.; Moran, Carla; Gerdes, Victor E. A.; van Zaane, Bregje; Meijers, Joost C. M.; Endert, Erik; Lyons, Greta; Chatterjee, V. Krishna; Bisschop, Peter H.; Fliers, Eric

    2016-01-01

    Hyperthyroidism is associated with a hypercoagulable state, but the underlying mechanism is unknown. Patients with resistance to thyroid hormone (RTH) due to defective thyroid hormone receptor β (TRβ) exhibit elevated circulating thyroid hormones (TH) with refractoriness to TH action in

  12. Neuroprotective effects of female sex steroids in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Drača Sanja

    2013-03-01

    Full Text Available The central and peripheral nervous system are important targets of sex steroids. Sex steroids affect the brain development and differentiation, and influence neuronal functions. Recent evidence emphasizes a striking sex-linked difference in brain damage after experimental stroke, as well as the efficacy of hormones in treating cerebral stroke injury. Several different models of cerebral ischemia have been utilized for hormone neuroprotection studies, including transient or permanent middle cerebral artery occlusion, transient global ischemia, and transient forebrain ischemia. Extensive experimental studies have shown that female sex steroids such as progesterone and 176-estradiol exert neuroprotective effects in the experimental models of stroke, although deleterious effects have also been reported. Also, a significance of numerous factors, including gender and age of experimental animals, localization of brain lesion, duration of ischemia and precise dose of steroids has been pointed out. There are multiple potential mechanisms that might be invoked to explain the beneficial effects of female sex steroids in brain injury, involving neuroprotection, anti-inflammatory properties, effects on vasculature and altered transcriptional regulation. A several clinical trials on the effects of sex hormones to traumatic brain injury have been performed, suggesting that hormone therapy may represent a new therapeutic tool to combat certain diseases, such as traumatic brain injury. Further basic science studies and randomized clinical trials are necessary to reveal a potential application of these molecules as a new therapeutic strategy.

  13. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses.

    Science.gov (United States)

    Kreuchwig, Annika; Kleinau, Gunnar; Krause, Gerd

    2013-08-01

    The first version of a glycoprotein hormone receptor (GPHR) information resource was designed to link functional with structural GPHR information, in order to support sequence-structure-function analysis of the LH, FSH, and TSH receptors (http://ssfa-gphr.de). However, structural information on a binding- and signaling-sensitive extracellular fragment (∼100 residues), the hinge region, had been lacking. A new FSHR crystal structure of the hormone-bound extracellular domain has recently been solved. The structure comprises the leucine-rich repeat domain and most parts of the hinge region. We have not only integrated the new FSHR/FSH structure and the derived homology models of TSHR/TSH, LHCGR/CG, and LHCGR/LH into our web-based information resource, but have additionally provided novel tools to analyze the advanced structural features, with the common characteristics and distinctions between GPHRs, in a more precise manner. The hinge region with its second hormone-binding site allows us to assign functional data to the new structural features between hormone and receptor, such as binding details of a sulfated tyrosine (conserved throughout the GPHRs) extending into a pocket of the hormone. We have also implemented a protein interface analysis tool that enables the identification and visualization of extracellular contact points between interaction partners. This provides a starting point for comparing the binding patterns of GPHRs. Together with the mutagenesis data stored in the database, this will help to decipher the essential residues for ligand recognition and the molecular mechanisms of signal transduction, extending from the extracellular hormone-binding site toward the intracellular G protein-binding sites.

  14. Steroid receptor status in breast cancer: the roles of radioreceptor assay and immunohistochemistry

    International Nuclear Information System (INIS)

    Myint Aye Mu; Ch'ong

    1997-01-01

    A total of 24 cases of female breast cancer were reviewed, typed and graded based on the WHO classification. The steroid receptors (oestrogen and progesterone receptors) status was assessed using radio-receptor assay (RRA) and immunohistochemical (IH) method. The data showed that there were 21 cases of infiltrating ductal carcinoma of the breast and 3 cases of medullary carcinoma. The age of the patients ranged from 36 to 71 years and 4 patients were post-menopausal. The oestrogen receptor (ER) and progesteronc receptor (PR) status were analyzed by radio-receptor assay using 'H-oestradiol and 3 H-ORG respectively, and also by IH using immunoperoxidase detection assay (DAKO LSAB 2 Kit. Peroxidase K 677). Primary antibodies used were also procured from Dako Corp. and these were mouse anti-human ER and rabbit anti-human PR antibodies. On RRA analysis, 22 (95.7%) cases showed ER positivity (i.e. >20 fmol/mg of cytosol protien), and the ER content ranged from 16.64 to 297.8 fmovmg of cytosol protein. All cases showed PR positivity, and PR content ranged from 20.56 to 364 fmoumg of cytosol protein. A significant positive correlation was found between the ER content and PR content of tumour tissues (r = 0.7132, p<0.003). No significant association was found between ER content and menopausal status or histological grade IH showed that 10 of 24 cases (41.67%) showed ER positivity of which 8 were also PR positive. PR status was negative in all ER negative tissues. A decreasing trend in ER positivity was observed with worsening in histological grade (67% positivity in Grade 1, 50% positivity in Grade 11, and 33% positivity in Grade 111). ER and PR positivity occurred more frequently in pre-menopausal women. The results of this study showed that the result derived from IH method were found to have association with grade of tumour and confirmed findings by other workers. These findings revealed that although the quantitative data from radio-receptor assay for estimation of

  15. Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the thyroid hormone alpha 1-receptor protein

    NARCIS (Netherlands)

    van Beeren, H. C.; Bakker, O.; Wiersinga, W. M.

    1995-01-01

    Desethylamiodarone (DEA), the major metabolite of the potent antiarrythmic drug amiodarone, is a non-competitive inhibitor of the binding of thyroid hormone (T3) to the beta 1-thyroid hormone receptor (T3R). In the present study, we investigated whether DEA acts in a similar way with respect to the

  16. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    International Nuclear Information System (INIS)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-01-01

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures

  17. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization.

    Directory of Open Access Journals (Sweden)

    Ramakrishna Kommagani

    2013-10-01

    Full Text Available Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC decidualization are well recognized, the individual gene(s and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2 is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3, a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy.

  18. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause

    Directory of Open Access Journals (Sweden)

    Marzieh Davoudi

    2016-07-01

    Full Text Available Background: The uterus is a dynamic tissue responding to hormonal changes during reproductive cycles. As such, uterine stem cells have been studied in recent years. Transcription factors oct4 and sox2 are critical for effective maintenance of pluripotent cell identity. Objective: The present research evaluated the mRNA expression of oct4 and sox2 in the uterine tissues of ovariectomized mice treated with steroid hormones. Materials and Methods: In this experimental study, adult virgin female mice were ovariectomized and treated with estradiol 17β (E2, progesterone (P4, and a combination of E2 and P4 (E2 & P4 for 5 days. Uterine tissues were removed, and immunofluorescent (IF staining and quantitative real-time PCR of oct4 and sox2 markers were performed. Results: IF showed oct4 and sox2 expression in the uterine endometrium and myometrium among all groups. The mRNA expression of oct4 (p=0.022 and sox2 (p=0.042 in the E2-treated group significantly were decreased compared to that in the control group. By contrast, the mRNA expression of oct4 and sox2 in the P4 (p=0.641 and 0.489 respectively and E2 & P4-treated groups (p=0.267 and 0.264 respectively did not show significant differences compared to the control group. Conclusion: The results indicate ovarian steroid hormones change the expression of oct4 and sox2 in the mice uterine tissues, which suggest the involvement of steroid hormonal regulation in uterine stem cells.

  19. Steroids facing emotions

    NARCIS (Netherlands)

    Putman, P.L.J.

    2006-01-01

    The studies reported in this thesis have been performed to gain a better understanding about motivational mediators of selective attention and memory for emotionally relevant stimuli, and about the roles that some steroid hormones play in regulation of human motivation and emotion. The stimuli used

  20. Synthetic lipid nanoparticles targeting steroid organs

    International Nuclear Information System (INIS)

    Merian, Juliette; Boisgard, Raphael; Theze, Benoit; Decleves, Xavier; Texier, Isabelle; Tavitian, Bertrand

    2013-01-01

    Lipidots are original nano-particulate lipid delivery vectors for drugs and contrast agents made from materials generally regarded as safe. Here, we characterized the in vivo stability, biodistribution, and pharmacokinetics of lipidots. Lipidots 55 nm in diameter and coated with a phospholipid/poly(ethyleneglycol) surfactant shell were triply labeled with 3 H-cholesteryl-hexadecyl-ether, cholesteryl- 14 C-oleate, and the 1,19-dioctadecyl-3,3,39,39-tetramethyl-indo-tri-carbocyanine infrared fluorescent dye and injected intravenously into immunocompetent Friend virus B-type mice. The pharmacokinetics and biodistribution of lipidots were analyzed quantitatively in serial samples of blood and tissue and with in vivo optical imaging and were refined by microscopic examination of selected target tissues. The plasmatic half-life of lipidots was approximately 30 min. Radioactive and fluorescent tracers displayed a similar nanoparticle-driven biodistribution, indicative of the lipidots' integrity during the first hours after injection. Lipidots distributed in the liver and, surprisingly, in the steroid-rich organs adrenals and ovaries, but not in the spleen. This tropism was confirmed at the microscopic level by histologic detection of 1,19-dioctadecyl- 3,3,39,39-tetramethyl-indo-tri-carbocyanine. Nanoparticle loading with cholesterol derivatives increased accumulation in ovaries in a dose dependent manner. This previously unreported distribution pattern is specific to lipidots and attributed to their nano-metric size and composition, conferring on them a lipoprotein-like behavior. The affinity of lipidots for steroid hormone-rich areas is of interest to address drugs and contrast agents to lipoprotein-receptor-over-expressing cancer cells found in hormone-dependent tumors. (authors)

  1. Longitudinal analyses of the steroid metabolome in obese PCOS girls with weight loss.

    Science.gov (United States)

    Reinehr, Thomas; Kulle, Alexandra; Rothermel, Juliane; Knop-Schmenn, Caroline; Lass, Nina; Bosse, Christina; Holterhus, Paul-Martin

    2017-05-01

    The underlying mechanisms of polycystic ovarian syndrome (PCOS) are not fully understood yet. The aim of the study was to get functional insights into the regulation of steroid hormones in PCOS by steroid metabolomics. This is a longitudinal study of changes of steroid hormones in 40 obese girls aged 13-16 years (50% with PCOS) participating in a 1-year lifestyle intervention. Girls with and without PCOS were matched to age, BMI and change of weight status. We measured progesterone, 17-hydroxyprogesterone, 17-hydroxyprogenolon, 11-deoxycorticosterone, 21-deoxycorticosterone, deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol, cortisone, androstenedione, testosterone, dehydroepiandrostendione-sulfate (DHEA-S), estrone and estradiol by LC-MS/MS steroid profiling at baseline and one year later. At baseline, obese PCOS girls demonstrated significantly higher androstenedione and testosterone concentrations compared to obese girls without PCOS, whereas the other steroid hormones including glucocorticoids, mineralocorticoids, estrogens and precursors of androgens did not differ significantly. Weight loss in obese PCOS girls was associated with a significant decrease of testosterone, androstenedione, DHEA-S, cortisol and corticosterone concentrations. Weight loss in obese non-PCOS girls was associated with a significant decrease of DHEA-S, cortisol and corticosterone concentrations, whereas no significant changes of testosterone and androstenedione concentrations could be observed. Without weight loss, no significant changes of steroid hormones were measured except an increase of estradiol in obese PCOS girls without weight loss. The key steroid hormones in obese adolescents with PCOS are androstenedione and testosterone, whereas glucocorticoids, mineralocorticoids, estrogens and precursors of androgens did not differ between obese girls with and without PCOS. © 2017 The authors.

  2. The progesterone receptor antagonist, onapristone has differential effects on the timing and control of the luteolytic mechanism depending on timing of administration in sheep.

    Science.gov (United States)

    Mann, G E; Wathes, D C; Robinson, R S

    2013-08-25

    Cyclic ewes were treated with control vehicle or progesterone receptor antagonist (onapristone; 100mg i.m. twice daily) during either early (day 3-5) or late (day 12-14) luteal phase and plasma samples collected for hormone analysis and to determine endogenous and oxytocin induced PGF2α release. On day 14 and 17, ewes were euthanised and reproductive tracts collected for ovarian morphology and endometrium for oxytoxin and steroid hormone receptor analysis. Early treatment increased LH, but not progesterone or oestradiol, while late treatment elevated all three hormones. Early treatment delayed the up-regulation of endometrial oxytocin receptors and responsiveness to oxytocin challenge, delaying luteolysis. Late treatment advanced development of oxytocin receptors and responsiveness to oxytocin though not timing of luteolysis. Patterns of hormone receptor mRNA were differentially disrupted by treatments. Results provide mechanistic insight into hormonal control of the oestrous cycle and identify the ability of the luteolytic mechanism to dissociate from functional luteolysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Bone Mass in Young Adulthood Following Gonadotropin-Releasing Hormone Analog Treatment and Cross-Sex Hormone Treatment in Adolescents With Gender Dysphoria

    NARCIS (Netherlands)

    Klink, D.T.; Caris, M.G.; Heijboer, A.C.; van Trotsenburg, M.; Rotteveel, J.

    2015-01-01

    Context: Sex steroids are important for bone mass accrual. Adolescents with gender dysphoria (GD) treated with gonadotropin-releasing hormone analog (GnRHa) therapy are temporarily sex-steroid deprived until the addition of cross-sex hormones (CSH). The effect of this treatment on bone mineral

  4. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure.

    Science.gov (United States)

    Fragkaki, A G; Angelis, Y S; Koupparis, M; Tsantili-Kakoulidou, A; Kokotos, G; Georgakopoulos, C

    2009-02-01

    Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.

  5. Sex steroid hormones in natural populations of a sexual whiptail lizard Cnemidophorus inornatus, a direct evolutionary ancestor of a unisexual parthenogen.

