WorldWideScience

Sample records for sterile neutrino dark

  1. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  2. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  3. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  4. Sterile neutrino dark matter with supersymmetry

    Science.gov (United States)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  5. Dark matter relic abundance and light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yi-Lei [Center for High Energy Physics,Peking University, Beijing 100871 (China); Zhu, Shou-hua [Center for High Energy Physics,Peking University, Beijing 100871 (China); Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology,Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing 100871 (China)

    2017-01-09

    In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass ≲100 GeV in a simple model. Unlike the usual standard calculations, the sterile neutrino may fall out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling y{sub N} between the Higgs and the sterile neutrino is small, this process gives rise to a larger Ω{sub DM}h{sup 2} so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.

  6. A White Paper on keV Sterile Neutrino Dark Matter

    DEFF Research Database (Denmark)

    Adhikari, R.; Agostini, M.; Ky, N. Anh

    2016-01-01

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing...... the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We...... then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X...

  7. A White Paper on keV sterile neutrino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, R. [Centre for Theoretical Physics, Jamia Millia Islamia (Central University), New Delhi-110025 (India); Agostini, M. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Ky, N. Anh [Institute of physics, Vietnam academy of science and technology, 10 Dao Tan, Ba Dinh, Hanoi (Viet Nam); Araki, T. [Department of physics, Saitama University, Shimo-Okubo 255, 338-8570 Saitama Sakura-ku (Japan); Archidiacono, M. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Bahr, M. [University of California, Santa Barbara (United States); Baur, J. [Commissariat à l' énergie atomique et aux énergies alternatives, Centre de Saclay, DSM/IRFU, 91191 Gif-sur-Yvette (France); Behrens, J. [Westfälische Wilhelms Universität Münster, Institut für Kernphysik, Wilhelm Klemm-Str.9, D-48149 Münster (Germany); Bezrukov, F. [University of Connecticut (United States); Dev, P.S. Bhupal [Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Borah, D. [Department of Physics, Indian Institute of Technology Guwahati, Assam-781039 (India); Boyarsky, A. [Universiteit Leiden - Instituut Lorentz for Theoretical Physics, P.O. Box 9506, NL-2300 RA Leiden, Netherlands (Netherlands); De Gouvea, A. [Northwestern University (United States); Pires, C.A. de S. [Departamento de Física, UFPB, Caixa Postal 5008, 58051-970, João Pessoa, PB (Brazil); De Vega, H.J. [CNRS LPTHE UPMC Univ P. et M. Curie Paris VI (France); and others

    2017-01-01

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.

  8. Sterile neutrinos and indirect dark matter searches in IceCube

    Science.gov (United States)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  9. A White Paper on keV Sterile Neutrino Dark Matter

    CERN Document Server

    Drewes, M.; Merle, A.; Mertens, S.; Adhikari, R.; Agostini, M.; Ky, N.Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P.S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; de S. Pires, C.A.; de Vega, H.J.; Dias, A.G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Dullmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N.W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J.A.; Franse, J.; Fraenkle, F.M.; Frenk, C.S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Gluck, F.; Goodman, M.C.; Gonzalez-Garcia, M.C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Heeck, J.; Hansen, S.H.; Hassel, C.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lesgourgues, J.; Lhuillier, D.; Li, Y.F.; Liao, W.; Long, A.W.; Maltoni, M.; Mangano, G.; Mavromatos, N.E.; Menci, N.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V.S.; Papastergis, E.; Parke, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D.C.; Ranitzsch, P.C.O.; Rest, O.; Robinson, D.J.; Rodrigues da Silva, P.S.; Ruchayskiy, O.; Sanchez, N.G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schonert, S.; Shankar, F.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N.Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C.G.; Valerius, K.; Valle, J.; Venos, D.; Viel, M.; Wang, M.Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.; Baur, J.; Drexlin, G.; Jochum, J.; Pascoli, S.; Scholl, S.; Shrock, R.; Vivier, M.

    2017-01-13

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how steri...

  10. Sterile neutrinos as the origin of dark and baryonic matter.

    Science.gov (United States)

    Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail

    2013-02-08

    We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities.

  11. Searching for sterile neutrinos in dynamical dark energy cosmologies

    Science.gov (United States)

    Feng, Lu; Zhang, Jing-Fei; Zhang, Xin

    2018-05-01

    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff energy properties could significantly influence the constraint limits of sterile neutrino parameters.

  12. Pulsar kicks from a dark-matter sterile neutrino

    International Nuclear Information System (INIS)

    Fuller, George M.; Kusenko, Alexander; Mocioiu, Irina; Pascoli, Silvia

    2003-01-01

    We show that a sterile neutrino with a mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the Universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints

  13. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    DEFF Research Database (Denmark)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino...... neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce...

  14. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  15. Sterile neutrino

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Paper deals with the information on the occurrence of the fields of the sterile neutrinos (the righthanded ones) mixed with the normal neutrinos (the lefthanded ones). Both the Max Plank Radioastronomy Institute and the Los Angeles University assumes that the occurrence of the keV mass sterile neutrinos may explain the dark matter nature, the fast rotation of the observed pulsars and the reionization processes. The issues associated with the possibility to record the sterile neutrinos were analyzed in the course of the Sterile Neutrinos in Astrophysics and Cosmology Workshop (Crans Montana, March 2006 [ru

  16. Improved determination of sterile neutrino dark matter spectrum

    International Nuclear Information System (INIS)

    Ghiglieri, J.; Laine, M.

    2015-01-01

    The putative recent indication of an unidentified 3.55 keV X-ray line in certain astrophysical sources is taken as a motivation for an improved theoretical computation of the cosmological abundance of 7.1 keV sterile neutrinos. If the line is interpreted as resulting from the decay of Warm Dark Matter, the mass and mixing angle of the sterile neutrino are known. Our computation then permits for a determination of the lepton asymmetry that is needed for producing the correct abundance via the Shi-Fuller mechanism, as well as for an estimate of the non-equilibrium spectrum of the sterile neutrinos. The latter plays a role in structure formation simulations. Results are presented for different flavour structures of the neutrino Yukawa couplings and for different types of pre-existing lepton asymmetries, accounting properly for the charge neutrality of the plasma and incorporating approximately hadronic contributions.

  17. Sterile Neutrinos, Dark Matter, and Pulsar Velocities in Models with a Higgs Singlet

    International Nuclear Information System (INIS)

    Kusenko, Alexander

    2006-01-01

    We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider

  18. Axion-assisted production of sterile neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  19. Dark radiation sterile neutrino candidates after Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, Eleonora Di; Melchiorri, Alessandro [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , Ple Aldo Moro 2, 00185, Rome (Italy); Mena, Olga, E-mail: eleonora.divalentino@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: omena@ific.uv.es [IFIC, Universidad de Valencia-CSIC, 46071, Valencia (Spain)

    2013-11-01

    Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62{sup +0.50}{sub −0.48} at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N{sub eff} active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m{sub ν,} {sub sterile}{sup eff} < 0.36 eV and 3.14 < N{sub eff} < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N{sub eff} < 4.43 and m{sub ν,} {sub sterile}{sup eff} < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. ∑m{sub ν} ∼ 0.06 eV. These values compromise the viability of the (3+2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3+1) massive sterile neutrino scenario, we find m{sub ν,} {sub sterile}{sup eff} < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.

  20. νΛMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2

    International Nuclear Information System (INIS)

    Ko, P.; Tang, Yong

    2014-01-01

    We propose an ultraviolet complete theory for cold dark matter (CDM) and sterile neutrinos that can accommodate both cosmological data and neutrino oscillation experiments within 1σ level. We assume a new U(1) X dark gauge symmetry which is broken at ∼O(MeV) scale resulting light dark photon. Such a light mediator for DM's self-scattering and scattering-off sterile neutrinos can resolve three controversies for cold DM on small cosmological scales: cusp vs. core, too-big-to-fail and missing satellites. We can also accommodate ∼O(1) eV scale sterile neutrinos as the hot dark matter (HDM) and can fit some neutrino anomalies from neutrino oscillation experiments within 1σ. Finally, the right amount of HDM can make a sizable contribution to dark radiation, and also helps to reconcile the tension between the data on the tensor-to-scalar ratio reported by Planck and BICEP2 Collaborations

  1. Sterile neutrino dark matter and low scale leptogenesis from a charged scalar.

    Science.gov (United States)

    Frigerio, Michele; Yaguna, Carlos E

    We show that novel paths to dark matter generation and baryogenesis are open when the standard model is extended with three sterile neutrinos [Formula: see text] and a charged scalar [Formula: see text]. Specifically, we propose a new production mechanism for the dark matter particle-a multi-keV sterile neutrino, [Formula: see text]-that does not depend on the active-sterile mixing angle and does not rely on a large primordial lepton asymmetry. Instead, [Formula: see text] is produced, via freeze-in, by the decays of [Formula: see text] while it is in equilibrium in the early Universe. In addition, we demonstrate that, thanks to the couplings between the heavier sterile neutrinos [Formula: see text] and [Formula: see text], baryogenesis via leptogenesis can be realized close to the electroweak scale. The lepton asymmetry is generated either by [Formula: see text]-decays for masses [Formula: see text] TeV, or by [Formula: see text]-oscillations for [Formula: see text] GeV. Experimental signatures of this scenario include an X-ray line from dark matter decays, and the direct production of [Formula: see text] at the LHC. This model thus describes a minimal, testable scenario for neutrino masses, the baryon asymmetry, and dark matter.

  2. Sterile neutrino portal to Dark Matter I: the U(1)B−L case

    International Nuclear Information System (INIS)

    Escudero, Miguel; Rius, Nuria; Sanz, Verónica

    2017-01-01

    In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1) B−L , broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars — the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron — and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.

  3. Sterile neutrino, hidden dark matter and their cosmological signatures

    International Nuclear Information System (INIS)

    Das, Subinoy

    2012-01-01

    Though thermal dark matter has been the central idea behind the dark matter candidates, it is highly possible that dark matter of the universe is non-thermal in origin or it might be in thermal contact with some hidden or dark sector but not with standard model. Here we explore the cosmological bounds as well as the signatures on two types of non-thermal dark matter candidates. First we discuss a hidden dark matter with almost no interaction (or very feeble) with standard model particles so that it is not in thermal contact with visible sector but we assume it is thermalized with in a hidden sector due to some interaction. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be non-relativistic. Rather, freeze-out may also occur when dark matter particles are semi-relativistic or relativistic. Especially we focus on the warm dark matter scenario in this set up and find the constraints on the warm dark matter mass, cross-section and hidden to visible sector temperature ratio which accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. Our method can also be applied to keV sterile neutrino dark matter which is not thermalized with standard model but is thermalized with in a dark sector. The second part of this proceeding focuses on an exotic dark matter candidate which arises from the existence of eV mass sterile neutrino through a late phase transition. Due to existence of a strong scalar force the light sterile states get trapped into stable degenerate micro nuggets. We find that its signature in matter power spectra is close to a warm dark matter candidate.

  4. Can sterile neutrinos be ruled out as warm dark matter candidates?

    CERN Document Server

    Viel, M; Hähnelt, M G; Matarrese, S; Riotto, Antonio; Viel, Matteo; Lesgourgues, Julien; Haehnelt, Martin G.; Matarrese, Sabino; Riotto, Antonio

    2006-01-01

    We present constraints on the mass of Warm Dark Matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the SDSS (Sloan Digital Sky Survey) Lyman-alpha flux power spectrum at 2.2 10 keV (2 sigma) if the WDM consists of sterile neutrinos and m_wdm > 2 keV (2 sigma) for early decoupled thermal relics. These results significantly improve our previous estimates based on high-resolution Lyman-alpha forest data at lower redshift. Our new limits are consistent with those of Seljak et al. (2006), albeit ~ 30 % smaller. If we combine this bound with the constraint derived from X-ray flux observations in the Coma cluster periphery (Boyarsky et al.), we find that the only allowed sterile neutrino mass is ~ 10 keV (in the standard production scenario with non-resonant neutrino oscillations). Adding constraints based on X-ray fluxes from the Andromeda galaxy or the Milky Way, we find that dark matter particles cannot be sterile neutrinos, unless the latter are produced by resonant oscill...

  5. Sterile neutrino portal to Dark Matter I: the U(1){sub B−L} case

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Rius, Nuria [Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC,C/ Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Sanz, Verónica [Department of Physics and Astronomy, University of Sussex,Falmer Campus, Brighton BN1 9QH (United Kingdom)

    2017-02-08

    In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1){sub B−L}, broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars — the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron — and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.

  6. Influence of ∼7 keV sterile neutrino dark matter on the process of reionization

    International Nuclear Information System (INIS)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ∼3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ∼7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter able to produce the observed line at ∼3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ∼7 keV sterile neutrinos into extended semi-analytical 'bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to 'imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ∼3.5 keV line.

  7. Heavy Sterile Neutrino in Dark Matter Searches

    Directory of Open Access Journals (Sweden)

    Paraskevi C. Divari

    2018-01-01

    Full Text Available Sterile neutrinos are possible dark matter candidates. We examine here possible detection mechanisms, assuming that the neutrino has a mass of about 50 keV and couples to the ordinary neutrino. Even though this neutrino is quite heavy, it is nonrelativistic with a maximum kinetic energy of 0.1 eV. Thus new experimental techniques are required for its detection. We estimate the expected event rate in the following cases: (i measuring electron recoil in the case of materials with very low electron binding; (ii low temperature crystal bolometers; (iii spin induced atomic excitations at very low temperatures, leading to a characteristic photon spectrum; (iv observation of resonances in antineutrino absorption by a nucleus undergoing electron capture; (v neutrino induced electron events beyond the end point energy of beta decaying systems, for example, in the tritium decay studied by KATRIN.

  8. 7 keV sterile neutrino dark matter from split flavor mechanism

    International Nuclear Information System (INIS)

    Ishida, Hiroyuki; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2014-02-01

    The recently discovered X-ray line at about 3.5 keV can be explained by sterile neutrino dark matter with mass, m s ≅ 7 keV, and the mixing, sin 2 2θ∝10 -10 . Such sterile neutrino is more long-lived than estimated based on the seesaw formula, which strongly suggests an extra flavor structure in the seesaw sector. We show that one can explain both the small mass and the longevity based on the split flavor mechanism where the breaking of flavor symmetry is tied to the breaking of the B-L symmetry. In a supersymmetric case we find that the 7 keV sterile neutrino implies the gravitino mass about 100 TeV.

  9. 7 keV sterile neutrino dark matter from split flavor mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Hiroyuki [Tohoku Univ., Sendai (Japan). Dept. of Physics; Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2014-02-15

    The recently discovered X-ray line at about 3.5 keV can be explained by sterile neutrino dark matter with mass, m{sub s}≅ 7 keV, and the mixing, sin{sup 2}2θ∝10{sup -10}. Such sterile neutrino is more long-lived than estimated based on the seesaw formula, which strongly suggests an extra flavor structure in the seesaw sector. We show that one can explain both the small mass and the longevity based on the split flavor mechanism where the breaking of flavor symmetry is tied to the breaking of the B-L symmetry. In a supersymmetric case we find that the 7 keV sterile neutrino implies the gravitino mass about 100 TeV.

  10. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other hand is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.

  11. Evidence for sterile neutrinos which could be part of dark matter

    International Nuclear Information System (INIS)

    Caldwell, David O.

    2007-01-01

    Limitations on neutrino contribution to dark matter do not apply to the type of sterile neutrino needed to understand solar neutrino flux modulation. These neutrinos couple to active neutrinos via a transition magnetic moment, and if there is any mixing, it is extremely small, avoiding all constraints. The sterile neutrinos result from a Resonant-Spin-Flavor Precession in the convection zone of the Sun, subdominant to the LMA MSW effect, which is at a smaller solar radius. Solar neutrino fluxes measured by the Cl, Ga and Super-Kamiokande (SK) experiments reveal modulations at frequencies related to solar rotation rates. Since the solar magnetic field in the convection zone changes with solar cycle, a rotation frequency seen in GALLEX data would not appear in GNO data. An analysis lumping these data together shows the same frequency not significantly, whereas GALLEX data shows it at the 99.9% CL, using more of the experimental information. Use of insufficient information is a problem in the SK analysis, which sees at low significance the same 3 frequencies (one of rotation and two of related r-modes) we find even at the 99.9% CL when more experimental information is used. SNO looked unsuccessfully for one of these r-mode peaks, but SK data shows this very episodic process had died out before SNO turned on. The statistically significant flux modulation frequencies we observe are all associated with known solar frequencies, attesting to the existence of a sterile neutrino which could aid in understanding small-scale structure, and which might have heavier siblings playing an even larger role in dark matter

  12. The case for mixed dark matter from sterile neutrinos

    International Nuclear Information System (INIS)

    Lello, Louis; Boyanovsky, Daniel

    2016-01-01

    Sterile neutrinos are SU(2) singlets that mix with active neutrinos via a mass matrix, its diagonalization leads to mass eigenstates that couple via standard model vertices. We study the cosmological production of heavy neutrinos via standard model charged and neutral current vertices under a minimal set of assumptions: i) the mass basis contains a hierarchy of heavy neutrinos , ii) these have very small mixing angles with the active (flavor) neutrinos, iii) standard model particles, including light (active-like) neutrinos are in thermal equilibrium. If kinematically allowed, the same weak interaction processes that produce active-like neutrinos also produce the heavier species. We introduce the quantum kinetic equations that describe their production, freeze out and decay and discuss the various processes that lead to their production in a wide range of temperatures assessing their feasibility as dark matter candidates. The final distribution function at freeze-out is a mixture of the result of the various production processes. We identify processes in which finite temperature collective excitations may lead to the production of the heavy species. As a specific example, we consider the production of heavy neutrinos in the mass range M h ∼< 140 MeV from pion decay shortly after the QCD crossover including finite temperature corrections to the pion form factors and mass. We consider the different decay channels that allow for the production of heavy neutrinos showing that their frozen distribution functions exhibit effects from ''kinematic entanglement'' and argue for their viability as mixed dark matter candidates. We discuss abundance, phase space density and stability constraints and argue that heavy neutrinos with lifetime τ> 1/ H 0 freeze out of local thermal equilibrium, and conjecture that those with lifetimes τ || 1/ H 0 may undergo cascade decay into lighter DM candidates and/or inject non-LTE neutrinos into the cosmic neutrino

  13. The case for mixed dark matter from sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lello, Louis; Boyanovsky, Daniel, E-mail: lal81@pitt.edu, E-mail: boyan@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-06-01

    Sterile neutrinos are SU(2) singlets that mix with active neutrinos via a mass matrix, its diagonalization leads to mass eigenstates that couple via standard model vertices. We study the cosmological production of heavy neutrinos via standard model charged and neutral current vertices under a minimal set of assumptions: i) the mass basis contains a hierarchy of heavy neutrinos , ii) these have very small mixing angles with the active (flavor) neutrinos, iii) standard model particles, including light (active-like) neutrinos are in thermal equilibrium. If kinematically allowed, the same weak interaction processes that produce active-like neutrinos also produce the heavier species. We introduce the quantum kinetic equations that describe their production, freeze out and decay and discuss the various processes that lead to their production in a wide range of temperatures assessing their feasibility as dark matter candidates. The final distribution function at freeze-out is a mixture of the result of the various production processes. We identify processes in which finite temperature collective excitations may lead to the production of the heavy species. As a specific example, we consider the production of heavy neutrinos in the mass range M {sub h} ∼< 140 MeV from pion decay shortly after the QCD crossover including finite temperature corrections to the pion form factors and mass. We consider the different decay channels that allow for the production of heavy neutrinos showing that their frozen distribution functions exhibit effects from ''kinematic entanglement'' and argue for their viability as mixed dark matter candidates. We discuss abundance, phase space density and stability constraints and argue that heavy neutrinos with lifetime τ> 1/ H {sub 0} freeze out of local thermal equilibrium, and conjecture that those with lifetimes τ || 1/ H {sub 0} may undergo cascade decay into lighter DM candidates and/or inject non-LTE neutrinos into the

  14. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector

    International Nuclear Information System (INIS)

    Petraki, Kalliopi; Kusenko, Alexander

    2008-01-01

    Sterile neutrino with mass of several keV can be the cosmological dark matter, can explain the observed velocities of pulsars, and can play an important role in the formation of the first stars. We describe the production of sterile neutrinos in a model with an extended Higgs sector, in which the Majorana mass term is generated by the vacuum expectation value of a gauge-singlet Higgs boson. In this model the relic abundance of sterile neutrinos does not necessarily depend on their mixing angles, the free-streaming length can be much smaller than in the case of warm dark matter produced by neutrino oscillations, and, therefore, some of the previously quoted bounds do not apply. The presence of the gauge singlet in the Higgs sector has important implications for the electroweak phase transition, baryogenesis, and the upcoming experiments at the Large Hadron Collider and a Linear Collider.

  15. Reionization in sterile neutrino cosmologies

    Science.gov (United States)

    Bose, Sownak; Frenk, Carlos S.; Hou, Jun; Lacey, Cedric G.; Lovell, Mark R.

    2016-12-01

    We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.

  16. The role of the eROSITA all-sky survey in searches for sterile neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Zandanel, Fabio; Weniger, Christoph; Ando, Shin' ichiro, E-mail: f.zandanel@uva.nl, E-mail: c.weniger@uva.nl, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2015-09-01

    We investigate for the first time the potential of angular auto- and cross-correlation power spectra in identifying sterile neutrino dark matter in the cosmic X-ray background. We take as reference the performance of the soon-to-be-launched eROSITA satellite. The main astrophysical background sources against sterile neutrino decays are active galactic nuclei, galaxies powered by X-ray binaries, and clusters of galaxies. While sterile neutrino decays are always subdominant in the auto-correlation power spectra, they can be efficiently enhanced when cross-correlating with tracers of the dark matter distribution such as galaxies in the 2MASS catalogues. We show that the planned four-years eROSITA all-sky survey will provide a large enough photon statistics to potentially yield very stringent constraints on the decay lifetime, enabling to firmly test the recently claimed 3.56-keV X-ray line found towards several clusters and galaxies and its decaying dark matter interpretation. However, we also show that in order to fully exploit the potential of eROSITA for dark matter searches, it is vital to overcome the shot-noise limitations inherent to galaxy catalogues as tracers for the dark matter distribution.

  17. Galaxy Formation in Sterile Neutrino Dark Matter Models

    Science.gov (United States)

    Menci, N.; Grazian, A.; Lamastra, A.; Calura, F.; Castellano, M.; Santini, P.

    2018-02-01

    We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) with active neutrinos, we focus on models with {m}ν =7 {keV}, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider (1) two resonant production models with {\\sin }2(2θ )=5 × {10}-11 and {\\sin }2(2θ )=2 × {10}-10, to cover the range of mixing parameters consistent with the 3.5 keV line; (2) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal warm DM with particle mass {m}X=3 {keV}. Using a semianalytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way–like galaxies, and the global star formation history of galaxies with observations does not allow us to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at z≳ 6, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the DM scenarios considered. We discuss how future observations with upcoming facilities will enable us to rule out or to strongly support DM models based on sterile neutrinos.

  18. Neutrino masses and mixings: Big Bang and Supernova nucleosynthesis and neutrino dark matter

    International Nuclear Information System (INIS)

    Fuller, George M.

    1999-01-01

    The existence of small mixings between light active and sterile neutrino species could have implications for Big Bang and Supernova Heavy Element Nucleosynthesis. As well, such mixing would force us to abandon cherished constraints on light neutrino Dark Matter. Two proposed 4-neutrino mass and mixing schemes, for example, can both accomodate existing experimental results and lead to elegant solutions to the neutron-deficit problem for r-Process nucleosynthesis from neutrino-heated supernova ejecta. Each of these solutions is based on matter-enhanced (MSW) active-sterile neutrino transformation. In plausible extensions of these schemes to the early universe, Shi and Fuller have shown that relatively light mass (∼200 eV to ∼10 keV) sterile neutrinos produced via active-sterile MSW conversion can have a ''cold'' energy spectrum. Neutrinos produced in this way circumvent the principal problem of light neutrino dark matter and would be, essentially, Cold Dark Matter

  19. Warm Dark Matter Sterile Neutrinos in Electron Capture and Beta Decay Spectra

    Directory of Open Access Journals (Sweden)

    O. Moreno

    2016-01-01

    Full Text Available We briefly review the motivation to search for sterile neutrinos in the keV mass scale, as dark matter candidates, and the prospects to find them in beta decay or electron capture spectra, with a global perspective. We describe the fundamentals of the neutrino flavor-mass eigenstate mismatch that opens the possibility of detecting sterile neutrinos in such ordinary nuclear processes. Results are shown and discussed for the effect of heavy neutrino emission in electron capture in Holmium 163 and in two isotopes of Lead, 202 and 205, as well as in the beta decay of Tritium. We study the deexcitation spectrum in the considered cases of electron capture and the charged lepton spectrum in the case of Tritium beta decay. For each of these cases, we define ratios of integrated transition rates over different regions of the spectrum under study and give new results that may guide and facilitate the analysis of possible future measurements, paying particular attention to forbidden transitions in Lead isotopes.

  20. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y.Y.

    2011-01-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal ΛCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w e degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20–75% relative to the standard ΛCDM value

  1. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    Science.gov (United States)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  2. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    Science.gov (United States)

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  3. Light sterile neutrinos, dark matter, and new resonances in a U(1) extension of the MSSM

    Science.gov (United States)

    Hebbar, A.; Lazarides, G.; Shafi, Q.

    2017-09-01

    We present ψ'MSSM, a model based on a U(1) ψ' extension of the minimal supersymmetric standard model. The gauge symmetry U(1)ψ', also known as U(1)N,is a linear combination of the U(1) χ and U(1)ψ subgroups of E6. The model predicts the existence of three sterile neutrinos with masses ≲0.1 eV , if the U(1)ψ' breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at nucleosynthesis is Δ Nν≃0.29. The model can provide a variety of possible cold dark matter candidates including the lightest sterile sneutrino. If the U(1) ψ' breaking scale is increased to 1 03 TeV , the sterile neutrinos, which are stable on account of a Z2symmetry, become viable warm dark matter candidates. The observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks thanks to the D-term contribution from U(1)ψ'. The model predicts diquark and diphoton resonances which may be found at an updated LHC. The well-known μ problem is resolved and the observed baryon asymmetry of the universe can be generated via leptogenesis. The breaking of U(1)ψ' produces superconducting strings that may be present in our galaxy. A U(1) R symmetry plays a key role in keeping the proton stable and providing the light sterile neutrinos.

  4. The νMSM, dark matter and neutrino masses

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Blanchet, Steve; Shaposhnikov, Mikhail

    2005-01-01

    We investigate an extension of the Minimal Standard Model by right-handed neutrinos (the νMSM) to incorporate neutrino masses consistent with oscillation experiments. Within this theory, the only candidates for dark matter particles are sterile right-handed neutrinos with masses of a few keV. Requiring that these neutrinos explain entirely the (warm) dark matter, we find that their number is at least three. We show that, in the minimal choice of three sterile neutrinos, the mass of the lightest active neutrino is smaller than O(10 -5 ) eV, which excludes the degenerate mass spectra of three active neutrinos and fixes the absolute mass scale of the other two active neutrinos

  5. Thermal dark matter through the Dirac neutrino portal

    Science.gov (United States)

    Batell, Brian; Han, Tao; McKeen, David; Haghi, Barmak Shams Es

    2018-04-01

    We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multibody kaon decays and Drell-Yan production of W bosons at the LHC.

  6. Solar neutrinos as a probe of dark matter-neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Capozzi, Francesco; Vecchi, Luca [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova (Italy); Shoemaker, Ian M., E-mail: capozzi.12@osu.edu, E-mail: ian.shoemaker@usd.edu, E-mail: vecchi@infn.pd.it [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States)

    2017-07-01

    Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjoys a nontrivial dynamics with exotic interactions, possibly providing a link to the Dark Matter (DM) puzzle. Interactions between DM and neutrinos have also been proposed to address the long-standing 'missing satellites' problem in the field of large scale structure formation. Motivated by these considerations, in this paper we discuss realistic scenarios with light steriles coupled to DM . We point out that within this framework active neutrinos acquire an effective coupling to DM that manifests itself as a new matter potential in the propagation within a medium of asymmetric DM . Assuming that at least a small fraction of asymmetric DM has been captured by the Sun, we show that a sizable region of the parameter space of these scenarios can be probed by solar neutrino experiments, especially in the regime of small couplings and light mediators where all other probes become inefficient. In the latter regime these scenarios behave as familiar 3+1 models in all channels except for solar data, where a Solar Dark MSW effect takes place. Solar Dark MSW is characterized by modifications of the most energetic {sup 8}B and CNO neutrinos, whereas the other fluxes remain largely unaffected.

  7. Delayed pulsar kicks from the emission of sterile neutrinos

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Mandal, Bhabani Prasad; Mukherjee, Alok

    2008-01-01

    The observed velocities of pulsars suggest the possibility that sterile neutrinos with mass of several keV are emitted from a cooling neutron star. The same sterile neutrinos could constitute all or part of cosmological dark matter. The neutrino-driven kicks can exhibit delays depending on the mass and the mixing angle, which can be compared with the pulsar data. We discuss the allowed ranges of sterile neutrino parameters, consistent with the latest cosmological and x-ray bounds, which can explain the pulsar kicks for different delay times

  8. New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars

    International Nuclear Information System (INIS)

    Merle, Alexander; Niro, Viviana; Schmidt, Daniel

    2014-01-01

    We propose a new production mechanism for keV sterile neutrino Dark Matter. In our setting, we assume the existence of a scalar singlet particle which never entered thermal equilibrium in the early Universe, since it only couples to the Standard Model fields by a really small Higgs portal interaction. For suitable values of this coupling, the scalar can undergo the so-called freeze-in process, and in this way be efficiently produced in the early Universe. These scalars can then decay into keV sterile neutrinos and produce the correct Dark Matter abundance. While similar settings in which the scalar does enter thermal equilibrium and then freezes out have been studied previously, the mechanism proposed here is new and represents a versatile extension of the known case. We perform a detailed numerical calculation of the DM production using a set of coupled Boltzmann equations, and we illustrate the successful regions in the parameter space. Our production mechanism notably can even work in models where active-sterile mixing is completely absent

  9. Sterile neutrinos with secret interactions—lasting friendship with cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Center for Theoretical Physics, Strada Costiera 11, Trieste, 34014 Italy (Italy); Dasgupta, Basudeb [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 India (India); Kopp, Joachim, E-mail: xchu@ictp.it, E-mail: bdasgupta@theory.tifr.res.in, E-mail: jkopp@uni-mainz.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, Staudingerweg 7, Mainz, 55128 Germany (Germany)

    2015-10-01

    Sterile neutrinos with mass ≅ 1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A'. However, even this scenario is restricted by structure formation constraints when A'-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such ''secret'' interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space—one at very small A' coupling, one at relatively large A' coupling—where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A' coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A' boson couples also to the dark matter in the Universe.

  10. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiaoyong [International Center for Theoretical Physics,Strada Costiera 11, Trieste, 34014 (Italy); Dasgupta, Basudeb [Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai, 400005 (India); Kopp, Joachim [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics,Johannes Gutenberg University, Staudingerweg 7, Mainz, 55128 (Germany)

    2015-10-06

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect their evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.

  11. A search for sterile neutrinos with the latest cosmological observations

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Lu; Zhang, Jing-Fei [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2017-06-15

    We report the result of a search for sterile neutrinos with the latest cosmological observations. Both cases of massless and massive sterile neutrinos are considered in the ΛCDM cosmology. The cosmological observations used in this work include the Planck 2015 temperature and polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev-Zeldovich cluster counts data, the Planck lensing data, and the cosmic shear data. We find that the current observational data give a hint of the existence of massless sterile neutrino (as dark radiation) at the 1.44σ level, and the consideration of an extra massless sterile neutrino can indeed relieve the tension between observations and improve the cosmological fit. For the case of massive sterile neutrino, the observations give a rather tight upper limit on the mass, which implies that actually a massless sterile neutrino is more favored. Our result is consistent with the recent result of neutrino oscillation experiment done by the Daya Bay and MINOS collaborations, as well as the recent result of cosmic ray experiment done by the IceCube collaboration. (orig.)

  12. Evidence and Search for Sterile Neutrinos at Accelerators

    Directory of Open Access Journals (Sweden)

    W. C. Louis

    2013-01-01

    Full Text Available The LSND short-baseline neutrino experiment has published evidence for antineutrino oscillations at a mass scale of ~1 eV2. The MiniBooNE experiment, designed to test this evidence for oscillations at an order of magnitude higher neutrino energy and distance, observes excesses of events in both neutrino mode and antineutrino mode. While the MiniBooNE neutrino excess has a neutrino energy spectrum that is softer than expected from LSND, the MiniBooNE antineutrino excess is consistent with neutrino oscillations and with the LSND oscillation signal. When combined with oscillation measurements at the solar and atmospheric mass scales, assuming that the LSND and MiniBooNE signals are due to neutrino oscillations, these experiments imply the existence of more than three neutrino mass states and, therefore, one or more sterile neutrinos. Such sterile neutrinos, if proven to exist, would have a big impact on particle physics, nuclear physics, and astrophysics and would contribute to the dark matter of the universe. Future experiments under construction or proposed at Fermilab, ORNL, CERN, and in Japan will provide a definitive test of short-baseline neutrino oscillations and will have the capability of proving the existence of sterile neutrinos.

  13. Flavor composition of the IceCube neutrinos: A quest for sterile neutrinos?

    International Nuclear Information System (INIS)

    Biondi, R.

    2016-01-01

    The identification of flavor content in the cosmic high-energy neutrinos recently observed by the IceCube collaboration could spread the light on the origin of these neutrinos. We study the expected fraction of muon tracks for different cases of the neutrino flavor composition at the sources taking into account uncertainties in the neutrino mixing angles and CP-phase. We show that in the frame of the three known neutrinos it is hard to explain the ν_μ fraction observed at IceCube. However if the cosmic component is produced in some hidden sector, in the form of sterile neutrinos which then oscillate into ordinary ones, a better agreement can be obtained. Especially, in a scenario when heavy dark matter with mass of few PeV decay into sterile neutrinos which then oscillate in ordinary neutrinos due to tiny mixing with the latter, it is possible to explain the low fraction of muon tracks in the events observed by IceCube in the energy region from 60TeV to 2PeV

  14. Search for heavy sterile neutrinos with SHiP

    CERN Document Server

    Jacobsson, Richard

    Invited contribution to the White Paper on keV sterile neutrino Dark Matter as proceedings of the v-Dark 2015 international workshop which was held at the Institute for Advanced Study of the Technical University of Munich, Garching, Germany, 7 - 9 December 2015. White Paper will be submitted to JCAP.

  15. Coupling active and sterile neutrinos in the cosmon plus seesaw framework

    International Nuclear Information System (INIS)

    Bernardini, A.E.

    2010-01-01

    The cosmological evolution of neutrino energy densities driven by cosmon-type field equations is introduced assuming that active and sterile neutrinos are intrinsically connected by cosmon fields through the seesaw mechanism. Interpreting sterile neutrinos as dark matter adiabatically coupled with dark energy results in a natural decoupling of (active) mass varying neutrino (MaVaN) equations. Identifying the dimensionless scale of the seesaw mechanism, m/M, with a power of the cosmological scale factor, a, allows for embedding the resulting masses into the generalized Chaplygin gas (GCG) scenario for the dark sector. Without additional assumptions, our findings establish a precise connection among three distinct frameworks: the cosmon field dynamics for MaVaN's, the seesaw mechanism for dynamical mass generation and the GCG scenario. Our results also corroborate with previous assertions that mass varying particles can be the right responsible for the stability issue and for the cosmic acceleration of the universe.