    Science.gov (United States)

    Moore, M C; Crews, D

    1986-09-01

    The lizard genus Cnemidophorus consists of both sexual species and unisexual, all-female species. We characterized changes in circulating levels of gonadal sex steroid hormones in males and females in one of the sexual species, C. inornatus, to compare them to previously measured levels in a unisexual, parthenogenetic species, C. uniparens. Reproductively active male C. inornatus have high levels of dihydrotestosterone and somewhat lower levels of testosterone. These levels are highest immediately after females become sexually receptive and decrease later at the onset of testicular regression. Female C. inornatus have high levels of estradiol and low levels of progesterone during the previtellogenic and vitellogenic phases of the ovarian cycle. During the postovulatory phase, they have low levels of estradiol and high levels of progesterone. We could not detect circulating levels of androgen at any phase of the ovarian cycle. The patterns of hormone secretion in the female C. inornatus are virtually identical to those of its direct evolutionary descendant, C. uniparens. This confirms our previous conclusion that the evolution of the parthenogenetic mode of reproduction and expression of male-like pseudosexual behavior that are characteristic of the unisexual C. uniparens has not been accomplished by evolutionary modifications in the pattern of sex steroid hormone secretion. Rather it is the response to this pattern of secretion that has been modified.

  6. Effects on steroid hormones secretion resulting from the acute stimulation of sectioning the superior ovarian nerve to pre-pubertal rats

    Directory of Open Access Journals (Sweden)

    Morales-Ledesma Leticia

    2012-10-01

    Full Text Available Abstract In the adult rat, neural signals arriving to the ovary via the superior ovarian nerve (SON modulate progesterone (P4, testosterone (T and estradiol (E2 secretion. The aims of the present study were to analyze if the SON in the pre-pubertal rat also modulates ovarian hormone secretion and the release of follicle stimulating hormone (FSH and luteinizing (LH hormone. P4, T, E2, FSH and LH serum levels were measured 30 or 60 minutes after sectioning the SON of pre-pubertal female rats. Our results indicate that the effects on hormone levels resulting from unilaterally or bilaterally sectioning the SON depends on the analyzed hormone, and the time lapse between surgery and autopsy, and that the treatment yielded asymmetric results. The results also suggest that in the pre-pubertal rat the neural signals arriving to the ovaries via the SON regulate the enzymes participating in P4, T and E2 synthesis in a non-parallel way, indicating that the mechanisms regulating the synthesis of each hormone are not regulated by the same signals. Also, that the changes in the steroids hormones are not explained exclusively by the modifications in gonadotropins secretion. The observed differences in hormone levels between rats sacrificed 30 and 60 min after surgery reflect the onset of the compensatory systems regulating hormones secretion.

  7. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of tyrosine kinase activity with cloned liver GH receptor. The level of phosphorylation of the GH receptor was very low, as compared with the endogenous GH receptor in 3T3-F442A cells, suggesting that tyrosine kinase activity is not intrinsic to the cloned GH receptor but rather resides with a kinase present...... in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific....

  8. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis.

    OpenAIRE

    Mukhin, A G; Papadopoulos, V; Costa, E; Krueger, K E

    1989-01-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine bin...

  9. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  10. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome.

    Science.gov (United States)

    Moore, Aleisha M; Prescott, Mel; Marshall, Christopher J; Yip, Siew Hoong; Campbell, Rebecca E

    2015-01-13

    Polycystic ovarian syndrome (PCOS), the leading cause of female infertility, is associated with an increase in luteinizing hormone (LH) pulse frequency, implicating abnormal steroid hormone feedback to gonadotropin-releasing hormone (GnRH) neurons. This study investigated whether modifications in the synaptically connected neuronal network of GnRH neurons could account for this pathology. The PCOS phenotype was induced in mice following prenatal androgen (PNA) exposure. Serial blood sampling confirmed that PNA elicits increased LH pulse frequency and impaired progesterone negative feedback in adult females, mimicking the neuroendocrine abnormalities of the clinical syndrome. Imaging of GnRH neurons revealed greater dendritic spine density that correlated with increased putative GABAergic but not glutamatergic inputs in PNA mice. Mapping of steroid hormone receptor expression revealed that PNA mice had 59% fewer progesterone receptor-expressing cells in the arcuate nucleus of the hypothalamus (ARN). To address whether increased GABA innervation to GnRH neurons originates in the ARN, a viral-mediated Cre-lox approach was taken to trace the projections of ARN GABA neurons in vivo. Remarkably, projections from ARN GABAergic neurons heavily contacted and even bundled with GnRH neuron dendrites, and the density of fibers apposing GnRH neurons was even greater in PNA mice (56%). Additionally, this ARN GABA population showed significantly less colocalization with progesterone receptor in PNA animals compared with controls. Together, these data describe a robust GABAergic circuit originating in the ARN that is enhanced in a model of PCOS and may underpin the neuroendocrine pathophysiology of the syndrome.

  11. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, Nikolaus; Groothuis, Ton G. G.; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  12. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  13. Do unliganded thyroid hormone receptors have physiological functions?

    Science.gov (United States)

    Chassande, O

    2003-08-01

    Thyroid hormone (TH) is required for the development of vertebrates and exerts numerous homeostatic functions in adults. TH acts through nuclear receptors which control the transcription of target genes. Unliganded and liganded thyroid hormone receptors (TRs) have been shown to exert opposite effects on the transcription of target genes in vitro. However, the occurance of an aporeceptor activity in vivo and its potential physiological significance has not been clearly addressed. Several data generated using experimental hypothyroidism and thyrotoxicosis in wild type and TR knockout mice support the notion that apoTRs have an intrinsic activity in several tIssues. ApoTRs, and in particular TRalpha1, are predominant during the early stages of vertebrate development and must be turned into holoTRs for post-natal development to proceed normally. However, the absence of striking alterations of embryonic and fetal development in mice devoid of TRs indicates that apoTRs do not play a fundamental role. During development, as well as in adults, apoTRs rather appears as a system which increases the range of transcriptional responses to moderate variations of T3.

  14. Stress and Cognition: the relevance of timing, steroid receptors and sex differences

    NARCIS (Netherlands)

    Cornelisse, S.

    2013-01-01

    In response to a stressful situation the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis are activated, eventually leading to the release of catecholamines and corticosteroids. These stress hormones bind to different receptors in the brain (in case of corticosteroids,

  15. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  16. Growth hormone receptor deficiency (Laron syndrome) in black ...

    African Journals Online (AJOL)

    Non-Caucasians with growth honnone receptor (GHR) deficiency/Lamn syndrome among the .... 4,3 cm (-2,4 SOS for bone age 8,5 years at age 12); the girl's height at age 7 years was 77,5 cm (-8,0 SOS, height ... of serum incubated with '25I-labelled human growth hormone and expressed as relative specific binding ...

  17. Determination of estradiol, estrone and progesterone in serum and human endometrium in correlation to the content of steroid receptors and 17β-hydroxysteroid dehydrogenase activity during menstrual cycle

    International Nuclear Information System (INIS)

    Schmidt-Gollwitzer, M.; Eiletz, J.; Pachaly, J.

    1977-01-01

    A study has been carried out to compare the influence of estradiol estrone and progesterone on the estradiol and progesterone receptor levels and 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in human endometrium. The steroid hormone concentrations were measured simultaneously in both serum and endometrial tissue. The estradiol receptor levels were highest during the early proliferative phase and were inversely correlated to the endometrial tissue and serum concentrations of estradiol and progesterone. The highest progesterone binding capacity was found in endometrical cytosol during the late proliferative phase (midcycle) of the menstrual cycle. The midcycle peak of the progesterone receptor level correlated well with the first peak of the serum and tissue concentrations of estradiol. During,the luteal phase, in contrast to the proliferative phase, the progesterone receptor level decreased whereas serum progesterone concentrations were high. Estrone concentrations were higher in secretory than proliferative endometrium and were correlated to the increase of progesterone receptor content and 17β-HSD activity during early secretory phase. The 17β-HSD activity was approximately 10-fold higher during the early secretory than during the proliferative phase. The progesterone receptor level was highly correlated to the specific 17β-HSD activity of the microsomal fraction whereas a significant inverse correlation between the enzyme activity and the estradiol receptor level was observed. (orig.) [de

  18. Study of change of sex hormone receptors in diabetic impotent patients

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Weizhen; Zhang Zikang; Hu Xiaoke

    2002-01-01

    To study the relationship between diabetic impotence and sex hormones as well as sex hormone receptors. 32 diabetic impotent patients, 32 diabetic patients with normal sex function, 32 impotent patients without diabetes, and 40 healthy men were enrolled. The plasma sex hormone levels were examined by radioimmunoassay, and sex hormone receptors in white blood cells by radioreceptor assay. Compared with healthy men and impotent patients without diabetes, PRL levels in both diabetic impotent patients and diabetic patients with normal sex function increased markedly, T and AR levels decreased, and the ratio of E 2 /T and ER/AR increased. Compared with diabetic patients with normal sex function, while there was no significant difference in PRL, T and E 2 /T ratio, the AR level of diabetic impotent patients further decreased, and the ER/AR ratio further increased. Negative correlation was found between age and AR as well as T. The decline of AR and the increase of ER/AR ratio might be one main cause of diabetic impotence. And the decline of T and AR might be an important cause of the increase of diabetic impotence incidence with age

  19. Longitudinal analyses of the steroid metabolome in obese PCOS girls with weight loss

    Directory of Open Access Journals (Sweden)

    Thomas Reinehr

    2017-05-01

    Full Text Available Objective: The underlying mechanisms of polycystic ovarian syndrome (PCOS are not fully understood yet. The aim of the study was to get functional insights into the regulation of steroid hormones in PCOS by steroid metabolomics. Design: This is a longitudinal study of changes of steroid hormones in 40 obese girls aged 13–16 years (50% with PCOS participating in a 1-year lifestyle intervention. Girls with and without PCOS were matched to age, BMI and change of weight status. Methods: We measured progesterone, 17-hydroxyprogesterone, 17-hydroxyprogenolon, 11-deoxycorticosterone, 21-deoxycorticosterone, deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol, cortisone, androstenedione, testosterone, dehydroepiandrostendione-sulfate (DHEA-S, estrone and estradiol by LC–MS/MS steroid profiling at baseline and one year later. Results: At baseline, obese PCOS girls demonstrated significantly higher androstenedione and testosterone concentrations compared to obese girls without PCOS, whereas the other steroid hormones including glucocorticoids, mineralocorticoids, estrogens and precursors of androgens did not differ significantly. Weight loss in obese PCOS girls was associated with a significant decrease of testosterone, androstenedione, DHEA-S, cortisol and corticosterone concentrations. Weight loss in obese non-PCOS girls was associated with a significant decrease of DHEA-S, cortisol and corticosterone concentrations, whereas no significant changes of testosterone and androstenedione concentrations could be observed. Without weight loss, no significant changes of steroid hormones were measured except an increase of estradiol in obese PCOS girls without weight loss. Conclusions: The key steroid hormones in obese adolescents with PCOS are androstenedione and testosterone, whereas glucocorticoids, mineralocorticoids, estrogens and precursors of androgens did not differ between obese girls with and without PCOS.

  20. Does priming with sex steroids improve the diagnosis of normal growth hormone secretion in short children?

    Directory of Open Access Journals (Sweden)

    Ashraf Soliman

    2014-01-01

    Full Text Available Introduction: There is still controversy for priming with sex steroid before growth hormone (GH testing. Objective: We studied GH response to stimulation in 92 children >9 years with idiopathic short stature (height standard deviation score [HtSDS]-2. They were divided randomly into two groups. Children in Group 1 (n = 50 were primed with premarin in girls and testosterone in boys and those in Group 2 were not primed (n = 42. All children were tested using standard clonidine test and their serum insulin-like growth factor-I concentration (IGF-I. Additionally the growth and GH-IGF-I data of the two groups of children were compared with those for 32 short children (HtSDS 9 years. The peak GH response to clonidine provocation test did not differ before (n = 42 versus after 9 years (n = 32 of age. Conclusions: In this randomized study priming with sex steroids before GH testing did not significantly increase the yield of diagnosing short patients with normal GH secretion. In addition, GH response to provocation did not vary significantly between young (9 years short children.

  1. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...

  2. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Science.gov (United States)

    Ma, Frank Y; Han, Yingjie; Nikolic-Paterson, David J; Kolkhof, Peter; Tesch, Greg H

    2015-01-01

    Steroidal mineralocorticoid receptor antagonists (MRAs) are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis. Accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid) from day 0 until being killed on day 15 of disease. Mice were examined for renal injury. Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ) and profibrotic molecules (collagen I, fibronectin). In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction). The non-steroidal MRA (BR-4628) provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  3. Suppression of Rapidly Progressive Mouse Glomerulonephritis with the Non-Steroidal Mineralocorticoid Receptor Antagonist BR-4628.

    Directory of Open Access Journals (Sweden)

    Frank Y Ma

    Full Text Available Steroidal mineralocorticoid receptor antagonists (MRAs are effective in the treatment of kidney disease; however, the side effect of hyperkalaemia, particularly in the context of renal impairment, is a major limitation to their clinical use. Recently developed non-steroidal MRAs have distinct characteristics suggesting that they may be superior to steroidal MRAs. Therefore, we explored the benefits of a non-steroidal MRA in a model of rapidly progressive glomerulonephritis.Accelerated anti-glomerular basement membrane (GBM glomerulonephritis was induced in groups of C57BL/6J mice which received no treatment, vehicle or a non-steroidal MRA (BR-4628, 5mg/kg/bid from day 0 until being killed on day 15 of disease. Mice were examined for renal injury.Mice with anti-GBM glomerulonephritis which received no treatment or vehicle developed similar disease with severe albuminuria, impaired renal function, glomerular tuft damage and crescents in 40% of glomeruli. In comparison, mice which received BR-4628 displayed similar albuminuria, but had improved renal function, reduced severity of glomerular tuft lesions and a 50% reduction in crescents. The protection seen in BR-4628 treated mice was associated with a marked reduction in glomerular macrophages and T-cells and reduced kidney gene expression of proinflammatory (CCL2, TNF-α, IFN-γ and profibrotic molecules (collagen I, fibronectin. In addition, treatment with BR-4626 did not cause hyperkalaemia or increase urine Na+/K+ excretion (a marker of tubular dysfunction.The non-steroidal MRA (BR-4628 provided substantial suppression of mouse crescentic glomerulonephritis without causing tubular dysfunction. This finding warrants further investigation of non-steroidal MRAs as a therapy for inflammatory kidney diseases.