  16. Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bezrukov, F. [The University of Manchester, School of Physics and Astronomy, Oxford Road, Manchester M13 9PL (United Kingdom); Chudaykin, A.; Gorbunov, D., E-mail: Fedor.Bezrukov@manchester.ac.uk, E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2017-06-01

    We study a model of a keV-scale sterile neutrino with a relatively large mixing with the Standard Model sector. Usual considerations predict active generation of such particles in the early Universe, which leads to constraints from the total Dark Matter density and absence of X-ray signal from sterile neutrino decay. These bounds together may deem any attempt of creation of the keV scale sterile neutrino in the laboratory unfeasible. We argue that for models with a hidden sector coupled to the sterile neutrino these bounds can be evaded, opening new perspectives for the direct studies at neutrino experiments such as Troitsk ν-mass and KATRIN. We estimate the generation of sterile neutrinos in scenarios with the hidden sector dynamics keeping the sterile neutrinos either massless or superheavy in the early Universe. In both cases the generation by oscillations from active neutrinos in plasma is suppressed.

  17. Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures

    Science.gov (United States)

    Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.

    2017-02-01

    In the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino's helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tf-≃5 GeV , whereas positive helicity neutrinos freeze out at Tf+≃8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li

  18. Cosmological imprints of frozen-in light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Samuel B.; Shakya, Bibhushan, E-mail: rolandsa@umich.edu, E-mail: bshakya@umich.edu [Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-05-01

    We investigate observable cosmological aspects of sterile neutrino dark matter produced via the freeze-in mechanism. The study is performed in a framework that admits many cosmologically interesting variations: high temperature production via annihilation processes from higher dimensional operators or low temperature production from decays of a scalar, with the decaying scalar in or out of equilibrium with the thermal bath, in supersymmetric or non-supersymmetric setups, thus allowing us to both extract generic properties and highlight features unique to particular variations. We find that while such sterile neutrinos are generally compatible with all cosmological constraints, interesting scenarios can arise where dark matter is cold, warm, or hot, has nontrivial momentum distributions, or provides contributions to the effective number of relativistic degrees of freedom N {sub eff} during Big Bang nucleosynthesis large enough to be probed by future measurements.

  19. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  20. Search for GeV-Scale Sterile Neutrinos Responsible for Active Neutrino Oscillations and Baryon Asymmetry of the Universe

    Directory of Open Access Journals (Sweden)

    S. N. Gninenko

    2012-01-01

    Full Text Available Standard Model fails to explain neutrino oscillations, dark matter, and baryon asymmetry of the Universe. All these problems can be solved with three sterile neutrinos added to SM. Quite remarkably, if sterile neutrino masses are well below the electroweak scale, this modification—Neutrino Minimal Standard Model (νMSM—can be tested experimentally. We discuss a new experiment on search for decays of GeV-scale sterile neutrinos, which are responsible for the matter-antimatter asymmetry generation and for the active neutrino masses. If lighter than 2 GeV, these particles can be produced in decays of charm mesons generated by high energy protons in a target, and subsequently decay into SM particles. To fully explore this sector of νMSM, the new experiment requires data obtained with at least 1020 incident protons on target (achievable at CERN SPS in future and a big volume detector constructed from a large amount of identical single modules, with a total sterile neutrino decay length of few kilometers. The preliminary feasibility study for the proposed experiment shows that it has sensitivity which may either lead to the discovery of new particles below the Fermi scale—right-handed partners of neutrinos—or rule out seesaw sterile neutrinos with masses below 2 GeV.

  1. Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport, and a mechanism for supernova explosion enhancement

    Science.gov (United States)

    Hidaka, Jun; Fuller, George M.

    2006-12-01

    We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) active-sterile neutrino conversion in the νe⇌νs channel in the collapse of the iron core of a presupernova star. For values of sterile neutrino rest mass ms and vacuum mixing angle θ (specifically, 0.5keV5×10-12) which include those required for viable sterile neutrino dark matter, our one-zone in-fall phase collapse calculations show a significant reduction in core lepton fraction. This would result in a smaller homologous core and therefore a smaller initial shock energy, disfavoring successful shock reheating and the prospects for an explosion. However, these calculations also suggest that the MSW resonance energy can exhibit a minimum located between the center and surface of the core. In turn, this suggests a post-core-bounce mechanism to enhance neutrino transport and neutrino luminosities at the core surface and thereby augment shock reheating: (1) scattering-induced or coherent MSW νe→νs conversion occurs deep in the core, at the first MSW resonance, where νe energies are large (˜150MeV); (2) the high energy νs stream outward at near light speed; (3) they deposit their energy when they encounter the second MSW resonance νs→νe just below the proto-neutron star surface.

  2. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa [CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Physique Theorique; Arcadi, Giorgio [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Domcke, Valerie [Paris Diderot Univ. (France). AstroParticule et Cosmologie (APC)/Paris Centre for Cosmological Physics (PCCP); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lucente, Michele [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Centre for Cosmology, Particle Physics and Phenomenology (CP3)

    2017-09-05

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  3. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    Science.gov (United States)

    Abada, Asmaa; Arcadi, Giorgio; Domcke, Valerie; Lucente, Michele

    2017-12-01

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  4. Neutrino masses, leptogenesis and dark matter from small lepton number violation?

    International Nuclear Information System (INIS)

    Abada, Asmaa; Domcke, Valerie; Lucente, Michele

    2017-01-01

    We consider the possibility of simultaneously addressing the baryon asymmetry of the Universe, the dark matter problem and the neutrino mass generation in minimal extensions of the Standard Model via sterile fermions with (small) total lepton number violation. Within the framework of Inverse and Linear Seesaw models, the small lepton number violating parameters set the mass scale of the active neutrinos, the efficiency of leptogenesis through a small mass splitting between pairs of sterile fermions as well as the mass scale of a sterile neutrino dark matter candidate. We provide an improved parametrization of these seesaw models taking into account existing experimental constraints and derive a linearized system of Boltzmann equations to describe the leptogenesis process, which allows for an efficient investigation of the parameter space. This in particular enables us to perform a systematic study of the strong washout regime of leptogenesis. Our study reveals that one can have a successful leptogenesis at the temperature of the electroweak scale through oscillations between two sterile states with a natural origin of the (necessary) strong degeneracy in their mass spectrum. The minimal model however requires a non-standard cosmological history to account for the relic dark matter. Finally, we discuss the prospect for neutrinoless double beta decay and for testing, in future experiments, the values of mass and different active-sterile mixings required for successful leptogenesis.

  5. Seeking sterile neutrinos in Finslerian cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2017-11-15

    For the first time, to search for sterile neutrinos in the framework of Finler geometry, we constrain four cosmological models using the most stringent constraint we can provide so far. We find that the Finslerian massless sterile neutrino model can, respectively, give a better cosmological fit to data and alleviate the current H{sub 0} tension more effectively than the other three models. For the Finslerian massless sterile neutrino model, we obtain the constraint N{sub eff} = 3.237{sup +0.092}{sub -0.185}, which is consistent with ΔN{sub eff} > 0 at the 1.03σ confidence level (CL). This gives a very weak hint of massless sterile neutrinos and may imply the non-existence of massless sterile neutrinos in the Finslerian cosmological setting. For the Finslerian massive sterile neutrino model, we obtain the constraints N{sub eff} = 3.143{sup +0.064}{sub -0.066}, which favors ΔN{sub eff} > 0 at the 1.47σ CL, and m{sub ν,sterile}{sup eff} < 0.121 eV at the 2σ CL which is much tighter than the Planck results. This very tight restriction appears to indicate the massive sterile neutrinos are also non-existent in the Finslerian scenarios. Consequently, one may conclude that the sterile neutrinos are possibly non-existent in the Finslerian universe. Our results are compatible with the recent results of the neutrino oscillation experiments implemented by the Daya Bay and MINOS collaborations and the cosmic ray one carried out by the IceCube collaboration. (orig.)

  6. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features

    International Nuclear Information System (INIS)

    Merle, Alexander; Totzauer, Maximilian

    2015-01-01

    We perform a detailed and illustrative study of the production of keV sterile neutrino Dark Matter (DM) by decays of singlet scalars in the early Universe. In the current study we focus on providing a clear and general overview of this production mechanism. For the first time we study all regimes possible on the level of momentum distribution functions, which we obtain by solving a system of Boltzmann equations. These quantities contain the full information about the production process, which allows us to not only track the evolution of the DM generation but to also take into account all bounds related to the spectrum, such as constraints from structure formation or from avoiding too much dark radiation. In particular we show that this simple production mechanism can, depending on the regime, lead to strongly non-thermal DM spectra which may even feature more than one peak in the momentum distribution. These cases could have particularly interesting consequences for cosmological structure formation, as their analysis requires more refined tools than the simplistic estimate using the free-streaming horizon. Here we present the mechanism including all concepts and subtleties involved, for now using the assumption that the effective number of relativistic degrees of freedom is constant during DM production, which is applicable in a significant fraction of the parameter space. This allows us to derive analytical results to back up our detailed numerical computations, thus leading to the most comprehensive picture of keV sterile neutrino DM production by singlet scalar decays that exists up to now

  7. Sterile Neutrino Search with MINOS

    International Nuclear Information System (INIS)

    Devan, Alena V.

    2015-01-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm 2 . An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δm s 2 ~ 1 eV 2 . The results of the 2013 sterile neutrino search are presented here.

  8. Sterile Neutrinos in Cold Climates

    International Nuclear Information System (INIS)

    Jones, Benjamin J.P.

    2015-01-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 2 2θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2 , and the LSND and MiniBooNE allowed regions are excluded at

  9. Light Sterile Neutrinos: A White Paper

    DEFF Research Database (Denmark)

    Abazajian, K. N.; Acero, M. A.; Agarwalla, S. K.

    2012-01-01

    This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data.......This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data....

  10. Search for right-handed neutrinos from dark matter annihilation with gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Weniger, Christoph, E-mail: miguel.campos@mpi-hd.mpg.de, E-mail: farinaldo.queiroz@mpi-hd.mpg.de, E-mail: carlos.yaguna@uptc.edu.co, E-mail: c.weniger@uva.nl [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands)

    2017-07-01

    Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handed neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10{sup −26} cm{sup 3} s {sup −1} , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.

  11. Search for right-handed neutrinos from dark matter annihilation with gamma-rays

    International Nuclear Information System (INIS)

    Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2017-01-01

    Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handed neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10 −26 cm 3 s −1 , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.

  12. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  13. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, G.G.

    2011-01-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch...... be circumvented by a small νe degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20-75% relative to the standard ΛCDM value....

  14. Sterile Neutrinos in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Benjamin J.P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  15. Mirror model for sterile neutrinos

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2003-01-01

    Sterile neutrinos are studied as subdominant contribution to solar neutrino physics. The mirror-matter neutrinos are considered as sterile neutrinos. We use the symmetric mirror model with gravitational communication between mirror and visible sectors. This communication term provides mixing between visible and mirror neutrinos with the basic scale μ=v EW 2 /M Pl =2.5x10 -6 eV, where v EW =174 GeV is the vacuum expectation value of the standard electroweak group and M Pl is the Planckian mass. It is demonstrated that each mass eigenstate of active neutrinos splits into two states separated by small Δm 2 . Unsuppressed oscillations between active and sterile neutrinos (ν a ↔ν s ) occur only in transitions between each of these close pairs ('windows'). These oscillations are characterized by very small Δm 2 and can suppress the flux and distort spectrum of pp-neutrinos in detectable way. The other observable effect is anomalous seasonal variation of neutrino flux, which appears in LMA solution. The considered subdominant neutrino oscillations ν a ↔ν s can reveal itself as big effects in observations of supernova neutrinos and high-energy (HE) neutrinos. In the case of HE neutrinos they can provide a very large diffuse flux of active neutrinos unconstrained by the e-m cascade upper limit

  16. Cosmology seeking friendship with sterile neutrinos

    International Nuclear Information System (INIS)

    Hamann, J.; Hannestad, S.; Raffelt, G.G.; Tamborra, I.; Wong, Y.Y.Y.

    2011-01-01

    Precision cosmology and big-bang nucleosynthesis mildly favour extra radiation in the universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We present bounds on the common mass scale ms and effective number Ns of thermally excited sterile neutrino states from the most recent cosmological data. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if ms is in the sub-eV range.

  17. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  18. A White Paper on keV sterile neutrino Dark Matter

    Czech Academy of Sciences Publication Activity Database

    Adhikari, R.; Agostini, M.; Ky, N. A.; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Dragoun, Otokar; Vénos, Drahoslav; Zuber, K.

    2017-01-01

    Roč. 2017, č. 1 (2017), č. článku 025. ISSN 1475-7516 R&D Projects: GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : cosmological neutrinos * dark matter experiments * dark matter theory * particle physics - cosmology connection Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.734, year: 2016

  19. Searching for Sterile Neutrinos with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Ashley [Manchester U.

    2016-01-01

    This document presents the latest results for a 3+1 sterile neutrino search using the $10.56 \\times 10^{20}$ protons-on-target data set taken from 2005 - 2012. By searching for oscillations driven by a large mass splitting, MINOS is sensitive to the existence of sterile neutrinos through any energy dependent deviations using a charged current sample, as well as looking at any relative deficit between neutral current events between the far and near detectors. This document will discuss the novel analysis that enabled a search for sterile neutrinos setting a limit in the previously unexplored regions in the parameter space $\\{\\Delta m^{2}_{41}, \\sin^2\\theta_{24}\\}$. The results presented can be compared to the parameter space suggested by LSND and MiniBooNE and complements other previous experimental searches for sterile neutrinos in the electron neutrino appearance channel.

  20. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91 Stockholm (Sweden); Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Lopez-Pavon, Jacobo [INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  1. A see-saw mechanism with light sterile neutrinos

    International Nuclear Information System (INIS)

    McKellar, B.H.J.; Garbutt, M.; Stephenson, G.J.; Goldman, T.

    2001-01-01

    The usual see-saw mechanism for the generation of light neutrino masses is based on the assumption that all of the flavours of right-handed (more properly, sterile) neutrinos are heavy. If the sterile Majorana mass matrix is singular, one or more of the sterile neutrinos will have zero mass before mixing with the active (left-handed) neutrinos and be light after that mixing is introduced In particular, a rank 1 sterile mass matrix leads naturally to two pseudo-Dirac pairs, one very light active Majorana neutrino and one heavy sterile Majorana neutrino. For any pattern of Dirac masses, there exists a region of parameter space in which the two pseudo-Dirac pairs are nearly degenerate in mass. This, in turn, leads to large amplitude mixing of active states as well as mixing into sterile states

  2. Revisiting cosmological bounds on sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Aaron C. [Institute for Particle Physics Phenomenology (IPPP), Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Martínez, Enrique Fernández [Departamento and Instituto de Física Teórica (IFT), UAM/CSIC, Universidad Autonoma de Madrid, C/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain); Hernández, Pilar; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Lattanzi, Massimiliano, E-mail: aaron.vincent@durham.ac.uk, E-mail: enrique.fernandez-martinez@uam.es, E-mail: m.pilar.hernandez@uv.es, E-mail: omena@ific.uv.es, E-mail: lattanzi@fe.infn.it [Dipartimento di Fisica e Science della Terra, Università di Ferrara and INFN, sezione di Ferrara, Polo Scientifico e Tecnologico, Edificio C Via Saragat, 1, I-44122 Ferrara (Italy)

    2015-04-01

    We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R{sub CMB} and the sound horizon r{sub s} from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin{sup 2}θ ∼< 0.026 (m{sub s}/eV){sup −2}.

  3. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  4. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  5. Cosmology seeking friendship with sterile neutrinos

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, G.G.

    2011-01-01

    Precision cosmology and big-bang nucleosynthesis mildly favour extra radiation in the universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We present bounds on the common mass scale ms and effective number Ns of thermally excited sterile ...

  6. Sterile Neutrino Search in the NOvA Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Edayath, Sijith [Cochin U.; Aurisano, Adam [Cincinnati U.; Sousa, Alexandre [Cincinnati U.; Davies, Gavin [Indiana U.; Suter, Louise [Fermilab; Yang, Shaokai [Cincinnati U.

    2017-10-03

    The majority of neutrino oscillation experiments have obtained evidence for neutrino oscillations that are compatible with the three-flavor model. Explaining anomalous results from short-baseline experiments, such as LSND and MiniBooNE, in terms of neutrino oscillations requires the existence of sterile neutrinos. The search for sterile neutrino mixing conducted in NOvA uses a long baseline of 810 km between Near Detector (ND) at Fermilab and Far Detector (FD) in Minnesota. The signal for sterile neutrino oscillations is a deficit of neutral-current neutrino interactions at the FD with respect to the ND prediction. In this document, We will present the analysis improvements that we are implementing for future NC sterile neutrino searches with NOvA. These include: improved modelling of our detector response; the inclusion of NC 2p2h interaction modelling; implementing a better energy reconstruction techniques; and including possible oscillation due to sterile neutrinos in the ND . This improvements enable us to do a simultaneous ND-FD shape fit of the NC energy spectrum covering a wider sterile mass range than previous analyses.

  7. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos

    Science.gov (United States)

    Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.

    2005-09-01

    We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.

  8. Search for sterile neutrinos at a new short-baseline CERN neutrino beam

    International Nuclear Information System (INIS)

    Mauri, N.

    2014-01-01

    In the last few years the experimental results on neutrino/anti-neutrino oscillations at Short-Baseline (SBL) showed a tension with several phenomenological models. The recent and carefully recomputed anti-neutrino fluxes from nuclear reactors have further increased this tension drawing a picture not fully compatible with the 3 neutrino oscillation scenario. A sterile neutrino is a neutral lepton which does not couple with W/Z bosons. it is not an exotic particle, its existence being a natural consequence of neutrinos having a non-zero mass. Sterile neutrinos can mix with the active ones through additional mass eigenstates, with no necessary mass scale. We will present an experimental search for sterile neutrinos with a new CERN-SPS neutrino beam using muon spectrometers and large LAr detectors. To definitely clarify the physics issue, the proposed experiment will study oscillations in a muon neutrino / antineutrino beam both in appearance and disappearance modes, exploring the Δm 2 ∼ 1 eV 2 range

  9. submitter Prospects of Sterile Neutrino Search with the FCC-ee

    CERN Document Server

    Bay Nielsen, Sissel

    A proposed future circular e + e − collider, the FCC-ee, is suggested to search for sterile neutrinos. The Neutrino Minimal Standard Model, νMSM, is a model of sterile neutrinos, that accommodates explanations for several phenomena of physics beyond the Standard Model. This thesis presents an overview of the theoretical motivation for νMSM, an outline of the experimental conditions at the FCC-ee, and a review of previous accelerator bounds for sterile neutrinos. Two studies of sterile neutrinos with masses at the electroweak scale are introduced, an analysis of long lived sterile neutrinos, and an analysis of short lived sterile neutrinos. Both analyses include background studies and sensitivity estimates for the FCC-ee detector. The study of long lived sterile neutrinos is based on a search for detectable displaced vertices with 1012 Z decays, obtaining a search reach on the mixing angle |θ| 2 as small as 10−11. The study of short lived sterile neutrinos is a Monte Carlo study with a cut-based analysi...

  10. Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Akira [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan (Japan); Kamada, Ayuki, E-mail: harada@utap.phys.s.u-tokyo.ac.jp, E-mail: ayuki.kamada@ucr.edu [Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba, 277-8583 Japan (Japan)

    2016-01-01

    We perform a set of cosmological simulations of structure formation in a mixed dark matter (MDM) model. Our model is motivated by the recently identified 3.5 keV X-ray line, which can be explained by the decay of non-resonantly produced sterile neutrinos accounting for 20–60% of the dark matter in the Universe. These non-resonantly produced sterile neutrinos have a sizable free-streaming length and hence behave effectively as warm dark matter (WDM). Assuming the rest of dark matter is composed of some cold dark matter (CDM) particles, we follow the coevolution of a mixed WDM plus CDM cosmology. Specifically, we consider the models with the warm component fraction of r{sub warm}=0.25 and 0.50. Our MDM models predict that the comoving Jeans length at the matter-radiation equality is close to that of the thermally produced warm dark matter model with particle mass m{sub WDM}=2.4 keV, but the suppression in the fluctuation power spectrum is weaker. We perform large N-body simulations to study the structure of non-linear dark halos in the MDM models. The abundance of substructure is significantly reduced in the MDM models, and hence the so-called small-scale crisis is mitigated. The cumulative maximum circular velocity function (CVF) of at least one halo in the MDM models is in good agreement with the CVFs of the observed satellites in the Milky Way and the Andromeda galaxy. We argue that the MDM models open an interesting possibility to reconcile the reported 3.5 keV line and the internal structure of galaxies.

  11. Effects of sterile neutrino and extra-dimension on big bang nucleosynthesis

    Science.gov (United States)

    Jang, Dukjae; Kusakabe, Motohiko; Cheoun, Myung-Ki

    2018-04-01

    We study effects of the sterile neutrino in the five-dimensional universe on the big bang nucleosynthesis (BBN). Since the five-dimensional universe model leads to an additional term in the Friedmann equation and the energy density of the sterile neutrino increases the total energy density, this model can affect the primordial abundance via changing the cosmic expansion rate. The energy density of the sterile neutrino can be determined by a rate equation for production of the sterile neutrino. We show that not only the mixing angle and the mass of the sterile neutrino, but also a resonant effect in the oscillation between sterile and active neutrinos is important to determine a relic abundance of the sterile neutrino. In this study, we also investigate how the sterile neutrino in extra-dimensional model can affect the BBN, and constrain the parameters related to the above properties of the sterile neutrino by using the observational primordial abundances of light elements.

  12. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  13. Resonant Production of Sterile Neutrinos in the Early Universe

    Science.gov (United States)

    Gilbert, Lauren; Grohs, Evan; Fuller, George M.

    2016-06-01

    This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.

  14. Homestake result, sterile neutrinos, and low energy solar neutrino experiments

    Science.gov (United States)

    de Holanda, P. C.; Smirnov, A. Yu.

    2004-06-01

    The Homestake result is about ˜2σ lower than the Ar-production rate, QAr, predicted by the large mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem. Also there is no apparent upturn of the energy spectrum (R≡Nobs/NSSM) at low energies in SNO and Super-Kamiokande. Both these facts can be explained if a light, Δm201˜(0.2 2)×10-5 eV2, sterile neutrino exists which mixes very weakly with active neutrinos: sin2 2α˜(10-5 10-3). We perform both the analytical and numerical study of the conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E=(0.5 5) MeV thus suppressing the Be, or/and pep, CNO, as well as B electron neutrino fluxes. Apart from diminishing QAr it leads to decrease of the Ge-production rate and may lead to the decrease of the BOREXINO signal as well as the CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO, and KamLAND as well as by the new low energy experiments will allow us to check this possibility.

  15. Leptogenesis, Dark Energy, Dark Matter and the neutrinos

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2007-01-01

    In this review we discuss how the models of neutrino masses can accommodate solutions to the problem of matter-antimatter asymmetry in the universe, dark energy or cosmological constant problem and dark matter candidates. The matter-antimatter asymmetry is explained by leptogenesis, originating from the lepton number violation associated with the neutrino masses. The dark energy problem is correlated with a mass varying neutrinos, which could originate from a pseudo-Nambu-Goldstone boson. In some radiative models of neutrino masses, there exists a Higgs doublet that does not acquire any vacuum expectation value. This field could be inert and the lightest inert particle could then be a dark matter candidate. We reviewed these scenarios in connection with models of neutrino masses with right-handed neutrinos and with triplet Higgs scalars

  16. Sterile Neutrino Search with the Double Chooz Experiment

    Science.gov (United States)

    Hellwig, D.; Matsubara, T.; Double Chooz Collaboration

    2017-09-01

    Double Chooz is a reactor antineutrino disappearance experiment located in Chooz, France. A far detector at a distance of about 1 km from reactor cores is operating since 2011; a near detector of identical design at a distance of about 400 m is operating since begin 2015. Beyond the precise measurement of θ 13, Double Chooz has a strong sensitivity to so called light sterile neutrinos. Sterile neutrinos are neutrino mass states not taking part in weak interactions, but may mix with known neutrino states. In this paper, we present an analysis method to search for sterile neutrinos and the expected sensitivity with the baselines of our detectors.

  17. Sterile neutrino search with the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Denise; Bekman, Ilja; Kampmann, Philipp; Schoppmann, Stefan; Soiron, Michael; Stahl, Achim; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany)

    2016-07-01

    The Double Chooz experiment is a reactor neutrino disappearance experiment located at the Chooz nuclear power plant, France. It measures the electron-antineutrino flux of the two nuclear reactors with two detectors of identical design. A far detector at a distance of about 1 km is operating since 2011; a near detector at a distance of about 400 m is operating since the end of 2014. The combination of the two detectors offers sensitivity to sterile neutrino mixing parameters. Sterile neutrinos are neutrino mass states not taking part in weak interactions, but may mix with known neutrino states. This induces additional mixing angles and mass differences. This talk describes the search for sterile neutrinos and the sensitivity of Double Chooz to the mixing angle θ{sub 14}.

  18. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    International Nuclear Information System (INIS)

    Huang, Junting

    2015-01-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states v e , v μ and v τ . In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ 24 in the range of 10 -2 eV 2 < Δm 43 2 < 1 eV 2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  19. Search for sterile neutrinos with IceCube DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Terliuk, Andrii [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The DeepCore detector is a sub-array of the IceCube Neutrino Observatory that lowers the energy threshold for neutrino detection down to approximately 10 GeV. DeepCore is used for a variety of studies including atmospheric neutrino oscillations. The standard three-neutrino oscillation paradigm is tested using the DeepCore detector by searching for an additional light, sterile neutrino with a mass on the order of 1 eV. Sterile neutrinos do not interact with the ordinary matter, however they can be mixed with the three active neutrino states. Such mixture changes the picture of standard neutrino oscillations for atmospheric neutrinos with energies below 100 GeV. The capabilities of DeepCore detector to measure such sterile neutrino mixing will be presented in this talk.

  20. Sterile neutrinos in the milky way

    DEFF Research Database (Denmark)

    Riemer-Sørensen, Signe; Hansen, Steen Harle; Pedersen, K.

    2006-01-01

    Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30......Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30...

  1. Search for Sterile Neutrinos Using the MiniBooNE Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, Michel [Columbia Univ., New York, NY (United States)

    2005-01-01

    The possible existence of light sterile neutrinos in Nature is motivated, and the prospects to extend sterile neutrino searches beyond current limits is substantiated, using the MiniBooNE neutrino beam and detector at Fermilab. We report on the neutrino flux predictions for the MiniBooNE experiment, on the characterization of the charged-current, quasi-elastic interactions of muon neutrinos ({nu}{sub {mu}}n {yields} {mu}{sup -}p) observed, and on the experiment's sensitivity to sterile neutrinos via muon neutrino disappearance.

  2. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Junting [Univ. of Texas, Austin, TX (United States)

    2015-05-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  3. Cosmology based on f(R) gravity with O(1) eV sterile neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Chudaykin, Anton S.; Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Moscow 119334 (Russian Federation); Burenin, Rodion A., E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru, E-mail: alstar@landau.ac.ru, E-mail: rodion@hea.iki.rssi.ru [Space Research Institute of the Russian Academy of Sciences (IKI), Moscow, ul. Profsoyuznaya, 84/32, 117997 (Russian Federation)

    2015-05-01

    We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (the case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino oscillation

  4. Light sterile neutrino sensitivity at the nuSTORM facility

    CERN Document Server

    Adey, D; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bramsiepe, S.G.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M.A.; Ghosh, T.; Gomez-Cadenas, J.J.; de Gouvea, A.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando Morata, J.A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J.B.; Laing, A.; Liu, A.; Link, J.M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K.T.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M.A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Sby, L.; Soler, F.J.P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H.A.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Weber, A.; Wilking, M.J.; Wildner, E.; Winter, W.

    2014-01-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simulta...

  5. How self-interactions can reconcile sterile neutrinos with cosmology.

    Science.gov (United States)

    Hannestad, Steen; Hansen, Rasmus Sloth; Tram, Thomas

    2014-01-24

    Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. However, such neutrinos seem incompatible with cosmology because they have too large of an impact on cosmic structure formation. Here we show that new interactions in the sterile neutrino sector can prevent their production in the early Universe and reconcile short baseline oscillation experiments with cosmology.

  6. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...... of possible sterile neutrinos with O(eV)-masses for cosmology....

  7. Two Light Sterile Neutrinos that Mix Maximally with Each Other and Moderately with Three Active Neutrinos

    International Nuclear Information System (INIS)

    Krolikowski, W.

    2004-01-01

    Since the 3+1 neutrino models with one light sterile neutrino turn out to be not very effective, at least two light sterile neutrinos may be needed to reconcile the solar and atmospheric neutrino experiments with the LSND result, if this is confirmed by the ongoing MiniBooNE experiment (and when the CPT invariance is assumed to hold for neutrino oscillations). We present an attractive 3+2 neutrino model, where two light sterile neutrinos mix maximally with each other, in analogy to the observed maximal mixing of muon and tauon active neutrinos. But, while the mixing of ν e and (ν μ - ν τ )/√2 is observed as large (though not maximal), the mixing of ν e with the corresponding combination of two light sterile neutrinos is expected to be only moderate because of the reported smallness of LSND oscillation amplitude. The presented model turns out, however, not to be more effective in explaining the hypothetic LSND result than the simplest 3+1 neutrino model. On the other hand, in the considered 3+2 model, the deviations from conventional oscillations of three active neutrinos appear to be minimal within a larger class of 3+2 models. (author)

  8. Sterile neutrinos beyond LSND at the neutrino factory

    International Nuclear Information System (INIS)

    Meloni, Davide; Tang Jian; Winter, Walter

    2010-01-01

    We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by Liquid Scintillator Neutrino Detector (LSND) results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. We use a self-consistent framework at the Neutrino Factory without any constraints on the new parameters. We demonstrate for a combined short and long baseline setup that near detectors can provide the expected sensitivity at the LSND-motivated Δm 41 2 -range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting from the long baselines. We point out that limits on such very light sterile neutrinos may also be obtained from a reanalysis of atmospheric and solar neutrino oscillation data, as well as from supernova neutrino observations. In the second part of the analysis, we compare our sensitivity with the existing literature using additional assumptions, such as |Δm 41 2 |>>|Δm 31 2 |, leading to averaging of the fast oscillations in the far detectors. We demonstrate that while the Neutrino Factory has excellent sensitivity compared to existing studies using similar assumptions, one has to be very careful interpreting these results for a combined short and long baseline setup where oscillations could occur in the near detectors. We also test the impact of additional ν τ detectors at the short and long baselines, and we do not find a substantial improvement of the sensitivities.

  9. Impact of Massive Neutrinos and Dark Radiation on the High-redshift Cosmic Web. I. Lyα Forest Observables

    Science.gov (United States)

    Rossi, Graziano

    2017-11-01

    With upcoming high-quality data from surveys such as the Extended Baryon Oscillation Spectroscopic Survey or the Dark Energy Spectroscopic Instrument, improving the theoretical modeling and gaining a deeper understanding of the effects of neutrinos and dark radiation on structure formation at small scales are necessary, to obtain robust constraints free from systematic biases. Using a novel suite of hydrodynamical simulations that incorporate dark matter, baryons, massive neutrinos, and dark radiation, we present a detailed study of their impact on Lyα forest observables. In particular, we accurately measure the tomographic evolution of the shape and amplitude of the small-scale matter and flux power spectra and search for unique signatures along with preferred scales where a neutrino mass detection may be feasible. We then investigate the thermal state of the intergalactic medium (IGM) through the temperature-density relation. Our findings suggest that at k˜ 5 h {{Mpc}}-1 the suppression on the matter power spectrum induced by \\sum {m}ν =0.1 {eV} neutrinos can reach ˜ 4 % at z˜ 3 when compared to a massless neutrino cosmology, and ˜ 10 % if a massless sterile neutrino is included; surprisingly, we also find good agreement (˜ 2 % ) with some analytic predictions. For the 1D flux power spectrum {P}{ F }1{{D}}, the highest response to free-streaming effects is achieved at k˜ 0.005 {[{km}/{{s}}]}-1 when \\sum {m}ν =0.1 {eV}; this k-limit falls in the Lyα forest regime, making the small-scale {P}{ F }1{{D}} an excellent probe for detecting neutrino and dark radiation imprints. Our results indicate that the IGM at z˜ 3 provides the best sensitivity to active and sterile neutrinos.

  10. Signatures of dark radiation in neutrino and dark matter detectors

    Science.gov (United States)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  11. A search for sterile neutrinos in MINOS

    International Nuclear Information System (INIS)

    Osiecki, Thomas Henry

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm 23 2 and θ 23 through the disappearance of ν μ , MINOS is able to measure ν μ → ν sterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS

  12. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Forastieri, Francesco; Natoli, Paolo [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Lattanzi, Massimiliano [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy); Mangano, Gianpiero [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Univ. Monte S.Angelo, I-80126 Napoli (Italy); Mirizzi, Alessandro [Dipartimento Interateneo di Fisica ' Michelangelo Merlin,' Via Amendola 173, 70126 Bari (Italy); Saviano, Ninetta, E-mail: francesco.forastieri@unife.it, E-mail: lattanzi@fe.infn.it, E-mail: mangano@na.infn.it, E-mail: alessandro.mirizzi@ba.infn.it, E-mail: natoli@fe.infn.it, E-mail: nsaviano@uni-mainz.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, JohannesGutenberg-Universität Mainz, 55099 Mainz (Germany)

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with M {sub X} || M {sub W} ), and characterized by a gauge coupling g {sub X} , have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) m {sub s} < 0.82 eV or m {sub s} < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength G {sub X} to be < 2.8 (2.0) × 10{sup 10} G {sub F} from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with M {sub X} ∼ 0.1 MeV and relatively large coupling g {sub X} {sub ∼} 10{sup −1}, previously indicated as a possible solution to the small scale dark matter problem.

  13. Sterile neutrinos in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Malaney, R.A. (Lawrence Livermore National Lab., CA (USA)); Fuller, G.M. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  14. Light sterile neutrino sensitivity at the nuSTORM facility

    Energy Technology Data Exchange (ETDEWEB)

    Adey, D.; Agarwalla, S. K.; Ankenbrandt, C. M.; Asfandiyarov, R.; Back, J. J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S. A.; Booth, C.; Boyd, S. B.; Bramsiepe, S. G.; Bravar, A.; Brice, S. J.; Bross, A. D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M. A.; Ghosh, T.; Gómez-Cadenas, J. J.; de Gouvêa, A.; Haesler, A.; Hanson, G.; Harrison, P. F.; Hartz, M.; Hernández, P.; Hernando Morata, J. A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J. B.; Laing, A.; Liu, A.; Link, J. M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K. T.; Mena, O.; Mishra, S. R.; Mokhov, N.; Morfín, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M. A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J. K.; Smith, D. R.; Smith, P. J.; Sobczyk, J. T.; Søby, L.; Soler, F. J. P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H. A.; Taylor, I. J.; Touramanis, C.; Tunnell, C. D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M. O.; Weber, A.; Wilking, M. J.; Wildner, E.; Winter, W.

    2014-04-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8GeV/c±10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10σ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models.

  15. Search for heavy sterile neutrinos in trileptons at the LHC

    International Nuclear Information System (INIS)

    Dib, Claudio O.; Kim, C.S.; Wang, Kechen; Chinese Academy of Sciences, Beijing

    2017-03-01

    We present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W"±→e"±e"±μ"-"+ν and μ"±μ"±e"-"+ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass m_N=20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb"-"1, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings vertical stroke U_N_e vertical stroke "2∝ vertical stroke U_N_μ vertical stroke "2∝10"-"6, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10"-"5.

  16. A search for sterile neutrinos in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Osiecki, Thomas Henry [Univ. of Texas, Austin, TX (United States)

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm$2\\atop{23}$ and θ23 through the disappearance of vμ, MINOS is able to measure vμ → vsterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

  17. A Sterile-Neutrino Search with the MINOS Experiment

    International Nuclear Information System (INIS)

    Rodrigues, Philip

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction f s of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, f s < 0.41 at 90% C.L.

  18. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  19. More is different: Reconciling eV sterile neutrinos with cosmological mass bounds

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2015-11-01

    Full Text Available It is generally expected that adding light sterile species would increase the effective number of neutrinos, Neff. In this paper we discuss a scenario that Neff can actually decrease due to the neutrino oscillation effect if sterile neutrinos have self-interactions. We specifically focus on the eV mass range, as suggested by the neutrino anomalies. With large self-interactions, sterile neutrinos are not fully thermalized in the early Universe because of the suppressed effective mixing angle or matter effect. As the Universe cools down, flavor equilibrium between active and sterile species can be reached after big bang nucleosynthesis (BBN epoch, but leading to a decrease of Neff. In such a scenario, we also show that the conflict with cosmological mass bounds on the additional sterile neutrinos can be relaxed further when more light species are introduced. To be consistent with the latest Planck results, at least 3 sterile species are needed.

  20. Searches for light sterile neutrinos with multitrack displaced vertices

    Science.gov (United States)

    Cottin, Giovanna; Helo, Juan Carlos; Hirsch, Martin

    2018-03-01

    We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy (considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with √{s }=13 TeV and 300 fb-1 is able to probe sterile neutrino masses between 10 GeV right-handed gauge boson mass of 2 TeV work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.

  1. Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis

    Science.gov (United States)

    Saviano, Ninetta; Pisanti, Ofelia; Mangano, Gianpiero; Mirizzi, Alessandro

    2014-12-01

    Short-baseline neutrino anomalies suggest the existence of low-mass [m ˜O (1 ) eV ] sterile neutrinos νs. These would be efficiently produced in the early universe by oscillations with active neutrino species, leading to a thermal population of the sterile states seemingly incompatible with cosmological observations. In order to relieve this tension it has been recently speculated that new "secret" interactions among sterile neutrinos, mediated by a massive gauge boson X (with MX≪MW), can inhibit or suppress the sterile neutrino thermalization, due to the production of a large matter potential term. We note however, that they also generate strong collisional terms in the sterile neutrino sector that induce an efficient sterile neutrino production after a resonance in matter is encountered, increasing their contribution to the number of relativistic particle species Neff. Moreover, for values of the parameters of the νs-νs interaction for which the resonance takes place at temperature T ≲few MeV , significant distortions are produced in the electron (anti)neutrino spectra, altering the abundance of light element in big bang nucleosynthesis (BBN). Using the present determination of 4He and deuterium primordial abundances we determine the BBN constraints on the model parameters. We find that 2H/H density ratio exclude much of the parameter space if one assumes a baryon density at the best fit value of Planck experiment, ΩBh2=0.02207 , while bounds become weaker for a higher ΩBh2=0.02261 , the 95% C.L. upper bound of Planck. Due to the large error on its experimental determination, the helium mass fraction Yp gives no significant bounds.

  2. Testing sterile neutrino extensions of the Standard Model at future lepton colliders

    Science.gov (United States)

    Antusch, Stefan; Fischer, Oliver

    2015-05-01

    Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).

  3. Parametrization of Seesaw Models and Light Sterile Neutrinos

    CERN Document Server

    Blennow, Mattias

    2011-01-01

    The recent recomputation of the neutrino fluxes from nuclear reactors relaxes the tension between the LSND and MiniBooNE anomalies and disappearance data when interpreted in terms of sterile neutrino oscillations. The simplest extension of the Standard Model with such fermion singlets is the addition of right-handed sterile neutrinos with small Majorana masses. Even when introducing three right-handed neutrinos, this scenario has less free parameters than the 3+2 scenarios studied in the literature. This begs the question whether the best fit regions obtained can be reproduced by this simplest extension of the Standard Model. In order to address this question, we devise an exact parametrization of Standard Model extensions with right-handed neutrinos. Apart from the usual 3x3 neutrino mixing matrix and the 3 masses of the lightest neutrinos, the extra degrees of freedom are encoded in another 3x3 unitary matrix and 3 additional mixing angles. The parametrization includes all the correlations among masses and ...

  4. Search for heavy sterile neutrinos in trileptons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Claudio O. [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). CCTVal y Dept. of Physics; Kim, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics and IPAP; Wang, Kechen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics

    2017-03-15

    We present a search strategy for both Dirac and Majorana sterile neutrinos from the purely leptonic decays of W{sup ±}→e{sup ±}e{sup ±}μ{sup -+}ν and μ{sup ±}μ{sup ±}e{sup -+}ν at the 14 TeV LHC. The discovery and exclusion limits for sterile neutrinos are shown using both the Cut-and-Count (CC) and Multi-Variate Analysis (MVA) methods. We also discriminate between Dirac and Majorana sterile neutrinos by exploiting a set of kinematic observables which differ between the Dirac and Majorana cases. We find that the MVA method, compared to the more common CC method, can greatly enhance the discovery and discrimination limits. Two benchmark points with sterile neutrino mass m{sub N}=20 GeV and 50 GeV are tested. For an integrated luminosity of 3000 fb{sup -1}, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings vertical stroke U{sub Ne} vertical stroke {sup 2}∝ vertical stroke U{sub Nμ} vertical stroke {sup 2}∝10{sup -6}, while Majorana vs. Dirac discrimination can be reached if at least one of the mixings is of order 10{sup -5}.

  5. A Sterile-Neutrino Search with the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Philip [Univ. of Oxford (United Kingdom)

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction fs of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, fs < 0.41 at 90% C.L.

  6. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM;

  7. Capabilities of long-baseline experiments in the presence of a sterile neutrino

    International Nuclear Information System (INIS)

    Dutta, Debajyoti; Gandhi, Raj; Kayser, Boris; Masud, Mehedi; Prakash, Suprabh

    2016-01-01

    Assuming that there is a sterile neutrino, we ask what then is the ability of long-baseline experiments to i) establish that neutrino oscillation violates CP, ii) determine the three-neutrino mass ordering, and iii) determine which CP-violating phase or phases are the cause of any CP violation that may be observed. We find that the ability to establish CP violation and to determine the mass ordering could be very substantial. However, the effects of the sterile neutrino could be quite large, and it might prove very difficult to determine which phase is responsible for an observed CP violation. We explain why a sterile neutrino changes the long-baseline sensitivities to CP violation and to the mass ordering in the ways that it does. We note that long-baseline experiments can probe the presence of sterile neutrinos in a way that is different from, and complementary to, the probes of short-baseline experiments. We explore the question of how large sterile-active mixing angles need to be before long-baseline experiments can detect their effects, or how small they need to be before the interpretation of these experiments can safely disregard the possible existence of sterile neutrinos.

  8. Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    Science.gov (United States)

    Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.

    2006-10-01

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ms˜1eV. This could result in better light element probes of (constraints on) these particles.

  9. Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    International Nuclear Information System (INIS)

    Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.

    2006-01-01

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses m s ∼1 eV. This could result in better light element probes of (constraints on) these particles

  10. Supersymmetric theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Fardon, Rob; Nelson, Ann E.; Weiner, Neal

    2006-01-01

    We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos

  11. Sterile neutrinos, lepton asymmetries, primordial elements: How much of each?

    International Nuclear Information System (INIS)

    Chu Yizen; Cirelli, Marco

    2006-01-01

    We investigate quantitatively the extent to which having a primordial leptonic asymmetry (n ν ≠n ν ) relaxes the bounds on light sterile neutrinos imposed by BBN and LSS. We adopt a few assumptions that allow us to solve the neutrino evolution equations over a broad range of mixing parameters and asymmetries. For the general cases of sterile mixing with the electron or muon neutrino, we identify the regions that can be reopened. For the particular case of a LSND-like sterile neutrino, soon to be rejected or confirmed by MiniBooNE, we find that an asymmetry of the order of 10 -4 is needed to lift the conflicts with cosmology

  12. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    Science.gov (United States)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  13. Sterile neutrino search in the STEREO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred; Roca, Christian [MPIK (Germany)

    2016-07-01

    In neutrino oscillations, a canonical understanding has been established during the last decades after the measurement of the mixing angles θ{sub 12}, θ{sub 23}, θ{sub 13} via solar, atmospheric and, most recently, reactor neutrinos. However, the re-evaluation of the reactor neutrino theoretical flux has forced a re-analysis of most reactor neutrino measurements at short distances. This has led to an unexpected experimental deficit of neutrinos with respect to the theory that needs to be accommodated, commonly known as the ''reactor neutrino anomaly''. This deficit can be interpreted as the existence of a light sterile neutrino state into which reactor neutrinos oscillate at very short distances. The STEREO experiment aims to find an evidence of such oscillations. The ILL research reactor in Grenoble (France) operates at a power of 58MW and provides a large flux of electron antineutrinos with an energy range of a few MeV. These neutrinos will be detected in a 2000 liter organic liquid scintillator detector doped with Gadolinium and consisting of 6 cells stacked along the direction of the core. Given the proximity of the detector, neutrinos will only travel a few meters until they interact with the scintillator. The detector will be placed about 10 m from the reactor core, allowing STEREO to be sensitive to oscillations into the above mentioned neutrino sterile state. The project presents a high potential for a discovery that would impact deeply the paradigms of neutrino oscillations and in consequence the current understanding of particle physics and cosmology.

  14. Search for the sterile neutrino mixing with the ICAL detector at INO

    Energy Technology Data Exchange (ETDEWEB)

    Behera, S.P. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Ghosh, Anushree [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Choubey, Sandhya [Harish-Chandra Research Institute, Allahabad (India); Datar, V.M. [INO Cell, Tata Institute of Fundamental Research, Mumbai (India); Mishra, D.K. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Mohanty, A.K. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Saha Institute of Nuclear Physics, Kolkata (India)

    2017-05-15

    The study has been carried out on the prospects of probing the sterile neutrino mixing with the magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO), using atmospheric neutrinos as a source. The so-called 3 + 1 scenario is considered for active-sterile neutrino mixing and lead to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed using the neutrino event generator NUANCE, modified for ICAL, and folded with the detector resolutions obtained by the INO collaboration from a full GEANT4-based detector simulation. A comparison has been made between the results obtained from the analysis considering only the energy and zenith angle of the muon and combined with the hadron energy due to the neutrino induced event. A small improvement has been observed with the addition of the hadron information to the muon. In the analysis we consider neutrinos coming from all zenith angles and the Earth matter effects are also included. The inclusion of events from all zenith angles improves the sensitivity to sterile neutrino mixing by about 35% over the result obtained using only down-going events. The improvement mainly stems from the impact of Earth matter effects on active-sterile mixing. The expected precision of ICAL on the active-sterile mixing is explored and the allowed confidence level (C.L.) contours presented. At the assumed true value of 10 {sup circle} for the sterile mixing angles and marginalization over Δm{sup 2}{sub 41} and the sterile mixing angles, the upper bound at 90% C.L. (from two-parameter plots) is around 20 {sup circle} for θ{sub 14} and θ{sub 34}, and about 12 {sup circle} for θ{sub 24}. (orig.)

  15. Sterile neutrinos in light of recent cosmological and oscillation data: a multi-flavor scheme approach

    International Nuclear Information System (INIS)

    Melchiorri, Alessandro; Mena, Olga; Sorel, Michel; Palomares-Ruiz, Sergio; Pascoli, Silvia; Slosar, Anze

    2009-01-01

    Light sterile neutrinos might mix with the active ones and be copiously produced in the early Universe. In the present paper, a detailed multi-flavor analysis of sterile neutrino production is performed. Making some justified approximations allows us to consider not only neutrino interactions with the primeval medium and neutrino coherence breaking effects, but also oscillation effects arising from the presence of three light (mostly-active) neutrino states mixed with two heavier (mostly-sterile) states. First, we emphasize the underlying physics via an analytical description of sterile neutrino abundances that is valid for cases with small mixing between active and sterile neutrinos. Then, we study in detail the phenomenology of (3+2) sterile neutrino models in light of short-baseline oscillation data, including the LSND and MiniBooNE results. Finally, by using the information provided by this analysis, we obtain the expected sterile neutrino cosmological abundances and then contrast them with the most recent available data from Cosmic Microwave Background and Large Scale Structure observations. We conclude that (3+2) models are significantly more disfavored by the internal inconsistencies between sterile neutrino interpretations of appearance and disappearance short-baseline data themselves, rather than by the used cosmological data

  16. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  17. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dentler, Mona [U. Mainz, PRISMA; Hernández-Cabezudo, Alvaro [KIT, Karlsruhe, IKP; Kopp, Joachim [CERN; Machado, Pedro [Fermilab; Maltoni, Michele [Madrid, IFT; Martinez-Soler, Ivan [Madrid, IFT; Schwetz, Thomas [KIT, Karlsruhe, IKP

    2018-03-28

    We discuss the possibility to explain the anomalies in short-baseline neutrino oscillation experiments in terms of sterile neutrinos. We work in a 3+1 framework and pay special attention to recent new data from reactor experiments, IceCube and MINOS+. We find that results from the DANSS and NEOS reactor experiments support the sterile neutrino explanation of the reactor anomaly, based on an analysis that relies solely on the relative comparison of measured reactor spectra. Global data from the $\

  18. Search for Sterile Neutrinos with the MINOS Long-Baseline Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Ashley Michael [Univ. of Manchester (United Kingdom)

    2016-01-01

    This thesis will present a search for sterile neutrinos using data taken with the MINOS experiment between 2005 and 2012. MINOS is a two-detector on-axis experiment based at Fermilab. The NuMI neutrino beam encounters the MINOS Near Detector 1km downstream of the neutrino-production target before traveling a further 734km through the Earth's crust, to reach the Far Detector located at the Soudan Underground Laboratory in Northern Minnesota. By searching for oscillations driven by a large mass splitting, MINOS is sensitive to the existence of sterile neutrinos through looking for any energy-dependent perturbations using a charged-current sample, as well as looking at any relative deficit in neutral current events between the Far and Near Detectors. This thesis will discuss the novel analysis that enabled a search for sterile neutrinos covering five orders of magnitude in the mass splitting and setting a limit in previously unexplored regions of the parameter space $\\left\\{\\Delta m^{2}_{41},\\sin^2\\theta_{24}\\right\\}$, where a 3+1-flavour phenomenological model was used to extract parameter limits. The results presented in this thesis are sensitive to the sterile neutrino parameter space suggested by the LSND and MiniBooNE experiments.

  19. SOX - Towards the detection of sterile neutrinos in Borexino. Beta spectrum modeling, Monte Carlo development and sensitivity studies for the sterile neutrino search in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mikko

    2016-12-15

    Several experiments have reported anomalies in the neutrino sector which might be explained by the existence of a fourth (sterile) neutrino with a squared mass difference of about 1 eV{sup 2} to the other three active neutrinos. The SOX project is part of the experimental program of the Borexino experiment and seeks for a clarification of the observed anomalies. For that purpose an artificial antineutrino source ({sup 144}Ce-{sup 144}Pr) and possibly neutrino source ({sup 51}Cr) will be deployed underneath the large low background detector Borexino. The detector provides both energy and vertex resolution to observe a possible oscillation signature within the detector volume. The calculation of the antineutrino spectrum is based on existing theoretical models and was performed within this thesis. The modeling includes several sub-leading corrections particularly such as finite size of the nucleus, screening of the atomic electrons and radiative effects. Related to this work, dedicated Monte Carlo generators have been developed to simulate the inverse beta decay reaction and the (anti)neutrino elastic scattering off electrons. Based on a profile likelihood analysis, the sensitivity to the sterile neutrino search of the SOX project was evaluated. The results obtained from this analysis confirm that the currently allowed parameter regions for sterile neutrinos can be tested at 95% confidence level. Finally, an alternative concept for the sterile neutrino search is presented which is based on a cyclotron and a Beryllium target near Borexino (Borexino+IsoDAR).

  20. SOX - Towards the detection of sterile neutrinos in Borexino. Beta spectrum modeling, Monte Carlo development and sensitivity studies for the sterile neutrino search in Borexino

    International Nuclear Information System (INIS)

    Meyer, Mikko

    2016-12-01

    Several experiments have reported anomalies in the neutrino sector which might be explained by the existence of a fourth (sterile) neutrino with a squared mass difference of about 1 eV"2 to the other three active neutrinos. The SOX project is part of the experimental program of the Borexino experiment and seeks for a clarification of the observed anomalies. For that purpose an artificial antineutrino source ("1"4"4Ce-"1"4"4Pr) and possibly neutrino source ("5"1Cr) will be deployed underneath the large low background detector Borexino. The detector provides both energy and vertex resolution to observe a possible oscillation signature within the detector volume. The calculation of the antineutrino spectrum is based on existing theoretical models and was performed within this thesis. The modeling includes several sub-leading corrections particularly such as finite size of the nucleus, screening of the atomic electrons and radiative effects. Related to this work, dedicated Monte Carlo generators have been developed to simulate the inverse beta decay reaction and the (anti)neutrino elastic scattering off electrons. Based on a profile likelihood analysis, the sensitivity to the sterile neutrino search of the SOX project was evaluated. The results obtained from this analysis confirm that the currently allowed parameter regions for sterile neutrinos can be tested at 95% confidence level. Finally, an alternative concept for the sterile neutrino search is presented which is based on a cyclotron and a Beryllium target near Borexino (Borexino+IsoDAR).

  1. Search for sterile neutrinos at RENO

    Science.gov (United States)

    Yeo, In Sung; RENO Collaboration

    2017-09-01

    The RENO experiment was designed to measure a neutrino mixing angle, θ13, by detecting electron antineutrinos emitted from the Hanbit nuclear reactors in Korea, and succeeded to measure θ13 from the disappearance mode in three neutrino frame. We investigate the possibility of sterile neutrinos existence at RENO experiment and compare data with Monte Carlo generated in four neutrino frame. In this talk, we present some recent results using chi-square analysis method. The probability deficit curve as a function of an effective baseline and the excluded contour plot in sin2(2 θ14) - Δ(m41)2 space will be shown.

  2. Phenomenological study of extended seesaw model for light sterile neutrino

    International Nuclear Information System (INIS)

    Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

    2017-01-01

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .

  3. NeSSiE and sterile neutrinos

    Science.gov (United States)

    Marsella, G.; NESSiE Collaboration

    2015-08-01

    The wonderful frame pinpointed for the 3 standard neutrinos, beautifully adjusted by the Θ13 measurement, left out some relevant questions such as leptonic CP violation, mass values, Dark Matter and anomalies and discrepancies in several neutrino experiment results. The NESSiE collaboration proposes to undertake conclusive experiments to clarify the muon neutrino disappearance measurements at small L/E, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time.

  4. Active-sterile neutrino conversion: consequences for the r-process and supernova neutrino detection

    Science.gov (United States)

    Fetter, J.; McLaughlin, G. C.; Balantekin, A. B.; Fuller, G. M.

    2003-02-01

    We examine active-sterile neutrino conversion in the late time post-core-bounce supernova environment. By including the effect of feedback on the Mikheyev-Smirnov-Wolfenstein (MSW) conversion potential, we obtain a large range of neutrino mixing parameters which produce a favorable environment for the r-process. We look at the signature of this effect in the current generation of neutrino detectors now coming on line. We also investigate the impact of the neutrino-neutrino forward-scattering-induced potential on the MSW conversion.

  5. Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; et al.

    2017-10-17

    A search for mixing between active neutrinos and light sterile neutrinos has been performed by looking for muon neutrino disappearance in two detectors at baselines of 1.04 km and 735 km, using a combined MINOS and MINOS+ exposure of $16.36\\times10^{20}$ protons-on-target. A simultaneous fit to the charged-current muon neutrino and neutral-current neutrino energy spectra in the two detectors yields no evidence for sterile neutrino mixing using a 3+1 model. The most stringent limit to date is set on the mixing parameter $\\sin^2\\theta_{24}$ for most values of the sterile neutrino mass-splitting $\\Delta m^2_{41} > 10^{-4}$ eV$^2$.

  6. Distinguishing Dirac/Majorana sterile neutrinos at the LHC

    International Nuclear Information System (INIS)

    Dib, Claudio O.; Zhang, Jue

    2016-06-01

    We study the purely leptonic decays of W ± → e ± e ± μ -+ ν and μ ± μ ± e -+ ν produced at the LHC, induced by sterile neutrinos with mass m N below M W in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, what would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb -1 , for two benchmark scenarios m N =20 GeV and 50 GeV, at least a 3σ level of exclusion on the Dirac case can be achieved for disparities as mild as e.g. vertical stroke U Ne vertical stroke 2 <0.7 vertical stroke U Nμ vertical stroke 2 or vertical stroke U Nμ vertical stroke 2 <0.7 vertical stroke U Ne vertical stroke 2 , provided that vertical stroke U Ne vertical stroke 2 , vertical stroke U Nμ vertical stroke 2 are both above ∝2 x 10 -6 .

  7. Neutrinos, dark matter and the universe

    International Nuclear Information System (INIS)

    Stolarcyk, T.; Tran Thanh Van, J.; Vannucci, F.; Paris-7 Univ., 75

    1996-01-01

    The meeting was articulated around the general topic 'neutrinos, dark matter and the universe'. We have not yet succeeded in penetrating all of the neutrino's mysteries and in particular we still do not know its mass. Laboratory measurements involving beta disintegrations of Ni 63 , Re 187 , Xe 136 and tritium are being actively pursued by many teams. Astrophysical analyses have been led at neutrino observatories of Kamiokande, Baksan, IMB and the Mont-Blanc. But at the moment we can only give an upper limit of the neutrino mass. The problem of the 'missing' solar neutrinos cannot be dissociate from that of the neutrino mass and of the possible oscillation of one variety of neutrino into another. Dark matter shows up only through the effect of its gravitational field and at present we have no idea of its nature

  8. Sterile neutrinos in lepton number and lepton flavor violating decays

    International Nuclear Information System (INIS)

    Helo, Juan Carlos; Kovalenko, Sergey; Schmidt, Ivan

    2011-01-01

    We study the contribution of massive dominantly sterile neutrinos, N, to the lepton number and lepton flavor violating semileptonic decays of τ and B, D, K-mesons. We focus on special domains of sterile neutrino masses m N where it is close to its mass-shell. This leads to an enormous resonant enhancement of the decay rates of these processes. This allows us to derive stringent limits on the sterile neutrino mass m N and its mixing U αN with active flavors. We apply a joint analysis of the existing experimental bounds on the decay rates of the studied processes. In contrast to other approaches in the literature our limits are free from ad hoc assumptions on the relative size of the sterile neutrino mixing parameters. We analyze the impact of this sort of assumptions on the extraction of the limits on m N and U αN , and discuss the effect of finite detector size. Special attention was paid to the limits on meson decays with e ± e ± in final state, derived from non-observation of 0νββ-decay. We point out that observation of these decays may, in particular, shed light on the Majorana phases of the neutrino mixing matrix.

  9. Search for heavy neutral leptons (sterile neutrinos) with the CMS detector

    CERN Document Server

    Verbeke, Willem

    2018-01-01

    The smallness of neutrino masses provides a tantalizing allusion to physics beyond the standard model (SM). Heavy neutral leptons (HNL), such as hypothetical sterile neutrinos, accommodate a way to explain this observation, through the see-saw mechanism. If they exist, HNL could also provide answers about the dark matter nature, and baryon asymmetry of the universe. A search for the production of HNL at the LHC, originating from leptonic W boson decays through the mixing of the HNL with SM neutrinos, is presented. The search focuses on signatures with three leptons, providing a clean signal for probing the production of the HNL in a wide mass range never explored before at the LHC down to 1 GeV, and up to 1.2 TeV. The sample of pp collisions collected by the CMS detector throughout 2016 is used, amounting to a volume of 35.9/fb. Separated into two parts, the search is respectively optimized for finding HNL of masses above and below that of the W boson. The final results are presented in the plane of the mixi...

  10. Phenomenological study of extended seesaw model for light sterile neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)

    2017-03-14

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.

  11. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  12. Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents

    International Nuclear Information System (INIS)

    Pospelov, Maxim

    2011-01-01

    New neutrino states ν b , sterile under the standard model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the standard model weak interactions. If some fraction of solar neutrinos oscillate into ν b on their way to Earth, the coherently enhanced elastic ν b -nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic ν b -nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar-neutrino energies, the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of a new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the ν b -induced deuteron breakup, and the excitation of a 4.4 MeV γ line in 12 C. A stronger-than-weak force coupled to the baryonic current implies the existence of a new Abelian gauge group U(1) B with a relatively light gauge boson.

  13. Neutrino mass spectrum with υμ → υs oscillations of atmospheric neutrinos

    International Nuclear Information System (INIS)

    Liu, Q.Y.; Smirnov, A.Yu.

    1998-02-01

    We consider the ''standard'' spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile, υ s . The sterile neutrino mixes strongly with the muon neutrino, so that υ μ ↔ υ s oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the υ μ ↔ υ s oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to υ μ and υ s . The heaviest neutrino (approx. υ τ ) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. (author)

  14. Dark matter, neutrinos, and our solar system

    CERN Document Server

    Prakash, Nirmala

    2013-01-01

    Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay -- until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some). The last chapter of the book details t...

  15. Distinguishing Dirac/Majorana sterile neutrinos at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Claudio O. [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). CCTVal y Dept. of Physics; Kim, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics and IPAP; Wang, Kechen [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zhang, Jue [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics

    2016-06-15

    We study the purely leptonic decays of W{sup ±} → e{sup ±}e{sup ±}μ{sup -+}ν and μ{sup ±}μ{sup ±}e{sup -+}ν produced at the LHC, induced by sterile neutrinos with mass m{sub N} below M{sub W} in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, what would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb{sup -1}, for two benchmark scenarios m{sub N}=20 GeV and 50 GeV, at least a 3σ level of exclusion on the Dirac case can be achieved for disparities as mild as e.g. vertical stroke U{sub Ne} vertical stroke {sup 2}<0.7 vertical stroke U{sub Nμ} vertical stroke {sup 2} or vertical stroke U{sub Nμ} vertical stroke {sup 2}<0.7 vertical stroke U{sub Ne} vertical stroke {sup 2}, provided that vertical stroke U{sub Ne} vertical stroke {sup 2}, vertical stroke U{sub Nμ} vertical stroke {sup 2} are both above ∝2 x 10{sup -6}.

  16. Neutrino signals from dark matter decay

    International Nuclear Information System (INIS)

    Covi, Laura; Grefe, Michael; Ibarra, Alejandro; Tran, David

    2009-12-01

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels. (orig.)

  17. Neutrino signals from dark matter decay

    Energy Technology Data Exchange (ETDEWEB)

    Covi, Laura; Grefe, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department T30d

    2009-12-15

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels. (orig.)

  18. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    2018-05-03

    We consider the generic possibility that the Universe’s energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  19. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with non-gravitational interactions with Standard Model (SM) particles. Such dark radiation may consist of SM singlets or a non-thermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  20. Dark matter from split seesaw

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2010-01-01

    The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter-antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.

  1. Limits on dark radiation, early dark energy, and relativistic degrees of freedom

    International Nuclear Information System (INIS)

    Calabrese, Erminia; Melchiorri, Alessandro; Huterer, Dragan; Linder, Eric V.; Pagano, Luca

    2011-01-01

    Recent cosmological data analyses hint at the presence of an extra relativistic energy component in the early universe. This component is often parametrized as an excess of the effective neutrino number N eff over the standard value of 3.046. The excess relativistic energy could be an indication for an extra (sterile) neutrino, but early dark energy and barotropic dark energy also contribute to the relativistic degrees of freedom. We examine the capabilities of current and future data to constrain and discriminate between these explanations, and to detect the early dark energy density associated with them. We find that while early dark energy does not alter the current constraints on N eff , a dark radiation component, such as that provided by barotropic dark energy models, can substantially change current constraints on N eff , bringing its value back to agreement with the theoretical prediction. Both dark energy models also have implications for the primordial mass fraction of Helium Y p and the scalar perturbation index n s . The ongoing Planck satellite mission will be able to further discriminate between sterile neutrinos and early dark energy.

  2. Large Extra Dimensions, Sterile Neutrinos and Solar Neutrino Data

    International Nuclear Information System (INIS)

    Caldwell, D. O.; Mohapatra, R. N.; Yellin, S. J.

    2001-01-01

    Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, ν B , which can exist in the bulk of extra dimensions. Solar ν e , confined to the brane, can oscillate in the vacuum to the zero mode of ν B and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of ν B . This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum

  3. Large extra dimensions, sterile neutrinos and solar neutrino data.

    Science.gov (United States)

    Caldwell, D O; Mohapatra, R N; Yellin, S J

    2001-07-23

    Solar, atmospheric, and LSND neutrino oscillation results require a light sterile neutrino, nu(B), which can exist in the bulk of extra dimensions. Solar nu(e), confined to the brane, can oscillate in the vacuum to the zero mode of nu(B) and via successive Mikheyev-Smirnov-Wolfenstein transitions to Kaluza-Klein states of nu(B). This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.

  4. Review of indirect detection of dark matter with neutrinos

    Science.gov (United States)

    Danninger, Matthias

    2017-09-01

    Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.

  5. Consequences of a 17-keV neutrino

    International Nuclear Information System (INIS)

    Caldwell, D.O.; Langacker, P.

    1991-01-01

    If the controversial 17-keV neutrino exists, laboratory, astrophysical and cosmological bounds, unless significantly weakened, require that (1) it be a Majorana neutrino and mainly ν τ ; (2) it not be the dark matter of the universe, although its existence would rule out dominant hot dark matter; (3) the ν μ be a heavy Majorana neutrino of mass 17 keV or in the range 170--270 keV; and (4) the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem involve ν e conversion to a light sterile [SU(2)-singlet] neutrino

  6. LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?

    CERN Document Server

    Schwetz, Thomas

    2008-01-01

    Standard active-sterile neutrino oscillations do not provide a satisfactory description of the LSND evidence for neutrino oscillations together with the constraints from MiniBooNE and other null-result short-baseline oscillation experiments. However, if the mass or the mixing of the sterile neutrino depends in an exotic way on its energy all data become consistent. I explore the phenomenological consequences of the assumption that either the mass or the mixing scales with the neutrino energy as $1/E_\

  7. A multi-signature approach to low-scale sterile neutrino phenomenology

    CERN Document Server

    Ross-Lonergan, Mark

    2017-01-01

    Since the discovery of non-zero neutrino masses, through the observation of neutrino flavour oscillations, we had a plethora of successful experiments which have made increasingly precise measurements of the mixing angles and mass-differences that drive the phenomena. In this thesis we highlight the fact that there is still significant room for new physics, however, when one removes the assumption of unitarity of the 3x3 neutrino mixing matrix, an assumption inherent in the 3ν paradigm. We refit all global data to show just how much non-unitarity is currently allowed. The canonical way that such a non-unitarity is introduced to the 3x3 neutrino mixing matrix is by the addition of additional neutral fermions, singlets under the Standard Model gauge group. These “Sterile Neutrinos” have a wide range of the- oretical and phenomenological implications. Alongside the sensitivity non-unitarity measurements have to sterile neutrinos, in this thesis we will study in detail two additional signatures of low-scale ...

  8. Thermalisation of light sterile neutrinos in the early universe

    DEFF Research Database (Denmark)

    Hannestad, Steen; Tamborra, Irene; Tram, Thomas

    2012-01-01

    on the current cosmological data have been derived using simplified assumptions about thermalisation of the sterile neutrino at the Big Bang Nucleosynthesis (BBN) epoch. These assumptions are not necessarily justified and here we solve the full quantum kinetic equations in the (1 active + 1 sterile) scenario...

  9. A lower limit on the dark particle mass from dSphs

    Energy Technology Data Exchange (ETDEWEB)

    Angus, G.W., E-mail: angus@ph.unito.it [Dipartimento di Fisica Generale ' ' Amedeo Avogadro' ' , Università degli Studi di Torino, Via P. Giuria 1, I-10125, Torino (Italy)

    2010-03-01

    We use dwarf spheroidal galaxies as a tool to attempt to put precise lower limits on the mass of the dark matter particle, assuming it is a sterile neutrino. We begin by making cored dark halo fits to the line of sight velocity dispersions as a function of projected radius (taken from Walker et al. 2007) for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt velocity anisotropy profiles, but find that no benefit is gained over constant velocity anisotropy. In contrast to previous attempts, we do not assume any relation between the stellar velocity dispersions and the dark matter ones, but instead we solve directly for the sterile neutrino velocity dispersion at all radii by using the equation of state for a partially degenerate neutrino gas (which ensures hydrostatic equilibrium of the sterile neutrino halo). This yields a 1:1 relation between the sterile neutrino density profile and the velocity dispersion profile, and therefore gives us an accurate estimate of the Tremaine-Gunn limit at all radii. By varying the sterile neutrino particle mass, we locate the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn limit is not exceeded at any radius (in particular at the centre). We find sizeable differences between the ranges of feasible sterile neutrino particle mass for each dwarf, but interestingly there exists a small range 270-280eV which is consistent with all dSphs at the 1-σ level.

  10. A lower limit on the dark particle mass from dSphs

    International Nuclear Information System (INIS)

    Angus, G.W.

    2010-01-01

    We use dwarf spheroidal galaxies as a tool to attempt to put precise lower limits on the mass of the dark matter particle, assuming it is a sterile neutrino. We begin by making cored dark halo fits to the line of sight velocity dispersions as a function of projected radius (taken from Walker et al. 2007) for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt velocity anisotropy profiles, but find that no benefit is gained over constant velocity anisotropy. In contrast to previous attempts, we do not assume any relation between the stellar velocity dispersions and the dark matter ones, but instead we solve directly for the sterile neutrino velocity dispersion at all radii by using the equation of state for a partially degenerate neutrino gas (which ensures hydrostatic equilibrium of the sterile neutrino halo). This yields a 1:1 relation between the sterile neutrino density profile and the velocity dispersion profile, and therefore gives us an accurate estimate of the Tremaine-Gunn limit at all radii. By varying the sterile neutrino particle mass, we locate the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn limit is not exceeded at any radius (in particular at the centre). We find sizeable differences between the ranges of feasible sterile neutrino particle mass for each dwarf, but interestingly there exists a small range 270-280eV which is consistent with all dSphs at the 1-σ level

  11. MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    Energy Technology Data Exchange (ETDEWEB)

    Ballett, Peter; Pascoli, Silvia; Ross-Lonergan, Mark [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2017-04-19

    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N→νl{sup +}l{sup −} and N→l{sup ±}π{sup ∓} while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N→νγ and N→νπ{sup 0}. Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications.

  12. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    Science.gov (United States)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  13. Neutrino dark energy. Revisiting the stability issue

    Energy Technology Data Exchange (ETDEWEB)

    Eggers Bjaelde, O.; Hannestad, S. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Brookfield, A.W. [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics and Dept. of Physics, Astro-Particle Theory and Cosmology Group; Van de Bruck, C. [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics, Astro-Particle Theory and Cosmology Group; Mota, D.F. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik]|[Institute of Theoretical Astrophysics, Oslo (Norway); Schrempp, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tocchini-Valentini, D. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    2007-05-15

    A coupling between a light scalar field and neutrinos has been widely discussed as a mechanism for linking (time varying) neutrino masses and the present energy density and equation of state of dark energy. However, it has been pointed out that the viability of this scenario in the non-relativistic neutrino regime is threatened by the strong growth of hydrodynamic perturbations associated with a negative adiabatic sound speed squared. In this paper we revisit the stability issue in the framework of linear perturbation theory in a model independent way. The criterion for the stability of a model is translated into a constraint on the scalar-neutrino coupling, which depends on the ratio of the energy densities in neutrinos and cold dark matter. We illustrate our results by providing meaningful examples both for stable and unstable models. (orig.)

  14. Unstable gravitino dark matter and neutrino flux

    International Nuclear Information System (INIS)

    Covi, L.; Grefe, M.; Ibarra, A.; Tran, D.

    2008-09-01

    The gravitino is a promising supersymmetric dark matter candidate which does not require exact R-parity conservation. In fact, even with some small R-parity breaking, gravitinos are sufficiently long-lived to constitute the dark matter of the Universe, while yielding a cosmological scenario consistent with primordial nucleosynthesis and the high reheating temperature required for thermal leptogenesis. In this paper, we compute the neutrino flux from direct gravitino decay and gauge boson fragmentation in a simple scenario with bilinear R-parity breaking. Our choice of parameters is motivated by a proposed interpretation of anomalies in the extragalactic gamma-ray spectrum and the positron fraction in terms of gravitino dark matter decay. We find that the generated neutrino flux is compatible with present measurements. We also discuss the possibility of detecting these neutrinos in present and future experiments and conclude that it is a challenging task. However, if detected, this distinctive signal might bring significant support to the scenario of gravitinos as decaying dark matter. (orig.)