  4. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    Science.gov (United States)

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  6. Development of a Multi-class Steroid Hormone Screening Method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS)

    Science.gov (United States)

    Boggs, Ashley S. P.; Bowden, John A.; Galligan, Thomas M.; Guillette, Louis J.; Kucklick, John R.

    2016-01-01

    Monitoring complex endocrine pathways is often limited by indirect measurement or measurement of a single hormone class per analysis. There is a burgeoning need to develop specific direct-detection methods capable of providing simultaneous measurement of biologically relevant concentrations of multiple classes of hormones (estrogens, androgens, progestogens, and corticosteroids). The objectives of this study were to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for multi-class steroid hormone detection using biologically relevant concentrations, then test limits of detection (LOD) in a high-background matrix by spiking charcoal-stripped fetal bovine serum (FBS) extract. Accuracy was tested with National Institute of Standards and Technology Standard Reference Materials (SRMs) with certified concentrations of cortisol, testosterone, and progesterone. 11-Deoxycorticosterone, 11-deoxycortisol, 17-hydroxypregnenolone, 17-hydroxyprogesterone, adrenosterone, androstenedione, cortisol, corticosterone, dehydroepiandrosterone, dihydrotestosterone, estradiol, estriol, estrone, equilin, pregnenolone, progesterone, and testosterone were also measured using isotopic dilution. Dansyl chloride (DC) derivatization was investigated maintaining the same method to improve and expedite estrogen analysis. Biologically relevant LODs were determined for 15 hormones. DC derivatization improved estrogen response two- to eight-fold, and improved chromatographic separation. All measurements had an accuracy ≤ 14 % difference from certified values (not accounting for uncertainty) and relative standard deviation ≤ 14 %. This method chromatographically separated and quantified biologically relevant concentrations of four hormone classes using highly specific fragmentation patterns and measured certified values of hormones that were previously split into three separate chromatographic methods. PMID:27039201

  7. Subcellular localization of estradiol receptor in MCF7 cells studied with nanogold-labelled antibody fragments.

    Science.gov (United States)

    Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D

    1998-01-01

    Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.

  8. Analytical method for the determination of trace levels of steroid hormones and corticosteroids in soil, based on PLE/SPE/LC-MS/MS.

    Science.gov (United States)

    Gineys, N; Giroud, B; Vulliet, E

    2010-07-01

    The aim of this study was to develop an efficient, sensitive and reliable analytical method for the determination of traces of steroid hormones (including oestrogen, androgens and progestagens) and corticosteroids in soil. A method of sample preparation involving pressurized liquid extraction (PLE) and solid-phase extraction (SPE) was developed for the determination of six steroids and five corticosteroids in soils, followed by analysis by liquid chromatography-tandem mass spectrometry. The conditions employed for PLE involved acetone/methanol (50:50) as the extracting solvent, a temperature of 80 degrees C, two cycles and a static time of 5 min. The extraction was followed by a SPE clean-up based on a polymeric phase. With use of protocol, a residual matrix effect was, however, highlighted. The limit of detection in soil was 0.08-0.89 ng/g for steroids and 0.09-2.84 ng/g for corticosteroids.

  9. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    Science.gov (United States)

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  10. Race differences in obesity and its relationship to the sex hormone milieu.

    Science.gov (United States)

    Perry, Arlette C; Martin, Lorena

    2014-09-01

    A sexual dimorphism exists in which increased abdominal and visceral adipose tissue (VAT) - found in women and marked by low sex hormone binding globulin (SHBG) and high bioavailable testosterone (BT) - is related to the metabolic risk profile. In men, increased BT is related to decreased abdominal obesity and a decrease in the metabolic risk profile. In women, race differences have been found in androgenic sex steroids including SHBG and BT as well as central fat distribution, creating inherently greater metabolic risk for certain populations. Estrogen and estrogen receptor isoforms play a role in fat deposition and distribution and may influence the changes that occur during the menopausal transition. Androgenic sex steroids serve a mediating role, influencing VAT accumulation and its associated metabolic risk factors while VAT also serves a mediating role influencing the androgenic sex steroid-metabolic risk relationship in women. Furthermore, androgenic sex steroids and VAT may independently contribute to the variance in several metabolic variables associated with cardiovascular disease, type 2 diabetes, and their antecedent conditions such as the metabolic syndrome. Race has been shown to modify the relationship between androgenic sex steroids and metabolic variables associated with risk for diabetes in Black and White women. Further research is warranted to examine the mechanisms involved in race differences. Total adiposity and central fat distribution in accordance with changes in the hormone and metabolic milieu influence breast cancer risk, which varies by race and menopausal status. These findings have broader implications for the study of health promotion/disease prevention in women.

  11. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  12. Using Digital Images of the Zebra Finch Song System as a Tool to Teach Organizational Effects of Steroid Hormones: A Free Downloadable Module

    Science.gov (United States)

    Grisham, William; Schottler, Natalie A.; Beck McCauley, Lisa M.; Pham, Anh P.; Ruiz, Maureen L.; Fong, Michelle C.; Cui, Xinran

    2011-01-01

    Zebra finch song behavior is sexually dimorphic: males sing and females do not. The neural system underlying this behavior is sexually dimorphic, and this sex difference is easy to quantify. During development, the zebra finch song system can be altered by steroid hormones, specifically estradiol, which actually masculinizes it. Because of the…

  13. Progesterone as a bone-trophic hormone.

    Science.gov (United States)

    Prior, J C

    1990-05-01

    Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency

  14. Sleep, Rhythms, and the Endocrine Brain: Influence of Sex and Gonadal Hormones

    Science.gov (United States)

    Mong, Jessica A.; Baker, Fiona C.; Mahoney, Megan M.; Paul, Ketema N.; Schwartz, Michael D.; Semba, Kazue; Silver, Rae

    2011-01-01

    While much is known about the mechanisms that underlie sleep and circadian rhythms, the investigation into sex differences and gonadal steroid modulation of sleep and biological rhythms is in its infancy. There is a growing recognition of sex disparities in sleep and rhythm disorders. Understanding how neuroendocrine mediators and sex differences influence sleep and biological rhythms is central to advancing our understanding of sleep-related disorders. While it is known that ovarian steroids affect circadian rhythms in rodents, the role of androgen is less understood. Surprising findings that androgens, acting via androgen receptors in the master “circadian clock” within the suprachiasmatic nucleus (SCN), modulate photic effects on activity in males points to novel mechanisms of circadian control. Work in aromatase deficient (ArKO) mice suggests that some sex differences in photic responsiveness are independent of gonadal hormone effects during development. In parallel, aspects of sex differences in sleep are also reported to be independent of gonadal steroids and may involve sex chromosome complement. This a summary of recent work illustrating how sex differences and gonadal hormones influence sleep and circadian rhythms that was presented at a mini-symposium at the 2011 annual meeting of the Society for Neuroscience. PMID:22072663

  15. Estradiol potentiation of gonadotropin-releasing hormone responsiveness in the anterior pituitary is mediated by an increase in gonadotropin-releasing hormone receptors

    International Nuclear Information System (INIS)

    Menon, M.; Peegel, H.; Katta, V.

    1985-01-01

    In order to investigate the mechanism by which 17 beta-estradiol potentiates the action of gonadotropin-releasing hormone on the anterior pituitary in vitro, cultured pituitary cells from immature female rats were used as the model system. Cultures exposed to estradiol at concentrations ranging from 10(-10) to 10(-6) mol/L exhibited a significant augmentation of luteinizing hormone release in response to a 4-hour gonadotropin-releasing hormone (10 mumol/L) challenge at a dose of 10(-9) mol/L compared to that of control cultures. The estradiol augmentation of luteinizing hormone release was also dependent on the duration of estradiol exposure. When these cultures were incubated with tritium-labeled L-leucine, an increase in incorporation of radiolabeled amino acid into total proteins greater than that in controls was observed. A parallel stimulatory effect of estradiol on iodine 125-labeled D-Ala6 gonadotropin-releasing hormone binding was observed. Cultures incubated with estradiol at different concentrations and various lengths of time showed a significant increase in gonadotropin-releasing hormone binding capacity and this increase was abrogated by cycloheximide. Analysis of the binding data showed that the increase in gonadotropin-releasing hormone binding activity was due to a change in the number of gonadotropin-releasing hormone binding sites rather than a change in the affinity. These results suggest that (1) estradiol treatment increases the number of pituitary receptors for gonadotropin-releasing hormone, (2) the augmentary effect of estradiol on luteinizing hormone release at the pituitary level might be mediated, at least in part, by the increase in the number of binding sites of gonadotropin-releasing hormone, and (3) new protein synthesis may be involved in estradiol-mediated gonadotropin-releasing hormone receptor induction

  16. Steroid hormonal bioactivities, culprit natural and synthetic hormones and other emerging contaminants in waste water measured using bioassays and UPLC-tQ-MS.

    Science.gov (United States)

    Houtman, Corine J; Ten Broek, Rob; Brouwer, Abraham

    2018-07-15

    Emission of compounds with biological activities from waste water treatment plant (WWTP) effluents into surface waters is a topic of concern for ecology and drinking water quality. We investigated the occurrence of hormone-like activities in waste water sample extracts from four Dutch WWTPs and pursued to identify compounds responsible for them. To this aim, in vitro reporter gene bioassays for androgenic, anti-androgenic, estrogenic, glucocorticoid and progestogenic activity and a UPLC-tQ-MS target analysis method for 25 steroid hormones used in high volumes in pharmacy were applied. Principal component analysis of the data was performed to further characterize the detected activities and compounds. All five types of activities tested were observed in the WWTP samples. Androgenic and estrogenic activities were almost completely removed during WW treatment, anti-androgenic activity was only found in treated WW. Glucocorticoid and progestogenic activities persisted throughout the treatment. The androgenic activity in both influent could predominantly be attributed to the presence of androstenedione and testosterone. Anti-androgenic activity was explained by the presence of cyproterone acetate. The glucocorticoid activity in influent was fully explained by prednicarbate, triamcinolone acetonide, dexamethasone and amcinonide. In effluent however, detected hormones could only explain 10-32% of the activity, indicating the presence of unknown glucocorticoids or their metabolites in effluent. Progesterone and levonorgestrel could explain the observed progestogenic activity. The principle component analysis confirmed the way in which hormones fit in the spectrum of other emerging contaminants concerning occurrence and fate in WWTPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Methoxychlor affects multiple hormone signaling pathways in the largemouth bass (Micropterus salmoides) liver

    Science.gov (United States)

    Martyniuk, Christopher J.; Spade, Daniel J.; Blum, Jason L.; Kroll, Kevin J.; Denslow, Nancy D.

    2011-01-01

    Methoxychlor (MXC) is an organochlorine pesticide that has been shown to have estrogenic activity by activating estrogen receptors and inducing vitellogenin production in male fish. Previous studies report that exposure to MXC induces changes in mRNA abundance of reproductive genes in the liver and testes of largemouth bass (Micropterus salmoides). The objective of the present study was to better characterize the mode of action of MXC by measuring the global transcriptomic response in the male largemouth liver using an oligonucleotide microarray. Microarray analysis identified highly significant changes in the expression of 37 transcripts (p<0.001) (20 induced and 17 decreased) in the liver after MXC injection and a total of 900 expression changes (p<0.05) in transcripts with high homology to known genes. Largemouth bass estrogen receptor alpha (esr1) and androgen receptor (ar) were among the transcripts that were increased in the liver after MXC treatment. Functional enrichment analysis identified the molecular functions of steroid binding and androgen receptor activity as well as steroid hormone receptor activity as being significantly over-represented gene ontology terms. Pathway analysis identified c-fos signaling as being putatively affected through both estrogen and androgen signaling. This study provides evidence that MXC elicits transcriptional effects through the estrogen receptor as well as androgen receptor-mediated pathways in the liver. PMID:21276474

  18. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height

    OpenAIRE

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-01-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin?) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean d...

  19. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  20. [7α-18F]fluoro-17α-methyl-5α-dihydrotestosterone: a ligand for androgen receptor-mediated imaging of prostate cancer

    International Nuclear Information System (INIS)

    Garg, Pradeep K.; Labaree, David C.; Hoyte, Robert M.; Hochberg, Richard B.

    2001-01-01

    We have synthesized a 18 F-labeled androgen, [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone, in a no-carrier-added radiosynthesis by exchange of 18 F- (tetrabutylammonium fluoride) with the 7β-tosyloxy of 17α-methyl-5α-dihydrotestosterone. The nonradioactive steroid binds with high affinity and specificity to the androgen receptor and binds poorly, if at all, to other steroid receptors and plasma sex hormone binding globulin. The 7α- 18 F-androgen concentrates markedly in the prostate of rats by an androgen receptor-dependent mechanism. It is likely that [7α- 18 F]fluoro-17α-methyl-5α-dihydrotestosterone will be an excellent positron emission tomography imaging agent for prostate cancer

  1. Endogenous sex steroids and risk of cervical carcinoma: results from the EPIC study

    DEFF Research Database (Denmark)

    Rinaldi, Sabina; Plummer, Martyn; Biessy, Carine

    2011-01-01

    Epidemiologic data and animal models suggest that, despite the predominant role of human papillomavirus infection, sex steroid hormones are also involved in the etiology of invasive cervical carcinoma (ICC).......Epidemiologic data and animal models suggest that, despite the predominant role of human papillomavirus infection, sex steroid hormones are also involved in the etiology of invasive cervical carcinoma (ICC)....

  2. Radioactive probes for adrenocorticotropic hormone receptors

    International Nuclear Information System (INIS)

    Hofmann, K.; Romovacek, H.; Stehle, C.J.; Finn, F.M.; Bothner-By, A.A.; Mishra, P.K.