  15. Sterile Neutrino Searches in MiniBooNE and MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Ignarra, Christina M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-01

    Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis first presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, future experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a different energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fits which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.

  16. Sterile Neutrino Searches in MiniBooNE and MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Ignarra, Christina M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-01

    Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis fi rst presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, future experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a di fferent energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fi ts which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.

  17. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option.

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G; Tamborra, Irene; Wong, Yvonne Y Y

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.

  18. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    Science.gov (United States)

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  19. Displaced vertex searches for sterile neutrinos at future lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Cazzato, Eros; Fischer, Oliver [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2016-12-02

    We investigate the sensitivity of future lepton colliders to displaced vertices from the decays of long-lived heavy (almost sterile) neutrinos with electroweak scale masses and detectable time of flight. As future lepton colliders we consider the FCC-ee, the CEPC, and the ILC, searching at the Z-pole and at the center-of-mass energies of 240, 350 and 500 GeV. For a realistic discussion of the detector response to the displaced vertex signal and the Standard Model background we consider the ILC’s Silicon Detector (SiD) as benchmark for the future lepton collider detectors. We find that displaced vertices constitute a powerful search channel for sterile neutrinos, sensitive to squared active-sterile mixing angles as small as 10{sup −11}.

  20. Neutrino Probes of the Nature of Light Dark Matter

    CERN Document Server

    Agarwalla, Sanjib K; Fernandez Martinez, Enrique; Mena, Olga

    2011-01-01

    Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-\\kton{} neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 \\kton{} liquid argon detector and a 100 \\kton{} magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 5-50 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter - nucleon spin dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.

  1. Studies of neutrino asymmetries generated by ordinary-sterile neutrino oscillations in the early Universe and implications for big bang nucleosynthesis bounds

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R.; Volkas, R.R. [Research Centre for High Energy Physics, School of Physics, University of Melbourne, Parkville, 3052 (Australia)

    1997-04-01

    Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Universe. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations in the early Universe can be approximately described by a single integrodifferential equation which we derive from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordinary first-order differential equation if the system is sufficiently smooth (static limit). We study the conditions for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to evade (by many orders of magnitude) the big bang nucleosynthesis (BBN) bounds on the mixing parameters {delta}m{sup 2} and sin{sup 2}2{theta}{sub 0} describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the parameter space of interest, provided that the {tau} and/or {mu} neutrinos have masses greater than about 1 eV. We also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric neutrino anomaly does not significantly modify BBN for a range of parameters. {copyright} {ital 1997} {ital The American Physical Society}

  2. Proton decay and light sterile neutrinos

    Science.gov (United States)

    Helo, Juan C.; Hirsch, Martin; Ota, Toshihiko

    2018-06-01

    Within the standard model, non-renormalizable operators at dimension six ( d = 6) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of d = 6 operators containing a light sterile neutrino, if it is not accompanied by the standard π0 e + final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.

  3. Dark energy from pNGB mediated Dirac neutrino condensate

    Directory of Open Access Journals (Sweden)

    Ujjal Kumar Dey

    2018-03-01

    Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  4. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    International Nuclear Information System (INIS)

    Davis, Jonathan H.

    2015-01-01

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments

  5. A search for sterile neutrinos at the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pittam, Robert Neil [Univ. of Oxford (United Kingdom)

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The vμ beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without ve appearance. The oscillation parameters measured by this model are Δm322 = (2.39-0.15+0.23) x 10-3 eV2 and θ23 = 0.727-0.11+0.22 for the no ve appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of ve appearance and no ve appearance

  6. Two-loop Dirac neutrino mass and WIMP dark matter

    OpenAIRE

    Bonilla, Cesar; Ma, Ernest; Peinado, Eduardo; Valle, Jose W.F.

    2018-01-01

    We propose a "scotogenic" mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two--loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical $Diracon$ that induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhan...

  7. Neutrino mixing, flavor states and dark energy

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.

    2008-01-01

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe

  8. The NESSiE concept for sterile neutrinos

    International Nuclear Information System (INIS)

    Medinaceli, E.

    2014-01-01

    The NESSiE (Neutrino Experiment with SpectrometerS in Europe) experimental proposal is a project to combine two liquid argon (LAr) image detectors (Time Projection Chambers, TPC) and two magnetic spectrometers; for the observation of electron and muon neutrino events at different distances. At the near (400 m) and far (1600 m) positions from the neutrino beam origin. The experiment aims to definitively clarify the present neutrino oscillation scenarios and to explore (or to refute) the possibility of the existence of sterile neutrinos. The main characteristics of the spectrometers are described here. Spectrometers will employ a bipolar magnetic field with iron slabs, and a new concept air-core magnet, to perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (> 50m 2 ). The performances of the spectrometers as stand-alone detectors are summarized in terms the ν μ disappearance sensitivity plot for an exposure of two years with ‐ν μ plus one year with ν μ .

  9. Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe

    International Nuclear Information System (INIS)

    Holanda, Pedro Cunha de

    2011-01-01

    Full text: Recent results from the SNO, Super-Kamiokande and Borexino experiments do not show the expected upturn of the energy spectrum of events (the ratio R ≡ N obs /N SSM ) at low energies. At the same time, cosmological observations testify for possible existence of additional relativistic degrees of freedom in the early Universe: ΔN eff = 1 - 2. These facts strengthen the case of very light sterile neutrino, ν s , with Δm 0 1 2 ∼ (0.7 - 2) . 10 -5 e V 2 , which mixes weakly with the active neutrinos. The ν s mixing in the mass eigenstate ν 1 characterized by sin 2 2∝ ∼ 10 -3 can explain an absence of the upturn. The mixing of ν s in the eigenstate ν 3 with sin 2 β ∼ 0.1 leads to production of ν s via oscillations in the Universe and to additional contribution Δ N eff ∼ 0.7 -1 before the big bang nucleosynthesis and later. Such a mixing can be tested in forthcoming experiments with the atmospheric neutrinos as well as in future accelerator long baseline experiments. It has substantial impact on conversion of the supernova neutrinos. We perform a qualitative and quantitative analysis of solar neutrino data including a fourth neutrino with different mixings with the active neutrino sector.(author)

  10. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute,”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I. [National Research Centre “Kurchatov Institute,” (Russian Federation); Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K. [State Scientific Centre Research Institute of Atomic Reactors (Russian Federation); and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  11. Searches for New Physics at MiniBooNE: Sterile Neutrinos and Mixing Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgi, Georgia S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2010-09-01

    The MiniBooNE experiment was designed to perform a search for vμ → ve oscillations in a region of Δm2 and sin2 2θ very different from that allowed by standard, three-neutrino oscillations, as determined by solar and atmospheric neutrino experiments. This search was motivated by the LSND experimental observation of an excess of $\\bar{v}$e events in a $\\bar{v}$μ beam which was found compatible with two-neutrino oscillations at Δm2 ~ 1 eV2 and sin2 2{theta} < 1%. If confirmed, such oscillation signature could be attributed to the existence of a light, mostly-sterile neutrino, containing small admixtures of weak neutrino eigenstates. In addition to a search for vμ → ve oscillations, MiniBooNE has also performed a search for vμ → ve oscillations, which provides a test of the LSND two-neutrino oscillation interpretation that is independent of CP or CPT violation assumptions. This dissertation presents the MiniBooNE vμ → ve and vμ → ve analyses and results, with emphasis on the latter. While the neutrino search excludes the two-neutrino oscillation interpretation of LSND at 98% C.L., the antineutrino search shows an excess of events which is in agreement with the two-neutrino vμ → ve oscillation interpretation of LSND, and excludes the no oscillations hypothesis at 96% C.L. Even though the neutrino and antineutrino oscillation results from MiniBooNE disagree under the single sterile neutrino oscillation hypothesis, a simple extension to the model to include additional sterile neutrino states and the possibility of CP violation allows for differences between neutrino and antineutrino oscillation signatures. In view of that, the viability of oscillation models with one or two sterile neutrinos is investigated in global fits to MiniBooNE and LSND

  12. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    International Nuclear Information System (INIS)

    Anokhina, A.; Dzhatdoev, T.; Morgunova, O.; Roganova, T.; Bagulya, A.; Chernyavskiy, M.; Dalkarov, O.; Mingazheva, R.; Shchedrina, T.; Starkov, N.; Vladymyrov, M.; Benettoni, M.; Dal Corso, F.; Dusini, S.; Lippi, I.; Longhin, A.; Bernardini, P.; Mancarella, G.; Marsella, G.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Roda, M.; Sirignano, C.; Calabrese, M.; Fiore, G.; Surdo, A.; Cecchetti, A.; Orecchini, D.; Paoloni, A.; Cecchini, S.; Di Ferdinando, D.; Guerzoni, M.; Laurenti, G.; Mandrioli, G.; Mauri, N.; Patrizii, L.; Pozzato, M.; Sahnoun, Z.; Sirri, G.; Togo, V.; Del Prete, A.; Papadia, G.; De Robertis, G.; Fini, R.A.; Loddo, F.; Pastore, A.; De Serio, M.; Paparella, L.; Simone, S.; Klicek, B.; Jakovcic, K.; Malenica, M.; Stipcevic, M.; Kose, U.; Nessi, M.; Margiotta, A.; Pasqualini, L.; Spurio, M.; Muciaccia, M.T.; Polukhina, N.; Rosa, G.; Stanco, L.; Tenti, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν μ disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν μ disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far. (orig.)

  13. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    Science.gov (United States)

    Anokhina, A.; Bagulya, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Del Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R. A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M. T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν _{μ } disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν _{μ } disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.

  14. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Anokhina, A.; Dzhatdoev, T.; Morgunova, O.; Roganova, T. [Lomonosov Moscow State University (MSU SINP), Moscow (Russian Federation); Bagulya, A.; Chernyavskiy, M.; Dalkarov, O.; Mingazheva, R.; Shchedrina, T.; Starkov, N.; Vladymyrov, M. [Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Benettoni, M.; Dal Corso, F.; Dusini, S.; Lippi, I.; Longhin, A. [INFN, Sezione di Padova, Padua (Italy); Bernardini, P.; Mancarella, G.; Marsella, G. [Universita del Salento, Dipartimento di Matematica e Fisica, Lecce (Italy); INFN, Sezione di Lecce, Lecce (Italy); Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Roda, M.; Sirignano, C. [INFN, Sezione di Padova, Padua (Italy); Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); Calabrese, M.; Fiore, G.; Surdo, A. [INFN, Sezione di Lecce, Lecce (Italy); Cecchetti, A.; Orecchini, D.; Paoloni, A. [INFN, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Cecchini, S.; Di Ferdinando, D.; Guerzoni, M.; Laurenti, G.; Mandrioli, G.; Mauri, N.; Patrizii, L.; Pozzato, M.; Sahnoun, Z.; Sirri, G.; Togo, V. [INFN, Sezione di Bologna, Bologna (Italy); Del Prete, A.; Papadia, G. [INFN, Sezione di Lecce, Lecce (Italy); Universita del Salento, Dipartimento di Ingegneria dell' Innovazione, Lecce (Italy); De Robertis, G.; Fini, R.A.; Loddo, F.; Pastore, A. [INFN, Sezione di Bari, Bari (Italy); De Serio, M.; Paparella, L.; Simone, S. [INFN, Sezione di Bari, Bari (Italy); Universita di Bari, Dipartimento di Fisica, Bari (Italy); Klicek, B.; Jakovcic, K.; Malenica, M.; Stipcevic, M. [Rudjer Boskovic Institute, Zagreb (Croatia); Kose, U.; Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Margiotta, A.; Pasqualini, L.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Muciaccia, M.T. [Universita di Bari, Dipartimento di Fisica, Bari (Italy); Polukhina, N. [Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Rosa, G. [INFN, Sezione di Roma, Rome (Italy); Stanco, L. [INFN, Sezione di Padova, Padua (Italy); Tenti, M. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); NFN-CNAF, Bologna (Italy)

    2017-01-15

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν{sub μ} disappearance and the ν{sub e} appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν{sub μ} disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far. (orig.)

  15. Heavy Right-Handed Neutrino Dark Matter and PeV Neutrinos at IceCube

    Science.gov (United States)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-01-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2) (sub L) times SU(2) prime times U(1) (Sub B-L) where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2) prime, play the role of a long-lived unstable dark matter with mass in the multi-Peta-electronvolt range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the Peta-electronvolt cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  16. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Dev, P.S. Bhupal [Max-Planck-Institut für Kernphysik,Saupfercheckweg 1, D-69117 Heidelberg (Germany); Kazanas, D. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Mohapatra, R.N. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD 20742 (United States); Teplitz, V.L. [Astrophysics Science Division, NASA Goddard Space Flight Center,Greenbelt, MD 20771 (United States); Department of Physics, Southern Methodist University,Dallas, TX 75205 (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium); School of Physics, Sun Yat-Sen University,Guangzhou 510275 (China)

    2016-08-17

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2){sub L}×SU(2){sup ′}×U(1){sub B−L} where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2){sup ′}, play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  17. NESSiE: an experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Sirri, G.

    2013-01-01

    Anomalies observed in neutrino oscillation experiments show a tension with the standard three-flavor neutrino framework and seem to require at least an additional sterile neutrino with a mass at the eV scale. NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment at a new CERN Short- Baseline neutrino beam proposed to definitely address the sterile neutrino issue. The experiment is composed by two magnetic spectrometers at different distances from the proton target. Their design allows to measure the charge and momentum of the muons in a wide energy range, from few hundred MeV, using a magnetic field in air, up to several GeV measuring the bending and range of the muon in a large iron dipolar magnet. The spectrometers will complement large LAr detectors used as a target. The time scale foresees to start taking data by 2016.

  18. Sterile neutrinos in the early universe

    NARCIS (Netherlands)

    Ivashko, Artem

    2015-01-01

    Although the Standard Model of elementary particles successfully describes the Universe up to the smallest known scales, we know that there exists a number of observational phenomena, which do not find explanation in the framework of this theory. Among these problems are Neutrino Oscillations, Dark

  19. WIMP dark matter and supersymmetry searches with neutrino telescopes

    International Nuclear Information System (INIS)

    Fornengo, N.

    2011-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, a problem of cosmological and astrophysical nature, is going to be placed under strong scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas about new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on signals which can be produced by the galactic or extra-galactic dark matter. The current and new-generation experimental efforts are therefore going to place under deep scrutiny the theoretical explanations of the relevant signals. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds. Neutrino telescopes are one of the prominent tools for looking at dark matter and search for a signal, the neutrino flux from Earth and Sun. In this neutrino dark matter searches share properties with both direct dark matter searches and cosmic-ray indirect dark matter searches, and therefore complement these different detection techniques.

  20. Search for sterile neutrino mixing using ICAL detector at INO

    International Nuclear Information System (INIS)

    Behera, S.P.; Mohanty, A.K.; Mishra, D.K.; Datar, V.M.; Ghosh, Anushree; Uma Sankar, S.

    2014-01-01

    The phenomena of neutrino (ν) oscillation among three active neutrino flavors (ν e , ν μ , ν τ ) has been established by several neutrino experiments e.g., solar, atmospheric, reactor and accelerator experiments beyond any doubt. However, the results, obtained from the short-baseline experiments, namely LSND, MiniBooNE indicate the possible existence of new kind of ν, different from the three active flavors. Their results cannot be explained within the standard three active ν oscillation formalism and require additional νs with masses at the eV scale. Such νs cannot participate in the weak interaction due to the constraint on invisible width of the Z boson and are therefore called sterile νs. There have been several attempts to interpret the results of LSND and MiniBooNE in terms of 3+N ν oscillation models involving three active νs and N additional sterile νs

  1. The search for sterile neutrinos at reactors and underground laboratories

    Science.gov (United States)

    Langford, Thomas

    2017-01-01

    From the initial discovery of neutrinos to the observation of neutrino oscillations, unexpected results have lead to deeper understanding of physics. However, as experiments and theoretical predictions have improved, new anomalies have surfaced that could point to beyond the Standard Model physics. Leading hypotheses invoke a new form of matter, sterile neutrinos, as a possible resolution of these outstanding questions. New experimental efforts are underway to probe short-baseline neutrino oscillations with reactors and radioactive sources. This talk will highlight developments in current and next generation experiments and present possible outcomes for the next few years.

  2. The impact of sterile neutrinos on CP measurements at long baselines

    International Nuclear Information System (INIS)

    Gandhi, Raj; Kayser, Boris; Masud, Mehedi; Prakash, Suprabh

    2015-01-01

    With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass ∼1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. Our results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterile state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1 eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, in order that its highly anticipated results on CP violation in the lepton sector may be correctly interpreted.

  3. SOLAR NEUTRINO PHYSICS: SENSITIVITY TO LIGHT DARK MATTER PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)

    2012-06-20

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radii of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV) in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely {sup 8}B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 Multiplication-Sign 10{sup -37} cm{sup -2} produce a variation in the {sup 8}B neutrino fluxes that would be in conflict with current measurements.

  4. Constraints on decaying Dark Matter from XMM-Newton observations of M31

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg; Savchenko, Vladimir

    2007-01-01

    We derive constraints on parameters of the radiatively decaying Dark Matter (DM) particles, using XMM-Newton EPIC spectra of the Andromeda galaxy (M31). Using the observations of the outer (5'-13') parts of M31 we improve the existing constraints. For the case of sterile neutrino DM, combining our constraints with the latest computation of abundances of sterile neutrino in the Dodelson-Widrow (DW) scenario, we obtain the lower mass limit m_s 5.6 kev), we argue that the scenario in which all the DM is produced via DW mechanism is ruled out. We discuss however other production mechanisms and note that the sterile neutrino remains a viable candidate of Dark Matter, either warm or cold.

  5. Implication of sterile fermions in particle physics and cosmology

    International Nuclear Information System (INIS)

    Lucente, M.

    2015-01-01

    The Ph.D. thesis work summarised in this manuscript was dedicated to studying several aspects of the phenomenology of Standard Model (SM) extensions by sterile fermions, in particular their impact for particle and astro-particle physics. An important part of the work is dedicated to a class of SM extensions which allow to explain the smallness of the observed neutrino masses (as well as their mixings) by linking them to the breaking of total lepton number, in the framework of the so-called Inverse seesaw mechanism (ISS). The work described in the thesis addresses the role of these sterile states in providing a satisfactory explanation to 3 open observational problems of the SM: the generation of neutrino masses and mixings, a viable dark matter candidate, and the dynamical generation of the baryon asymmetry of the Universe. We identified the minimal ISS realisation accounting for the observed neutrino data while at the same time complying with all available experimental and observational constraints. This study was based on a perturbative approach to the diagonalization of the neutrino mass matrix, which allowed to identify the number of states associated with the different mass scales. Our study revealed that, depending on the number of additional sterile fermion fields, the ISS can accommodate both a 3-flavour mixing scheme and a 3+more mixing scheme. The potential role of these sterile states as dark matter (DM) candidates led us to carry a dedicated study of the viability of the sterile fermion dark matter hypothesis in a minimal ISS realisation (in which the SM is extended by 2 right-handed neutrinos and 3 additional sterile fermion fields). The degeneracy in the sterile neutrino mass spectrum - which is characteristic of low scale seesaw models with approximate lepton number conservation - can play a relevant role in cosmology, since it allows us to explain the observed baryon asymmetry of the Universe via lepto-genesis. We identified different lepton number

  6. Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.

    Science.gov (United States)

    Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi

    2013-03-22

    It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.

  7. Neutrino-Flavoured Sneutrino Dark Matter

    CERN Document Server

    March-Russell, John; McCullough, Matthew

    2010-01-01

    A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique `smoking gun' signature--sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of nu_mu and nu_tau (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of...

  8. Neutrino telescopes sensitivity to dark matter

    International Nuclear Information System (INIS)

    Albuquerque, I.F.M.; Lamoureux, J.; Smoot, G.F.

    2002-01-01

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is underway through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few weakly interacting massive particle scenarios. Telescopes of km3 volume, such as IceCube, can definitely discover or exclude superheavy (M>1010 GeV) strong interacting massive particles (simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of simpzilla parameter space

  9. Neutrino dark matter in clusters of galaxies

    International Nuclear Information System (INIS)

    Treumann, R A; Kull, A; Boehringer, H

    2000-01-01

    We present a model calculation for the radial matter density and mass distribution in two clusters of galaxies (Coma and A119) including cold dark matter, massive though light (≅2 eV) neutrino dark matter and collisional intra-cluster gas which emits x-ray radiation. The calculation uses an extension of the Lynden-Bell statistics to the choice of constant masses instead of constant volume. This allows proper inclusion of mixtures of particles of various masses in the gravitational interaction. When it is applied to the matter in the galaxy cluster the radial ROSAT x-ray luminosity profiles can be nicely accounted for. The result is that the statistics identifies the neutrino dark matter in the cluster centre as being degenerate in the sense of Lynden-Bell's spatial degeneracy. This implies that it is distributed in a way different from the classical assumption. The best fits are obtained for the ≅2 eV neutrinos. The fraction of these and their spatial distribution are of interest for understanding cluster dynamics and may have cosmological implications

  10. Neutrino dark matter in clusters of galaxies

    International Nuclear Information System (INIS)

    Treumann, R.A.

    2000-01-01

    We present a model calculation for the radial matter density and mass distribution in two clusters of galaxies (Coma and A119) including cold dark matter, massive though light (approx. 2 eV) neutrino dark matter and collisional intra-cluster gas which emits x-ray radiation. The calculation uses an extension of the Lynden-Bell statistics to the choice of constant masses instead of constant volume. This allows proper inclusion of mixtures of particles of various masses in the gravitational interaction. When it is applied to the matter in the galaxy cluster the radial ROSAT x-ray luminosity profiles can be nicely accounted for. The result is that the statistics identifies the neutrino dark matter in the cluster centre as being degenerate in the sense of Lynden-Bell's spatial degeneracy. This implies that it is distributed in a way different from the classical assumption. The best fits are obtained for the approx. 2 eV neutrinos. The fraction of these and their spatial distribution are of interest for understanding cluster dynamics and may have cosmological implications. (author)

  11. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    International Nuclear Information System (INIS)

    Esmaili, Arman; Peres, O.L.G.

    2012-01-01

    Full text: There is currently mounting evidence for the existence of dark matter in our Universe from various astrophysical and cosmological observations, but the two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive lower limits on the lifetime of dark matter particles with masses in the range 10 TeV - 10 18 GeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. All these experiments probe different energy windows and perfectly complement each other. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than ∼ 10 26 s for masses between 10 TeV and the Grand Unification scale. We will consider various scenarios where the decay of the dark matter particle produces high energy neutrinos. Neutrinos travel in the Universe without suffering an appreciable attenuation, even for EeV neutrinos, in contrast to photons which rapidly lose their energy via pair production. This remarkable property makes neutrinos a very suitable messenger to constrain the lifetime of superheavy dark matter particles. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay. (author)

  12. Curtailing the dark side in non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Denton, Peter B. [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute,Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Gonzalez-Garcia, M.C. [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys 23, 08010 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Maltoni, Michele [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Calle de Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe (Germany)

    2017-04-20

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.

  13. Seesaw roadmap to neutrino mass and dark matter

    Science.gov (United States)

    Centelles Chuliá, Salvador; Srivastava, Rahul; Valle, José W. F.

    2018-06-01

    We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.

  14. Entropy, baryon asymmetry and dark matter from heavy neutrino decays

    International Nuclear Information System (INIS)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2011-01-01

    The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous B-L breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10 -5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.

  15. Entropy, baryon asymmetry and dark matter from heavy neutrino decays

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Schmitz, K.; Vertongen, G.

    2011-04-15

    The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by lepto- genesis for characteristic neutrino mass parameters. We nd that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous B-L breaking. A quantitative analysis leads to contraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10{sup -5} eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter. (orig.)

  16. Opportunities of Gallium Sage experiment with artificial neutrino sources for investigation of neutrino to sterile states

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachiev, V.V.; Veretenkin, E.P.

    2011-01-01

    The unexpectedly low capture rate of neutrino in Ga source experiments in SAGE and GALLEX can be explained assuming electron neutrino transitions to sterile states with a mass-squared difference ∼ 1eV 2 . To test this oscillation hypothesis, we propose to place a very intense 51 Cr source at the center of a 50 tonne target of gallium metal that is divided into two zones and to measure the neutrino capture rate in each zone. The Experiment has the potential to test neutrino oscillation transitions with mass-squared difference Δm 2 > 0.5 eV 2 . An optimized SAGE setup and 3 MCi source of 51 Cr would provide a sensitivity to electron neutrino disappearance of a few percent.

  17. Implications of Higgs Universality for neutrinos

    Science.gov (United States)

    Stephenson, Gerard; Goldman, T.

    2017-09-01

    Higgs Universality means that the right-chiral Weyl spinors of each charge type couple universally to the Higgs doublet-left-chiral Weyl spinor weak singlets for quarks in the current basis,so the quark mass matrices are of the pairing form. We have shown that the known quark masses and weak current mixing can be recovered by invoking perturbative BSM corrections. The application to the charged leptons is immediate. Assuming the charged fermion-like mass terms for the neutrinos have a similar structure, but that Majorana mass terms for the sterile right-chiral spinors (which qualify as dark matter) must also be included, we show that the ratios of the resulting sterile neutrino masses vary as the square of the ratios of the charged fermion masses. The results are consistent with short-baseline neutrino oscillation experiments. Using that scale, we predict sterile neutrinos at masses of several keV/c2 and some tens of MeV /c2 , which may decay to a photon and a lighter neutrino.

  18. A Search for Light Weakly-Interacting Massive Particles with SuperCDMS and Applications to Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Adam J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-01-01

    Cosmological and astrophysical evidence indicates that 85% of the matter content of the universe is in the form of non-baryonic dark matter. A large number of experiments are currently undertaking searches for weakly-interacting massive particles (WIMPs), the leading class of particle candidates for dark matter. This thesis describes the results of such a search with the SuperCDMS experiment, which uses Ge detectors cooled to 50 mK to detect ionization and phonons produced by particle interactions. We perform a blind analysis of 577 kg d of exposure on 7 detectors targeting WIMPs with masses < 30GeV/$c^{2}$, where anomalous results have been reported by previous experiments. No significant excess is observed and we set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2 x 10$^{-42}$ cm2 at 8 GeV/$c^{2}$ We also set constraints on dark matter interactions independent of the dark matter halo physics, as well as on annual modulation of a dark matter signal. Cryogenic detectors similar to SuperCDMS also have potential applications in neutrino physics. We study several configurations in which dark matter detectors could be used with an intense neutrino source to detect an unmeasured Standard Model process called coherent neutrino scattering. This process may be useful, for example, as a calibration for next-generation dark matter detectors, and for constraining eV-scale sterile neutrinos. In addition, small cryogenic X-ray detectors on sounding rockets with large fields-of-view have the unique ability to constrain sterile neutrino dark matter. We set limits on sterile neutrino dark matter using an observation by the XQC instrument, and discuss prospects for a future observation of the galactic center using the Micro-X instrument.

  19. Unified scenario for composite right-handed neutrinos and dark matter

    Science.gov (United States)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Neil, Ethan T.; Rinaldi, Enrico

    2017-12-01

    We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark S U (3 )D interaction with three flavors of massless dark quarks; electroweak symmetry breaking gives masses to the dark quarks. By assigning a Z2 charge to one flavor, a stable "dark kaon" can provide a good thermal relic DM candidate. We find that "dark neutrons" may be identified as right handed Dirac neutrinos. Some level of "neutron-anti-neutron" oscillation in the dark sector can then result in non-zero Majorana masses for light standard model neutrinos. A simple ultraviolet completion is presented, involving additional heavy S U (3 )D-charged particles with electroweak and lepton Yukawa couplings. At our benchmark point, there are "dark pions" that are much lighter than the Higgs and we expect spectacular collider signals arising from the UV framework. This includes the decay of the Higgs boson to τ τ ℓℓ', where ℓ(ℓ') can be any lepton, with displaced vertices. We discuss the observational signatures of this UV framework in dark matter searches and primordial gravitational wave experiments; the latter signature is potentially correlated with the H →τ τ ℓℓ' decay.

  20. Probing velocity dependent self-interacting dark matter with neutrino telescopes

    Science.gov (United States)

    Robertson, Denis S.; Albuquerque, Ivone F. M.

    2018-02-01

    Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.

  1. Impact of sterile neutrinos on nuclear-assisted cLFV processes

    Energy Technology Data Exchange (ETDEWEB)

    Abada, A. [Laboratoire de Physique Théorique, CNRS,University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Romeri, V. De; Teixeira, A.M. [Laboratoire de Physique Corpusculaire, CNRS/IN2P3 - UMR 6533,Campus des Cézeaux, 24 Av. des Landais, F-63177 Aubière Cedex (France)

    2016-02-12

    We discuss charged lepton flavour violating processes occurring in the presence of muonic atoms, such as muon-electron conversion in nuclei CR(μ−e, N), the (Coulomb enhanced) decay of muonic atoms into a pair of electrons BR(μ{sup −}e{sup −}→e{sup −}e{sup −}, N), as well as Muonium conversion and decay, Mu− (Mu)-bar and Mu→e{sup +}e{sup −}. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model. In this work, we consider minimal extensions of the Standard Model via the addition of sterile fermions, providing the corresponding complete analytical expressions for all the considered observables. We first consider an “ad hoc” extension with a single sterile fermion state, and investigate its impact on the above observables. Two well motivated mechanisms of neutrino mass generation are then considered: the Inverse Seesaw embedded into the Standard Model, and the νMSM. Our study reveals that, depending on their mass range and on the active-sterile mixing angles, sterile neutrinos can give significant contributions to the above mentioned observables, some of them even lying within present and future sensitivity of dedicated cLFV experiments. We complete the analysis by confronting our results to other (direct and indirect) searches for sterile fermions.

  2. Sterile neutrinos: the necessity for a 5 sigma definitive clarification

    CERN Document Server

    Rubbia, Carlo; Pietropaolo, Francesco; Sala, Paola

    2013-01-01

    Several different experiments have hinted to the existence of "anomalies" in the neutrino sector, implying the possible presence of additional sterile neutrinos or of other options. A definitive experimental search, capable to clarify either in favour or against all these anomalies at the appropriate > 5 sigma level has been proposed by the ICARUS-NESSIE Collaboration. The technique is based on two innovative concepts, namely (1) a large mass Liquid Argon Time Projection Chamber (LAr-TPC) now in full operation at LNGS and (2) the search for spectral differences in two identical detectors at different distances along the (anti-)neutrino line(s).

  3. Searching for dark matter with neutrino telescopes

    International Nuclear Information System (INIS)

    Hooper, Dan; Silk, Joseph

    2004-01-01

    One of the most interesting mysteries of astrophysics is the puzzle of dark matter. Although numerous techniques have been explored and developed to detect this elusive substance, its nature remains unknown. One such method uses large high-energy neutrino telescopes to look for the annihilation products of dark matter annihilations. In this paper, we briefly review this technique. We describe the calculations used to find the rate of capture of WIMPs in the Sun or Earth and the spectrum of neutrinos produced in the resulting dark matter annihilations. We will discuss these calculations within the context of supersymmetry and models with universal extra dimensions, the lightest supersymmetric particle and lightest Kaluza-Klein particle providing the WIMP candidate in these cases, respectively. We will also discuss the status of some of the experiments relevant to these searches: AMANDA, IceCube and ANTARES

  4. Results on dark matter searches with the ANTARES neutrino telescope

    CERN Multimedia

    Zornoza, Juande

    2016-01-01

    Neutrino telescopes have a wide scientific scope. One of their main goals is the detection of dark matter, for which they have specific advantages. The understanding of the nature of dark matter requires a multi-front approach since we still do not know many of their properties. Neutrino telescopes offer the possibility of look at several kinds of sources, not all of them available to other indirect searches. In this work we provide an overview of the results obtained by the ANTARES neutrino telescope, which has been taking data for almost ten years. It is installed in the Mediterranean Sea at a depth of 2475 m, off the coast of Toulon (France). The results presented in this work include searches for neutrino excess from several astrophysical sources. One of the most interesting ones is the Sun. Dark matter particles by the solar system would scatter with nuclei of the Sun, lose energy and accumulate in its centre. Among the final products of their annihilations, only neutrinos could escape. Therefore, a dete...

  5. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NARCIS (Netherlands)

    Reichard, S.; Lang, R.F.; McCabe, C.; Selvi, M.; Tamborra, I.

    2017-01-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the

  6. Non-thermal production of minimal dark matter via right-handed neutrino decay

    International Nuclear Information System (INIS)

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-01-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2) L quintuplet and a scalar SU(2) L septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations

  7. Neutrino and dark radiation properties in light of recent CMB observations

    Science.gov (United States)

    Archidiacono, Maria; Giusarma, Elena; Melchiorri, Alessandro; Mena, Olga

    2013-05-01

    Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with Neff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the Neff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity cvis2=1/3 at the 2σ C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation

  8. Neutrino signals from gravitino dark matter with broken R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, M.

    2008-12-15

    The gravitino is a promising supersymmetric dark matter candidate, even without strict R-parity conservation. In fact, with some small R-parity violation, gravitinos are sufficiently long-lived to constitute the dark matter of the universe, while the resulting cosmological scenario is consistent with primordial nucleosynthesis and the high reheating temperature needed for thermal leptogenesis. Furthermore, in this scenario the gravitino is unstable and might thus be accessible by indirect detection via its decay products. We compute in this thesis the partial decay widths for the gravitino in models with bilinear R-parity breaking. In addition, we determine the neutrino signal from astrophysical gravitino dark matter decays. Finally, we discuss the feasibility of detecting these neutrino signals in present and future neutrino experiments, and conclude that it will be a challenging task. Albeit, if detected, this distinctive signal might bring considerable support to the scenario of decaying gravitino dark matter. (orig.)

  9. Searches for sterile neutrinos and other BSM physics with the IceCube detector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this talk I will show the potential of IceCube to explore new physics in the context of neutrino oscillations. In the first part I will discus the recent analysis on the O(eV) light sterile neutrino that, up to date, gives the most stringent bounds in the region motivated by the short baseline neutrino anomalies. In the second part I will present other new physics scenarios which might be tested at neutrino telescopes.

  10. COHERENT enlightenment of the neutrino dark side

    Science.gov (United States)

    Coloma, Pilar; Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2017-12-01

    In the presence of nonstandard neutrino interactions (NSI), oscillation data are affected by a degeneracy which allows the solar mixing angle to be in the second octant (also known as the dark side) and implies a sign flip of the atmospheric mass-squared difference. This leads to an ambiguity in the determination of the ordering of neutrino masses, one of the main goals of the current and future experimental neutrino program. We show that the recent observation of coherent neutrino-nucleus scattering by the COHERENT experiment, in combination with global oscillation data, excludes the NSI degeneracy at the 3.1 σ (3.6 σ ) C.L. for NSI with up (down) quarks.

  11. Search for eV sterile neutrinos at a nuclear reactor — the Stereo project

    Science.gov (United States)

    Haser, J.; Stereo Collaboration

    2016-05-01

    The re-analyses of the reference spectra of reactor antineutrinos together with a revised neutrino interaction cross section enlarged the absolute normalization of the predicted neutrino flux. The tension between previous reactor measurements and the new prediction is significant at 2.7 σ and is known as “reactor antineutrino anomaly”. In combination with other anomalies encountered in neutrino oscillation measurements, this observation revived speculations about the existence of a sterile neutrino in the eV mass range. Mixing of this light sterile neutrino with the active flavours would lead to a modification of the detected antineutrino flux. An oscillation pattern in energy and space could be resolved by a detector at a distance of few meters from a reactor core: the neutrino detector of the Stereo project will be located at about 10 m distance from the ILL research reactor in Grenoble, France. Lengthwise separated in six target cells filled with 2 m3 Gd-loaded liquid scintillator in total, the experiment will search for a position-dependent distortion in the energy spectrum.

  12. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11,F-91405 Orsay Cedex (France); Vicente, Avelino [IFPA, Dep. AGO, Université de Liège,Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium); Instituto de Física Corpuscular, CSIC-Universitat de València,Apdo. 22085, E-46071 Valencia (Spain)

    2015-09-29

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  13. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11, F-91405 Orsay Cedex (France); Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be [IFPA, Dep. AGO, Université de Liège, Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium)

    2015-09-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  14. Signatures of dark radiation in neutrino and dark matter detectors

    OpenAIRE

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-01-01

    We consider the generic possibility that the Universe’s energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particl...

  15. Effects of sterile neutrinos and an extra dimension on big bang nucleosynthesis

    Science.gov (United States)

    Jang, Dukjae; Kusakabe, Motohiko; Cheoun, Myung-Ki

    2018-02-01

    By assuming the existence of extra-dimensional sterile neutrinos in the big bang nucleosynthesis (BBN) epoch, we investigate the sterile neutrino (νs) effects on the BBN and constrain some parameters associated with the νs properties. First, for the cosmic expansion rate, we take into account effects of a five-dimensional bulk and intrinsic tension of the brane embedded in the bulk and constrain a key parameter of the extra dimension by using the observational element abundances. Second, effects of the νs traveling on or off the brane are considered. In this model, the effective mixing angle between a νs and an active neutrino depends on energy, which may give rise to a resonance effect on the mixing angle. Consequently, the reaction rate of the νs can be drastically changed during the cosmic evolution. We estimated abundances and temperature of the νs by solving the rate equation as a function of temperature until the sterile neutrino decoupling. We then find that the relic abundance of the νs is drastically enhanced by the extra dimension and maximized for a characteristic resonance energy Eres≳0.01 GeV . Finally, some constraints related to the νs, i.e., mixing angle and mass difference, are discussed in detail with the comparison of our BBN calculations corrected by the extra-dimensional νs to observational data on light element abundances.

  16. Searches for Sterile Neutrinos with the IceCube Detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rameez, M.; Rawlins, K.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Salvado, J.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous νμ or ν¯μ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3 +1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin22 θ24≤0.02 at Δ m2˜0.3 eV2 at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |Ue 4 |2 .

  17. Neutrino spectroscopy can probe the dark matter content in the Sun.

    Science.gov (United States)

    Lopes, Ilídio; Silk, Joseph

    2010-10-22

    After being gravitationally captured, low-mass cold dark-matter particles (mass range from 5 to ~50 × 10(9) electron volts) are thought to drift to the center of the Sun and affect its internal structure. Solar neutrinos provide a way to probe the physical processes occurring in the Sun's core. Solar neutrino spectroscopy, in particular, is expected to measure the neutrino fluxes produced in nuclear reactions in the Sun. Here, we show how the presence of dark-matter particles inside the Sun will produce unique neutrino flux distributions in (7)Be-ν and (8)B-ν, as well as (13)N-ν, (15)O-ν, and (17)F-ν.

  18. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    Science.gov (United States)

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  19. Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster

    DEFF Research Database (Denmark)

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.

    2015-01-01

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. We present the first search for dark matter line emission in the range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line...... emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at , but improves on the constraints...... for energies of 10–25 keV....

  20. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  1. The role of self-interacting right-handed neutrinos in galactic structure

    CERN Document Server

    Argüelles, C.R.; Rueda, J.A.; Ruffini, R.

    2016-01-01

    We show that warm dark matter keV fermions (`inos') can be responsible for both core and halo galactic structure, in agreement with current astrophysical/cosmological constraints. We identify the inos with sterile right-handed neutrinos. The possible mass range of up to a few tens of keV, obtained independently from the galactic structure and dark matter astroparticle physics, points towards an important role of the right-handed neutrinos in the cosmic structure.

  2. Unified picture for Dirac neutrinos, dark matter, dark energy and matter–antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2008-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  3. Neutrino oscillations in Gallium and reactor experiments and cosmological effects of a light sterile neutrino

    International Nuclear Information System (INIS)

    Acero-Ortega, Mario Andres

    2009-01-01

    data showed a very low compatibility, so we did not use the I.L.L. data for additional analyses. Our fit of the S.R.S. experiment gave very small values of the goodness-of-fit, indicating that the data are incompatible with the oscillations hypothesis, as well as with the no oscillations hypothesis. We do not have any explanation for this result. From the analysis of the Gosgen experiment, we obtained upper limits for the mixing parameters, excluding the region with sin 2 2θ ≥ 0.3 and Δm ≥ 0.05 eV 2 at 3σ C.L.. With the combination of these data with those of Gallium, Bugey and Chooz, we found that the hint of neutrino oscillations persists with 0.03 ≤ sin 2 2θ ≤ 0.07 and Δm 2 ≅ 1.93 eV 2 , with a good compatibility of the data. However, the no oscillations hypothesis cannot be excluded. Motivated by these results, in the second part of this work we studied cosmological constrains on a light non-thermal sterile neutrino. We fitted up-to-date cosmological data with an extended LCDM model, including light relics with a mass in the range 0.1-10 eV. We obtained constrains on the current density and velocity dispersion of those relics, as well as constrains on their mass, assuming that they consist either of early decoupled thermal relics, or of non-resonantly produced sterile neutrinos. Our results are useful to constrain particle-motivated models with three active neutrinos and one extra light species. We got, for instance, that at the 3σ confidence level, a sterile neutrino with mass m s = 2 eV can be accommodated with the data provided that it is thermally distributed with T s /T id ν ≤ 0.8 (with T id ν the temperature of neutrinos in the instantaneous decoupling limit), or is non-resonantly produced with ΔN eff ≤ 0.5. The bounds become dramatically tighter when the mass increases. For m s ≤ 0.9 eV and at the same confidence level, the data is still compatible with a standard thermalized neutrino. (author)

  4. Detecting Dark Photons with Reactor Neutrino Experiments

    Science.gov (United States)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ reactors as potential sources of intense fluxes of low-mass dark photons.

  5. On the chaoticity of active-sterile neutrino oscillations in the early universe

    DEFF Research Database (Denmark)

    Braad, Poul-Erik; Hannestad, Steen

    2000-01-01

    We have investigated the evolution of the neutrino asymmetry in active-sterile neutrino oscillations in the early universe. We find that there are large regions of parameter space where the asymmetry is extremely sensitive to variations in the initial asymmetry as well as the external parameters ...... asymmetry is stochastic. We discuss the implications of our findings for Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB)....

  6. keV-Scale sterile neutrino sensitivity estimation with time-of-flight spectroscopy in KATRIN using self-consistent approximate Monte Carlo

    Science.gov (United States)

    Steinbrink, Nicholas M. N.; Behrens, Jan D.; Mertens, Susanne; Ranitzsch, Philipp C.-O.; Weinheimer, Christian

    2018-03-01

    We investigate the sensitivity of the Karlsruhe Tritium Neutrino Experiment (KATRIN) to keV-scale sterile neutrinos, which are promising dark matter candidates. Since the active-sterile mixing would lead to a second component in the tritium β-spectrum with a weak relative intensity of order sin ^2θ ≲ 10^{-6}, additional experimental strategies are required to extract this small signature and to eliminate systematics. A possible strategy is to run the experiment in an alternative time-of-flight (TOF) mode, yielding differential TOF spectra in contrast to the integrating standard mode. In order to estimate the sensitivity from a reduced sample size, a new analysis method, called self-consistent approximate Monte Carlo (SCAMC), has been developed. The simulations show that an ideal TOF mode would be able to achieve a statistical sensitivity of sin ^2θ ˜ 5 × 10^{-9} at one σ , improving the standard mode by approximately a factor two. This relative benefit grows significantly if additional exemplary systematics are considered. A possible implementation of the TOF mode with existing hardware, called gated filtering, is investigated, which, however, comes at the price of a reduced average signal rate.

  7. Prospects of light sterile neutrino oscillation and C P violation searches at the Fermilab Short Baseline Neutrino Facility

    Science.gov (United States)

    Cianci, D.; Furmanski, A.; Karagiorgi, G.; Ross-Lonergan, M.

    2017-09-01

    We investigate the ability of the short baseline neutrino (SBN) experimental program at Fermilab to test the globally-allowed (3 +N ) sterile neutrino oscillation parameter space. We explicitly consider the globally-allowed parameter space for the (3 +1 ), (3 +2 ), and (3 +3 ) sterile neutrino oscillation scenarios. We find that SBN can probe with 5 σ sensitivity more than 85%, 95% and 55% of the parameter space currently allowed at 99% confidence level for the (3 +1 ), (3 +2 ) and (3 +3 ) scenarios, respectively, with the (3 +N ) allowed space used in these studies closely resembling that of previous studies [J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz, and J. Spitz, Adv. High Energy Phys. 2013, 1 (2013)., 10.1155/2013/163897], calculated using the same methodology. In the case of the (3 +2 ) and (3 +3 ) scenarios, C P -violating phases appear in the oscillation probability terms, leading to observable differences in the appearance probabilities of neutrinos and antineutrinos. We explore SBN's sensitivity to those phases for the (3 +2 ) scenario through the currently planned neutrino beam running, and investigate potential improvements through additional antineutrino beam running. We show that, if antineutrino exposure is considered, for maximal values of the (3 +2 ) C P -violating phase ϕ54, SBN could be the first experiment to directly observe ˜2 σ hints of C P violation associated with an extended lepton sector.

  8. Dark matter physics in neutrino specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seungwon; Nomura, Takaaki [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)

    2017-03-10

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global U(1){sub X}, can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete Z{sub 2} symmetry. The dark matter particle, lightest Z{sub 2}-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further tested in indirect detection experiments such as FermiLAT gamma ray searches or neutrinoless double beta decay experiments.

  9. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tönnis, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is

  10. Search for Dirac and Majorana sterile neutrinos in trilepton events at the LHC

    International Nuclear Information System (INIS)

    Dib, Claudio O.; Kim, C.S.; Wang, Kechen; Chinese Academy of Sciences, Beijing

    2017-03-01

    Heavy sterile neutrinos with masses below M_W can induce trilepton events at the 14 TeV LHC through purely leptonic W decays of W"±→e"±e"±μ"-"+ν and μ"±μ"±e"-"+ν where the heavy neutrino will be in an intermediate state on its mass shell. Discovery and exclusion limits for the heavy neutrinos are found using both Cut-and-Count (CC) and a Multi-Variate Analysis (MVA) methods in this study. We also show that it is possible to discriminate between a Dirac and a Majorana heavy neutrino, even when lepton number conservation cannot be directly tested due to unobservability of the final state neutrino. This discrimination is done by exploiting a combined set of kinematic observables that differ between the Majorana vs. Dirac cases. We find that the MVA method can greatly enhance the discovering and discrimination limits in comparison with the CC method. With an integrated luminosity of 3000 fb"-"1, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings vertical stroke U_N_e vertical stroke "2∝ vertical stroke U_N_μ vertical stroke "2∝10"-"6, while the Majorana vs. Dirac type can be distinguished if vertical stroke U_N_e vertical stroke "2∝ vertical stroke U_N_μ vertical stroke "2∝10"-"5 or even vertical stroke U_N_l vertical stroke "2∝10"-"6 if one of mixing elements can be at least one order of magnitude smaller than the other.

  11. New underground neutrino observatory-GENIUS-in the new millenium for solar neutrinos, dark matter and double beta decay

    CERN Document Server

    Klapdor-Kleingrothaus, H V

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with nu oscillation experiments. The most sensitive experiment for eight years-the HEIDELBERG-MOSCOW experiment in Gran-Sasso-already now, with the experimental limit of (m/sub nu /)<0.26 eV excludes degenerate nu mass scenarios allowing neutrinos as hot dark matter in the Universe for the small angle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond standard model physics at the TeV scale. Future experiments should give access to the multiTeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics GENIUS will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments. At the same time GENIUS will cover a wide range of the parameter space of pred...

  12. Neutrino mass, dark energy, and the linear growth factor

    International Nuclear Information System (INIS)

    Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein

    2008-01-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].

  13. Common origin of neutrino mass, dark matter and Dirac leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam 781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar 751005 (India)

    2016-12-01

    We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.

  14. Experiment for search for sterile neutrino at SM-3 reactor

    Science.gov (United States)

    Serebrov, A. P.; Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Cherniy, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Zinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanasiev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2016-11-01

    In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.

  15. Search for a Light Sterile Neutrino at Daya Bay

    Science.gov (United States)

    Wong, H. L. H.; Daya Bay Collaboration

    2017-09-01

    The Daya Bay reactor neutrino experiment’s unique configuration of multiple baselines from six 2.9 GW th nuclear reactors to eight antineutrino detectors deployed in two near (effective baselines ∼500 m and ∼600 m) and one far (effective baseline ∼1600 m) underground experimental halls makes it possible to look for oscillations with a fourth (sterile) neutrino in the {10}-3{{{ eV}}}2≲ |Δ {m}412|≲ 0.3{{{ eV}}}2 range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The resulting limits on sin22θ 14 constitute the world’s best for the |Δ {m}412|≲ 0.2{{{ eV}}}2 region.

  16. Search for Dirac and Majorana sterile neutrinos in trilepton events at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Claudio O. [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). CCTVal y Dept. of Physics; Kim, C.S. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics and IPAP; Wang, Kechen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics

    2017-03-15

    Heavy sterile neutrinos with masses below M{sub W} can induce trilepton events at the 14 TeV LHC through purely leptonic W decays of W{sup ±}→e{sup ±}e{sup ±}μ{sup -+}ν and μ{sup ±}μ{sup ±}e{sup -+}ν where the heavy neutrino will be in an intermediate state on its mass shell. Discovery and exclusion limits for the heavy neutrinos are found using both Cut-and-Count (CC) and a Multi-Variate Analysis (MVA) methods in this study. We also show that it is possible to discriminate between a Dirac and a Majorana heavy neutrino, even when lepton number conservation cannot be directly tested due to unobservability of the final state neutrino. This discrimination is done by exploiting a combined set of kinematic observables that differ between the Majorana vs. Dirac cases. We find that the MVA method can greatly enhance the discovering and discrimination limits in comparison with the CC method. With an integrated luminosity of 3000 fb{sup -1}, sterile neutrinos can be found with 5σ significance if heavy-to-light neutrino mixings vertical stroke U{sub Ne} vertical stroke {sup 2}∝ vertical stroke U{sub Nμ} vertical stroke {sup 2}∝10{sup -6}, while the Majorana vs. Dirac type can be distinguished if vertical stroke U{sub Ne} vertical stroke {sup 2}∝ vertical stroke U{sub Nμ} vertical stroke {sup 2}∝10{sup -5} or even vertical stroke U{sub Nl} vertical stroke {sup 2}∝10{sup -6} if one of mixing elements can be at least one order of magnitude smaller than the other.

  17. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    Science.gov (United States)

    Medinaceli, E.; NESSiE Collaboration

    2013-08-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the "Near" (600 m) and "Far" (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼ 100 MeV to few GeV over a large transverse area (> 50m2).

  18. Right-handed neutrino dark matter under the B−L gauge interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kaneta, Kunio [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 34051 (Korea, Republic of); Kang, Zhaofeng [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Lee, Hye-Sung [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 34051 (Korea, Republic of)

    2017-02-07

    We study the right-handed neutrino (RHN) dark matter candidate in the minimal U(1){sub B−L} gauge extension of the standard model. The U(1){sub B−L} gauge symmetry offers three RHNs which can address the origin of the neutrino mass, the relic dark matter, and the matter-antimatter asymmetry of the universe. The lightest among the three is taken as the dark matter candidate, which is under the B−L gauge interaction. We investigate various scenarios for this dark matter candidate with the correct relic density by means of the freeze-out or freeze-in mechanism. A viable RHN dark matter mass lies in a wide range including keV to TeV scale. We emphasize the sub-electroweak scale light B−L gauge boson case, and identify the parameter region motivated from the dark matter physics, which can be tested with the planned experiments including the CERN SHiP experiment.

  19. arXiv Search for sterile neutrinos decaying into pions at the LHC

    CERN Document Server

    Dib, Claudio O.; Neill, Nicolás A.; Yuan, Xing-Bo

    2018-02-28

    We study the possibility to observe sterile neutrinos with masses in the range 5  GeVneutrino in the above mass range can greatly help reduce backgrounds. Assuming a sample of 109  W bosons at the end of the LHC Run 2, these modes could discover a sterile neutrino in the above mass range or improve the current bounds on the heavy-to-light lepton mixings by an order of magnitude, |UℓN|2∼2×10-6. Moreover, by studying the equal s...

  20. Neutrinos as a probe of dark-matter particles

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.-Y. Pauchy, E-mail: wyhwang@phys.ntu.edu.tw [National Taiwan University, Asia Pacific Organization for Cosmology and Particle Astrophysics, Institute of Astrophysics, Center for Theoretical Sciences (China)

    2013-03-15

    We try to envision that there might be a dark-matter world and neutrinos, especially the right-handed ones, might be coupled directly with dark-matter particles in the dark-matter world. The candidate model would be the extended Standard Model based on SU{sub c}(3) Multiplication-Sign SU{sub L}(2) Multiplication-Sign U(1) Multiplication-Sign SU{sub f}(3) Multiplication-Sign SU{sub R}(2), with the search of the detailed version through the aid of the two working rules, 'Dirac similarity principle' and 'minimum Higgs hypothesis'.

  1. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    Science.gov (United States)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  2. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D; Arnold, R; Balantekin, A; Barabash, A; Barnabe, H; Baroni, S; Baussan, E; Bellini, F; Bobisut, F; Bongrand, M; Brofferio, Ch; Capolupo, A; Enrico, Carrara; Caurier, E; Cermak, P; Chardin, G; Civitarese, O; Couchot, F; Kerret, H de; Heros, C de los; Detwiler, J; Dracos, M; Drexlin, G; Efremenko, Y; Ejiri, H; Falchini, E; Fatemi-Ghomi, N; Finger, M Ch; Finger Miroslav, Ch; Fiorillo, G; Fiorini, E; Fracasso, S; Frekers, D; Fushimi, K I; Gascon, J; Genest, M H; Georgadze, A; Giuliani, A; Goeger-Neff, M; Gomez-Cadenas, J J; Greenfield, M; H de Jesus, J; Hallin, A; Hannestad, St; Hirai, Sh; Hoessl, J; Ianni, A; Ieva, M B; Ishihara, N; Jullian, S; Kaim, S; Kajino, T; Kayser, B; Kochetov, O; Kopylov, A; Kortelainen, M; Kroeninger, K; Lachenmaier, T; Lalanne, D; Lanfranchi, J C; Lazauskas, R; Lemrani, A R; Li, J; Mansoulie, B; Marquet, Ch; Martinez, J; Mirizzi, A; Morfin Jorge, G; Motz, H; Murphy, A; Navas, S; Niedermeier, L; Nishiura, H; Nomachi, M; Nones, C.; Ogawa, H; Ogawa, I; Ohsumi, H; Palladino, V; Paniccia, M; Perotto, L; Petcov, S; Pfister, S; Piquemal, F; Poves, A; Praet, Ch; Raffelt, G; Ramberg, E; Rashba, T; Regnault, N; Ricol, J St; Rodejohann, W; Rodin, V; Ruz, J; Sander, Ch; Sarazin, X; Scholberg, K; Sigl, G; Simkovic, F; Sousa, A; Stanev, T; Strolger, L; Suekane, F; Thomas, J; Titov, N; Toivanen, J; Torrente-Lujan, E; Tytler, D; Vala, L; Vignaud, D; Vitiello, G; Vogel, P; Volkov, G; Volpe, C; Wong, H; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  3. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    International Nuclear Information System (INIS)

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A.

    2006-01-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  4. Neutrinos at the forefront of elementary physics and astrophysics - Slides and abstracts

    International Nuclear Information System (INIS)

    Wark, D.; Cabrera, A.; Clark, K.; Cribier, M.; Rubbia, A.; Schwetz, T.; Hagedorn, C.; Bajc, B.; Thomas, J.; Nakahata, M.; Bravar, S.; Raffelt, G.; Mirizzi, A.; Serpico, P.; Drappeau, S.; Turk-Chieze, S.; Vignaud, D.; Kouchner, A.; Gay, P.; Baerwald, P.; Van Elewyck, V.; Branco, G.; Arbey, A.; Saviano, N.; Cirelli, M.; Verde, L.; Courtois, H.; Mauger, F.; Giunti, C.; Smadja, G.; Gascon, J.; Katsanevas, S.; Autiero, D.

    2014-01-01

    The conference has focused on neutrinos as a bridge between the two words of particle physics and astrophysics/cosmology with 3 main topics: -) the fundamental properties of neutrinos (neutrino masses and oscillations, mass hierarchy, neutrinoless double beta decay, neutrinos as Majorana particles, the search for CP violation in the leptonic sector, hints of physics beyond the standard model, the present experimental scenario and future large size experiments for neutrino oscillations and astro particle physics...); -) Neutrinos in astrophysics (neutrinos from the sun, neutrinos from Supernovae, high energy neutrinos... ); -) Neutrinos in cosmology (measurements of large scale structures, cosmological parameters, nucleosynthesis, dark matter, sterile neutrinos,...). This document is made up of the slides of the presentations and a few abstracts.

  5. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-08-01

    Full Text Available A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ−.

  6. Requirements on read-out electronics for future keV-scale sterile neutrino search with KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Dolde, Kai [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-07-01

    Recent publications show the great potential of the KATRIN (KArlsruhe TRItium Neutrino) experiment in the search for sterile neutrinos in the mass range of a few keV down to active-to-sterile mixing angles at least one order of magnitude smaller than current laboratory limits of sin{sup 2}θ < 10{sup -3}. In order to be sensitive to the tiny kink-like signature of sterile neutrinos in tritium beta decay, KATRIN requires a novel sophisticated detector and read-out system. Several silicon prototype detectors are under construction at the moment to explore the most suitable detector design for this purpose. The selection of appropriate read-out electronics is strongly triggered by the requirements of allowing only very small systematic uncertainties due to ADC Non-Linearities to reach the expected sensitivity. This talk investigates the impact of ADC Non-Linearities on the tritium beta decay spectrum, depending on the digitization method of analogue signals of a multi-pixel silicon detector, peak sensing or waveform digitization. The simulations show a higher achievable sensitivity using waveform digitizers and moreover strongly favor additional variable post-acceleration of the electrons to smear out the periodic structure of the ADC Non-Linearities.

  7. Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN

    Science.gov (United States)

    Steinbrink, Nicholas M. N.; Glück, Ferenc; Heizmann, Florian; Kleesiek, Marco; Valerius, Kathrin; Weinheimer, Christian; Hannestad, Steen

    2017-06-01

    The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium β-spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2)R symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium β decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This analysis has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that, in principle, KATRIN will be able to set sterile neutrino mass-dependent limits on the interference strength. The sensitivity is significantly increased if the Q value of the β decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.

  8. Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN

    International Nuclear Information System (INIS)

    Steinbrink, Nicholas M.N.; Weinheimer, Christian; Glück, Ferenc; Valerius, Kathrin; Heizmann, Florian; Kleesiek, Marco; Hannestad, Steen

    2017-01-01

    The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium β-spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2) R symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium β decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This analysis has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that, in principle, KATRIN will be able to set sterile neutrino mass-dependent limits on the interference strength. The sensitivity is significantly increased if the Q value of the β decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.

  9. Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrink, Nicholas M.N.; Weinheimer, Christian [Institute for Nuclear Physics, University of Münster, Wilhelm Klemm-Str. 9, 41849 Münster (Germany); Glück, Ferenc; Valerius, Kathrin [Institute for Nuclear Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Heizmann, Florian; Kleesiek, Marco [Institute of Experimental Nuclear Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Hannestad, Steen, E-mail: n.steinbrink@uni-muenster.de, E-mail: ferenc.glueck@kit.edu, E-mail: florian.heizmann@kit.edu, E-mail: marco.kleesiek@kit.edu, E-mail: kathrin.valerius@kit.edu, E-mail: weinheimer@uni-muenster.de, E-mail: steen@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)

    2017-06-01

    The KATRIN experiment aims to determine the absolute neutrino mass by measuring the endpoint region of the tritium β-spectrum. As a large-scale experiment with a sharp energy resolution, high source luminosity and low background it may also be capable of testing certain theories of neutrino interactions beyond the standard model (SM). An example of a non-SM interaction are right-handed currents mediated by right-handed W bosons in the left-right symmetric model (LRSM). In this extension of the SM, an additional SU(2){sub R} symmetry in the high-energy limit is introduced, which naturally includes sterile neutrinos and predicts the seesaw mechanism. In tritium β decay, this leads to an additional term from interference between left- and right-handed interactions, which enhances or suppresses certain regions near the endpoint of the beta spectrum. In this work, the sensitivity of KATRIN to right-handed currents is estimated for the scenario of a light sterile neutrino with a mass of some eV. This analysis has been performed with a Bayesian analysis using Markov Chain Monte Carlo (MCMC). The simulations show that, in principle, KATRIN will be able to set sterile neutrino mass-dependent limits on the interference strength. The sensitivity is significantly increased if the Q value of the β decay can be sufficiently constrained. However, the sensitivity is not high enough to improve current upper limits from right-handed W boson searches at the LHC.

  10. Dark matter and leptogenesis linked by classical scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Khoze, Valentin V.; Plascencia, Alexis D. [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)

    2016-11-07

    In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.

  11. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Medinaceli, E.

    2013-01-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the “Near” (600 m) and “Far” (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (>50m 2 )

  12. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    Energy Technology Data Exchange (ETDEWEB)

    Medinaceli, E., E-mail: medinaceli@pd.infn.it [INFN and University of Padova (Italy)

    2013-08-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the “Near” (600 m) and “Far” (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (>50m{sup 2})

  13. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches

    Energy Technology Data Exchange (ETDEWEB)

    Argüelles, C.A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA (United States); De Wasseige, G. [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Fedynitch, A. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Jones, B.J.P., E-mail: caad@mit.edu, E-mail: gdewasse@vub.ac.be, E-mail: anatoli.fedynitch@desy.de, E-mail: ben.jones@uta.edu [University of Texas at Arlington, 108 Science Hall, 502 Yates St, Arlington TX (United States)

    2017-07-01

    Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.

  14. Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Dumas, Alexis

    2014-01-01

    The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model γCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed: missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained: NFW, Burkert and Einasto and fifteen dwarf galaxies. Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c 2 100 TeV/c 2 . Five self-annihilation channels are selected for analysis: b - b, W + W - T + T - μ + μ - νμ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed: AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined. (author)

  15. Breaking Be: a sterile neutrino solution to the cosmological lithium problem

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, L.; Melchiorri, A. [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , P.le Aldo Moro 2, 00185, Rome (Italy); Pagano, L. [Institut d' Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay cedex (France); Lattanzi, M. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara and INFN, Sezione di Ferrara, Polo Scientifico e Tecnologico—Edificio C Via Saragat, 1, I-44122 Ferrara (Italy); Gerbino, M., E-mail: laura.salvati@roma1.infn.it, E-mail: lpagano@ias.u-psdu.fr, E-mail: lattanzi@fe.infn.it, E-mail: martina.gerbino@fysik.su.se, E-mail: alessandro.melchiorri@roma1.infn.it [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2016-08-01

    The possibility that the so-called ''lithium problem'', i.e., the disagreement between the theoretical abundance predicted for primordial {sup 7}Li assuming standard nucleosynthesis and the value inferred from astrophysical measurements, can be solved through a non-thermal Big Bang Nucleosynthesis (BBN) mechanism has been investigated by several authors. In particular, it has been shown that the decay of a MeV-mass particle, like, e.g., a sterile neutrino, decaying after BBN not only solves the lithium problem, but also satisfies cosmological and laboratory bounds, making such a scenario worth to be investigated in further detail. In this paper, we constrain the parameters of the model with the combination of current data, including Planck 2015 measurements of temperature and polarization anisotropies of the Cosmic Microwave Background (CMB), FIRAS limits on CMB spectral distortions, astrophysical measurements of primordial abundances and laboratory constraints. We find that a sterile neutrino with mass M {sub S} = 4.35{sub -0.17}{sup +0.13} MeV (at 95% c.l.), a decay time τ {sub S} = 1.8{sub -1.3}{sup +2.5} · 10{sup 5} s (at 95% c.l.) and an initial density n-bar {sub S} / n-bar {sub cmb} = 1.7{sub -0.6}{sup +3.5} · 10{sup -4} (at 95% c.l.) in units of the number density of CMB photons, perfectly accounts for the difference between predicted and observed {sup 7}Li primordial abundance. This model also predicts an increase of the effective number of relativistic degrees of freedom at the time of CMB decoupling Δ N {sub eff}{sup cmb} ≡ N {sub eff}{sup cmb} -3.046 = 0.34{sub -0.14}{sup +0.16} at 95% c.l.. The required abundance of sterile neutrinos is incompatible with the standard thermal history of the Universe, but could be realized in a low reheating temperature scenario. We also provide forecasts for future experiments finding that the combination of measurements from the COrE+ and PIXIE missions will allow to significantly reduce the

  16. Light neutrinos as cosmological dark matter and the next supernova

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1990-01-01

    We point out that the light-neutrino hypothesis for cosmological dark matter can be tested by observing a neutrino burst from a type-II supernova. With the luck of a nearby (∼10 kpc) event watched by enlarged water Cherenkov detectors, such as the proposed super-Kamiokande, it might be possible to measure the tau- (heaviest-)neutrino mass. In such a case the statistically significant (4000--6000) bar ν e absorption events would allow the precise determination of the neutrino flux and the temperature. By using a simple model of neutrino emission based on the simulation by Mayle, Wilson, and Schramm, we show that the existence of the neutrino mixing can be signaled by 20--30 % excess of the scattering events in the water Cherenkov detector, and by factor ∼3 larger rate in Davis's 37 Cl detector. The effect on the recoil electron energy spectrum is also analyzed

  17. Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Lamprea, David R. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Yaguna, Carlos E. [Universidad Pedagogica y Tecnologica de Colombia, Escuela de Fisica, Tunja (Colombia)

    2018-02-15

    We consider a simple extension of the Standard Model that can account for the dark matter and explain the existence of neutrino masses. The model includes a vector-like doublet of SU(2), a singlet fermion, and two scalar singlets, all of them odd under a new Z{sub 2} symmetry. Neutrino masses are generated radiatively by one-loop processes involving the new fields, while the dark matter candidate is the lightest neutral particle among them. We focus specifically on the case where the dark matter particle is one of the scalars and its relic density is determined by its Yukawa interactions. The phenomenology of this setup, including neutrino masses, dark matter and lepton flavor violation, is analyzed in some detail. We find that the dark matter mass must be below 600 GeV to satisfy the relic density constraint. Lepton flavor violating processes are shown to provide the most promising way to test this scenario. Future μ → 3e and μ-e conversion experiments, in particular, have the potential to probe the entire viable parameter space of this model. (orig.)

  18. Observing a light dark matter beam with neutrino experiments

    Science.gov (United States)

    Deniverville, Patrick; Pospelov, Maxim; Ritz, Adam

    2011-10-01

    We consider the sensitivity of fixed-target neutrino experiments at the luminosity frontier to light stable states, such as those present in models of MeV-scale dark matter. To ensure the correct thermal relic abundance, such states must annihilate via light mediators, which in turn provide an access portal for direct production in colliders or fixed targets. Indeed, this framework endows the neutrino beams produced at fixed-target facilities with a companion “dark matter beam,” which may be detected via an excess of elastic scattering events off electrons or nuclei in the (near-)detector. We study the high-luminosity proton fixed-target experiments at LSND and MiniBooNE, and determine that the ensuing sensitivity to light dark matter generally surpasses that of other direct probes. For scenarios with a kinetically-mixed U(1)' vector mediator of mass mV, we find that a large volume of parameter space is excluded for mDM˜1-5MeV, covering vector masses 2mDM≲mV≲mη and a range of kinetic mixing parameters reaching as low as κ˜10-5. The corresponding MeV-scale dark matter scenarios motivated by an explanation of the galactic 511 keV line are thus strongly constrained.

  19. Effective theories for Dark Matter interactions and the neutrino portal paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Macías, Vannia González; Wudka, José [Department of Physics & Astronomy, University of California Riverside,University Av., Riverside, California 92521-0413 (United States)

    2015-07-29

    In this article we discuss a general effective-theory description of a multi-component dark sector with an unspecified non-trivial symmetry and its interactions with the Standard Model generated by the exchange of heavy mediators. We then categorize the relevant effective operators given the current experimental sensistivity where the underlying theory is weakly coupled and renormalizable, with neutral mediators: either scalars or fermions. An interesting scenario resulting from this categorization is the neutrino portal, where only fermion mediators are present, and where the dark sector consists of fermions and scalars such that the lightest dark particle is a fermion, this scenario is characterized by having naturally suppressed couplings of the DM to all SM particles except the neutrinos and has received little attention in the literature. We find that there is a wide region in parameter space allowed by the current experimental constraints (relic abundance, direct and indirect detection limits); the cleanest signature of this paradigm is the presence of monochromatic neutrino lines with energy equal to that of the DM mass, but experimental sensitivity would have to be improved significantly before this can be probed.

  20. Cosmological and supernova neutrinos

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  1. Sterile neutrino oscillations in MINOS and hadron production in pC collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tinti, Gemma Maria [Univ. of Oxford (United Kingdom)

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment, starting with a muon-neutrino beam, for the precise measurement of the atmospheric neutrino oscillation parameters |Δm2| and θ23. The Near Detector measures the neutrino flux and spectra before oscillations. The beam propagates for 735 km to the Far Detector, which measures the depleted spectrum after oscillations. The depletion can be interpreted as vμ → vτ oscillations. Subdominant vμ → ve oscillations may be allowed if the mixing angle θ13 ≠ 0. The two detectors are functionally identical in order to cancel systematic errors when using the Near Detector data to constrain the Far Detector prediction. A crucial part of the analysis is the relative calibration between the two detectors, which is known at the 2% level. A calibration procedure to remove the time and temperature dependence of the detector response using through-going cosmic muons is presented here. Although the two-detector approach reduces the systematic uncertainties related to the neutrino flux, a cross check on the neutrino parent meson ratios is performed in this thesis. The cross sections of mesons produced in proton-carbon interactions from the NA49 experiment have been measured and the results have been compared to the MINOS expectations. A neutrino oscillation analysis allowing mixing to a sterile neutrino is performed, under the assumption that the additional mass splitting is Ο(1 eV2). The analysis uses the energy spectrum of the neutral current interaction products, as neutral current interactions are sensitive to sterile neutrino mixing but not to the active flavour neutrino mixing. The neutrino oscillation parameters have been found to be: |Δm2| = 2.43-0.18+0.21 x 10-3 eV2, θ23 = 40.27°-5.17+14.64, θ24 = 0.00°+5.99 and

  2. Shedding light on neutrino masses with dark forces

    Energy Technology Data Exchange (ETDEWEB)

    Batell, Brian [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center,Department of Physics and Astronomy, University of Pittsburgh, PA 15260 (United States); Pospelov, Maxim [Perimeter Institute for Theoretical Physics,Waterloo, ON N2J 2W9 (Canada); Department of Physics and Astronomy, University of Victoria,Victoria, BC V8P 5C2 (Canada); Shuve, Brian [SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-08

    Heavy right-handed neutrinos, N, provide the simplest explanation for the origin of light neutrino masses and mixings. If M{sub N} is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B−L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp→X+V{sub B−L}→X+NN), the sensitivity reach is controlled by the square of the B−L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  3. Explaining dark matter and neutrino mass in the light of TYPE-II seesaw model

    Science.gov (United States)

    Biswas, Anirban; Shaw, Avirup

    2018-02-01

    With the motivation of simultaneously explaining dark matter and neutrino masses, mixing angles, we have invoked the Type-II seesaw model extended by an extra SU(2) doublet Φ. Moreover, we have imposed a Z2 parity on Φ which remains unbroken as the vacuum expectation value of Φ is zero. Consequently, the lightest neutral component of Φ becomes naturally stable and can be a viable dark matter candidate. On the other hand, light Majorana masses for neutrinos have been generated following usual Type-II seesaw mechanism. Further in this framework, for the first time we have derived the full set of vacuum stability and unitarity conditions, which must be satisfied to obtain a stable vacuum as well as to preserve the unitarity of the model respectively. Thereafter, we have performed extensive phenomenological studies of both dark matter and neutrino sectors considering all possible theoretical and current experimental constraints. Finally, we have also discussed a qualitative collider signatures of dark matter and associated odd particles at the 13 TeV Large Hadron Collider.