    1986-01-01

    Our attempts to develop adrenocorticotropic hormone (ACTH) analogues that can be employed for ACTH receptor identification and isolation began with the synthesis of ACTH fragments containing N epsilon-(dethiobiotinyl)lysine (dethiobiocytin) amide in position 25 to be used for affinity chromatographic purification of hormone-receptor complexes on Sepharose-immobilized avidin resins. Because labeling ACTH or ACTH fragments by conventional iodination techniques destroys biological activity due to oxidation of Met4 and incorporation of iodine into Tyr2, we have prepared [Phe2,Nle4]ACTH1-24, [Phe2,Nle4,biocytin25]ACTH1-25 amide, and [Phe2,Nle4,dethiobiocytin25]ACTH1-25 amide by conventional synthetic techniques. The HPLC profiles and amino acid analyses of the final products indicate that the materials are of a high degree of purity. The amount of tertiary butylation of the Trp residue in the peptides was assessed by NMR and was found to be less than 0.5%. All three peptides are equipotent with the standard ACTH1-24 as concerns their ability to stimulate steroidogenesis and cAMP formation in bovine adrenal cortical cells. Iodination of [Phe2,Nle4]ACTH1-24, with iodogen as the oxidizing agent, has been accomplished without any detectable loss of biological activity. The mono- and diiodo derivatives of [Phe2,Nle4]ACTH1-24 have been prepared, separated by HPLC, and assayed for biological activity. Both peptides have the full capacity to stimulate steroidogenesis and cAMP production in bovine adrenal cortical cells

  3. A radioreceptor assay of luteinizing hormone-releasing hormone receptor and characterization of LHRH binding to pituitary receptors in Shao duck

    International Nuclear Information System (INIS)

    Yang Peixin; Wu Meiwen; Chen Ziyuan

    2000-01-01

    The properties of Shao duck pituitary luteinizing hormone-releasing hormone (LHRH) receptors were analyzed in pituitary membrane preparation and isolated pituitary cells prepared by enzymatic dispersion with collagenase and trypsin, by using a super-agonist analog of (D-Lys 6 ) LHRH. High binding of 125 I-(D-Lys 6 ) LHRH to 10 6 cultured cells of Shao duck was observed after a 90 minute incubation at 4 degree C, while binding was significantly reduced after a 24h incubation. Binding of the radioligand was a function of tissue concentration of Shao duck pituitary membrane preparation, with a positive correlation over the range of 1-2 pituitary per-tube. Specific binding for 125 I-(D-Lys 6 ) LHRH increased with the increase in the amount of 125 I-(D-Lys 6 ) LHRH. The Scatchard analysis of data revealed a linear relationship between the amount of specific binding and the ratio of specific binding to free 1 '2 5 I(D-Lys 6 )LHRH, indicating a single class of high affinity sites. Equilibrium dissociation constant (Kd) was 0.34 nM in pituitary membrane preparation and 0.43 nM in isolated pituitary cells. Both Kd values were near and the maximum binding capacity (B max ) was great in isolated cells, suggesting no significant loss of the LHRH receptor population caused by the enzymatic procedure employed for cell dispersion in the present study. Addition of 9D-Lys 6 ) LHRH displaced bound 125 I-(D-Lys 6 ) LHRH. These results demonstrated the presence and provided characterization of LHRH receptors in Shao duck pituitary

  4. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Directory of Open Access Journals (Sweden)

    Cléciton Braga Tavares

    Full Text Available Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  5. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    Science.gov (United States)

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  6. Effects of a high-fiber, low-fat diet intervention on serum concentrations of reproductive steroid hormones in women with a history of breast cancer.

    Science.gov (United States)

    Rock, Cheryl L; Flatt, Shirley W; Thomson, Cynthia A; Stefanick, Marcia L; Newman, Vicky A; Jones, Lovell A; Natarajan, Loki; Ritenbaugh, Cheryl; Hollenbach, Kathryn A; Pierce, John P; Chang, R Jeffrey

    2004-06-15

    Diet intervention trials are testing whether postdiagnosis dietary modification can influence breast cancer recurrence and survival. One possible mechanism is an effect on reproductive steroid hormones. Serum reproductive steroid hormones were measured at enrollment and 1 year in 291 women with a history of breast cancer who were enrolled onto a randomized, controlled diet intervention trial. Dietary goals for the intervention group were increased fiber, vegetable, and fruit intakes and reduced fat intake. Estradiol, bioavailable estradiol, estrone, estrone sulfate, androstenedione, testosterone, dehydroepiandrosterone sulfate, follicle-stimulating hormone, and sex hormone-binding globulin were measured. The intervention (but not the comparison) group reported a significantly lower intake of energy from fat (21% v 28%), and higher intake of fiber (29 g/d v 22 g/d), at 1-year follow-up (P <.001). Significant weight loss did not occur in either group. A significant difference in the change in bioavailable estradiol concentration from baseline to 1 year in the intervention (-13 pmol/L) versus the comparison (+3 pmol/L) group was observed (P <.05). Change in fiber (but not fat) intake was significantly and independently related to change in serum bioavailable estradiol (P <.01) and total estradiol (P <.05) concentrations. Results from this study indicate that a high-fiber, low-fat diet intervention is associated with reduced serum bioavailable estradiol concentration in women diagnosed with breast cancer, the majority of whom did not exhibit weight loss. Increased fiber intake was independently related to the reduction in serum estradiol concentration.

  7. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  8. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M.; Park, Sang-Youl; Weiner, Joshua J.; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C.; Jensen, Davin R.; Yong, Eu-Leong; Volkman, Brian F.; Cutler, Sean R.; Zhu, Jian-Kang; Xu, H. Eric

    2009-01-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  9. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression.

    LENUS (Irish Health Repository)

    Mackle, T

    2008-12-01

    Recent research has indicated that sphingosine 1-phosphate plays a role in allergy. This study examined the effect of allergen challenge on the expression of sphingosine 1-phosphate receptors on the eosinophils of allergic rhinitis patients, and the effect of steroid treatment on this expression.

  10. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  11. Steroid hormones and aggression in female Galápagos marine iguanas.

    Science.gov (United States)

    Rubenstein, Dustin R; Wikelski, Martin

    2005-09-01

    We studied steroid hormone patterns and aggression during breeding in female Galápagos marine iguanas (Amblyrhynchus cristatus). Females display vigorously towards courting males after copulating (female-male aggression), as well as fight for and defend nest sites against other females (female-female aggression). To understand the neuroendocrine basis of this aggressive behavior, we examined changes in testosterone (T), estradiol (E2), corticosterone (CORT), and progesterone (P4) during the mating and nesting periods, and then measured levels in nesting females captured during aggressive interactions. Testosterone reached maximal levels during the mating stage when female-male aggression was most common, and increased slightly, but significantly, during the nesting stage when female-female aggression was most common. However, fighting females had significantly lower T, but higher E2 and P4, than non-fighting females. It remains unclear whether these changes in hormone levels during aggressive interactions are a cause or a consequence of a change in behavior. Our results support the "challenge hypothesis", but suggest that E2 and/or P4 may increase in response to aggressive challenges in females just as T does in males. Females may be rapidly aromatizing T to elevate circulating levels of E2 during aggressive interactions. This hypothesis could explain why non-fighting females had slightly elevated baseline T, but extremely low E2, during stages when aggressive interactions were most common. Although P4 increased rapidly during aggressive encounters, it is unclear whether it acts directly to affect behavior, or indirectly via conversion to E2. The rapid production and conversion of E2 and P4 may be an important mechanism underlying female aggression in vertebrates.

  12. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    Science.gov (United States)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB 1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB 1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB 1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of

  13. Optimization of a Pre-MEKC Separation SPE Procedure for Steroid Molecules in Human Urine Samples

    Directory of Open Access Journals (Sweden)

    Ilona Olędzka

    2013-11-01

    Full Text Available Many steroid hormones can be considered as potential biomarkers and their determination in body fluids can create opportunities for the rapid diagnosis of many diseases and disorders of the human body. Most existing methods for the determination of steroids are usually time- and labor-consuming and quite costly. Therefore, the aim of analytical laboratories is to develop a new, relatively low-cost and rapid implementation methodology for their determination in biological samples. Due to the fact that there is little literature data on concentrations of steroid hormones in urine samples, we have made attempts at the electrophoretic determination of these compounds. For this purpose, an extraction procedure for the optimized separation and simultaneous determination of seven steroid hormones in urine samples has been investigated. The isolation of analytes from biological samples was performed by liquid-liquid extraction (LLE with dichloromethane and compared to solid phase extraction (SPE with C18 and hydrophilic-lipophilic balance (HLB columns. To separate all the analytes a micellar electrokinetic capillary chromatography (MECK technique was employed. For full separation of all the analytes a running buffer (pH 9.2, composed of 10 mM sodium tetraborate decahydrate (borax, 50 mM sodium dodecyl sulfate (SDS, and 10% methanol was selected. The methodology developed in this work for the determination of steroid hormones meets all the requirements of analytical methods. The applicability of the method has been confirmed for the analysis of urine samples collected from volunteers—both men and women (students, amateur bodybuilders, using and not applying steroid doping. The data obtained during this work can be successfully used for further research on the determination of steroid hormones in urine samples.

  14. Sex Hormone Receptor Expression in the Human Vocal Fold Subunits.

    Science.gov (United States)

    Kirgezen, Tolga; Sunter, Ahmet Volkan; Yigit, Ozgur; Huq, Gulben Erdem

    2017-07-01

    The study aimed to evaluate the existence of sex hormone receptors in the subunits of vocal fold. This is a cadaver study. The androgen, estrogen, and progesterone receptors were examined in the epithelium (EP), superficial layer of the lamina propria (SLP), vocal ligament (VL), and macula flava (MF) of the vocal folds from 42 human cadavers (21 male, 21 female) by immunohistochemical methods. Their staining ratios were scored and statistically compared. The androgen receptor score was significantly higher for the MF than for the EP and SLP (P vocal fold, mostly in the MF and VLs. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Yunlei Li

    2016-12-01

    Full Text Available Pediatric acute lymphoblastic leukemia (ALL is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment.We performed whole genome sequencing on paired pre-treatment (diagnostic and post-treatment (remission samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146 of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX. Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild

  16. Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns: Consequences for depression models.

    Science.gov (United States)

    Guo, Lei; Chen, Yi-Xi; Hu, Yu-Ting; Wu, Xue-Yan; He, Yang; Wu, Juan-Li; Huang, Man-Li; Mason, Matthew; Bao, Ai-Min

    2018-05-21

    Alterations in peripheral sex hormones may play an important role in sex differences in terms of stress responses and mood disorders. It is not yet known whether and how stress-related brain systems and brain sex steroid levels fluctuate in relation to changes in peripheral sex hormone levels, or whether the different sexes show different patterns. We aimed to investigate systematically, in male and female rats, the effect of decreased circulating sex hormone levels following gonadectomy on acute and chronic stress responses, manifested as changes in plasma and hypothalamic sex steroids and hypothalamic stress-related molecules. Experiment (Exp)-1: Rats (14 males, 14 females) were gonadectomized or sham-operated (intact); Exp-2: gonadectomized and intact rats (28 males, 28 females) were exposed to acute foot shock or no stressor; and Exp-3: gonadectomized and intact rats (32 males, 32 females) were exposed to chronic unpredictable mild stress (CUMS) or no stressor. For all rats, plasma and hypothalamic testosterone (T), estradiol (E2), and the expression of stress-related molecules were determined, including corticotropin-releasing hormone, vasopressin, oxytocin, aromatase, and the receptors for estrogens, androgens, glucocorticoids, and mineralocorticoids. Surprisingly, no significant correlation was observed in terms of plasma sex hormones, brain sex steroids, and hypothalamic stress-related molecule mRNAs (p > 0.113) in intact or gonadectomized, male or female, rats. Male and female rats, either intact or gonadectomized and exposed to acute or chronic stress, showed different patterns of stress-related molecule changes. Diminished peripheral sex hormone levels lead to different peripheral and central patterns of change in the stress response systems in male and female rats. This has implications for the choice of models for the study of the different types of mood disorders which also show sex differences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Pharmacologic management of bone-related complications and bone metastases in postmenopausal women with hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Yardley DA

    2016-05-01

    Full Text Available Denise A Yardley1,2 1Sarah Cannon Research Institute, Nashville, TN, USA; 2Tennessee Oncology, Nashville, TN, USA Abstract: There is a high risk for bone loss and skeletal-related events, including bone metastases, in postmenopausal women with hormone receptor-positive breast cancer. Both the disease itself and its therapeutic treatments can negatively impact bone, resulting in decreases in bone mineral density and increases in bone loss. These negative effects on the bone can significantly impact morbidity and mortality. Effective management and minimization of bone-related complications in postmenopausal women with hormone receptor-positive breast cancer remain essential. This review discusses the current understanding of molecular and biological mechanisms involved in bone turnover and metastases, increased risk for bone-related complications from breast cancer and breast cancer therapy, and current and emerging treatment strategies for managing bone metastases and bone turnover in postmenopausal women with hormone receptor-positive breast cancer. Keywords: breast cancer, bone metastases, hormone receptor-positive, bone-related complications, interventions, management and management strategies, estrogen receptor-positive

  18. Differential protein expression profile in the hypothalamic GT1-7 cell line after exposure to anabolic androgenic steroids.

    Directory of Open Access Journals (Sweden)

    Freddyson J Martínez-Rivera

    Full Text Available The abuse of anabolic androgenic steroids (AAS has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH. In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 μM. These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.

  19. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni; Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin; Jiang, Tao

    2006-01-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  20. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  1. Defective distal regulatory element at the 5' upstream of rat prolactin gene of steroid-nonresponsive GH-subclone.

    Science.gov (United States)

    Kumar, V; Wong, D T; Pasion, S G; Biswas, D K

    1987-12-08

    The prolactin-nonproducing (PRL-) GH cell strains (rat pituitary tumor cells in culture). GH12C1 and F1BGH12C1, do not respond to steroid hormones estradiol or hydrocortisone (HC). However, the stimulatory effect of estradiol and the inhibitory effect of hydrocortisone on prolactin synthesis can be demonstrated in the prolactin-producing GH cell strain, GH4C1. In this investigation we have examined the 5' end flanking region of rat prolactin (rat PRL) gene of steroid-responsive, GH4C1 cells to identify the positive and negative regulatory elements and to verify the status of these elements in steroid-nonresponsive F1BGH12C1 cells. Results presented in this report demonstrate that the basel level expression of the co-transferred Neo gene (neomycin phosphoribosyl transferase) is modulated by the distal upstream regulatory elements of rat PRL gene in response to steroid hormones. The expression of adjacent Neo gene is inhibited by dexamethasone and is stimulated by estradiol in transfectants carrying distal regulatory elements (SRE) of steroid-responsive cells. These responses are not observed in transfectants with the rat PRL upstream sequences derived from steroid-nonresponsive cells. The basal level expression of the host cell alpha-2 tubulin gene is not affected by dexamethasone. We report here the identification of the distal steroid regulatory element (SRE) located between 3.8 and 7.8 kb upstream of the transcription initiation site of rat PRL gene. Both the positive and the negative effects of steroid hormones can be identified within this upstream sequence. This distal SRE appears to be nonfunctional in steroid-nonresponsive cells. Though the proximal SRE is functional, the defect in the distal SRE makes the GH substrain nonresponsive to steroid hormones. These results suggest that both the proximal and the distal SREs are essential for the mediation of action of steroid hormones in GH cells.

  2. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  3. Sex hormone imbalances and adipose tissue dysfunction impacting on metabolic syndrome; a paradigm for the discovery of novel adipokines.

    Science.gov (United States)

    Zhang, Hui; Sairam, M Ram

    2014-02-01

    Sex hormone imbalance is causally related with visceral adipose tissue (AT) dysfunction and visceral obesity - an etiological component of metabolic syndrome (MetS), associated with high risk of both cardiovascular disease (CVD) and type 2 diabetes. In general, premenopausal women appear to be protected from CVD and the dramatic decline in sex steroid hormone occurring during menopausal transitions or other sex-related disorders influence the regional distribution, function, and metabolism of AT and increase the risk of CVD. Visceral AT dysfunction, manifesting as abnormality of fatty acid metabolism, increased oxidative stress, endothelial dysfunction, and excessive production of adipokines have been proposed in the pathogenesis of MetS. However, direct evidence of molecular mechanisms of depot-specific AT alterations, and dysfunction causally related to MetS is limited in studies on postmenopausal women due to difficulty in collecting discrete AT specimens at different ages and repeated sampling from different fat depots. This can be overcome using animal models that can mimic the cluster of pathology leading to MetS and help establish the molecular basis of links between loss of gonadal function on various AT depots and their contribution to MetS. Our group used sex hormone imbalance FSH receptor knock out (FORKO) female mice to recapitulate different aspects of the MetS and addressed the mechanism of visceral obesity related to MetS and discover two novel sex steroid hormone-regulated deep mesenteric estrogen-dependent adipose (MEDAs) genes. Taken together, such recent studies raise hopes for pharmacologic intervention strategies targeting sex steroid hormone signaling in AT to provide protection against AT dysfunction.

  4. The relation among steroid hormone levels, lipid profile and menopausal symptom severity.

    Science.gov (United States)

    Kaya, Cihan; Cengiz, Hüseyin; Yeşil, Ali; Ekin, Murat; Yaşar, Levent

    2017-12-01

    Many postmenopausal women experience hot flashes, night sweats, non-specific emotional and psychological distresses. Our aim was to investigate the relation among steroid hormone levels, lipid profile and menopausal symptom severity using the menopause rating scale (MRS). A cross-sectional study was performed at our outpatient clinic with natural postmenopausal women. A total of 444 women were included in this study. The basic characteristics of the study population, such as age, gravidity, parity, time to menopause onset and body mass index (BMI) were recorded. Venous blood samples were collected from subjects after overnight fasting. The levels of high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, total cholesterol, triglyceride (TG), fasting plasma glucose, C-reactive protein, thyroid-stimulating hormone (TSH), cortisol, estradiol (E2), progesterone, testosterone and dehydroepiandrostenedione sulfate (DHEA-S) were analyzed. The MRS questionnaire validated for the Turkish population was used to assess the menopausal symptoms. There was a statistically significant difference between mild and severe total symptom scores for TG, and elevated TG levels were observed in the severe group (p = 0.04). Elevated testosterone levels were observed with severe psychological symptom and total symptom scores. There were significant differences in progesterone level in psychological, urogenital, and total scores and lower levels were seen in severe symptom groups. There was a significant negative correlation between urogenital symptom scores and progesterone levels (p symptom and total menopausal symptom scores. A decrease in progesterone levels was related to high psychological, urogenital and total menopausal symptom scores. Elevated TG levels were also related to the total severe symptom scores.

  5. Development of statistical and analytical techniques for use in national quality control schemes for steroid hormones

    International Nuclear Information System (INIS)

    Wilson, D.W.; Gaskell, S.J.; Fahmy, D.R.; Joyce, B.G.; Groom, G.V.; Griffiths, K.; Kemp, K.W.; Nix, A.B.J.; Rowlands, R.J.

    1979-01-01

    Adopting the rationale that the improvement of intra-laboratory performance of immunometric assays will enable the assessment of national QC schemes to become more meaningful, the group of participating laboratories has developed statistical and analytical techniques for the improvement of accuracy, precision and monitoring of error for the determination of steroid hormones. These developments are now described and their relevance to NQC schemes discussed. Attention has been focussed on some of the factors necessary for improving standards of quality in immunometric assays and their relevance to laboratories participating in NQC schemes as described. These have included the 'accuracy', precision and robustness of assay procedures as well as improved methods for internal quality control. (Auth.)

  6. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  7. In vivo imaging of brain estrogen receptors in rats : a 16α-18F-fluoro-17β-estradiol PET study

    NARCIS (Netherlands)

    Khayum, Mohammed A; de Vries, Erik F J; Glaudemans, Andor W J M; Dierckx, Rudi A J O; Doorduin, Janine

    UNLABELLED: The steroid hormone estrogen is important for brain functioning and is thought to be involved in brain diseases, such as Alzheimer disease and depression. The action of estrogen is mediated by estrogen receptors (ERs). To understand the role of estrogens in brain functioning, it is

  8. Effects of night shift on the cognitive load of physicians and urinary steroid hormone profiles - a randomized crossover trial.

    Science.gov (United States)

    Osterode, Wolf; Schranz, Sandra; Jordakieva, Galateja

    2018-03-21

    Mental and physical stress is common in physicians during night shifts. Neurocognitive effects of sleep deprivation as well as alterations in hormonal and metabolic parameters have previously been described. The aim of this crossover study was to evaluate the effects of night-shift work with partial sleep deprivation on steroid hormone excretion and possible associations with mood, sleep characteristics and cognitive functions in physicians. In total, 34 physicians (mean age 42 ± 8.5 years, 76.5% male) from different departments of the General Hospital of Vienna, Austria, were randomly assigned to two conditions: a regular day shift (8 h on duty, condition 1) and a continuous day-night shift (24 h on duty, condition 2). In both conditions, physicians collected a 24 h urine sample for steroid hormone concentration analysis and further completed psychological tests, including the sleep questionnaire (SF-A), the questionnaire for mental state (MDBF) and the computer-assisted visual memory test (FVW) before and at the end of their shifts, respectively. Although mean sleep deprivation during night shift was relatively small (~1.5 h) the impairment in participants' mental state was high in all three dimensions (mood, vigilance and agitation, p ≤ 0.001). Sleep quality (SQ), feeling of being recovered after sleep and mental balance decreased (p ≤ 0.001), whereas mental exhaustion increased (p night shift (p = 0.011), however, mostly in incorrectly identified items and not in correctly identified ones (FVW). SQ and false identified items were negatively correlated, whereas SQ and time of reaction were positively associated. It is assumed that after night shift, a tendency exists to make faster wrong decisions. SQ did not influence correctly identified items in FVW. In contrast to previous investigations, we found that only excretion rates for pregnanetriol and androsterone/etiocholanolone ratios (p night shift. A considerable stimulation of the

  9. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids. Published by Elsevier Inc.

  10. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  11. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    Science.gov (United States)

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  12. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  13. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    OpenAIRE

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process...

  14. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome.

    Science.gov (United States)

    Deng, Yuying; Zhang, Yifei; Li, Shengxian; Zhou, Wenzhong; Ye, Lei; Wang, Lihua; Tao, Tao; Gu, Junjie; Yang, Zuwei; Zhao, Dandan; Gu, Weiqiong; Hong, Jie; Ning, Guang; Liu, Wei; Wang, Weiqing

    2017-10-26

    The study explored differences in the steroidogenic pathway between obese and nonobese women with polycystic ovary syndrome (PCOS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1044 women with PCOS (including 350 lean, 312 overweight and 382 obese) and 366 control women without PCOS (including 203 lean, 32 overweight and 131 obese) were enrolled. The differences in steroid hormones were amplified in lean PCOS versus lean controls compared with obese PCOS versus obese controls. Compared with obese PCOS, lean PCOS demonstrated increased dehydroepiandrosterone sulfate (P = 0.015), 17-hydropregnenolone (P = 0.003), 17-hydroprogesterone (17-OHP) (P lean PCOS had increased activity of P450c17 (17-hydropregnenolone/pregnenolone, P  G (p. D184E) in lean PCOS compared with obese PCOS patients (P = 0.006). In conclusion, this study demonstrated for the first time that the adrenal-specific enzyme P450c21 showed decreased activity in lean PCOS patients, and that the adrenal androgen excess may play different roles in lean and obese PCOS patients, which represents as different enzyme activity in the steroidogenic pathway.

  15. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  16. Modulation of follistatin and myostatin propeptide by anabolic steroids and gender.

    Science.gov (United States)

    Mosler, S; Geisler, S; Hengevoss, J; Schiffer, T; Piechotta, M; Adler, M; Diel, P

    2013-07-01

    The purpose of this pilot study was to investigate the impact of training, anabolic steroids and endogenous hormones on myostatin-interacting proteins in order to identify manipulations of myostatin signalling. To identify whether analysis of the myostatin interacting proteins follistatin and myostatin propeptide is suitable to detect the abuse of anabolic steroids, their serum concentrations were monitored in untrained males, bodybuilders using anabolic steroids and natural bodybuilders. In addition, we analysed follistatin and myostatin propeptide serum proteins in females during menstrual cycle. Our results showed increased follistatin concentrations in response to anabolic steroids. Furthermore, variations of sex steroid levels during the menstrual cycle had no impact on the expression of follistatin and myostatin propetide. In addition, we identified gender differences in the basal expression of the investigated proteins. In general, follistatin and myostatin propeptide concentrations were relatively stable within the same individual both in males and females. In conclusion, the current findings provide an insight into gender differences in myostatin-interacting proteins and their regulation in response to anabolic steroids and endogenous hormones. Therefore our data provide new aspects for the development of doping prevention strategies. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    International Nuclear Information System (INIS)

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B.

    1991-01-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites

  18. Expression and role of gonadotropin-releasing hormone 2 and its receptor in mammals

    Science.gov (United States)

    Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in some mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, s...

  19. Oral contraceptives and neuroactive steroids.

    Science.gov (United States)

    Rapkin, Andrea J; Biggio, Giovanni; Concas, Alessandra

    2006-08-01

    A deregulation in the peripheral and brain concentrations of neuroactive steroids has been found in certain pathological conditions characterized by emotional or affective disturbances, including major depression and anxiety disorders. In this article we summarize data pertaining to the modulatory effects of oral contraceptive treatment on neuroactive steroids in women and rats. Given that the neuroactive steroids concentrations are reduced by oral contraceptives, together with the evidence that a subset of women taking oral contraceptives experience negative mood symptoms, we propose the use of this pharmacological treatment as a putative model to study the role of neuroactive steroids in the etiopathology of mood disorders. Moreover, since neuroactive steroids are potent modulators of GABA(A) receptor function and plasticity, the treatment with oral contraceptives might also represent a useful experimental model to further investigate the physiological role of these steroids in the modulation of GABAergic transmission.

  20. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    Science.gov (United States)

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  1. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain

    Directory of Open Access Journals (Sweden)

    Luiz H. A. Cavalcante-Silva

    2017-11-01

    Full Text Available Since the discovery of ouabain as a cardiotonic steroid hormone present in higher mammals, research about it has progressed rapidly and several of its physiological and pharmacological effects have been described. Ouabain can behave as a stress hormone and adrenal cortex is its main source. Direct effects of ouabain are originated due to the binding to its receptor, the Na+/K+-ATPase, on target cells. This interaction can promote Na+ transport blockade or even activation of signaling transduction pathways (e.g., EGFR/Src-Ras-ERK pathway activation, independent of ion transport. Besides the well-known effect of ouabain on the cardiovascular system and blood pressure control, compelling evidence indicates that ouabain regulates a number of immune functions. Inflammation is a tightly coordinated immunological function that is also affected by ouabain. Indeed, this hormone can modulate many inflammatory events such as cell migration, vascular permeability, and cytokine production. Moreover, ouabain also interferes on neuroinflammation. However, it is not clear how ouabain controls these events. In this brief review, we summarize the updates of ouabain effect on several aspects of peripheral and central inflammation, bringing new insights into ouabain functions on the immune system.

  2. PERCEPTION OF THE MOLTING HORMONE 20-HYDROXECDYSONE BY HOMARUS AMERICANUS: LOCALIZATION OF STEROID RECEPTORS AND EFFECT ON BEHAVIOR

    Science.gov (United States)

    There is growing evidence that hormones, when released from an animal into the environment, act as chemical signals to other organisms. There is also evidence to suggest that hormones are released by lobsters during sexual and agonistic encounters to signal conspecifics. The go...

  3. Cyclodextrin dimers as receptor molecules for steroid sensors

    NARCIS (Netherlands)

    de Jong, M.R.; Engbersen, Johannes F.J.; Huskens, Jurriaan; Reinhoudt, David

    2000-01-01

    The dansyl-modified dimer 9 complexes strongly with the steroidal bile salts. Relative to native -cyclodextrin, the binding of cholate (1 a) and deoxycholate (1 b) salts is especially enhanced. These steroids bind exclusively in a 1:1 fashion. For other bile salts (1 c-1 e) both 1:1 and 1:2

  4. Zonal variation in the distribution of an alpha 1-acid glycoprotein glycoform receptor in human adrenal cortex

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1999-01-01

    receptor was located in the cytoplasm of glomerulosa and outer fasciculata cells. The intensity of the reaction product decreased in the fasciculata, and no staining was seen in inner fasciculata and reticularis. Inhibition with the simple sugars, mannose and GlcNAc confirmed a lectin-like reaction...... specific receptor. The binding of alpha 1-acid glycoprotein glycoform B and alpha 1-acid glycoprotein glycoform C to the glycoform specific receptor is inhibited by the steroid hormones cortisone, aldosterone, estradiol and progesterone but not by testosterone. The pronounced changes in the distribution...

  5. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Il Yong Chung

    Full Text Available The aim of this study was to determine the relationship between the body mass index (BMI at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS and breast-cancer-specific survival (BCSS outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029, and BCSS (P = 0.013 in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48 and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99. In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19 and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44. Being underweight (BMI < 18.50 kg/m2 with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00-3.95 and BCSS (HR = 2.24, 95% CI = 1.12-4.47. There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer.