  4. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  5. Implications of Neutrino Oscillations on the Dark-Matter World

    Science.gov (United States)

    Hwang, W.-Y. Pauchy

    2014-01-01

    According to my own belief that "The God wouldn't create a world that is so boring that a particle knows only the very feeble weak interaction.", maybe we underestimate the roles of neutrinos. We note that right-handed neutrinos play no roles, or don't exist, in the minimal Standard Model. We discuss the language to write down an extended Standard Model - using renormalizable quantum field theory as the language; to start with a certain set of basic units under a certain gauge group; in fact, to use the three right-handed neutrinos to initiate the family gauge group SUf (3). Specifically we use the left-handed and right-handed spinors to form the basic units together with SUc (3) × SUL (2) × U (1) × SUf (3) as the gauge group. The dark-matter SUf (3) world couples with the lepton world, but not with the quark world. Amazingly enough, the space of the Standard-Model Higgs Φ (1 , 2), the family Higgs triplet Φ(3, 1), and the neutral part of the mixed family Higgs Φ0 (3 , 2) undergoes the spontaneous symmetry breaking, i.e. the Standard-Model Higgs mechanism and the "project-out" family Higgs mechanism, to give rise to the weak bosons W± and Z0, one Standard-Model Higgs, the eight massive family gauge bosons, and the remaining four massive neutral family Higgs particles, and nothing more. Thus, the roles of neutrinos in this extended Standard Model are extremely interesting in connection with the dark-matter world.

  6. On baryogenesis from dark matter annihilation

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Colucci, Stefano; Ubaldi, Lorenzo; Josse-Michaux, François-Xavier; Racker, J.

    2013-01-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses

  7. Resurrection of neutrinos as dark matter

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1986-05-01

    It is shown that new observations of large scale structure in the universe (voids, foam, and large-scale velocity fields) are best understood if the dominant matter of the universe is in the form of massive (9eV less than or equal to m/sub nu/ less than or equal to 35 eV) neutrinos. Cold dark matter, even with biasing, seems unable to duplicate the combination of these observations (although a fine-tuned loophole with cold matter and percolated explosions may also marginally work.) The previous fatal problems of galaxy formation with neutrinos can be remedied by combining them with either cosmic strings or explosive galaxy formation. The former naturally gives the scale-free correlation function for galaxies, clusters, and superclusters, and gives large, but not necessarily spherical voids. The latter naturally gives spherical voids, but requires fine tuning and percolation to get the large scales and the scale-free correlation function. 39 refs

  8. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  9. Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers

    Energy Technology Data Exchange (ETDEWEB)

    Moresco, Michele; Cimatti, Andrea [ALMA Mater Studiorum—Università degli Studi di Bologna, Dipartimento di Astronomia, via Ranzani 1, Bologna, I-40127 Italy (Italy); Jimenez, Raul; Verde, Licia [ICREA, Pg. Lluis Companys 23, Barcelona, 08010 Spain (Spain); Pozzetti, Lucia [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, Bologna, 40127 Italy (Italy); Maraston, Claudia; Thomas, Daniel, E-mail: michele.moresco@unibo.it, E-mail: raul.jimenez@icc.ub.edu, E-mail: liciaverde@icc.ub.edu, E-mail: a.cimatti@unibo.it, E-mail: lucia.pozzetti@oabo.inaf.it, E-mail: claudia.maraston@port.ac.uk, E-mail: daniel.thomas@port.ac.uk [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX U.K. (United Kingdom)

    2016-12-01

    We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers , in the redshift range 0< z <2, to place constraints on cosmological parameters. We used a Markov-Chain Monte-Carlo approach to sample the parameter space for the cosmic chronometers dataset alone and in combination with other state-of-the art cosmological measurements: CMB data from the latest Planck 2015 release, the most recent estimate of the Hubble constant H {sub 0}, a compilation of recent baryon acoustic oscillation data, and the latest type Ia cosmological supernovae sample. From late-Universe probes alone ( z <2) we find that w {sub 0} = −0.9 ± 0.18 and w {sub a} = −0.5 ± 1.7, and when combining also Planck 2015 data we obtain w {sub 0}=−0.98± 0.11 and w {sub a} =−0.30±0.4. These new constraints imply that nearly all quintessence models are disfavoured by the data; only phantom models or a pure cosmological constant are favoured. This is a remarkable finding as it imposes severe constraints on the nature of dark energy. For the curvature our constraints are Ω {sub k} = 0.003 ± 0.003, considering also CMB data. We also find that H ( z ) data from cosmic chronometers are important to constrain parameters that do no affect directly the expansion history, by breaking or reducing degeneracies with other parameters. We find that N {sub eff} = 3.17 ± 0.15, thus excluding the possibility of an extra (sterile) neutrino at more than 5 σ, and put competitive limits on the sum of neutrino masses, Σ m {sub ν}< 0.27 eV at 95% confidence level. Finally, we constrain the redshift evolution of dark energy by exploring separately the early and late-Universe, and find a dark energy equation of state evolution w ( z ) consistent with that in the ΛCDM model at the ± 0.4 level over the entire redshift range 0 < z < 2.

  10. Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J.; Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Adams, J.; Bagherpour, H.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Koskinen, D.J.; Larson, M.J.; Medici, M.; Rameez, M.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M.; Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T.; Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M.; Andeen, K.; Plum, M.; Anderson, T.; DeLaunay, J.J.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Tesic, G.; Turley, C.F.; Weiss, M.J.; Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Moulai, M.; Auffenberg, J.; Brenzke, M.; Glauch, T.; Haack, C.; Kalacynski, P.; Koschinsky, J.P.; Leuermann, M.; Raedel, L.; Reimann, R.; Rongen, M.; Saelzer, T.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H.; Bai, X.; Barron, J.P.; Giang, W.; Grant, D.; Kopper, C.; Moore, R.W.; Nowicki, S.C.; Riedel, B.; Sanchez Herrera, S.E.; Sarkar, S.; Wandler, F.D.; Weaver, C.; Wood, T.R.; Woolsey, E.; Yanez, J.P.; Barwick, S.W.; Yodh, G.; Baum, V.; Boeser, S.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F.; Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Lauber, F.; Naumann, U.; Pollmann, A.O.; Soldin, D.; BenZvi, S.; Cross, R.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Besson, D.Z.; Binder, G.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J.; Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.; Bose, D.; Dujmovic, H.; In, S.; Jeong, M.; Kang, W.; Kim, J.; Rott, C.; Botner, O.; Burgman, A.; Hallgren, A.; Heros, C.P. de los; Unger, E.

    2017-01-01

    We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the IceCube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles left angle σ_Av right angle. Upper limits are set for dark matter particle candidate masses ranging from 10 GeV up to 1 TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100 GeV, with a limit of 1.18 . 10"-"2"3 cm"3s"-"1 for 100 GeV dark matter particles self-annihilating via τ"+τ"- to neutrinos (assuming the Navarro-Frenk-White dark matter halo profile). (orig.)

  11. Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Kyriacou, A.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Ackermann, M.; Bernardini, E.; Blot, S.; Bradascio, F.; Bretz, H.P.; Franckowiak, A.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Nahnhauer, R.; Satalecka, K.; Spiering, C.; Stachurska, J.; Stasik, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van [DESY, Zeuthen (Germany); Adams, J.; Bagherpour, H. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Science Faculty CP230, Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Koskinen, D.J.; Larson, M.J.; Medici, M.; Rameez, M. [University of Copenhagen, Niels Bohr Institute, Copenhagen (Denmark); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Al Samarai, I.; Bron, S.; Carver, T.; Christov, A.; Montaruli, T. [Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (Switzerland); Altmann, D.; Anton, G.; Gluesenkamp, T.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K.; Plum, M. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; DeLaunay, J.J.; Dunkman, M.; Eller, P.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Tesic, G.; Turley, C.F.; Weiss, M.J. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Argueelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Brenzke, M.; Glauch, T.; Haack, C.; Kalacynski, P.; Koschinsky, J.P.; Leuermann, M.; Raedel, L.; Reimann, R.; Rongen, M.; Saelzer, T.; Schoenen, S.; Schumacher, L.; Stettner, J.; Vehring, M.; Vogel, E.; Wallraff, M.; Waza, A.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barron, J.P.; Giang, W.; Grant, D.; Kopper, C.; Moore, R.W.; Nowicki, S.C.; Riedel, B.; Sanchez Herrera, S.E.; Sarkar, S.; Wandler, F.D.; Weaver, C.; Wood, T.R.; Woolsey, E.; Yanez, J.P. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Boeser, S.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Krueckl, G.; Momente, G.; Peiffer, P.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Lauber, F.; Naumann, U.; Pollmann, A.O.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S.; Cross, R. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Friedman, E.; Hellauer, R.; Hoffman, K.D.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Klein, S.R.; Miarecki, S.; Palczewski, T.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P. [TU Dortmund University, Department of Physics, Dortmund (Germany); Bose, D.; Dujmovic, H.; In, S.; Jeong, M.; Kang, W.; Kim, J.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Botner, O.; Burgman, A.; Hallgren, A.; Heros, C.P. de los; Unger, E. [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden); Collaboration: IceCube Collaboration; and others

    2017-09-15

    We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the IceCube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles left angle σ{sub A}v right angle. Upper limits are set for dark matter particle candidate masses ranging from 10 GeV up to 1 TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100 GeV, with a limit of 1.18 . 10{sup -23} cm{sup 3}s{sup -1} for 100 GeV dark matter particles self-annihilating via τ{sup +}τ{sup -} to neutrinos (assuming the Navarro-Frenk-White dark matter halo profile). (orig.)

  12. Astrophysical neutrinos flavored with beyond the Standard Model physics

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lechner, Lukas [Vienna Univ. of Technology (Austria). Dept. of Physics; Kowalski, Marek [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2017-07-15

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  13. Astrophysical neutrinos flavored with beyond the Standard Model physics

    International Nuclear Information System (INIS)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter; Lechner, Lukas; Kowalski, Marek; Humboldt-Universitaet, Berlin

    2017-07-01

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  14. Reactor anti-neutrinos: measurement of the θ13 leptonic mixing angle and search for potential sterile neutrinos

    International Nuclear Information System (INIS)

    Collin, A.

    2014-01-01

    The Double Chooz experiment aims to measure the θ 13 mixing angle through the disappearance -induced by the oscillation phenomenon - of anti-neutrinos produced by the Chooz nuclear reactors. In order to reduce systematic uncertainties, the experiment relies on the relative comparison of detected signals in two identical liquid scintillator detectors. The near one, giving the normalization of the emitted flux, is currently being built and will be delivered in spring 2014. The far detector, sensitive to θ 13 , is located at about one kilometer and is taking data since 2011. In this first phase of the experiment, the far detector data are compared to a prediction of the emitted neutrino flux to estimate θ 13 . In this thesis, the Double Chooz experiment and its analysis are presented, especially the background studies and the rejection of parasitic signals due to light emitted by photo-multipliers. Neutron fluxes between the different detector volumes impact the definition of the fiducial volume of neutrino interactions and the efficiency of detection. Detailed studies of these effects are presented. As part of the Double Chooz experiment, studies were performed to improve the prediction of neutrino flux emitted by reactors. This work revealed a deficit of observed neutrino rates in the short baseline experiments of last decades. This deficit could be explained by an oscillation to a sterile state. The Stereo project aims to observe a typical signature of oscillations: the distortion of neutrino spectra both in energy and baseline. This thesis presents the detector concept and simulations as well as sensitivity studies. Background sources and the foreseen shielding are also discussed. (author) [fr

  15. Secluded Dark Matter search in the Sun with the ANTARES neutrino telescope

    CERN Multimedia

    Adrián-Martínez, S

    2014-01-01

    Models where Dark Matter (DM) is secluded from the Standard Model via a mediator have increased their presence during the last decade to explain some experimental observations. This is a special scenario where DM, which would gravitationally accumulate in sources like the Sun, the Earth or the Galactic Centre, is annihilated into a non-standard Model mediator which subsequently decays into Standard Model particles, two co-linear muons for example. As the lifetime of the mediator could be large enough, its decay may occur in the vicinity of the Earth and the resulting SM particles could be detected. In this work we will describe the analysis for secluded dark matter coming from the Sun with ANTARES in three different cases: a) detection of di-muons that result of the mediator decay, or neutrino detection from: b) mediator that decays into di-muon and, in turn, into neutrinos, and c) mediator that directly decays into neutrinos. Sensitivities and results of the analysis for each case will be presented.

  16. Common Origin of Neutrino Mass, Dark Matter, and Baryogenesis

    OpenAIRE

    Ma, Ernest

    2006-01-01

    Combining one established idea with two recent ones, it is pointed out for the first time that three of the outstanding problems of particle physics and cosmology, i.e. neutrino mass, dark matter, and baryogenesis, may have a common solution, arising from the interactions of a single term, with experimentally verifiable consequences.

  17. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057 (Switzerland); McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 (United States); Slosar, Anže, E-mail: afont@lbl.gov, E-mail: PVMcDonald@lbl.gov, E-mail: njmostek@lbl.gov, E-mail: BAReid@lbl.gov, E-mail: hee-jongseo@lbl.gov, E-mail: anze@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States)

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  18. Implications of Neutrino Oscillations on the Dark-Matter World

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W-Y. Pauchy, E-mail: wyhwang@phys.ntu.edu.tw

    2014-01-15

    According to my own belief that “The God wouldn't create a world that is so boring that a particle knows only the very feeble weak interaction.”, maybe we underestimate the roles of neutrinos. We note that right-handed neutrinos play no roles, or don't exist, in the minimal Standard Model. We discuss the language to write down an extended Standard Model - using renormalizable quantum field theory as the language; to start with a certain set of basic units under a certain gauge group; in fact, to use the three right-handed neutrinos to initiate the family gauge group SU{sub f}(3). Specifically we use the left-handed and right-handed spinors to form the basic units together with SU{sub c}(3)×SU{sub L}(2)×U(1)×SU{sub f}(3) as the gauge group. The dark-matter SU{sub f}(3) world couples with the lepton world, but not with the quark world. Amazingly enough, the space of the Standard-Model Higgs Φ(1,2), the family Higgs triplet Φ(3, 1), and the neutral part of the mixed family Higgs Φ{sup 0}(3,2) undergoes the spontaneous symmetry breaking, i.e. the Standard-Model Higgs mechanism and the “project-out” family Higgs mechanism, to give rise to the weak bosons W{sup ±} and Z{sup 0}, one Standard-Model Higgs, the eight massive family gauge bosons, and the remaining four massive neutral family Higgs particles, and nothing more. Thus, the roles of neutrinos in this extended Standard Model are extremely interesting in connection with the dark-matter world.

  19. Indirect detection of dark matter with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Lambard, G.

    2008-01-01

    The ANTANARES telescope is composed of an array of 900 photomultipliers (12 lines) that will be immersed in the Mediterranean sea at a depth of 2500 m. The photomultipliers are sensitive to the Cherenkov light emitted by high energy muons produced in the interactions of neutrinos with matter. My work consisted in the calibration of the detector, in time and charge in order to extract the crucial data for the reconstruction of the particle tracks and the ability of the detector to distinguish the atmospheric neutrinos from astrophysical neutrinos. The first part of this work is dedicated to the today understanding of the universe and of its models and of the importance of the neutrinos as the messengers of what occurs in the remote parts of the universe. The detection of neutrinos through the Cerenkov effect is detailed and the ANTANARES detector is presented. The second part deals with the study of the background radiation due to atmospheric muons and neutrinos. A simulation is the only tool to assess the background radiation level and to be able to extract the signal due to solar neutrinos. The third part shows how the solar neutrino flux might be influenced by the interaction of dark matter with baryonic matter. A Monte-Carlo simulation has allowed us to quantify this interaction and measure its impact on the number of events detected by ANTANARES. (A.C.)

  20. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  1. Magnus approximation in neutrino oscillations

    International Nuclear Information System (INIS)

    Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C

    2011-01-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  2. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  3. Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube.

    Science.gov (United States)

    Murase, Kohta; Laha, Ranjan; Ando, Shin'ichiro; Ahlers, Markus

    2015-08-14

    Late time decay of very heavy dark matter is considered as one of the possible explanations for diffuse PeV neutrinos observed in IceCube. We consider implications of multimessenger constraints, and show that proposed models are marginally consistent with the diffuse γ-ray background data. Critical tests are possible by a detailed analysis and identification of the sub-TeV isotropic diffuse γ-ray data observed by Fermi and future observations of sub-PeV γ rays by observatories like HAWC or Tibet AS+MD. In addition, with several-year observations by next-generation telescopes such as IceCube-Gen2, muon neutrino searches for nearby dark matter halos such as the Virgo cluster should allow us to rule out or support the dark matter models, independently of γ-ray and anisotropy tests.

  4. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    Science.gov (United States)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  5. ICARUS-NESSiE: a sensitive search for sterile neutrinos at CERN SPS

    Science.gov (United States)

    Guglielmi, A.

    2013-10-01

    A new experimental search for sterile neutrinos beyond the Standard Model at a new CERN-SPS neutrino beam aiming at measuring the electron and muon neutrino events with a Near and Far detectors (1600 and 330 m from the proton target) is presented. The project will exploit the ICARUS T600 LAr-TPC moved from LNGS to the CERN Far position and a new additional LAr-TPC detector, 1/4 of the T600, located in the Near position. Two magnetic spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the two locations should be attributed to the possible existence of oscillations, presumably due to additional neutrinos with a mixing angle sin2(2θnew) and a mass squared difference Δm2new larger than the measured for the standard neutrinos. The superior quality of the LAr imaging TPC, in particular its unique electron-π0 discrimination allows for full rejection of backgrounds and offers a lossless νe detection capability. The determination of the muon charge with the spectrometers allows for the full separation of νμ from bar nuμ and therefore controlling systematics from muon mis-identification mainly at high momenta.

  6. Dark matter and exotic neutrino interactions in direct detection searches

    Energy Technology Data Exchange (ETDEWEB)

    Bertuzzo, Enrico [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,R. do Matão 1371, CEP. 05508-090, São Paulo (Brazil); Deppisch, Frank F. [Department of Physics and Astronomy, University College London,London WC1E 6BT (United Kingdom); Kulkarni, Suchita [Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften,Nikolsdorfer Gasse 18, 1050 Wien (Austria); Gonzalez, Yuber F. Perez; Funchal, Renata Zukanovich [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo,R. do Matão 1371, CEP. 05508-090, São Paulo (Brazil)

    2017-04-12

    We investigate the effect of new physics interacting with both Dark Matter (DM) and neutrinos at DM direct detection experiments. Working within a simplified model formalism, we consider vector and scalar mediators to determine the scattering of DM as well as the modified scattering of solar neutrinos off nuclei. Using existing data from LUX as well as the expected sensitivity of LUX-ZEPLIN and DARWIN, we set limits on the couplings of the mediators to quarks, neutrinos and DM. Given the current limits, we also assess the true DM discovery potential of direct detection experiments under the presence of exotic neutrino interactions. In the case of a vector mediator, we show that the DM discovery reach of future experiments is affected for DM masses m{sub χ}≲10 GeV or DM scattering cross sections σ{sub χ}≲10{sup −47} cm{sup 2}. On the other hand, a scalar mediator will not affect the discovery reach appreciably.

  7. Reconstructing Neutrino Mass Spectrum

    OpenAIRE

    Smirnov, A. Yu.

    1999-01-01

    Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. In this connection we consider two central topics: (i) the origin of large lepton mixing, (ii) possible existence of new (sterile) neutrino states. We discuss also possible relation between large mixing and existence of sterile neutrinos.

  8. Neutrino helicity reversal and fundamental symmetries

    International Nuclear Information System (INIS)

    Jentschura, U D; Wundt, B J

    2014-01-01

    A rather elusive helicity reversal occurs in a gedanken experiment in which a massive left-handed Dirac neutrino, traveling at a velocity u < c, is overtaken on a highway by a speeding vehicle (traveling at velocity v with u < v < c). Namely, after passing the neutrino, looking back, one would see a right-handed neutrino (which has never been observed in nature). The Lorentz-invariant mass of the right-handed neutrino is still the same as before the passing. The gedanken experiment thus implies the existence of right-handed, light neutrinos, which are not completely sterile. Furthermore, overtaking a bunch of massive right-handed Dirac neutrinos leads to gradual de-sterilization. We discuss the helicity reversal and the concomitant sterilization and de-sterilization mechanisms by way of an illustrative example calculation, with a special emphasis on massive Dirac and Majorana neutrinos. We contrast the formalism with a modified Dirac neutrino described by a Dirac equation with a pseudoscalar mass term proportional to the fifth current. (paper)

  9. Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos

    Science.gov (United States)

    Ghosh, Purusottam; Saha, Abhijit Kumar; Sil, Arunansu

    2018-04-01

    We investigate the electroweak vacuum stability in an extended version of the Standard Model that incorporates two additional singlet scalar fields and three right-handed neutrinos. One of these extra scalars plays the role of dark matter, while the other scalar not only helps make the electroweak vacuum stable but also opens up the low-mass window of the scalar singlet dark matter (<500 GeV ). We consider the effect of large neutrino Yukawa coupling on the running of Higgs quartic coupling. We have analyzed the constraints on the model and identified the range of parameter space that is consistent with the neutrino mass, appropriate relic density, and direct search limits from the latest XENON 1T preliminary result as well as realized the stability of the electroweak vacuum up to the Planck scale.

  10. Apparent CPT violation in neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Nelson, Ann E.; Walsh, Jonathan R.

    2010-01-01

    We consider searching for light sterile fermions and new forces by using long baseline oscillations of neutrinos and antineutrinos. A new light sterile state and/or a new force can lead to apparent CPT violation in muon neutrino and antineutrino oscillations. As an example, we present an economical model of neutrino masses containing a sterile neutrino. The potential from the standard model weak neutral current gives rise to a difference between the disappearance probabilities of neutrinos and antineutrinos, when mixing with a light sterile neutrino is considered. The addition of a B-L interaction adds coherently to the neutrino current potential and increases the difference between neutrino and antineutrino disappearance. We find that this model can improve the fit to the results of MINOS for both neutrinos and antineutrinos, without any CPT violation, and that the regions of parameter space which improve the fit are within experimental constraints.

  11. Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: the nonresonant case

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    1998-05-01

    We study the nonresonant oscillations between left-handed electron neutrinos ν s and nonthermalized sterile neutrinos ν s in the early Universe plasma. The case when ν s do not thermalize till 2 MeV and the oscillations become effective after ν e decoupling is discussed. As far as for this model the rates of expansion of the Universe, neutrino oscillations and neutrino interactions with the medium may be comparable, we have analyzed the kinetic equations for neutrino density matrix, accounting simultaneously for these processes. The evolution of neutrino ensembles was described numerically by integrating the kinetic equations for the neutrino density matrix in momentum space for small mass differences δm 2 ≤10 -7 eV 2 . This approach allowed us to study precisely the evolution of the neutrino number densities, energy spectrum distortion and the asymmetry between neutrinos and antineutrinos due to oscillations for each momentum mode. We have performed a complete numerical analysis for the full range of the oscillations parameters of the model of the influence of the nonequilibrium ν e ↔ν s oscillations on the primordial production of 4 He. The exact kinetic approach enabled us to calculate the effects of neutrino population depletion, the distortion of the neutrino spectrum and the generation of neutrino-antineutrino asymmetry on the kinetics of neutron-to-proton transitions during the primordial nucleosynthesis epoch and correspondingly on the cosmological 4 He production. It was shown that the neutrino population depletion and spectrum distortion play an important role. The asymmetry effect, in case the lepton asymmetry is accepted initially equal to the baryon one, is proved to be negligible for the discussed range of δm 2 . Constant helium contours in δm 2 -θ plane were calculated. Thanks to the exact kinetic approach more precise cosmological constraints on the mixing parameters were obtained. (author)

  12. 10th Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe

    CERN Document Server

    UCLA Dark Matter 2012

    2012-01-01

    These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field.  Topics covered at the symposium:  •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search  

  13. Neutrino scattering and the reactor antineutrino anomaly

    Science.gov (United States)

    Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander

    2017-12-01

    Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.

  14. R-parity violating right-handed neutrino in gravitino dark matter scenario

    International Nuclear Information System (INIS)

    Endo, Motoi

    2009-06-01

    A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)

  15. R-parity violating right-handed neutrino in gravitino dark matter scenario

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Motoi [CERN, Geneva (Switzerland). Theory Div., PH Dept.; Shindou, Tetsuo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-06-15

    A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)

  16. Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yi-Lei [Center for High Energy Physics, Peking University,Beijing 100871 (China); Zhu, Shou-hua [Center for High Energy Physics, Peking University,Beijing 100871 (China); Institute of Theoretical Physics State Key Laboratory of Nuclear Physics and Technology,Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing 100871 (China)

    2016-03-08

    In this paper, we will discuss a specific case that the dark matter particles annihilate into right-handed neutrinos. We calculate the predicted gamma-ray excess from the galactic center and compare our results with the data from the Fermi-LAT. An approximately 10–60 GeV right-handed neutrino with heavier dark matter particle can perfectly explain the observed spectrum. The annihilation cross section 〈σv〉 falls within the range 0.5–4×10{sup −26} cm{sup 3}/s, which is roughly compatible with the WIMP annihilation cross section.

  17. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... the recent results on spin-independent couplings of light WIMPs from the ... the studies of low-energy neutrino and dark matter physics. .... vs. SAT. 12 (shaping time is 12 μs with partial integration) signals, for both calibration.

  18. Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Pasquale Di; Ludl, Patrick Otto [Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2016-11-21

    We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N{sub DM} with mass M{sub DM}, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, N{sub S} with mass M{sub S}, induced by Higgs portal interactions. The same interactions are also responsible for N{sub DM} decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M{sub DM}≫M{sub S}, there is an allowed window on M{sub DM} values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV ≲M{sub S}neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.

  19. Sterile neutrino in a minimal three-generation see-saw model

    Indian Academy of Sciences (India)

    Sterile neutrino in a minimal three-generation see-saw model. Table 1. Relevant right-handed fermion and scalar fields and their transformation properties. Here we have defined Y. I3R· (B–L)/2. SU´2µL ¢U´1µI3R ¢U´1µB L. SU´2µL ¢UY ´1µ. Le ·Lµ Lτ. Seµ. 2R ν R. (1,1/2, 1). (1,0). 1. 1 ν·R. (1,1/2, 1). (1,0). 1. 1. ντR. (1, 1/2, 1).

  20. Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    Science.gov (United States)

    Adamson, P.; Aliaga, L.; Ambrose, D.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Augsten, K.; Aurisano, A.; Backhouse, C.; Baird, M.; Bambah, B. A.; Bays, K.; Behera, B.; Bending, S.; Bernstein, R.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Blackburn, T.; Bolshakova, A.; Bromberg, C.; Brown, J.; Brunetti, G.; Buchanan, N.; Butkevich, A.; Bychkov, V.; Campbell, M.; Catano-Mur, E.; Childress, S.; Choudhary, B. C.; Chowdhury, B.; Coan, T. E.; Coelho, J. A. B.; Colo, M.; Cooper, J.; Corwin, L.; Cremonesi, L.; Cronin-Hennessy, D.; Davies, G. S.; Davies, J. P.; Derwent, P. F.; Dharmapalan, R.; Ding, P.; Djurcic, Z.; Dukes, E. C.; Duyang, H.; Edayath, S.; Ehrlich, R.; Feldman, G. J.; Frank, M. J.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Ghosh, T.; Giri, A.; Gomes, R. A.; Goodman, M. C.; Grichine, V.; Groh, M.; Group, R.; Grover, D.; Guo, B.; Habig, A.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Himmel, A.; Holin, A.; Howard, B.; Hylen, J.; Jediny, F.; Judah, M.; Kafka, G. K.; Kalra, D.; Kasahara, S. M. S.; Kasetti, S.; Keloth, R.; Kolupaeva, L.; Kotelnikov, S.; Kourbanis, I.; Kreymer, A.; Kumar, A.; Kurbanov, S.; Lackey, T.; Lang, K.; Lee, W. M.; Lin, S.; Lokajicek, M.; Lozier, J.; Luchuk, S.; Maan, K.; Magill, S.; Mann, W. A.; Marshak, M. L.; Matera, K.; Matveev, V.; Méndez, D. P.; Messier, M. D.; Meyer, H.; Miao, T.; Miller, W. H.; Mishra, S. R.; Mohanta, R.; Moren, A.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, R.; Musser, J.; Nelson, J. K.; Nichol, R.; Niner, E.; Norman, A.; Nosek, T.; Oksuzian, Y.; Olshevskiy, A.; Olson, T.; Paley, J.; Patterson, R. B.; Pawloski, G.; Pershey, D.; Petrova, O.; Petti, R.; Phan-Budd, S.; Plunkett, R. K.; Poling, R.; Potukuchi, B.; Principato, C.; Psihas, F.; Radovic, A.; Rameika, R. A.; Rebel, B.; Reed, B.; Rocco, D.; Rojas, P.; Ryabov, V.; Sachdev, K.; Sail, P.; Samoylov, O.; Sanchez, M. C.; Schroeter, R.; Sepulveda-Quiroz, J.; Shanahan, P.; Sheshukov, A.; Singh, J.; Singh, J.; Singh, P.; Singh, V.; Smolik, J.; Solomey, N.; Song, E.; Sousa, A.; Soustruznik, K.; Strait, M.; Suter, L.; Talaga, R. L.; Tas, P.; Thayyullathil, R. B.; Thomas, J.; Tian, X.; Tognini, S. C.; Tripathi, J.; Tsaris, A.; Urheim, J.; Vahle, P.; Vasel, J.; Vinton, L.; Vold, A.; Vrba, T.; Wang, B.; Wetstein, M.; Whittington, D.; Wojcicki, S. G.; Wolcott, J.; Yadav, N.; Yang, S.; Zalesak, J.; Zamorano, B.; Zwaska, R.; NOvA Collaboration

    2017-10-01

    We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 ×1020 protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ±9.7 (stat ) ±9.4 (syst ) events predicted assuming mixing only occurs between active neutrino species. No evidence for νμ→νs transitions is found. Interpreting these results within a 3 +1 model, we place constraints on the mixing angles θ24<20.8 ° and θ34<31.2 ° at the 90% C.L. for 0.05 eV2≤Δ m412≤0.5 eV2 , the range of mass splittings that produce no significant oscillations over the Near Detector baseline.

  1. Circular polarisation: a new probe of dark matter and neutrinos in the sky

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Céline [Institute for Particle Physics Phenomenology, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Degrande, Céline [CERN, Theory Division, Geneva 23 CH-1211 (Switzerland); Mattelaer, Olivier [Center for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, Chemin du cyclotron, 2 1348 Louvain-La-Neuve Belgium (Belgium); Vincent, Aaron C., E-mail: c.m.boehm@durham.ac.uk, E-mail: celine.degrande@cern.ch, E-mail: olivier.mattelaer@uclouvain.be, E-mail: aaron.vincent@imperial.ac.uk [Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2017-05-01

    The study of anomalous electromagnetic emission in the sky is the basis of indirect searches for dark matter. It is also a powerful tool to constrain the radiative decay of active neutrinos. Until now, quantitative analyses have focused on the flux and energy spectrum of such an emission; polarisation has never been considered. Here we show that we could be missing out on an essential piece of information. The radiative decay of neutrinos, as well as the interactions of dark matter and neutrinos with Standard Model particles can generate a circular polarisation signal in X-rays or γ-rays. If observed, this could reveal important information about their spatial distribution and particle-antiparticle ratio, and could even reveal the nature of the high-energy particle physics processes taking place in astrophysical sites. The question of the observability of these polarised signatures and their separation from background astrophysical sources is left for future work.

  2. Neutrino 2012: Outlook – theory

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.Yu. [International Center for Theoretical Physics, Trieste (Italy)

    2013-02-15

    Ongoing developments in theory and phenomenology are related to the measured large value of 1–3 mixing and indications of significant deviation of the 2–3 mixing from maximal one. “Race” for the mass hierarchy has started and there is good chance that multi-megaton scale atmospheric neutrino detectors with low threshold (e.g. PINGU) will establish the type of hierarchy. Two IceCube candidates of the PeV cosmic neutrinos if confirmed, is the beginning of new era of high energy neutrino astronomy. Accumulation of data on solar neutrinos (energy spectrum, D-N asymmetry, value of Δm{sub 21}{sup 2}) may uncover some new physics. The Tri-bimaximal mixing is disfavored and the existing discrete symmetry paradigm may change. The confirmed QLC prediction, θ{sub 13}≈θ{sub C}/√(2), testifies for GUT, seesaw and some symmetry at very high scales. However, the same value of 1–3 mixing can be obtained in various ways which have different implications. The situation in lepton sector changes from special (with specific neutrino symmetries, etc.) to normal, closer to that in the quark sector. Sterile neutrinos are challenge for neutrino physics but also opportunity with many interesting phenomenological consequences. Further studies of possible connections between neutrinos and the dark sector of the Universe may lead to breakthrough both in particle physics and cosmology.

  3. Highlights on gamma rays, neutrinos and antiprotons from TeV Dark Matter

    Directory of Open Access Journals (Sweden)

    Gammaldi Viviana

    2016-01-01

    Full Text Available It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple power law background. The neutrino flux expected from such Dark Matter source has been also analyzed. The main results of such analyses for 50 TeV Dark Matter annihilating into W+W− gauge boson and preliminary results for antiprotons are presented.

  4. Sensitivity to electronvolt-scale sterile neutrinos at a 3.8-GeV/c muon decay ring

    Energy Technology Data Exchange (ETDEWEB)

    Tunnell, Christopher D. [Univ. of Oxford (United Kingdom)

    2013-03-01

    The liquid-scintillator neutrino-detector (LSND) and mini booster neutrino experiment (MiniBooNE) experiments claim to observe the oscillation $\\bar{v}$μ → $\\bar{v}$e, which can only be explained by additional neutrinos and is a claim that must be further tested. This thesis proposes a new accelerator and experiment called neutrinos from stored muons ( STORM) to refute or confirm the oscillation these claims by studying the CPT-equivalent channel ve → vμ . A 3.8-GeV/c muon decay ring is proposed with neutrino detectors placed 20 m and 2000 m from the decay ring. The detector technology would be a magnetized iron sampling calorimeter, where the magnetic field is induced by a superconducting transmission line. In a frequentist study, the sensitivity of this experiment after 5 years would be >10σ . The range of the thesis discussion starts with the proton front-end design and ends with neutrino parameter estimation. After describing the phenomenology of sterile neutrinos, the facility and detector performance work is presented. Finally, the systematics are explained before the sensitivity and parameter-estimation works are explained

  5. Right-handed neutrino dark matter in a U(1) extension of the Standard Model

    Science.gov (United States)

    Cox, Peter; Han, Chengcheng; Yanagida, Tsutomu T.

    2018-01-01

    We consider minimal U(1) extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a U(1)(B‑L)3 flavoured B‑L symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of mχlesssim2 TeV, significantly stronger than that obtained in simplified models. Furthermore, if the U(1)(B‑L)3 breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC Z' searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of U(1) symmetries.

  6. Low-energy neutrino and dark matter physics with sub-keV

    Indian Academy of Sciences (India)

    The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino–China dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the ...