  6. Determination of ten steroid hormones in animal waste manure and agricultural soil using inverse and integrated clean-up pressurized liquid extraction and gas chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Martin; Krogh, Kristine Andersen; Halling-Sørensen, Bent

    2011-01-01

    ... Martin Hansen , Kristine A. Krogh , Bent Halling ... in a 22 mL PLE cell : firstly by flushing the sample with heptane to remove unwanted matrix components (inverse- PLE , i- PLE ) and secondly, performing internal clean-up (ic- PLE ) and eluting the steroid hormones by attaching an ...

  7. Prenatal and childhood exposure to phthalate diesters and sex steroid hormones in 2-, 5-, 8-, and 11-year-old children: A pilot study of the Taiwan Maternal and Infant Cohort Study.

    Science.gov (United States)

    Wen, Hui-Ju; Sie, Lillian; Su, Pen-Hua; Chuang, Chia-Jui; Chen, Hsiao-Yen; Sun, Chien-Wen; Huang, Li-Hua; Hsiung, Chao Agnes; Julie Wang, Shu-Li

    2017-11-01

    Phthalate diesters are commonly used and have been well established as environmental endocrine disruptors. However, few studies have examined their effects on sex steroid hormones in children. We followed children over time to examine the association between pre- and post-natal phthalate exposure and sex steroid hormone levels at 2, 5, 8, and 11 years of age. We recruited 430 pregnant women from central Taiwan from 2000 to 2001 and assessed their children at birth, 2, 5, 8, and 11 years of age. We studies children with at least one measurement for both phthalate and hormone levels during each any of the follow-up time point (n = 193). Estradiol, free testosterone, testosterone, and progesterone were measured from venous blood. Three monoesters of di-2-ethylhexyl phthalate (DEHP), mono-benzyl phthalate, mono-n-butyl phthalate, mono-ethyl phthalate, and mono-methyl phthalate were measured in maternal urine collected during the 3rd trimester and child urine collected at each follow-up point. The sum of mono-2-ethylhexyl phthalate (∑MEHP) was calculated by summing the concentrations of the three DEHP monoesters. Generalized estimating equation regression analysis with repeated measures was used to estimate associations between phthalate metabolites and hormone levels. After adjustment for potential confounders, maternal ∑MEHP level was associated with decreased levels of progesterone in girls (β = -0.309 p = 0.001). The child ∑MEHP concentration was associated with decreased levels of progesterone for girls (β = -0.194, p = 0.003) and with decreased levels of free testosterone for boys (β = -0.124, p = 0.004). Early-life DEHP exposure may alter sex steroid hormones of children over time, which may pose potential reproductive health risks. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Estrogen receptors in the temporomandibular joint of the baboon (Papio cynocephalus): an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Aufdemorte, T.B.; Van Sickels, J.E.; Dolwick, M.F.; Sheridan, P.J.; Holt, G.R.; Aragon, S.B.; Gates, G.A.

    1986-04-01

    Using an autoradiographic method, the temporomandibular joint (TMJ) complex of five aged female baboons was studied for the presence of receptors for estradiol-17 beta. The study was performed in an effort to learn more of the pathophysiology of this joint and in an attempt to provide a scientific basis to explain the reported preponderance of women who seek and undergo treatment for signs and symptoms referable to the TMJ. This experiment revealed that the TMJ complex contains numerous cells with receptors for estrogen, particularly the articular surface of the condyle, articular disk, and capsule. Muscles of mastication contained relatively fewer receptors. As a result, one may postulate a role for the sex steroid hormones in the maintenance, repair, and/or pathogenesis of the TMJ. Additional studies are necessary to fully determine the significance of hormone receptors in this site and any correlation between diseases of the TMJ and the endocrine status of affected patients.

  9. Estrogen receptors in the temporomandibular joint of the baboon (Papio cynocephalus): an autoradiographic study

    International Nuclear Information System (INIS)

    Aufdemorte, T.B.; Van Sickels, J.E.; Dolwick, M.F.; Sheridan, P.J.; Holt, G.R.; Aragon, S.B.; Gates, G.A.

    1986-01-01

    Using an autoradiographic method, the temporomandibular joint (TMJ) complex of five aged female baboons was studied for the presence of receptors for estradiol-17 beta. The study was performed in an effort to learn more of the pathophysiology of this joint and in an attempt to provide a scientific basis to explain the reported preponderance of women who seek and undergo treatment for signs and symptoms referable to the TMJ. This experiment revealed that the TMJ complex contains numerous cells with receptors for estrogen, particularly the articular surface of the condyle, articular disk, and capsule. Muscles of mastication contained relatively fewer receptors. As a result, one may postulate a role for the sex steroid hormones in the maintenance, repair, and/or pathogenesis of the TMJ. Additional studies are necessary to fully determine the significance of hormone receptors in this site and any correlation between diseases of the TMJ and the endocrine status of affected patients

  10. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    Science.gov (United States)

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  12. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  13. Quantitative autoradiography of [3H]corticosterone receptors in rat brain

    International Nuclear Information System (INIS)

    Sapolsky, R.M.; McEwen, B.S.; Rainbow, T.C.

    1983-01-01

    The authors have quantified corticosterone receptors in rat brain by optical density measurements of tritium-film autoradiograms. Rats were injected i.v. with 500 μCi [ 3 H]corticosterone to label brain receptors. Frozen sections of brain were cut with a cryostat and exposed for 2 months against tritium-sensitive sheet film (LKB Ultrofilm). Tritium standards were used to convert optical density readings into molar concentrations of receptor. High levels of corticosterone receptors were present throughout the pyramidal and granule cell layers of the hippocampus. Moderate levels of receptors were found in the neuropil of the hippocampus, the lateral septum, the cortical nucleus of the amygdala and the entorhinal cortex. All other brain regions had low levels of receptors. These results extend previous non-quantitative autoradigraphic studies of corticosterone receptors and provide a general procedure for the quantitative autoradiography of steroid hormone receptors in brain tissue. (Auth.)

  14. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  15. Sex Steroid Hormone Gene Variants, Pesticide Use and the Risk of Prostate Cancer: A Nested Case-Control Study within the Agricultural Health Study

    Directory of Open Access Journals (Sweden)

    Carol H Christensen

    2016-11-01

    Full Text Available Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation and the risk of hormone-related cancers. Here we evaluated whether single nucleotide polymorphisms (SNPs involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide–SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism and regulation (N=1100, as well as SNPs associated with circulating sex steroid concentrations as identified by genome-wide association studies (N=17. Unconditional logistic regression was used to estimate odds ratios (ORs and 95% confidence intervals (CIs. Multiplicative SNP–pesticide interactions were calculated using a likelihood ratio test. We translated p-values for interaction into q-values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 (p-interaction=4.0x10-5; q-value=0.03, such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR=0.62 95% CI: 0.41, 0.93, and high use of dicamba (OR=0.44, 95% CI: 0.29, 0.68, compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both

  16. Novel, non-steroidal, selective androgen receptor modulators (SARMs) with anabolic activity in bone and muscle and improved safety profile.

    Science.gov (United States)

    Rosen, J; Negro-Vilar, A

    2002-03-01

    A novel approach to the treatment of osteoporosis in men, and possibly women, is the development of selective androgen receptor modulators (SARMs) that can stimulate formation of new bone with substantially diminished proliferative activity in the prostate, as well as reduced virilizing activity in women. Over the last several years, we have developed a program to discover and develop novel, non-steroidal, orally-active selective androgen receptor modulators (SARMs) that provide improved therapeutic benefits and reduce risk and side effects. In recent studies, we have used a skeletally mature orchiectomized (ORX) male rat as an animal model of male hypogonadism for assessing the efficacy of LGD2226, a nonsteroidal, non-aromatizable, and non-5alpha-reducible SARM. We assessed the activity of LGD2226 on bone turnover, bone mass and bone strength, and also evaluated the effects exerted on classic androgen-dependent targets, such as prostate, seminal vesicles and muscle. A substantial loss of bone density was observed in ORX animals, and this loss was prevented by SARMs, as well as standard androgens. Biochemical markers of bone turnover revealed an early increase of bone resorption in androgen-deficient rats that was repressed in ORX animals treated with the oral SARM, LGD2226, during a 4-month treatment period. Differences in architectural properties and bone strength were detected by histomorphometric and mechanical analyses, demonstrating beneficial effects of LGD2226 on bone quality in androgen-deficient rats. Histomorphometric analysis of cortical bone revealed distinct anabolic activity of LGD2226 in periosteal bone. LGD2226 was able to prevent bone loss and maintain bone quality in ORX rats by stimulating bone formation, while also inhibiting bone turnover. LGD2226 also exerted anabolic activity on the levator ani muscle. Taken together, these results suggest that orally-active, non-steroidal SARMs may be useful therapeutics for both muscle and bone in elderly

  17. The influence of sex steroids on structural brain maturation in adolescence

    NARCIS (Netherlands)

    Koolschijn, P.C.M.P.; Peper, J.S.; Crone, E.A.

    2014-01-01

    Puberty reflects a period of hormonal changes, physical maturation and structural brain reorganization. However, little attention has been paid to what extent sex steroids and pituitary hormones are associated with the refinement of brain maturation across adolescent development. Here we used

  18. Shaping policy: the Canadian Cancer Society and the Hormone Receptor Testing Inquiry.

    Science.gov (United States)

    Mathews, M; Newbury, J; Housser, E M

    2011-08-01

    In 2007, the Government of Newfoundland and Labrador established the Commission of Inquiry on Hormone Receptor Testing to examine problems with estrogen and progesterone hormone receptor tests conducted in the province between 1997 and 2005. Using the Inquiry as a case study, we examine the knowledge transfer activities used by the Canadian Cancer Society - Newfoundland and Labrador Division (CCS-NL) to shape policy and improve cancer control in the province. CCS-NL established a panel to advise its legal counsel and asked academic researchers to prepare papers to submit to the Commission. CCS-NL also interviewed patients to better inform its legal arguments, used its province-wide networks to raise awareness of the Inquiry, and provided a toll-free number that people could call. It also provided basic information, resources, and contact information for people who were affected by the flawed hormone receptor tests. The effectiveness of CCS-NL's activities is reflected by the inclusion of its key messages in the Commission's recommendations, and the investment in cancer care following the Inquiry. The success of the CCS-NL knowledge transfer efforts stemmed from its reputation as an advocate for cancer patients and its long-standing relationship with researchers, especially at the local level. The case illustrates real-world application of knowledge transfer practices in the development of public policy, and describes how community-based non-government organizations can identify and draw attention to important issues that otherwise might not have been addressed.

  19. Sex differences, endogenous sex-hormone hormones, sex-hormone binding globulin, and exogenous disruptors in diabetes and related metabolic outcomes.

    Science.gov (United States)

    Liu, Simin; Sun, Qi

    2016-12-19

    In assessing clinical and pathophysiological development of type 2 diabetes (T2D), the critical role of the sex steroids axis is underappreciated, particularly concerning the sex-specific relationships with many relevant cardiometabolic outcomes. In this issue of the Journal of Diabetes, we provide a comprehensive overview of these significant associations of germline variants in the genes governing the sex steroid pathways, plasma levels of steroid hormones, and sex hormone-binding globulin (SHBG) with T2D risk that have been observed in many clinical and high-quality large prospective cohorts of men and women across ethnic populations. Together, this body of evidence indicates that sex steroids and SHBG should be routinely incorporated into clinical characterization of T2D patients, particularly in screening prediabetic patients, such as those with metabolic syndrome, using plasma levels of SHBG. Given that several germline mutations in the SHBG gene have also been directly related to both plasma concentrations of SHBG and clinical manifestation of T2D, targeting signals in the sex steroid axis, particularly SHBG, may have significant utility in the prediction and treatment of T2D. Further, many of the environmental endocrine disrupting chemicals may exert their potential adverse effects on cardiometabolic outcomes via either estrogenic or androgenic signaling pathways, highlighting the importance of using the sex steroids and SHBG as important biochemical markers in both clinical and population studies in studying sex-specific mechanisms in the pathogenesis of T2D and its complications, as well as the need to equitably allocate resources in studying both men and women. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  20. Steroidogenesis and early response gene expression in MA-10 Leydig tumor cells following heterologous receptor down-regulation and cellular desensitization

    Directory of Open Access Journals (Sweden)

    Tsuey-Ming Chen

    2016-03-01

    Full Text Available The Leydig tumor cell line, MA-10, expresses the luteinizing hormone receptor, a G protein-coupled receptor that, when activated with luteinizing hormone or chorionic gonadotropin (CG, stimulates cAMP production and subsequent steroidogenesis, notably progesterone. These cells also respond to epidermal growth factor (EGF and phorbol esters with increased steroid biosynthesis. In order to probe the intracellular pathways along with heterologous receptor down-regulation and cellular desensitization, cells were preincubated with EGF or phorbol esters and then challenged with CG, EGF, dibutryl-cyclic AMP, and a phorbol ester. Relative receptor numbers, steroid biosynthesis, and expression of the early response genes, JUNB and c-FOS, were measured. It was found that in all cases but one receptor down-regulation and decreased progesterone production were closely coupled under the conditions used; the exception involved preincubation of the cells with EGF followed by addition of CG where the CG-mediated stimulation of steroidogenesis was considerably lower than the level of receptor down-regulation. In a number of instances JUNB and c-FOS expression paralleled the decreases in receptor number and progesterone production, while in some cases these early response genes were affected little if at all by the changes in receptor number. This finding may indicate that even low levels of activated signaling kinases, e.g. protein kinase A, protein kinase C, or receptor tyrosine kinase, may suffice to yield good expression of JUNB and c-FOS, or it may suggest alternative pathways for regulating expression of these two early response genes.