  7. Indirect search for neutralino dark matter with high energy neutrinos

    International Nuclear Information System (INIS)

    Barger, V.; Halzen, Francis; Hooper, Dan; Kao, Chung

    2002-01-01

    We investigate the prospects of indirect searches for supersymmetric neutralino dark matter. Relic neutralinos gravitationally accumulate in the Sun and their annihilations produce high energy neutrinos. Muon neutrinos of this origin can be seen in large detectors such as AMANDA, IceCube, and ANTARES. We evaluate the relic density and the detection rate in several models--the minimal supersymmetric model, minimal supergravity, and supergravity with nonuniversal Higgs boson masses at the grand unification scale. We make realistic estimates for the indirect detection rates including effects of the muon detection threshold, quark hadronization, and solar absorption. We find good prospects for detection of neutralinos with mass above 200 GeV

  8. Solar-stellar astrophysics and dark matter

    International Nuclear Information System (INIS)

    Turck-Chièze, Sylvaine; Lopes, Ilídio

    2012-01-01

    In this review, we recall how stars contribute to the search for dark matter and the specific role of the Sun. We describe a more complete picture of the solar interior that emerges from neutrino detections, gravity and acoustic mode measurements of the Solar and Heliospheric Observatory (SOHO) satellite, becoming a reference for the most common stars in the Universe. The Sun is a unique star in that we can observe directly the effect of dark matter. The absence of a signature related to Weakly Interacting Massive Particles (WIMPs) in its core disfavors a WIMP mass range below 12GeV. We give arguments to continue this search on the Sun and other promising cases. We also examine another dark matter candidate, the sterile neutrino, and infer the limitations of the classical structural equations. Open questions on the young Sun, when planets formed, and on its present internal dynamics are finally discussed. Future directions are proposed for the next decade: a better description of the solar core, a generalization to stars coming from seismic missions and a better understanding of the dynamics of our galaxy which are all crucial keys for understanding dark matter.

  9. Chaotic amplification of neutrino chemical potentials by neutrino oscillations in big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Shi, X.

    1996-01-01

    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a ∼1 eV ν e , the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. copyright 1996 The American Physical Society

  10. Chaotic amplification of neutrino chemical potentials by neutrino oscillations in big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. [Department of Physics, Queen`s University, Kingston, Ontario, K7L 3N6 (CANADA)

    1996-08-01

    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a {approximately}1 eV {nu}{sub {ital e}}, the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. {copyright} {ital 1996 The American Physical Society.}

  11. Closing in on minimal dark matter and radiative neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal [IFPA, Dép. AGO, Université de Liège, Bât B5, Sart Tilman B-4000 Liège 1 (Belgium); Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Avda. España 1680, Valparaiso (Chile); Simoes, C.; Wegman, D. [IFPA, Dép. AGO, Université de Liège, Bât B5, Sart Tilman B-4000 Liège 1 (Belgium)

    2016-06-20

    We study one-loop radiative neutrino mass models in which one of the beyond-the-standard model fields is either a hypercharge-zero fermion quintet (minimal dark matter) or a hypercharge-zero scalar septet. By systematically classifying all possible one-loop such models we identify various processes that render the neutral component of these representations (dark matter) cosmologically unstable. Thus, our findings show that these scenarios are in general not reconcilable with dark matter stability unless tiny couplings or additional ad hoc symmetries are assumed, in contrast to minimal dark matter models where stability is entirely due to the standard model gauge symmetry. For some variants based on higher-order loops we find that α{sub 2} reaches a Landau pole at rather low scales, a couple orders of magnitude from the characteristic scale of the model itself. Thus, we argue that some of these variations although consistent with dark matter stability and phenomenological constraints are hard to reconcile with perturbativity criteria.

  12. A lower bound on the mass of dark matter particles

    International Nuclear Information System (INIS)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Iakubovskyi, Dmytro

    2009-01-01

    We discuss the bounds on the mass of Dark Matter (DM) particles, coming from the analysis of DM phase-space distribution in dwarf spheroidal galaxies (dSphs). After reviewing the existing approaches, we choose two methods to derive such a bound. The first one depends on the information about the current phase space distribution of DM particles only, while the second one uses both the initial and final distributions. We discuss the recent data on dSphs as well as astronomical uncertainties in relevant parameters. As an application, we present lower bounds on the mass of DM particles, coming from various dSphs, using both methods. The model-independent bound holds for any type of fermionic DM. Stronger, model-dependent bounds are quoted for several DM models (thermal relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The latter bounds rely on the assumption that baryonic feedback cannot significantly increase the maximum of a distribution function of DM particles. For the scenario in which all the DM is made of sterile neutrinos produced via non-resonant mixing with the active neutrinos (NRP) this gives m NRP > 1.7 keV. Combining these results in their most conservative form with the X-ray bounds of DM decay lines, we conclude that the NRP scenario remains allowed in a very narrow parameter window only. This conclusion is independent of the results of the Lyman-α analysis. The DM model in which sterile neutrinos are resonantly produced in the presence of lepton asymmetry remains viable. Within the minimal neutrino extension of the Standard Model (the νMSM), both mass and the mixing angle of the DM sterile neutrino are bounded from above and below, which suggests the possibility for its experimental search

  13. Fast cryogenic detectors for neutrinos and dark matter

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.

    1990-01-01

    We briefly review some recent developments on cryogenic detectors whose response is not entirely limited in speed by heat or phonon propagation through a macroscopic medium. Two subjects are dealt with: a) the use of superheated superconducting granules (SSG) for nucleus recoil detection (dedicated to low energy neutrinos and WIMP dark matter); b) a possible new generation of devices eventually able to perform particle identification (therefore improving background rejection), through simultaneous measurement of ionization and heat: luminescent bolometer, calorimetric ionization detector

  14. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    Science.gov (United States)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  15. Fireworks in a dark universe

    CERN Document Server

    Levinson, Amir

    2018-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  16. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Daijiro [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2018-01-15

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z{sub 2} symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem. (orig.)

  17. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    Science.gov (United States)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  18. A search for neutrino–antineutrino mass inequality by means of sterile neutrino oscillometry

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M.V., E-mail: gear8mike@gmail.com [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland); St. Petersburg State University, 198504 Peterhof, St. Petersburg (Russian Federation); Loo, K.K. [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland); Novikov, Yu.N. [St. Petersburg State University, 198504 Peterhof, St. Petersburg (Russian Federation); Petersburg Nuclear Physics Institute, 188300 Gatchina, St. Petersburg (Russian Federation); Trzaska, W.H. [Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland); Wurm, M. [Johannes Gutenberg University Mainz, 55099 Mainz (Germany)

    2015-11-15

    The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino–antineutrino mass inequality. We propose to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5σ confidence level and assuming the values of the oscillation parameters indicated by the current global fit, we would be able to detect neutrino–antineutrino mass inequality of the order of 0.5% or larger, which would imply a signal of CPT anomalies.

  19. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    . Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ˜400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the {θ }23 mixing angle. Detection of the 7Be and 8B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with {10}-5 {{{eV}}}2\\lt {{Δ }}{m}412\\lt {10}-2 {{{eV}}}2 and a sufficiently large mixing angle {θ }14 could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the p\\to {K}++\\bar{ν } decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one

  20. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  1. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  2. NEUTRINO mass textures and the nature of new physics implied by present neutrino data

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1997-01-01

    If all the indications for neutrino oscillations observed in the solar, atmospheric neutrino data as well as in the LSND experiment are borned out by the ongoing and future experiments, then they severely constrain the neutrino mass texture. In particular, the need for an extra ultra-light sterile neutrino species is hard to avoid. Such an extra neutrino has profound implication not only for physics beyond the standard model but even perhaps for physics beyond conventional grand unification. A scenario involving a parallel (or shadow) universe that interacts with the familiar universe only via the gravitational interactions where the ultra-lightness of the sterile neutrino follows from the same physics that explains the near masslessness of the familiar neutrinos is discussed in the presentation

  3. Dark energy and neutrino constraints from a future EUCLID-like survey

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hamann, Jan

    2013-01-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes...... vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (sigma(w_0) sigma(w_a))^-1, we find a value of 454 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background (CMB) anisotropies...... alone. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w_0 deviates by as much as is currently observationally allowed...

  4. Neutrino oscillation provides clues to dark matter and signals from the chilled universe

    CERN Multimedia

    2006-01-01

    The new verification that oscillations exists and neutrinos have mass though not detectible easy provides the first clue to extra dimensions, dark matter, hyperspace and chilled universe acting as a platform below it. (1/2 page)

  5. Neutrino masses and superheavy dark matter in the 3-3-1-1 model

    Energy Technology Data Exchange (ETDEWEB)

    Huong, D.T.; Dong, P.V. [Vietnam Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)

    2017-04-15

    In this work, we interpret the 3-3-1-1 model when the B - L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B - L number in comparison to those of the standard model particles may be superheavy dark matter as it is stabilized by W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to gravitational effects on the vacuum or thermal production after cosmic inflation. (orig.)

  6. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aeikens, Elke; Päs, Heinrich [Fakultät für Physik, Technische Universität Dortmund,44221 Dortmund (Germany); Pakvasa, Sandip [Department of Physics & Astronomy, University of Hawaii,Honolulu, HI 96822 (United States); Sicking, Philipp [Fakultät für Physik, Technische Universität Dortmund,44221 Dortmund (Germany)

    2015-10-02

    The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

  7. Flavor ratios of extragalactic neutrinos and neutrino shortcuts in extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aeikens, Elke; Päs, Heinrich; Sicking, Philipp [Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Pakvasa, Sandip, E-mail: elke.aeikens@tu-dortmund.de, E-mail: heinrich.paes@tu-dortmund.de, E-mail: pakvasa@phys.hawaii.edu, E-mail: philipp.sicking@tu-dortmund.de [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-10-01

    The recent measurement of high energy extragalactic neutrinos by the IceCube Collaboration has opened a new window to probe non-standard neutrino properties. Among other effects, sterile neutrino altered dispersion relations (ADRs) due to shortcuts in an extra dimension can significantly affect astrophysical flavor ratios. We discuss two limiting cases of this effect, first active-sterile neutrino oscillations with a constant ADR potential and second an MSW-like resonant conversion arising from geodesics oscillating around the brane in an asymmetrically warped extra dimension. We demonstrate that the second case has the potential to suppress significantly the flux of specific flavors such as ν{sub μ} or ν{sub τ} at high energies.

  8. Calculation of the local density of relic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    De Salas, P.F.; Gariazzo, S.; Pastor, S. [Instituto de Física Corpuscular (CSIC-Universitat de València), Parc Científic UV, C/ Catedrático José Beltrán, 2, E-46980 Paterna (Valencia) (Spain); Lesgourgues, J., E-mail: pabferde@ific.uv.es, E-mail: gariazzo@ific.uv.es, E-mail: Julien.Lesgourgues@physik.rwth-aachen.de, E-mail: pastor@ific.uv.es [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-09-01

    Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV . We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N -one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.

  9. Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure

    International Nuclear Information System (INIS)

    Zhang, Jing-Fei; Zhao, Ming-Ming; Li, Yun-He; Zhang, Xin

    2015-01-01

    The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter w evolving across the phantom divide w=−1 in the HDE model with c<1. We thus derive the evolutions of density perturbations of various components and metric fluctuations in the HDE model. The impacts of massive neutrino and dark radiation on the CMB anisotropy power spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear data of weak lensing, the Planck CMB lensing data, and the redshift space distortions data. We find that ∑ m ν <0.186 eV (95% CL) and N eff =3.75 +0.28 −0.32 in the HDE model from the constraints of these data

  10. Neutral current induced neutrino oscillations in a supernova

    CERN Document Server

    Kusenko, A; Kusenko, Alexander; Segre, Gino

    1997-01-01

    Neutral currents induced matter oscillations of electroweak-active (anti-)neutrinos to sterile neutrinos can explain the observed motion of pulsars. In contrast to a recently proposed explanation of the pulsar birth velocities based on the electron to tau (muon) neutrino oscillations [hep-ph/9606428], the heaviest neutrino (either active or sterile) would have to have mass of order several keV.

  11. Is a massive tau neutrino just what cold dark matter needs?

    Science.gov (United States)

    Dodelson, Scott; Gyuk, Geza; Turner, Michael S.

    1994-01-01

    The cold dark matter (CDM) scenario for structure formation in the Universe is very attractive and has many successes; however, when its spectrum of density perturbations is normalized to the COBE anisotropy measurement the level of inhomogeneity predicted on small scales is too large. This can be remedied by a tau neutrino of mass 1 MeV - 10MeV and lifetime 0.1 sec - 100 sec whose decay products include electron neutrinos because it allows the total energy density in relativistic particles to be doubled without interfering with nucleosynthesis. The anisotropies predicted on the degree scale for 'tau CDM' are larger than standard CDM. Experiments at e(sup +/-) collides may be able to probe such a mass range.

  12. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  13. Progress in cryogenic detectors for neutrinos, dark matter and rare processes

    International Nuclear Information System (INIS)

    Moessbauer, R.L.

    1993-01-01

    The paper describes the development status of low temperature calorimetric detectors and of detectors based on superconducting tunnel junctions. Such cryogenic detectors, which operate in the millidegree range of temperatures, are under study in efforts to the search for dark matter candidates and rare events and might ultimately also be used to elucidate the evasive nature of the neutrinos. (orig.)

  14. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  15. Dark energy and neutrino constraints from a future EUCLID-like survey

    CERN Document Server

    Basse, Tobias; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y.Y.

    2014-01-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (sigma(w_0) sigma(w_a))^-1, we find a value of 454 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background (CMB) anisotropies in a fiducial LambdaCDM cosmology, a number that is quite conservative compared with existing estimates because of our choice of model parameter space and analysis method, but still represents a factor of 3 to 8 improvement over using either CMB+galaxy clustering+cosmic shear data, or CMB+cluster mass function alone. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark ene...

  16. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  17. Cosmic constraint on massive neutrinos in viable f(R) gravity with producing ΛCDM background expansion

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Wu, Yabo; Wang, Yan; Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Liu, Molin [Xinyang Normal University, Department of Physics, Xinyang (China)

    2016-12-15

    Tensions between several cosmic observations were found recently, such as the inconsistent values of H{sub 0} (or σ{sub 8}) were indicated by the different cosmic observations. Introducing the massive neutrinos in ΛCDM could potentially solve the tensions. Viable f(R) gravity producing ΛCDM background expansion with massive neutrinos is investigated in this paper. We fit the current observational data: Planck-2015 CMB, RSD, BAO, and SNIa to constrain the mass of neutrinos in viable f(R) theory. The constraint results at 95% confidence level are: Σm{sub ν} < 0.202 eV for the active-neutrino case, m{sub ν,sterile}{sup eff} < 0.757 eV with N{sub eff} < 3.22 for the sterile neutrino case. For the effects due to the mass of the neutrinos, the constraint results on model parameter at 95% confidence level become f{sub R0} x 10{sup -6} > -1.89 and f{sub R0} x 10{sup -6} > -2.02 for two cases, respectively. It is also shown that the fitting values of several parameters much depend on the neutrino properties, such as the cold dark matter density, the cosmological quantities at matter-radiation equality, the neutrino density and the fraction of baryonic mass in helium. Finally, the constraint result shows that the tension between direct and CMB measurements of H{sub 0} gets slightly weaker in the viable f(R) model than that in the base ΛCDM model. (orig.)

  18. Prospects for discovering a neutrino line induced by dark matter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Aisati, Chaimae El; Garcia-Cely, Camilo; Hambye, Thomas; Vanderheyden, Laurent, E-mail: Chaimae.El.Aisati@ulb.ac.be, E-mail: Camilo.Alfredo.Garcia.Cely@ulb.ac.be, E-mail: thambye@ulb.ac.be, E-mail: laurent.vanderheyden@ulb.ac.be [Service de Physique Théorique—Université Libre de Bruxelles, Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)

    2017-10-01

    In the near future, neutrino telescopes are expected to improve their sensitivity to the flux of monochromatic neutrinos produced by dark matter (DM) in our galaxy. This is illustrated by a new limit on the corresponding cross section that we derive from public IceCube data. In this context, we study which DM models could produce an observable flux of monochromatic neutrinos from DM annihilations. To this end, we proceed in two steps. First, within a set of simple and minimal assumptions concerning the properties of the DM particle, we determine the models that could give rise to a significant annihilation into monochromatic neutrinos at the freeze-out epoch. The list of models turns out to be very limited as a result of various constraints, in particular direct detection and neutrino masses at loop level. Given the fact that, even if largely improved, the sensitivities will be far from reaching the thermal annihilation cross section soon, a signal could only be observed if the annihilation into neutrinos today is boosted with respect to the freeze-out epoch. This is why, in a second step, we analyze the possibility of having such a large enhancement from the Sommerfeld effect. For each scenario, we also compute the cross sections into other annihilation products and confront our results with experimental constraints. We find that, within our simple and minimal assumptions, the expectation to observe monochromatic neutrinos is only possible in very specific scenarios. Some will be confirmed or excluded in the near future because they predict signals slightly below the current experimental sensitivities. We also discuss how these prospects change by relaxing our assumptions as well as by considering other types of sharp spectral features. For the latter, we consider boxed-shaped and bremsstrahlung spectra and provide the corresponding limits from IceCube data.

  19. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  20. Dark matter and the solar neutrino problem: Can particle physics provide a single solution

    International Nuclear Information System (INIS)

    West, G.B.

    1989-01-01

    We show how a relatively simple extension of the standard model can give a ''natural'' explanation for both the solar neutrino and dark matter problems. What is required is a new stable neutral lepton with a mass in the 4--8 GeV range. One possibility is a fourth generation neutrino interacting with matter either electromagnetically or via higgs-exchange (in addition, of course, to Z degree-exchange). In the former case, a new charged lepton with mass ∼10GeV would be required in order to generate a sufficiently large magnetic moment. The present experimental situation makes this possibility rather doubtful. In the latter case, a light higgs with mass ∼1GeV is required; this is still not ruled out experimentally. In any case, direct (or indirect) detection of dark matter will, during the next year, seal the fate of this model. 29 refs

  1. Neutrino clouds and dark matter

    International Nuclear Information System (INIS)

    Goldman, T.; McKellar, B.H.J.; Stephenson, G.J. Jr.

    1996-01-01

    We have examined the consequences of assuming the existence of a light scalar boson, weakly coupled to neutrinos, and not coupled to any other light fermions. For a range of parameters, we find that this hypothesis leads to the development of neutrino clusters which form in the early Universe and which provide gravitational fluctuations on scales small compared to a parsec (i.e., the scale of solar systems). Under some conditions, this can produce anomalous gravitational acceleration within solar systems and lead to a vanishing of neutrino mass-squared differences, giving rise to strong neutrino oscillation effects

  2. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjö, Joakim; Ohlsson, Tommy

    2011-01-01

    The prospects to detect neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes.

  3. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjoe, Joakim; Ohlsson, Tommy

    2006-01-01

    The prospects for detecting neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes

  4. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  5. Solar neutrino flux at keV energies

    Science.gov (United States)

    Vitagliano, Edoardo; Redondo, Javier; Raffelt, Georg

    2017-12-01

    We calculate the solar neutrino and antineutrino flux in the keV energy range. The dominant thermal source processes are photo production (γ e→ e νbar nu), bremsstrahlung (e+Ze→ Ze+e+νbar nu), plasmon decay (γ→νbar nu), and νbar nu emission in free-bound and bound-bound transitions of partially ionized elements heavier than hydrogen and helium. These latter processes dominate in the energy range of a few keV and thus carry information about the solar metallicity. To calculate their rate we use libraries of monochromatic photon radiative opacities in analogy to a previous calculation of solar axion emission. Our overall flux spectrum and many details differ significantly from previous works. While this low-energy flux is not measurable with present-day technology, it could become a significant background for future direct searches for keV-mass sterile neutrino dark matter.

  6. Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova

    NARCIS (Netherlands)

    Pllumbi, E.; Tamborra, I.; Wanajo, S.; Janka, H.-T.; Hüdepohl, L.

    2015-01-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of

  7. The dark-matter world: Are there dark-matter galaxies?

    OpenAIRE

    Hwang, W-Y. Pauchy

    2011-01-01

    We attempt to answer whether neutrinos and antineutrinos, such as those in the cosmic neutrino background, would clusterize among themselves or even with other dark-matter particles, under certain time span, say 1 Gyr. With neutrino masses in place, the similarity with the ordinary matter increases and so is our confidence for neutrino clustering if time is long enough. In particular, the clusterings could happen with some seeds (cf. see the text for definition), the chance in the dark-matter...

  8. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  9. The NESSiE Concept for Sterile Neutrinos

    CERN Document Server

    Stanco, L; Bagulya, A; Benettoni, M; Bernardini, P; Bertolin, A; Brugnera, R; Calabrese, M; Cecchetti, A; Cecchini, S; Chernyavskiy, M; Collazuol, G; Creti, P; Corso, F Dal; Dalkarov, O; Del Prete, A; De Mitri, I; De Robertis, G; De Serio, M; Esposti, L Degli; Di Ferdinando, D; Dore, U; Dusini, S; Dzhatdoev, T; Fanin, C; Fini, R A; Fiore, G; Galati, G; Garfagnini, A; Giacomelli, G; Giacomelli, R; Golovanov, S; Guandalin, C; Guerzoni, M; Klicek, B; Kose, U; Jakovcic, K; Laurenti, G; Laveder, M; Lippi, I; Loddo, F; Longhin, A; Loverre, P; Malenica, M; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mezzetto, M; Michinelli, R; Mingazheva, R; Morgunova, O; Muciaccia, M T; Orecchini, D; Paoloni, A; Papadia, G; Paparella, L; Pastore, A; Patrizii, L; Polukhina, N; Pozzato, M; Roda, M; Roganova, T; Rosa, G; Sahnoun, Z; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Spurio, M; Starkov, N; Stipcevic, M; Surdo, A; Tenti, M; Togo, V; Ventura, M; Vladymyrov, M; Zago, M

    2013-01-01

    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the third mixing angle theta13 in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, several puzzling measurements exist, which deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake a definitive experiment to clarify the muon disappearance measurements at small L/E, which will be able to put severe constraints to any model with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. Within the context of the current CERN project, aimed to revitalize the neutrino field in Europe, we will illustrate the achievements that can be obtained by a double muon-spectrometer system, with emphasis on the search ...

  10. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 and CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro, E-mail: pietro.baratella@sissa.it, E-mail: marco.cirelli@cea.fr, E-mail: andi.hektor@cern.ch, E-mail: joosep.pata@cern.ch, E-mail: morten.piibeleht@cern.ch, E-mail: alessandro.strumia@cern.ch [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2014-03-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.

  11. Electric dipole moments of charged leptons with sterile fermions

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  12. Electric dipole moments of charged leptons with sterile fermions

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-02-26

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  13. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  14. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    Science.gov (United States)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  15. Short distance neutrino oscillations with Borexino

    Directory of Open Access Journals (Sweden)

    Caminata A.

    2016-01-01

    Full Text Available The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr and anti-neutrinos (Ce. Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  16. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang [Department of Physics, University of Wisconsin,University Avenue, Madison, WI 53706 (United States); Lu, Ran [Department of Physics, University of Wisconsin,University Avenue, Madison, WI 53706 (United States); Michigan Center for Theoretical Physics, University of Michigan,Church Street, Ann Arbor, MI 48109 (United States); Salvado, Jordi [Department of Physics, University of Wisconsin,University Avenue, Madison, WI 53706 (United States); Wisconsin IceCube Particle Astrophysics Center,West Washington Avenue, Madison, WI 53706 (United States)

    2016-01-27

    We perform a geometric analysis for the sky map of the IceCube TeV-PeV neutrino excess and test its compatibility with the sky map of decaying dark matter signals in our galaxy. We have found that a galactic decaying dark matter component in general improve the goodness of the fit of our model, although the pure isotropic hypothesis has a better fit than the pure dark matter one. We also consider several representative decaying dark matter, which can provide a good fit to the observed spectrum at IceCube with a dark matter lifetime of around 12 orders of magnitude longer than the age of the universe.

  17. Big Bang Nucleosynthesis and Cosmological Constraints on Neutrino Oscillation Parameters

    CERN Document Server

    Kirilova, Daniela P; Kirilova, Daniela; Chizhov, Mihail

    2001-01-01

    We present a review of cosmological nucleosynthesis (CN) with neutrino oscillations, discussing the different effects of oscillations on CN, namely: increase of the effective degrees of freedom during CN, spectrum distortion of the oscillating neutrinos, neutrino number density depletion, and growth of neutrino-antineutrino asymmetry due to active-sterile oscillations. We discuss the importance of these effects for the primordial yield of helium-4. Primordially produced He-4 value is obtained in a selfconsistent study of the nucleons and the oscillating neutrinos. The effects of spectrum distortion, depletion and neutrino-antineutrino asymmetry growth on helium-4 production are explicitly calculated. An update of the cosmological constraints on active-sterile neutrino oscillations parameters is presented, giving the values: delta m^2 sin^8 (2 theta) 0, and |delta m^2| < 8.2 x 10^{-10} eV^2 at large mixing angles for delta m^2 < 0. According to these constraints, besides the active-sterile LMA solution,...

  18. KeV right-handed neutrinos from type II seesaw mechanism in a 3-3-1 model

    International Nuclear Information System (INIS)

    Cogollo, D.; Diniz, H.; Pires, Carlos

    2009-01-01

    Full text. Right-handed neutrinos were not detected yet in nature. Nobody knows if they are light or heavy particles. Light right-handed neutrinos are phenomenologically interesting because of their intricate implications in particle physics, astrophysics and cosmology. For example, warm dark matter in the form of sterile neutrinos with mass in the KeV range has been advocated as a solution to the conflict among cold dark matter and observations of clustering on sub galactic scales. There are many papers devoted to the study of such implications. However, as far as we know, there are few ones devoted to the development of mechanisms that could lead to light right-handed neutrinos. Suppose a scenario where the left-handed neutrinos as well as the right-handed ones are all light particles. In a scenario like this, a challenging task to particle physics would be to develop a seesaw mechanism in the framework of some extension of the standard model that could induce the small masses of these neutrinos. In this regard, an even more interesting scenario would be one where the explanation of the lightness of both left-handed and right-handed neutrino masses would have a common origin. In this paper we consider a variant of the gauge models based in the SU(3) C xSU(3) L xU(1) N (3-3-1) symmetry called 3-3-1 model with right-handed neutrinos and adapt the type II seesaw mechanism in this framework. (author)

  19. Search for cold dark matter and solar neutrinos with GENIUS and GENIUS-TF

    International Nuclear Information System (INIS)

    Krivosheina, I.V.

    2002-01-01

    The new project GENIUS will cover a wide range of the parameter space of predictions of supersymmetry for neutralinos as cold dark matter. Further, it has the potential to be a real-time detector for low-energy (pp and 7 Be) solar neutrinos. The GENIUS Test Facility has just been funded and will come into operation by the end of 2001

  20. Search for cold dark matter and solar neutrinos with GENIUS and GENIUS-TF

    International Nuclear Information System (INIS)

    Krivosheina, I.V.

    2002-01-01

    The new project GENIUS will cover a wide range of the parameter space of predictions of supersymmetry for neutralinos as cold dark matter. Further it has the potential to be a real-time detector for low-energy (pp and 7 Be) solar neutrinos. The GENIUS Test Facility has just been funded and will come into operation by the end of 2001 [ru

  1. Neutrino induced events in the MINOS detectors

    International Nuclear Information System (INIS)

    Litchfield, Reuben Phillip

    2008-01-01

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f s , the fraction of unseen neutrinos that are sterile. The measured value is f s = 0.07 +0.32 at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino

  2. Neutrino mixing and big bang nucleosynthesis

    Science.gov (United States)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  3. Neutrinos help reconcile Planck measurements with the local universe.

    Science.gov (United States)

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-07

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

  4. Direct detection of light dark matter and solar neutrinos via color center production in crystals

    OpenAIRE

    Budnik, Ranny; Cheshnovsky, Ori; Slone, Oren; Volansky, Tomer

    2018-01-01

    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10) MeV through nuclear scattering...

  5. Neutrino mass, leptogenesis and FIMP dark matter in a U(1)_{B-L} model

    Science.gov (United States)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2017-12-01

    The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1)_{B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1)_{B-L} charges. All the newly added particles become massive after the breaking of the U(1)_{B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ _H. The other scalar field, φ _DM, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis.

  6. Warm Dark Matter and Cosmic Reionization

    Science.gov (United States)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-01

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.

  7. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    International Nuclear Information System (INIS)

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-01-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html

  8. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 & CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Helsinki Institute of Physics, P.O. Box 64, Helsinki, FI-00014 (Finland); Pata, Joosep; Piibeleht, Morten [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Strumia, Alessandro [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Dipartimento di Fisica dell’Università di Pisa and INFN, Largo Buonarroti 2, Pisa (Italy)

    2014-03-27

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html.

  9. Baryogenesis, neutrino masses, and dynamical dark energy

    International Nuclear Information System (INIS)

    Eisele, M.T.

    2007-01-01

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  10. Baryogenesis, neutrino masses, and dynamical dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, M.T.

    2007-10-09

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  11. Search for Sterile Neutrinos in the Muon Neutrino Disappearance Mode at FNAL

    CERN Document Server

    Anokhina, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M.T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the {\\em muon--neutrino disappearance} measurements at short baselines in order to put severe constraints to models with more than the three--standard neutrinos, or even to robustly establish the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL--Booster neutrino beam for a Short--Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were extensively studied, together with the achievable performances of two OPERA--like spectrometers. The study was constrained by the availability of existing hardware and a time--schedule compatible with the undergoing project of multi--site Liquid--Argon detectors at FNAL. \

  12. Beyond the Standard Model: The Weak Scale, Neutrino Mass, and the Dark Sector

    International Nuclear Information System (INIS)

    Weiner, Neal

    2010-01-01

    The goal of this proposal was to advance theoretical studies into questions of collider physics at the weak scale, models and signals of dark matter, and connections between neutrino mass and dark energy. The project was a significant success, with a number of developments well beyond what could have been anticipated at the outset. A total of 35 published papers and preprints were produced, with new ideas and signals for LHC physics and dark matter experiments, in particular. A number of new ideas have been found on the possible indirect signals of models of dark matter which relate to the INTEGRAL signal of astrophysical positron production, high energy positrons seen at PAMELA and Fermi, studies into anomalous gamma rays at Fermi, collider signatures of sneutrino dark matter, scenarios of Higgs physics arising in SUSY models, the implications of galaxy cluster surveys for photon-axion conversion models, previously unconsidered collider phenomenology in the form of 'lepton jets' and a very significant result for flavor physics in supersymmetric theories. Progress continues on all fronts, including development of models with dramatic implications for direct dark matter searches, dynamics of dark matter with various excited states, flavor physics, and consequences of modified missing energy signals for collider searches at the LHC.

  13. Late time neutrino masses, the LSND experiment, and the cosmic microwave background.

    Science.gov (United States)

    Chacko, Z; Hall, Lawrence J; Oliver, Steven J; Perelstein, Maxim

    2005-03-25

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  14. Neutrino induced events in the MINOS detectors

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, Reuben Phillip [Univ. of Oxford (United Kingdom). Keble College

    2008-01-01

    The MINOS experiment is designed to study neutrino oscillations. It uses an accelerator generated beam of neutrinos and two detectors, the smaller at a distance of 1km and the larger at 735 km. By comparing the spectrum and flavour composition of the beam at the two detectors precise determinations of the oscillation parameters are possible. This thesis concentrates on the analysis of data from the larger Far Detector. By studying the spectrum of neutral current events it is possible to look for evidence of non-interacting 'sterile' neutrinos. The thesis describes how events are selected for this analysis, and a method for discriminating between charged current and neutral current events. The systematic uncertainties resulting from these cuts are evaluated. Several techniques for using Near Detector data to eliminate systematic uncertainties in the predicted Far Detector spectrum are compared. An oscillation analysis, based on the first year of MINOS data, uses the selected events to make a measurement of f{sub s}, the fraction of unseen neutrinos that are sterile. The measured value is fs = 0.07+0.32 at 68%C.L., and is consistent with the standard three-neutrino picture, which has no sterile neutrino.

  15. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  16. All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore

    CERN Document Server

    INSPIRE-00266703

    2016-01-01

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, , for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on , reaching a level of 10^{-23} cm^3 s^-1, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-f...

  17. Astrophysical limitations to the identification of dark matter: Indirect neutrino signals vis-a-vis direct detection recoil rates

    International Nuclear Information System (INIS)

    Serpico, Pasquale D.; Bertone, Gianfranco

    2010-01-01

    A convincing identification of dark matter (DM) particles can probably be achieved only through a combined analysis of different detections strategies, which provides an effective way of removing degeneracies in the parameter space of DM models. In practice, however, this program is made complicated by the fact that different strategies depend on different physical quantities, or on the same quantities but in a different way, making the treatment of systematic errors rather tricky. We discuss here the uncertainties on the recoil rate in direct-detection experiments and on the muon rate induced by neutrinos from dark matter annihilations in the Sun, and we show that, contrarily to the local DM density or overall cross section scale, irreducible astrophysical uncertainties affect the two rates in a different fashion, therefore limiting our ability to reconstruct the parameters of the dark matter particles. By varying within their respective errors astrophysical parameters such as the escape velocity and the velocity dispersion of dark matter particles, we show that the uncertainty on the relative strength of the neutrino and direct-detection signal is as large as a factor of 2 for typical values of the parameters, but can be even larger in some circumstances.

  18. Neutrinos and Big Bang Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Gary Steigman

    2012-01-01

    Full Text Available According to the standard models of particle physics and cosmology, there should be a background of cosmic neutrinos in the present Universe, similar to the cosmic microwave photon background. The weakness of the weak interactions renders this neutrino background undetectable with current technology. The cosmic neutrino background can, however, be probed indirectly through its cosmological effects on big bang nucleosynthesis (BBN and the cosmic microwave background (CMB radiation. In this BBN review, focused on neutrinos and more generally on dark radiation, the BBN constraints on the number of “equivalent neutrinos” (dark radiation, on the baryon asymmetry (baryon density, and on a possible lepton asymmetry (neutrino degeneracy are reviewed and updated. The BBN constraints on dark radiation and on the baryon density following from considerations of the primordial abundances of deuterium and helium-4 are in excellent agreement with the complementary results from the CMB, providing a suggestive, but currently inconclusive, hint of the presence of dark radiation, and they constrain any lepton asymmetry. For all the cases considered here there is a “lithium problem”: the BBN-predicted lithium abundance exceeds the observationally inferred primordial value by a factor of ~3.

  19. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  20. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  1. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  2. Phenomenology of neutrino oscillations at the neutrino factory

    International Nuclear Information System (INIS)

    Tang, Jian

    2011-01-01

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain μ + → ν e → ν μ → μ - and the right-charge muons coming from the chain μ + → anti ν μ → anti ν μ → μ - (similar to μ - chains), where ν e → ν μ and anti ν μ → anti ν μ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of τ decays, generated by appearance channels ν μ → ν τ and ν e → ν τ , on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero θ 13 , which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the

  3. FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS

    Energy Technology Data Exchange (ETDEWEB)

    Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d' Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2012-02-10

    We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

  4. Particle Physics Seminar: Towards 3+1 Neutrino Mixing

    CERN Multimedia

    Geneva University

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday  12 October  2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “Towards 3+1 Neutrino Mixing” Par Prof. Carlo Giunti, INFN Torino I will review the recent experimental indications in favor of  short-baseline neutrino oscillations. I will discuss their interpretation in the framework of neutrino mixing schemes with one or more sterile neutrinos which have masses around the eV scale. Taking into account also cosmological constraints, I will present arguments in favor of 3+1 neutrino mixing with one sterile neutrino at the eV scale. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor

  5. Standard coupling unification in SO(10), hybrid seesaw neutrino mass and leptogenesis, dark matter, and proton lifetime predictions

    Energy Technology Data Exchange (ETDEWEB)

    Parida, M.K.; Nayak, Bidyut Prava; Satpathy, Rajesh [Centre of Excellence in Theoretical and Mathematical Sciences,Siksha ‘O’ Anusandhan University,Khandagiri Square, Bhubaneswar 751030 (India); Awasthi, Ram Lal [Indian Institute of Science Education and Research,Knowledge City, Sector 81, SAS Nagar, Manauli 140306 (India)

    2017-04-12

    We discuss gauge coupling unification of SU(3){sub C}×SU(2){sub L}×U(1){sub Y} descending directly from non-supersymmetric SO(10) while providing solutions to the three outstanding problems of the standard model: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry for the stability and identification of dark matter in the model calls for high-scale spontaneous symmetry breaking through 126{sub H} Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. Being quadratic in the Majorana coupling, the seesaw formula predicts two distinct patterns of right-handed neutrino masses, one hierarchical and another not so hierarchical (or compact), when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν masses. A complete flavor analysis has been carried out to compute CP-asymmetries including washouts and solutions to Boltzmann equations have been utilised to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of right-handed neutrino masses. The SU(2){sub L} triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45{sub F} of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ∼5×10{sup 7} GeV to achieve precision gauge coupling unification at the GUT mass scale M{sub U}{sup 0}=10{sup 15.56} GeV. Threshold corrections due to superheavy components of 126{sub H} and other representations are estimated and found to be

  6. Neutrino mass, leptogenesis and FIMP dark matter in a U(1){sub B-L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Khan, Sarif [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); Choubey, Sandhya [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); AlbaNova University Center, Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm (Sweden)

    2017-12-15

    The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1){sub B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1){sub B-L} charges. All the newly added particles become massive after the breaking of the U(1){sub B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ{sub H}. The other scalar field, φ{sub DM}, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis. (orig.)