  1. Selective thyroid hormone receptor modulators

    Directory of Open Access Journals (Sweden)

    Girish Raparti

    2013-01-01

    Full Text Available Thyroid hormone (TH is known to have many beneficial effects on vital organs, but its extrapolation to be used therapeutically has been restricted by the fact that it does have concurrent adverse effects. Recent finding of various thyroid hormone receptors (TR isoforms and their differential pattern of tissue distribution has regained interest in possible use of TH analogues in therapeutics. These findings were followed by search of compounds with isoform-specific or tissue-specific action on TR. Studying the structure-activity relationship of TR led to the development of compounds like GC1 and KB141, which preferentially act on the β1 isoform of TR. More recently, eprotirome was developed and has been studied in humans. It has shown to be effective in dyslipidemia by the lipid-lowering action of TH in the liver and also in obesity. Another compound, 3,5-diiodothyropropionic acid (DITPA, binds to both α- and β-type TRs with relatively low affinity and has been shown to be effective in heart failure (HF. In postinfarction models of HF and in a pilot clinical study, DITPA increased cardiac performance without affecting the heart rate. TR antagonists like NH3 can be used in thyrotoxicosis and cardiac arrhythmias. However, further larger clinical trials on some of these promising compounds and development of newer compounds with increased selectivity is required to achieve higher precision of action and avoid adverse effects seen with TH.

  2. Breast cancer with Her-22 hormone receptor-positive neu: primary systemic treatment, sentinel node biopsy and hormone

    International Nuclear Information System (INIS)

    Lopez C, Nayara; Sanchez M, Jose Ignacio; De Santiago G, Javier

    2013-01-01

    Neoadjuvant chemotherapy is an interesting option in the therapy of some breast cancer cases. Cases in which the timing for sentinel lymph node biopsy is controversial. Co-expression of estrogen receptors and Her2/neu (cc-erbB-2) in breast cancer may imply hormone resistance, especially to tamoxifen. We present a clinic case with co-expression of estrogen receptors and Her2/neu that was treated with neoadjuvant chemotherapy and previous sentinel lymph node biopsy followed by breast tumorectomy with axillar lympha- denectomy, radiotherapy and hormonotherapy with letrozol, geserelina and trastuzumab. A good treatment response as found

  3. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  4. Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction

    DEFF Research Database (Denmark)

    Goujon, L; Allevato, G; Simonin, G

    1994-01-01

    To study structure-function relationships of the growth hormone (GH) receptor (GHR), two functional systems have been developed. CHO cells were transiently cotransfected with the cDNA encoding the full-length rat GHR and with a construct consisting of the 5' flanking region of one of two GH...

  5. Age related changes in steroid receptors on cultured lung fibroblasts

    International Nuclear Information System (INIS)

    Barile, F.A.; Bienkowski, R.S.

    1986-01-01

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with ( 3 H)-dexamethasone (( 3 H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol ( 3 H)Dex/10 6 cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms

  6. Radiosequence analysis of the human progestin receptor charged with [3H]promegestone. A comparison with the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Stroemstedt, P.E.B.; Berkenstam, A.; Joernvall, H.G.; Gustafsson, J.A.; Carlstedt-Duke, J.

    1990-01-01

    Partially purified preparations of the human progestin receptor and the human and rat glucocorticoid receptor proteins were covalently charged with the synthetic progestin, [ 3 H]promegestone, by photoaffinity labeling. After labeling, the denaturated protein was cleaved and the mixture of peptides subjected to radiosequence analysis as previously described for the rat glucocorticoid receptor protein. The radioactivity labels identified, corresponded to Met-759 and Met-909 after photoaffinity labeling of the human progestin receptor, and Met-622 and Cys-754 after labeling of the rat glucocorticoid receptor. The residues labeled in the glucocorticoid receptor are the same as those previously reported to bind triamcinolone actonide. The corresponding residues were also labeled in the human glucocorticoid receptor. Met-759 of the progestin receptor and Met-622 of the rat glucocorticoid receptor are positioned within a segment with an overall high degree of sequence similarity and are equivalent. However, Met-909 (progestin receptor) and Cys-754 (glucocorticoid receptor) do not occur within equivalent segments of the two proteins. Thus, although the two classes of steroid hormone share a common structure within the A-ring, there are subtle differences in their interaction with the two separate receptor proteins

  7. Male Snakes Allocate Time and Energy according to Individual Energetic Status: Body Condition, Steroid Hormones, and Reproductive Behavior in Timber Rattlesnakes, Crotalus horridus.

    Science.gov (United States)

    Lind, Craig M; Beaupre, Steven J

    2015-01-01

    Life-history theory predicts that organisms will hedge current reproductive investment against potential costs in terms of survivorship and future fecundity. However, little is known regarding the endocrine mechanisms underlying bet-hedging strategies in free-ranging male vertebrates. We examined the relationships among individual energetic status, steroid hormones, mate search, and reproductive behavior in free-ranging male timber rattlesnakes. Snakes were monitored over four active seasons in order to test two hypotheses: (1) males adjust the amount of time and energy allocated toward reproduction according to the level of individual energy stores, and (2) observed condition-dependent reproductive allocation is associated with circulating concentrations of steroid hormones (testosterone and corticosterone) thought to regulate reproductive behaviors in vertebrates. A positive relationship between body condition and testosterone was observed in both the field and the laboratory. Male mate search effort was positively correlated with both body condition and testosterone. Body condition and testosterone concentrations were negatively related to time allocated toward foraging during the breeding season. A strong effect of year was observed in the analysis of testosterone and search effort, suggesting that multiple environmental factors impact hormone production and reproductive investment. Corticosterone was not related to any measured variable. Therefore, our results did not indicate a clear role of corticosterone in mediating observed relationships between energetic status and behavior. Observed relationships are consistent with the hypothesis that males allocate time and energy toward reproduction according to individual energetic status and that testosterone plays a role in mediating the trade-off between current reproductive investment and residual reproductive value.

  8. Nuclear Import and Export of the Thyroid Hormone Receptor.

    Science.gov (United States)

    Zhang, Jibo; Roggero, Vincent R; Allison, Lizabeth A

    2018-01-01

    The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome. © 2018 Elsevier Inc. All rights reserved.

  9. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    Science.gov (United States)

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  10. Molecular characterization of thyroid hormone receptors from the leopard gecko, and their differential expression in the skin.

    Science.gov (United States)

    Kanaho, Yoh-Ichiro; Endo, Daisuke; Park, Min Kyun

    2006-06-01

    Thyroid hormones (THs) play crucial roles in various developmental and physiological processes in vertebrates, including squamate reptiles. The effect of THs on shedding frequency is interesting in Squamata, since the effects on lizards are quite the reverse of those in snakes: injection of thyroxine increases shedding frequency in lizards, but decreases it in snakes. However, the mechanism underlying this differential effect remains unclear. To facilitate the investigation of the molecular mechanism of the physiological functions of THs in Squamata, their two specific receptor (TRalpha and beta) cDNAs, which are members of the nuclear hormone receptor superfamily, were cloned from a lizard, the leopard gecko, Eublepharis macularius. This is the first molecular cloning of thyroid hormone receptors (TRs) from reptiles. The deduced amino acid sequences showed high identity with those of other species, especially in the C and E/F domains, which are characteristic domains in nuclear hormone receptors. Expression analysis revealed that TRs were widely expressed in many tissues and organs, as in other animals. To analyze their role in the skin, temporal expression analysis was performed by RT-PCR, revealing that the two TRs had opposing expression patterns: TRalpha was expressed more strongly after than before skin shedding, whereas TRbeta was expressed more strongly before than after skin shedding. This provides good evidence that THs play important roles in the skin, and that the roles of their two receptor isoforms are distinct from each other.

  11. Nonparaneoplastic anti-N-methyl-D-aspartate receptor encephalitis: a case series of four children.

    Science.gov (United States)

    Raha, Sarbani; Gadgil, Pradnya; Sankhla, Charulata; Udani, Vrajesh

    2012-04-01

    A rare, severe form of immune-mediated encephalitis recently has been described, associated with antibodies against N-methyl-D-aspartate receptors. It is reported mostly in women with ovarian tumors. Nonparaneoplastic presentations are less common. We describe four children with a neuropsychiatric and extrapyramidal syndrome associated with the presence of anti-N-methyl-D-aspartate receptor antibodies in cerebrospinal fluid and serum, without evidence of neoplasia. Three children recovered completely after immunomodulatory therapy, i.e., intravenous immunoglobulin and/or steroids, methylprednisolone, and/or adrenocorticotrophic hormone. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Prostate cancer risk: the significance of differences in age related changes in serum conjugated and unconjugated steroid hormone concentrations between Arab and Caucasian men.

    Science.gov (United States)

    Kehinde, E O; Akanji, A O; Memon, A; Bashir, A A; Daar, A S; Al-Awadi, K A; Fatinikun, T

    2006-01-01

    Factors responsible for the low incidence of clinical prostate cancer (3-8/100,000 men/year) in the Arab population remain unclear, but may be related to changes in steroid hormone metabolism. We compared the levels of serum conjugated and unconjugated steroids between Arab and Caucasian populations, to determine if these can provide a rational explanation for differences in incidence of prostate cancer between the two populations. Venous blood samples were obtained from 329 unselected apparently healthy indigenous Arab men (Kuwaitis and Omanis) aged 15-80 years. Samples were also obtained from similar Arab men with newly diagnosed prostate cancer or benign prostatic hyperplasia (BPH). The samples were taken between 8:00 am and 12:00 noon. Serum levels of total testosterone, (TT), sex hormone binding globulin (SHBG), free androgen index (FAI); adrenal C19-steroids, dehydroepiandrosterone sulphate (DHEAS) and androstenedione (ADT) were determined using Immulite kits (Diagnostic Systems Laboratories Inc, Webster Texas, USA). The results obtained in Arab men were compared with those reported for similarly aged Chinese, German and White USA men. In all four ethnic groups, median TT and FAI declined with age, while SHBG increased with age. However, the mean TT and SHBG was significantly lower (p Arab men (p Arabs (p Arabs. There was no significant difference in mean serum levels of DHEAS between German and USA men. Similarly, there was no significant difference in the level of the hormones between Arab and Chinese men. Arab men with newly diagnosed prostate cancer had high serum TT, SHBG and DHEAS compared to those without the disease. The mean TT and SHBG was significantly lower in Arab men compared to Caucasian men especially in early adulthood. Caucasians have significantly higher serum levels of the precursor androgens DHEAS and ADT especially in early adulthood compared to Arab men. These observations of low circulating androgens and their adrenal precursors in

  13. Social information changes stress hormone receptor expression in the songbird brain.

    Science.gov (United States)

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers

    Science.gov (United States)

    Abderrahman, Balkees; Curpan, Ramona F; Hawsawi, Yousef M; Fan, Ping; Jordan, V Craig

    2018-01-01

    Prostate and breast cancer are the two cancers with the highest incidence in men and women, respectively. Here, we focus on the known biology of acquired resistance to antihormone therapy of prostate and breast cancer and compare laboratory and clinical similarities in the evolution of the disease. Laboratory studies and clinical observations in prostate and breast cancer demonstrate that cell selection pathways occur during acquired resistance to antihormonal therapy. Following sex steroid deprivation, both prostate and breast cancer models show an initial increased acquired sensitivity to the growth potential of sex steroids. Subsequently, prostate and breast cancer cells either become dependent upon the antihormone treatment or grow spontaneously in the absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers apoptosis. We draw parallels between acquired resistance in prostate and breast cancer to sex steroid deprivation. Clinical observations and patient trials confirm the veracity of the laboratory studies. We consider therapeutic strategies to increase response rates in clinical trials of metastatic disease that can subsequently be applied as a preemptive salvage adjuvant therapy. The goal of future advances is to enhance response rates and deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has the potential to control recurrence, reduce hospitalization, reduce healthcare costs and maintain a healthier population that contributes to society. PMID:29162647

  15. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  16. Conifer Diterpene Resin Acids Disrupt Juvenile Hormone-Mediated Endocrine Regulation in the Indian Meal Moth Plodia interpunctella.

    Science.gov (United States)

    Oh, Hyun-Woo; Yun, Chan-Seok; Jeon, Jun Hyoung; Kim, Ji-Ae; Park, Doo-Sang; Ryu, Hyung Won; Oh, Sei-Ryang; Song, Hyuk-Hwan; Shin, Yunhee; Jung, Chan Sik; Shin, Sang Woon

    2017-07-01

    Diterpene resin acids (DRAs) are important components of oleoresin and greatly contribute to the defense strategies of conifers against herbivorous insects. In the present study, we determined that DRAs function as insect juvenile hormone (JH) antagonists that interfere with the juvenile hormone-mediated binding of the JH receptor Methoprene-tolerant (Met) and steroid receptor coactivator (SRC). Using a yeast two-hybrid system transformed with Met and SRC from the Indian meal moth Plodia interpunctella, we tested the interfering activity of 3704 plant extracts against JH III-mediated Met-SRC binding. Plant extracts from conifers, especially members of the Pinaceae, exhibited strong interfering activity, and four active interfering DRAs (7α-dehydroabietic acid, 7-oxodehydroabietic acid, dehydroabietic acid, and sandaracopimaric acid) were isolated from roots of the Japanese pine Pinus densiflora. The four isolated DRAs, along with abietic acid, disrupted the juvenile hormone-mediated binding of P. interpunctella Met and SRC, although only 7-oxodehydroabietic acid disrupted larval development. These results demonstrate that DRAs may play a defensive role against herbivorous insects via insect endocrine-disrupting activity.

  17. The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment.

    Science.gov (United States)

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2013-09-01

    This study examined the relationship between molecular properties and the fate of trace organic contaminants (TrOCs) in the aqueous and solid phases during wastewater treatment by MBR. A set of 29 TrOCs was selected to represent pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides that occur ubiquitously in municipal wastewater. Both adsorption and biodegradation/transformation were found responsible for the removal of TrOCs by MBR treatment. A connection between biodegradation and molecular structure could be observed while adsorption was the dominant removal mechanism for the hydrophobic (logD>3.2) compounds. Highly hydrophobic (logD>3.2) but readily biodegradable compounds did not accumulate in sludge. In contrast, recalcitrant compounds with a moderate hydrophobicity, such as carbamazepine, accumulated significantly in the solid phase. The results provide a framework to predict the removal and fate of TrOCs by MBR treatment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Serotonergic outcome, stress and sexual steroid hormones, and growth in a South American cichlid fish fed with an L-tryptophan enriched diet.

    Science.gov (United States)

    Morandini, Leonel; Ramallo, Martín Roberto; Moreira, Renata Guimarães; Höcht, Christian; Somoza, Gustavo Manuel; Silva, Ana; Pandolfi, Matías

    2015-11-01

    Reared animals for edible or ornamental purposes are frequently exposed to high aggression and stressful situations. These factors generally arise from conspecifics in densely breeding conditions. In vertebrates, serotonin (5-HT) has been postulated as a key neuromodulator and neurotransmitter involved in aggression and stress. The essential amino acid L-tryptophan (trp) is crucial for the synthesis of 5-HT, and so, leaves a gateway for indirectly augmenting brain 5-HT levels by means of a trp-enriched diet. The cichlid fish Cichlasoma dimerus, locally known as chanchita, is an autochthonous, potentially ornamental species and a fruitful laboratory model which behavior and reproduction has been studied over the last 15years. It presents complex social hierarchies, and great asymmetries between subordinate and dominant animals in respect to aggression, stress, and reproductive chance. The first aim of this work was to perform a morphological description of chanchita's brain serotonergic system, in both males and females. Then, we evaluated the effects of a trp-supplemented diet, given during 4weeks, on brain serotonergic activity, stress and sexual steroid hormones, and growth in isolated specimens. Results showed that chanchita's brain serotonergic system is composed of several populations of neurons located in three main areas: pretectum, hypothalamus and raphe, with no clear differences between males and females at a morphological level. Animals fed with trp-enriched diets exhibited higher forebrain serotonergic activity and a significant reduction in their relative cortisol levels, with no effects on sexual steroid plasma levels or growth parameters. Thus, this study points to food trp enrichment as a "neurodietary'' method for elevating brain serotonergic activity and decreasing stress, without affecting growth or sex steroid hormone levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor.

    Science.gov (United States)

    Thompson, P D; Hsieh, J C; Whitfield, G K; Haussler, C A; Jurutka, P W; Galligan, M A; Tillman, J B; Spindler, S R; Haussler, M R

    1999-12-01

    The vitamin D receptor (VDR) is a transcription factor believed to function as a heterodimer with the retinoid X receptor (RXR). However, it was reported [Schräder et al., 1994] that, on putative vitamin D response elements (VDREs) within the rat 9k and mouse 28k calcium binding protein genes (rCaBP 9k and mCaBP 28k), VDR and thyroid hormone receptor (TR) form heterodimers that transactivate in response to both 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and triiodothyronine (T(3)). We, therefore, examined associations of these receptors on the putative rCaBP 9k and mCaBP 28k VDREs, as well as on established VDREs from the rat osteocalcin (rOC) and mouse osteopontin (mOP) genes, plus the thyroid hormone response element (TRE) from the rat myosin heavy chain (rMHC) gene. In gel mobility shift assays, we found no evidence for VDR-TR heterodimer interaction with any tested element. Further, employing these hormone response elements linked to reporter genes in transfected cells, VDR and TR mediated responses to their cognate ligands only from the rOC/mOP and rMHC elements, respectively, while the CaBP elements were unresponsive to any combination of ligand(s). Utilizing the rOC and mOP VDREs, two distinct repressive actions of TR on VDR-mediated signaling were demonstrated: a T(3)-independent action, presumably via direct TR-RXR competition for DNA binding, and a T(3)-dependent repression, likely by diversion of limiting RXR from VDR-RXR toward the formation of TR-RXR heterodimers. The relative importance of these two mechanisms differed in a response element-specific manner. These results may provide a partial explanation for the observed association between hyperthyroidism and bone demineralization/osteoporosis. Copyright 1999 Wiley-Liss, Inc.

  20. Effect of human chorionic gonadotropin on sexual maturation, sex steroids and thyroid hormone levels in Caspian lamprey (Caspiomyzon wagneri Kessler, 1870)

    OpenAIRE

    Abedi, M.; Mojazi Amiri, B.; Abdoli, A.; Javanshir, A.; Benam, S.; Namdarian, A.

    2017-01-01

    The objective of this study was to determine the effect of human chorionic gonadotropin (hCG) on sexual maturation, plasma sex steroids [17β-estradiol, (E2) and 17α-hydroxy progesterone (17α_OHP)] and thyroid hormones (triiodothyronine, T3 and thyroxin, T4) levels in upstream - migrating Caspian lamprey. During the experiment, 36 fish (24 females and 12 males) in spring 2013 and 36 fish (24 females and 12 males) in fall 2013 were collected from the Shirud River estuary in Mazandaran Province,...

  1. Hormones and endocrine disruptors in human seminal plasma.

    Science.gov (United States)

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  2. The role of steroids in the management of uveitic macular edema

    NARCIS (Netherlands)

    de Smet, Marc D.; Julian, Karina

    2010-01-01

    Purpose. To review the role of steroids in the management of uveitic macular edema. Methods. Review of recent literature on the physiopathology of macular edema and clinical trials involving steroids as main treatment of uveitic macular edema. Results. The steroid-glucocorticoid receptor complex

  3. THYROID HORMONE RECEPTOR BETA GENE MUTATION (P453A) IN A TURKISH FAMILY PRODUCING RESISTANCE TO THYROID HORMONE

    Science.gov (United States)

    Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel

    2018-01-01

    Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095

  4. Group-level competition influences urinary steroid hormones among wild red-tailed monkeys, indicating energetic costs.

    Science.gov (United States)

    Jaeggi, Adrian V; Trumble, Benjamin C; Brown, Michelle

    2018-04-10

    Various theories emphasize that intergroup competition should affect intragroup cooperation and social relationships, especially if the cost of intergroup competition outweighs that of intragroup competition. This cost of intergroup competition may be quantified by changes in physiological status, such as in the steroid hormones cortisol (C) and testosterone (T), which rise or are depressed during periods of energetic stress, respectively. Here we tested for changes in urinary C and T after intergroup encounters (IGEs) among wild red-tailed monkeys (Cercopithecus ascanius), a species that experiences frequent intergroup feeding competition, at the Ngogo station in Kibale National Park, Uganda. We assayed 108 urine samples, of which 36 were collected after IGEs, from 23 individuals in four social groups. Bayesian multilevel models controlling for various confounds revealed that IGEs increased C and decreased T relative to baseline, consistent with an energetic cost to IGEs. The C change was more apparent in samples collected early after IGEs, suggesting an anticipatory increase, whereas the T change was stronger in later samples, suggesting sustained energetic trade-offs. Hormone responses were not affected by the IGE outcome. This cost to intergroup competition, together with little evidence for intragroup competition in redtails and other guenons, establishes an interesting test case for theories emphasizing the effect of intergroup competition on intragroup cooperation. © 2018 Wiley Periodicals, Inc.

  5. Hepatic receptors for homologous growth hormone in the eel

    International Nuclear Information System (INIS)

    Hirano, T.

    1991-01-01

    The specific binding of 125I-labeled eel growth hormone (eGH) to liver membranes of the eel was examined. The specific binding to the 10,000g pellet was greater than that to the 600g pellet. The specific binding was linear up to about 100 mg fresh tissue, and was saturable with increasing amounts of membrane. The specific binding was pH-, temperature-, and time-dependent, with the optimum pH at 7.4, and greater specific binding was obtained at 15 and 25 degrees than at 35 degrees. Scatchard analysis of liver binding gave an association constant of 1.1 x 10(9) M-1 and a capacity of 105 fmol/mg protein. The receptor preparation was highly specific for GHs. Natural and recombinant eel GHs as well as recombinant salmon GH competed equally with 125I-eGH for the receptor sites of the 10,000g liver membrane. Ovine GH was more potent in displacing the labeled eGH than the homologous eel hormone. Tilapia GH and ovine prolactin (PRL) were needed in greater amounts (40 times) than eGH to displace the labeled eGH. Salmon and tilapia PRLs were still less potent (500 times) than eGH. There was no displacement with eel PRL. No significant change in the specific binding was seen 1 week after hypophysectomy, whereas injection of eGH into the hypophysectomized eel caused a significant reduction after 24 hr. The binding to the membrane fractions from gills, kidney, muscle, intestine, and brain was low and exclusively nonspecific, indicating the presence of specific GH receptors predominantly in the liver

  6. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  7. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    Science.gov (United States)

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Role of hormonal factor in development of primary and secondary tumorous process in the brain

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Causes of the development onset of primary malignant cerebral neoplasms have not yet been determined. Not excluded is a possibility of unfavorable effect of the environment, genetic abnormalities, changes alterations in the hormonal background as well as metabolism, ionizing radiation: possible is also the role of viral infections and injuries. One of the main most severest complications of malignant tumors remain are metastatic lesions of the central nervous system whose proportion increases as with the patients’ longlivity. Cerebral metastases of malignant tumors are encountered more often than primary neoplasms of the central nervous system. The brain is not only a hormone-dependent organ the effect of sex hormones as early the embryonic state conditions normal development of the body as a whole and controls the sex related differentiation. It is known that neurons and glyocites like gonads and adrenal glands are able to produce steroid hormones. The enzymes responsible for the synthesis of neurosteroids were detected in the brain tissue in the embryonic period of the development. The human brain is not only a hormone-dependent organ effect influence of sex hormones as early as in the embrional state conditiones normal development of the body as a whole and controls sexual gender differentiation. It is known that neurons and glyocytes like gonads and adrenal glands are able to produce steroid hormones. Enzymes responsible for synthesis of neurosteroids were revealed in cerebral tissue both in during the embryonic period of the development and in adult condition. Besides there are have been obtained large amount of data on the presence in the cerebral cells of receptors to steroidal hormones. In various periods of life the influence effect exerted by steroids on nervous cells can change the morphofunctional state of the brain and manifests as altering myelinization, neuronal growth, and differentiation of nerve cells

  9. Receptors of Hypothalamic-Pituitary-Ovarian-Axis Hormone in Uterine Myomas

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2014-01-01

    Full Text Available In this study the expression of GnRH, FSH, LH, ER-α, ER-β, and PR receptors was examined in uterine myomas of women in reproductive and perimenopausal age. In cases of GnRH and tropic hormones a membranous and cytoplasmic immunohistochemical reaction was detected, in cases of ER-α and PR the reaction was located in cell nucleus, and in the case of ER-β it manifested also a cytoplasmic location. In some of the examined cases the expression was detected in endometrium, myocytes, and endothelium of blood vessels, in uterine glands and myoma cells. In myometrium the level of GnRH and LH receptors increases with age, whereas the level of progesterone and both estrogen receptors decreases. In myomas of women in reproductive age, independently of their size, expression of GnRH, FSH, and LH receptors was more pronounced than in myometrium. In women of perimenopausal age, independently of myoma size, expression of LH and estrogen α receptors was higher while expression of GnRH receptors was lower than in myometrium. FSH receptor expression was not observed. Expression of estrogen receptor β was not affected by age of the woman or size of myoma. Analysis of obtained results indicates on existing in small myomas local feedback axis between GnRH-LH-progesterone.

  10. Machine learning approaches to decipher hormone and HER2 receptor status phenotypes in breast cancer.

    Science.gov (United States)

    Adabor, Emmanuel S; Acquaah-Mensah, George K

    2017-10-16

    Breast cancer prognosis and administration of therapies are aided by knowledge of hormonal and HER2 receptor status. Breast cancer lacking estrogen receptors, progesterone receptors and HER2 receptors are difficult to treat. Regarding large data repositories such as The Cancer Genome Atlas, available wet-lab methods for establishing the presence of these receptors do not always conclusively cover all available samples. To this end, we introduce median-supplement methods to identify hormonal and HER2 receptor status phenotypes of breast cancer patients using gene expression profiles. In these approaches, supplementary instances based on median patient gene expression are introduced to balance a training set from which we build simple models to identify the receptor expression status of patients. In addition, for the purpose of benchmarking, we examine major machine learning approaches that are also applicable to the problem of finding receptor status in breast cancer. We show that our methods are robust and have high sensitivity with extremely low false-positive rates compared with the well-established methods. A successful application of these methods will permit the simultaneous study of large collections of samples of breast cancer patients as well as save time and cost while standardizing interpretation of outcomes of such studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  12. Antisense-mediated isoform switching of steroid receptor coactivator-1 in the central nucleus of the amygdala of the mouse brain

    Directory of Open Access Journals (Sweden)

    Zalachoras Ioannis

    2013-01-01

    Full Text Available Abstract Background Antisense oligonucleotide (AON-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1, a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon. Methods For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants. Results We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression. Conclusions We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant

  13. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, V G; Erritzoe, D; Madsen, J

    2009-01-01

    to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.......31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding....... binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated...

  14. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review.

    Science.gov (United States)

    Gouveia, Maria João; Brindley, Paul J; Santos, Lúcio Lara; Correia da Costa, José Manuel; Gomes, Paula; Vale, Nuno

    2013-09-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. Physicochemical and biological properties of new steroid metal complexes

    International Nuclear Information System (INIS)

    Huber, R.

    1980-04-01

    The aim of this investigation was to prepare stable steroid metal chelates by chemical conversion of the natural steroid hormones testerone, 5α-dihydrotestosterone (5α-DHT) and estradiol and to characterize these by means of their spectroscopic and other physico-chemical properties. In addition, various measuring techniques for the qualitative and quantitative study of complex stabilities and hydrolytic properties were employed. The distribution of some tritiated steroid metal complexes in the tissues of rats was tested using whole animal autoradiography, mainly with a view to identifying whether selective concentration occurs in certain organs. (orig.) [de

  16. Rodent Models of Non-classical Progesterone Action Regulating Ovulation

    Directory of Open Access Journals (Sweden)

    Melinda A. Mittelman-Smith

    2017-07-01

    Full Text Available It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4 can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components. This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.

  17. Proteoglycans in Leiomyoma and Normal Myometrium: Abundance, Steroid Hormone Control, and Implications for Pathophysiology.

    Science.gov (United States)

    Barker, Nichole M; Carrino, David A; Caplan, Arnold I; Hurd, William W; Liu, James H; Tan, Huiqing; Mesiano, Sam

    2016-03-01

    Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. © The Author(s) 2015.

  18. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Xinyu Wu

    Full Text Available The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4 in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2 in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC, characterized by the absence of androgen receptor (AR and therefore referred to as quadruple negative breast cancer (QNBC. Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.

  19. Testosterone levels and the genetic variation of sex hormone ...

    Indian Academy of Sciences (India)

    Lillian

    1Physiology and Hormones Department, Animal Health Research Institute, ... hormone-binging globulin (SHBG) that is the major transporter protein of sex ... genotypes, one of which is likely to be associated with low testosterone ..... sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium.

  20. Beyond T and DHT - novel steroid derivatives capable of wild type androgen receptor activation.

    Science.gov (United States)

    Mostaghel, Elahe A

    2014-01-01

    While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.