  7. Super-Kamiokande [CETUP 2015: Workshop on dark matter, neutrino physics and astrophysics; PPC 2015: 9. international conference on interconnections between particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Lluís Martí, E-mail: martillu@suketto.icrr.u-tokyo.ac.jp [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2016-06-21

    The Super-Kamiokande experiment performs a large variety of studies, many of them in the neutrino sector. The archetypes are atmospheric neutrino (recently awarded with the Nobel prize for Mr. T. Kajita) and the solar neutrinos analyses. In these proceedings we report our latest results and present updates to indirect dark matter searches, our solar neutrino analysis and discuss the future upgrade of Super-Kamiokande by loading gadolinium into our ultra-pure water.

  8. Very heavy dark Skyrmions

    International Nuclear Information System (INIS)

    Dick, Rainer

    2017-01-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  9. Very heavy dark Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Rainer [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada)

    2017-12-15

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  10. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  11. GENIUS Project, Neutrino Oscillations and Cosmology: Neutrinos Reveal Their Nature ?

    International Nuclear Information System (INIS)

    Czakon, M.; Studnik, J.; Zralek, M.; Gluza, J.

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and (ββ) 0ν are considered simultaneously. In this case phenomenologically interesting neutrino mass schemes can lead to non-vanishing and large values of (m ν ). As a consequence, some schemes with Majorana neutrinos can be ruled out even now. If we assume that in addition neutrinos contribute to Hot Dark Matter then the window for Majorana neutrinos is even more restricted, e.g. GENIUS experiment will be sensitive to scenarios with three Majorana neutrinos. (author)

  12. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  13. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  14. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2018-03-01

    Full Text Available The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  15. Electron electric dipole moment in mirror fermion model with electroweak scale non-sterile right-handed neutrinos

    Science.gov (United States)

    Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang

    2018-03-01

    The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.

  16. Naturalness and stability of the generalized Chaplygin gas in the seesaw cosmon scenario

    International Nuclear Information System (INIS)

    Bernardini, A. E.; Bertolami, O.

    2010-01-01

    The seesaw mechanism is conceived on the basis that a mass scale, ξ, and a dimensionless scale, s, can be fine-tuned in order to control the dynamics of active and sterile neutrinos through cosmon-type equations of motion: the seesaw cosmon equations. This allows for sterile neutrinos to be a dark matter candidate. In this scenario, the dynamical masses and energy densities of active and sterile neutrinos can be consistently embedded into the generalized Chaplygin gas (GCG), the unified dark sector model. In addition, dark matter adiabatically coupled to dark energy allows for a natural decoupling of the (active) mass varying neutrino component from the dark sector. Thus mass varying neutrinos turn into a secondary effect. Through the scale parameters, ξ and s, the proposed scenario allows for a convergence among three distinct frameworks: the cosmon scenario, the seesaw mechanism for mass generation, and the GCG model. It is found that the equation of state of the perturbations is the very one of the GCG background cosmology so that all the results from this approach are maintained, being smoothly modified by active neutrinos. Constrained by the seesaw relations, it is shown that the mass varying mechanism is responsible for the stability against linear perturbations and is indirectly related to the late time cosmological acceleration.

  17. Signals of dark matter in a supersymmetric two dark matter model

    International Nuclear Information System (INIS)

    Fukuoka, Hiroki; Suematsu, Daijiro; Toma, Takashi

    2011-01-01

    Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z 2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z 2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively

  18. Detecting electron neutrinos from solar dark matter annihilation by JUNO

    International Nuclear Information System (INIS)

    Guo, Wan-Lei

    2016-01-01

    We explore the electron neutrino signals from light dark matter (DM) annihilation in the Sun for the large liquid scintillator detector JUNO. In terms of the spectrum features of three typical DM annihilation channels χχ → νν-bar , τ + τ − , b b-bar , we take two sets of selection conditions to calculate the expected signals and atmospheric neutrino backgrounds based on the Monte Carlo simulation data. Then the JUNO sensitivities to the spin independent DM-nucleon and spin dependent DM-proton cross sections are presented. It is found that the JUNO projected sensitivities are much better than the current spin dependent direct detection experimental limits for the νν-bar and τ + τ − channels. In the spin independent case, the JUNO will give the better sensitivity to the DM-nucleon cross section than the LUX and CDMSlite limits for the νν-bar channel with the DM mass lighter than 6.5 GeV . If the νν-bar or τ + τ − channel is dominant, the future JUNO results are very helpful for us to understand the tension between the DAMA annual modulation signal and other direct detection exclusions

  19. Evidence for massive neutrinos from cosmic microwave background and lensing observations.

    Science.gov (United States)

    Battye, Richard A; Moss, Adam

    2014-02-07

    We discuss whether massive neutrinos (either active or sterile) can reconcile some of the tensions within cosmological data that have been brought into focus by the recently released Planck data. We point out that a discrepancy is present when comparing the primary CMB and lensing measurements both from the CMB and galaxy lensing data using CFHTLenS, similar to that which arises when comparing CMB measurements and SZ cluster counts. A consistent picture emerges and including a prior for the cluster constraints and BAOs we find that for an active neutrino model with three degenerate neutrinos, ∑m(ν)=(0.320±0.081)  eV, whereas for a sterile neutrino, in addition to 3 neutrinos with a standard hierarchy and ∑m(ν)=0.06  eV, m(ν,sterile)(eff)=(0.450±0.124)  eV and ΔN(eff)=0.45±0.23. In both cases there is a significant detection of modification to the neutrino sector from the standard model and in the case of the sterile neutrino it is possible to reconcile the BAO and local H0 measurements. However, a caveat to our result is some internal tension between the CMB and lensing and cluster observations, and the masses are in excess of those estimated from the shape of the matter power spectrum from galaxy surveys.

  20. Leptogenesis. Theory and neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.

    2012-12-15

    After a brief discussion of baryon and lepton number nonconservation, we review the status of thermal leptogenesis with GUT scale neutrino masses, as well as low scale alternatives with keV neutrinos as dark matter and heavy neutrino masses within the reach of the LHC. Recent progress towards a full quantum mechanical description of leptogenesis is described with resonant leptogenesis as an application. Finally, cosmological B-L breaking after inflation is considered as origin of the hot early universe, generating entropy, baryon asymmetry and dark matter.

  1. Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Pyle, Matt Christopher [Stanford Univ., CA (United States)

    2012-01-01

    In this thesis, we illustrate how the complex E- field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's T3 c scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs.

  2. Flipped Heavy Neutrinos from the Solar Neutrino Problem to Baryogenesis

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A

    1993-01-01

    We discuss baryogenesis using the flipped $SU(5)$ model for lepton mass matrices. We show that the generalized see-saw mechanism in this model can not only provide MSW neutrino mixing suitable for solving the solar neutrino problem, and supply a hot dark matter candidate ($\

  3. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  4. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  5. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  6. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the LSND-motivated {delta}m{sup 2}{sub 4}1-range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting introduced by the sterile neutrino from the long baselines.

  7. NOvA Short-Baseline Tau Neutrino Appearance Search

    Energy Technology Data Exchange (ETDEWEB)

    Keloth, Rijeesh [Cochin U.; Aurisano, Adam [Cincinnati U.; Sousa, Alexander [Cincinnati U.; Davies, Gavin S [Indiana U.; Suter, Louise [Fermilab; Plunkett, Robert K [Fermilab

    2017-10-01

    Standard three-flavor neutrino oscillations have well explained by a wide range of neutrino experiments. However, the anomalous results, such as electron-antineutrino excess seen by LSND and MiniBooNE do not fit the three-flavor paradigm. This can be explained by an additional fourth flavor sterile neutrino at a larger scale than the existing three flavor neutrinos. The NOvA experiment consists of two finely segmented, liquid scintillator detectors operating 14 .6 mrad off-axis from the NuMI muon-neutrino beam. The Near Detector is located on the Fermilab campus, 1 km from the NuMI target, while the Far Detector is located at Ash River, MN, 810 km from the NuMI target. The NOvA experiment is primarily designed to measure electron-neutrino appearance at the Far Detector using the Near Detector to control systematic uncertainties; however, the Near Detector is well suited for searching for anomalous short-baseline oscillations. This poster will present a novel method for selecting tau neutrino interactions with high purity at the Near Detector using a convolutional neural network. Using this method, the sensitivity to anomalous short-baseline tau-neutrino appearance due to sterile neutrino oscillations will be presented.

  8. A framework for testing leptonic unitarity by neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fong, Chee Sheng [Instituto de Física, Universidade de São Paulo,C.P. 66.318, 05315-970 São Paulo (Brazil); Minakata, Hisakazu [Department of Physics, Yachay Tech,San Miguel de Urcuquí, 100119 (Ecuador); Nunokawa, Hiroshi [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro,C.P. 38097, 22451-900, Rio de Janeiro (Brazil)

    2017-02-22

    If leptonic unitarity is violated by new physics at an energy scale much lower than the electroweak scale, which we call low-scale unitarity violation, it has different characteristic features from those expected in unitarity violation at high-energy scales. They include maintaining flavor universality and absence of zero-distance flavor transition. We present a framework for testing such unitarity violation at low energies by neutrino oscillation experiments. Starting from the unitary 3 active plus N (arbitrary positive integer) sterile neutrino model we show that by restricting the active-sterile and sterile-sterile neutrino mass squared differences to ≳ 0.1 eV{sup 2} the oscillation probability in the (3+N) model becomes insensitive to details of the sterile sector, providing a nearly model-independent framework for testing low-scale unitarity violation. Yet, the presence of the sterile sector leaves trace as a constant probability leaking term, which distinguishes low-scale unitarity violation from the high-scale one. The non-unitary mixing matrix in the active neutrino subspace is common for the both cases. We analyze how severely the unitarity violation can be constrained in ν{sub e}-row by taking a JUNO-like setting to simulate medium baseline reactor experiments. Possible modification of the features of the (3+N) model due to matter effect is discussed to first order in the matter potential.

  9. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  10. Neutrino mass from laboratory: contribution of double beta decay to the neutrino mass matrix

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of ν > < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments

  11. Multi-component fermionic dark matter and IceCube PeV scale neutrinos in left-right model with gauge unification

    Science.gov (United States)

    Borah, Debasish; Dasgupta, Arnab; Dey, Ujjal Kumar; Patra, Sudhanwa; Tomar, Gaurav

    2017-09-01

    We consider a simple extension of the minimal left-right symmetric model (LRSM) in order to explain the PeV neutrino events seen at the IceCube experiment from a heavy decaying dark matter. The dark matter sector is composed of two fermions: one at PeV scale and the other at TeV scale such that the heavier one can decay into the lighter one and two neutrinos. The gauge annihilation cross sections of PeV dark matter are not large enough to generate its relic abundance within the observed limit. We include a pair of real scalar triplets Ω L,R which can bring the thermally overproduced PeV dark matter abundance into the observed range through late time decay and consequent entropy release thereby providing a consistent way to obtain the correct relic abundance without violating the unitarity bound on dark matter mass. Another scalar field, a bitriplet under left-right gauge group is added to assist the heavier dark matter decay. The presence of an approximate global U(1) X symmetry can naturally explain the origin of tiny couplings required for long-lived nature of these decaying particles. We also show, how such an extended LRSM can be incorporated within a non-supersymmetric SO(10) model where the gauge coupling unification at a very high scale naturally accommodate a PeV scale intermediate symmetry, required to explain the PeV events at IceCube.

  12. Production of a sterile species via active-sterile mixing: An exactly solvable model

    Science.gov (United States)

    Boyanovsky, D.

    2007-11-01

    The production of a sterile species via active-sterile mixing in a thermal medium is studied in an exactly solvable model. The exact time evolution of the sterile distribution function is determined by the dispersion relations and damping rates Γ1,2 for the quasiparticle modes. These depend on γ˜=Γaa/2ΔE, with Γaa the interaction rate of the active species in absence of mixing and ΔE the oscillation frequency in the medium without damping. γ˜≪1, γ˜≫1 describe the weak and strong damping limits, respectively. For γ˜≪1, Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where θm is the mixing angle in the medium and the sterile distribution function does not obey a simple rate equation. For γ˜≫1, Γ1=Γaa and Γ2=Γaasin⁡22θm/4γ˜2, is the sterile production rate. In this regime sterile production is suppressed and the oscillation frequency vanishes at an Mikheyev-Smirnov-Wolfenstein (MSW) resonance, with a breakdown of adiabaticity. These are consequences of quantum Zeno suppression. For active neutrinos with standard model interactions the strong damping limit is only available near an MSW resonance if sin⁡2θ≪αw with θ the vacuum mixing angle. The full set of quantum kinetic equations for sterile production for arbitrary γ˜ are obtained from the quantum master equation. Cosmological resonant sterile neutrino production is quantum Zeno suppressed relieving potential uncertainties associated with the QCD phase transition.

  13. Strongest gravitational waves from neutrino oscillations at supernova core bounce

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Fiuza, K.

    2004-01-01

    Resonant active-to-active (ν a →ν a ), as well as active-to-sterile (ν a →ν s ) neutrino (ν) oscillations can take place during the core bounce of a supernova collapse. Besides, over this phase, weak magnetism increases the antineutrino (anti ν) mean free path, and thus its luminosity. Because the oscillation feeds mass-energy into the target ν species, the large mass-squared difference between the species (ν a →ν s ) implies a huge amount of energy to be given off as gravitational waves (L GW ∝10 49 erg s -1 ), due to anisotropic but coherent ν flow over the oscillation length. This asymmetric ν-flux is driven by both the spin-magnetic and the universal spin-rotation coupling. The novel contribution of this paper stems from (1) the new computation of the anisotropy parameter α∝0.1-0.01, and (2) the use of the tight constraints from neutrino experiments as SNO and KamLAND, and the cosmic probe WMAP, to compute the gravitational-wave emission during neutrino oscillations in supernovae core collapse and bounce. We show that the mass of the sterile neutrino ν s that can be resonantly produced during the flavor conversions makes it a good candidate for dark matter as suggested by Fuller et al., Phys. Rev. D 68, 103002 (2003). The new spacetime strain thus estimated is still several orders of magnitude larger than those from ν diffusion (convection and cooling) or quadrupole moments of neutron star matter. This new feature turns these bursts into the more promising supernova gravitational-wave signals that may be detected by observatories as LIGO, VIRGO, etc., for distances far out to the VIRGO cluster of galaxies. (orig.)

  14. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  15. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    OpenAIRE

    Tornow W.; Bhike Megha

    2015-01-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar...

  16. arXiv GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations

    CERN Document Server

    Ghiglieri, J.

    2017-05-23

    Starting from operator equations of motion and making arguments based on a separation of time scales, a set of equations is derived which govern the non-equilibrium time evolution of a GeV-scale sterile neutrino density matrix and active lepton number densities at temperatures T > 130 GeV. The density matrix possesses generation and helicity indices; we demonstrate how helicity permits for a classification of various sources for leptogenesis. The coefficients parametrizing the equations are determined to leading order in Standard Model couplings, accounting for the LPM resummation of 1+n 2+n scatterings and for all 2 2 scatterings. The regime in which sphaleron processes gradually decouple so that baryon plus lepton number becomes a separate non-equilibrium variable is also considered.

  17. All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Physik-department, Garching (Germany); Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H.P.; Cruz Silva, A.H.; Franckowiak, A.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Science Faculty CP230, Brussels (Belgium); Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics, Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Andeen, K. [Marquette University, Department of Physics, Milwaukee, WI (United States); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Krueckl, G.; Sandroos, J.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Arguelles, C.; Axani, S.; Collin, G.H.; Conrad, J.M.; Jones, B.J.P.; Moulai, M. [Massachusetts Institute of Technology, Department of Physics, Cambridge, MA (United States); Auffenberg, J.; Bissok, M.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wickmann, S.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics, Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Tenholt, F. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); BenZvi, S. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Berghaus, P. [National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow (Russian Federation); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); and others

    2016-10-15

    We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, left angle σ{sub A}v right angle, for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on left angle σ{sub A}v right angle, reaching a level of 10{sup -23} cm{sup 3} s {sup -1}, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube. (orig.)

  18. Common origin of visible and dark universe

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2010-01-01

    Dark matter, baryonic matter, and dark energy have different properties but contribute comparable energy density to the present Universe. We point out that they may have a common origin. As the dark energy has a scale far lower than all known scales in particle physics but very close to neutrino masses, while the excess matter over antimatter in the baryonic sector is probably related to the neutrino-mass generation, we unify the origin of the dark and visible universe in a variant of the seesaw model. In our model (i) the dark matter relic density is a dark matter asymmetry emerged simultaneously with the baryon asymmetry from leptogenesis; (ii) the dark energy is due to a pseudo-Nambu-Goldstone-Boson associated with the neutrino-mass generation.

  19. Light Inflaton -- hunting for it from CMB through the Dark Matter and down to the colliders

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The models without additional energy scales (heavy particles) above the electroweak scale can provide relation between the low energy physics and cosmology. Probably the simplest example is the model with additional singlet scalar inflaton (with non-minimal coupling). It gets constraint simultaneously from the inflationary observations (tensor modes), dark matter production (for 7keV sterile neutrino DM), and searches in the reare decays. I will discuss the interplay of the cosmological and laboratory constraints in this model.

  20. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  1. Dark Matter "Collider" from Inelastic Boosted Dark Matter.

    Science.gov (United States)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2017-10-20

    We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.

  2. The Neutrino mass matrix after Kamland and SNO salt enhanced results

    CERN Document Server

    Aliani, P; Picariello, M; Torrente-Lujan, E

    2003-01-01

    An updated analysis of all available neutrino oscillation evidence in Solar experiments including the latest SNO ES,CC and NC data (254d live time, NaCL enhanced efficiency) is presented. We obtain, for the fraction of active oscillating neutrinos: sin^2alpha=(\\Phi_{NC}-\\Phi_{CC})/(\\Phi_{SSM}-\\Phi_{CC})=0.94^{+0.0.065}_{-0.060 } nearly 20\\sigma from the pure sterile oscillation case. The fraction of oscillating sterile neutrinos cos^2\\alpha \\lsim 0.12 (1 sigma CL). At face value, these results might slightly favour the existence of a small sterile oscillating sector. In the framework of two active neutrino oscillations we determine individual neutrino mixing parameters and their errors we obtain Delta m^2= 7.01\\pm 0.08 \\times 10^{-5} eV^2, tan^2 theta=0.42^{+0.12}_{-0.07}. The main difference with previous analysis is a better resolution in parameter space. In particular the secondary region at larger mass differences (LMAII) is now excluded at 95% CL. The combined analysis of solar and Kamland data concludes...

  3. A review of superheated superconducting granules as a detector for dark matter, solar neutrinos, monopoles and double beta decay

    International Nuclear Information System (INIS)

    Pretzl, K.P.

    1987-11-01

    The use of superheated superconducting granules as a particle detector is reviewed. Their application for the detection of dark matter, solar neutrinos, monopoles, and double beta decay is described. A status report on the experimental development of these devices is given. (orig.)

  4. Neutrino mass in flavor dependent gauged lepton model

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We study a neutrino model introducing an additional nontrivial gauged lepton symmetry where the neutrino masses are induced at two-loop level, while the first and second charged-leptons of the standard model are done at one-loop level. As a result of the model structure, we can predict one massless active neutrino, and there is a dark matter candidate. Then we discuss the neutrino mass matrix, muon anomalous magnetic moment, lepton flavor violations, oblique parameters, and relic density of dark matter, taking into account the experimental constraints.

  5. Lepton mixing and the 'solar neutrino puzzle'

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1977-01-01

    The results of the well-known solar neutrino experiments in which the Cl-Ar method was employed are discussed; the results of this experiment gave a too-small neutrino signal and were referred to as the 'solar neutrino puzzle'. A number of explanations have been offered to account for the results, but it is stated that the explanation in terms of lepton mixing and neutrino sterility is attractive in terms of present day elementary particle physics and much more natural than the other explanations offered. Headings are as follows: neutrino oscillations and lepton charge, oscillations and solar neutrino experiments, lepton mixing according to old and present ideas, neutrino oscillations and the 'solar neutrino puzzle'. (U.K.)

  6. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  7. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  8. Report of the Solar and Atmospheric Neutrino Working Group

    International Nuclear Information System (INIS)

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-01-01

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy 8 B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure ν e , which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of θ 12 and, together with other solar neutrino measurements, either a measurement of θ 13 or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the 7 Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and 7 Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very large scale water Cerenkov detector, or a

  9. Neutrino Masses and Mixings and Astrophysics

    Science.gov (United States)

    Fuller, George M.

    1998-10-01

    Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.

  10. Neutrino Mass Matrix Textures: A Data-driven Approach

    CERN Document Server

    Bertuzzo, E; Machado, P A N

    2013-01-01

    We analyze the neutrino mass matrix entries and their correlations in a probabilistic fashion, constructing probability distribution functions using the latest results from neutrino oscillation fits. Two cases are considered: the standard three neutrino scenario as well as the inclusion of a new sterile neutrino that potentially explains the reactor and gallium anomalies. We discuss the current limits and future perspectives on the mass matrix elements that can be useful for model building.

  11. Warm Dark Matter from keVins

    International Nuclear Information System (INIS)

    King, Stephen F.; Merle, Alexander

    2012-01-01

    We propose a simple model for Warm Dark Matter (WDM) in which two fermions are added to the Standard Model: (quasi-) stable ''keVins'' (keV inert fermions) which account for WDM and their unstable brothers, the ''GeVins'' (GeV inert fermions), both of which carry zero electric charge and zero lepton number, and are (approximately) ''inert'', in the sense that their only interactions are via suppressed couplings to the Z. We consider scenarios in which stable keVins are thermally produced and their abundance is subsequently diluted by entropy production from the decays of the heavier unstable GeVins. This mechanism could be implemented in a wide variety of models, including E 6 inspired supersymmetric models or models involving sterile neutrinos

  12. PMT Dark Noise Monitoring System for Neutrino Detector Borexino Based on the Devicenet Protocol and WEB-Access

    International Nuclear Information System (INIS)

    Chepurnov, A.S.; Orekhov, D.I.; Maimistov, D.A.; Sabelnikov, A.A.; Etenko, A.V.

    2006-01-01

    Monitoring of PMT dark noise in a neutrino detector BOREXINO is a procedure that indicates condition of the detector. Based on CAN industrial network, top level DeviceNet protocol and WEB visualization, the dark noise monitoring system having 256 channels for the internal detector and for the external muon veto was created. The system is composed as a set of controllers, converting the PMT signals to frequency and transmitting them over Can network. The software is the stack of the DeviceNet protocols, providing the data collecting and transporting. Server-side scripts build web pages of user interface and graphical visualization of data

  13. Unification of gauge couplings in radiative neutrino mass models

    DEFF Research Database (Denmark)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella

    2016-01-01

    masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively....... We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 ΔL = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino...

  14. Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck

    International Nuclear Information System (INIS)

    Di Bari, Pasquale; King, Stephen F.; Merle, Alexander

    2013-01-01

    Although Planck data supports the standard ΛCDM model, it still allows for the presence of Dark Radiation corresponding up to about half an extra standard neutrino species. We propose a scenario for obtaining a fractional “effective neutrino species” from a thermally produced particle which decays into a much lighter stable relic plus standard fermions. At lifetimes much longer than ∼1 s, both the relic particles and the non-thermal neutrino component contribute to Dark Radiation. By increasing the stable-to-unstable particle mass ratio, the relic particle no longer acts as Dark Radiation but instead becomes a candidate for Warm Dark Matter with mass O(1 keV–100 GeV). In both cases it is possible to address the lithium problem

  15. Dark Matter Search Using XMM-Newton Observations of Willman 1

    Science.gov (United States)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  16. New wings give ICARUS flight for second neutrino hunt

    CERN Document Server

    Stefania Pandolfi

    2016-01-01

    In the framework of the CERN Neutrino Platform (CENF) project, the ICARUS detector is being refurbished before being sent to the US in search of sterile neutrinos.   One of the two ICARUS time projection chambers being refurbished at CERN in a clean room. (Image: Max Brice/CERN) It’s a big shining box, 4 metres high, 20 metres long: this magnificent detector arrived at CERN 16 months ago and since then it is undergoing a complete refurbishing. ICARUS, a 760-ton detector filled with liquid argon (LAr) whose technology was first proposed by Carlo Rubbia in 1977, was used between 2010 and 2014 at the INFN Gran Sasso Laboratory in Italy to study neutrino oscillations using a beam of neutrinos produced at CERN. After its overhaul at CERN, which should last until the end of 2016, it will be shipped to Chicago to start a second life. It will be part of the Short Baseline Neutrino (SBN) programme at Fermilab, dedicated to the study of sterile neutrinos (see Box). The refurbish...

  17. Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua; /SLAC; Cui, Yanou; /Perimeter Inst. Theor. Phys.; Zhao, Yue; /Stanford U., ITP /Stanford U., Phys. Dept.

    2015-04-02

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  18. Neutrino-electron scattering and the choice between different MSW solutions of the solar neutrino problem

    International Nuclear Information System (INIS)

    Rosen, S.P.; Gelb, J.M.

    1989-01-01

    This paper considers the scattering of solar neutrinos by electrons as a means for distinguishing between different MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, some correlation between the value of R and each solution is found. A value of R ≤ 1/3 implies that the adiabatic solution is correct, while values between 1/3 and 3/5 are consistent with the large angle solution. A value close to 1/2 is also consistent with the non-adiabatic solution, and a value less than (1/6 - 1/7) implies oscillations into sterile neutrinos

  19. Neutrino mixing, oscillations and decoherence in astrophysics and cosmology

    Science.gov (United States)

    Ho, Chiu Man

    2007-08-01

    This thesis focuses on a finite-temperature field-theoretical treatment of neutrino oscillations in hot and dense media. By implementing the methods of real-time non-equilibrium field theory, we study the dynamics of neutrino mixing, oscillations, decoherence and relaxation in astrophysical and cosmological environments. We first study neutrino oscillations in the early universe in the temperature regime prior to the epoch of Big Bang Nucleosynthesis (BBN). The dispersion relations and mixing angles in the medium are found to be helicity-dependent, and a resonance like the Mikheyev-Smirnov- Wolfenstein (MSW) effect is realized. The oscillation time scales are found to be longer near a resonance and shorter for off-resonance high-energy neutrinos. We then investigate the space-time propagation of neutrino wave-packets just before BBN. A phenomenon of " frozen coherence " is found to occur if the longitudinal dispersion catches up with the progressive separation between the mass eigenstates, before the coherence time limit has been reached. However, the transverse dispersion occurs at a much shorter scale than all other possible time scales in the medium, resulting in a large suppression in the transition probabilities from electron-neutrino to muon-neutrino. We also explore the possibility of charged lepton mixing as a consequence of neutrino mixing in the early Universe. We find that charged leptons, like electrons and muons, can mix and oscillate resonantly if there is a large lepton asymmetry in the neutrino sector. We study sterile neutrino production in the early Universe via active-sterile oscillations. We provide a quantum field theoretical reassessment of the quantum Zeno suppression on the active-to-sterile transition probability and its time average. We determine the complete conditions for quantum Zeno suppression. Finally, we examine the interplay between neutrino mixing, oscillations and equilibration in a thermal medium, and the corresponding non

  20. Flipped neutrino emissivity from strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India))

    1994-04-15

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [[ital q]+[nu][sub [minus

  1. Neutrino masses twenty-five years later

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    2003-01-01

    The discovery of neutrino mass marks a turning point in elementary particle physics, with important implications for nuclear and astroparticle physics. Here I give a brief update, where I summarize the current status of three-neutrino oscillation parameters from current solar, atmospheric, reactor and accelerator neutrino data, discuss the case for sterile neutrinos and LSND, and also the importance of tritium and double beta decay experiments probing the absolute scale of neutrino mass. In this opinionated look at the present of neutrino physics, I keep an eye in the future, and a perspective of the past, taking the opportunity to highlight Joe Schechter's pioneering contribution, which I have had the fortune to share, as his PhD student back in the early eighties

  2. Signatures of a light sterile neutrino in T2HK

    Science.gov (United States)

    Agarwalla, Sanjib Kumar; Chatterjee, Sabya Sachi; Palazzo, Antonio

    2018-04-01

    We investigate the performance of T2HK in the presence of a light eV scale sterile neutrino. We study in detail its influence in resolving fundamental issues like mass hierarchy, CP-violation (CPV) induced by the standard CP-phase δ 13 and new CP-phase δ 14, and the octant ambiguity of θ 23. We show for the first time in detail that due to the impressive energy reconstruction capabilities of T2HK, the available spectral information plays an important role to enhance the mass hierarchy discovery reach of this experiment in 3 ν framework and also to keep it almost intact even in 4 ν scheme. This feature is also of the utmost importance in establishing the CPV due to δ 14. As far as the sensitivity to CPV due to δ 13 is concerned, it does not change much going from 3 ν to 4 ν case. We also examine the reconstruction capability of the two phases δ 13 and δ 14, and find that the typical 1 σ uncertainty on δ 13 ( δ 14) in T2HK is ˜ 150 (300). While determining the octant of θ 23, we face a complete loss of sensitivity for unfavorable combinations of unknown δ 13 and δ 14.

  3. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    Science.gov (United States)

    Tornow, W.; Bhike, Megha

    2015-05-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  4. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    Directory of Open Access Journals (Sweden)

    Tornow W.

    2015-01-01

    Full Text Available A program is underway at the Triangle Universities Nuclear Laboratory (TUNL to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  5. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  6. Weighing neutrinos with microwave background and galaxy data

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias; Hamilton, Andrew J.S.

    2000-01-01

    Cosmological constraints on neutrino masses are improving rapidly. We compute the joint constraints on 11 cosmological parameters from the latest cosmic microwave background and large scale structure data, and find that at 95% confidence, the total (cold+hot) dark matter density is h 2 Ω dm 0.20 +.12 -.10 . As much as 38% of this dark matter is allowed to be hot (due to neutrinos). Indeed, the data favors a non-zero neutrino fraction, but not at a statistically significant level

  7. Lepton mixing and the ''solar neutrino puzzle''

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1977-01-01

    The results of the well known solar neutrino experiment of Davis et al. are discussed, in which the Cl-Ar method is used. The result of the experiment, a too small neutrino signal (the so-called ''solar neutrino puzzle'), has been tentatively accounted for in a number of quite exotic explanations. It appears that the explanation in terms of lepton mixing and neutrino sterility is quite attractive from the point of view of present day elementary particle physics and is much more natural than the other explanations of the ''puzzle''

  8. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in ... the experimental point of view, there are multiple ways to shed light among the different .... compared to the two metallicity expectations [16]. ..... from the Earth; solar neutrinos; indirect dark matter searches) and GeV physics (pro-.

  9. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    Science.gov (United States)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  10. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Raffelt, G.G.

    1996-01-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  11. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G G [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  12. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    International Nuclear Information System (INIS)

    He, Yudong

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled 'Neutrino Mass and Oscillation', 'High Energy Neutrino Astrophysics', 'Detection of Dark Matter', 'Search for Strange Quark Matter', and 'Magnetic Monopole Searches'. The report is introduced by a survey of the field and a brief description of each of the author's papers

  13. Thermal Dark Matter Below an MeV

    OpenAIRE

    Berlin, Asher; Blinov, Nikita

    2017-01-01

    We consider a class of models in which thermal dark matter is lighter than an MeV. If dark matter thermalizes with the Standard Model below the temperature of neutrino-photon decoupling, equilibration and freeze-out cools and heats the Standard Model bath comparably, alleviating constraints from measurements of the effective number of neutrino species. We demonstrate this mechanism in a model consisting of fermionic dark matter coupled to a light scalar mediator. Thermal dark matter can be as...

  14. Energy dependence of solar-neutrino--electron scattering as a test of neutral currents

    International Nuclear Information System (INIS)

    Kwong, W.; Rosen, S.P.

    1992-01-01

    The energy dependence of ν-e scattering of solar neutrinos is investigated in the framework of neutrino oscillations and the nonadiabatic Mikheyev-Smirnov-Wolfenstein effect. It is shown that, with sufficient data, it will be possible to establish unambiguously whether neutrino oscillations are actually occurring and whether the electron neutrino oscillates into active or inactive (sterile) neutrino flavors

  15. Flipped neutrino emissivity of hot plasma in supernova core

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India))

    1994-05-15

    We calculate the energy loss due to wrong-helicity sterile neutrinos produced due to the decay of plasmons into flipped neutrino pairs at relativistic temperatures and densities in the core of a nascent neutron star and compare our results with other processes.

  16. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    International Nuclear Information System (INIS)

    Gu, Pei-Hong

    2014-01-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar ') H scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar ') H scalar also mediates a U(1) em × U(1)' em kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice

  17. Relic neutrino asymmetry evolution from first principles

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Wong, Y.Y.Y.

    1998-09-01

    The exact Quantum Kinetic Equations for a two-flavour active-sterile neutrino system are used to provide a systematic derivation of approximate evolution equations for the relic neutrino asymmetry. An extension of the adiabatic approximation for matter-affected neutrino oscillations is developed which incorporates decoherence due to collisions. Exact and approximate expressions for the decoherence and repopulation functions are discussed. A first pass is made over the exact treatment of multi-flavour partially incoherent oscillations. (authors)

  18. Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos

    2001-01-01

    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...

  19. The Science of the Sudbury Neutrino Observatory (SNO) and SNOLAB

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    A description of the science associated with the Sudbury Neutrino Observatory and its relation to other neutrino measurements will be given, along with a discussion of the new set of experiments that are at various stages of development or operation at SNOLAB. These experiments will perform measurements of neutrino properties and seek direct detection of Weakly-Interacting Massive Particles (WIMPS) as Dark Matter candidates. The experiments include SNO+, in which the central element of the SNO detector will be liquid scintillator with Te dissolved for neutrino-less double beta decay; DEAP, using about 3300 kg of liquid argon for single phase direct Dark Matter detection; SuperCDMS, a solid state bolometer system to start construction at SNOLAB in the near future; PICO, a direct Dark Matter experiment using bubble formation for detection and NEWS, a direct Dark Matter detector using high pressure gasses for low-mass WIMP detection.

  20. Neutrino spectrum from theory and experiments

    Indian Academy of Sciences (India)

    equation describes neutrino masses in these theories instead of eq. (1): .... universe. In comparison, the possibility (B) provides the dark matter in the universe easily. 122 ..... the origin of the small neutrino mass compared to other fermions.

  1. Effective Majorana neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)

    2016-08-15

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)

  2. Sterile searches with Liquid Argon at FNAL

    CERN Document Server

    Raselli, Gian Luca

    2017-01-01

    A new Short Baseline Neutrino (SBN) experiment is in preparation at FNAL to definitely prove or exclude the existence of non-standard neutrino oscillations into sterile states. The program foresees the deployment along the Booster Neutrino Beam (BNB) of three detectors, all based on the liquid-argon time projection chamber technique. This technology has been taken to full maturity with ICARUS T600, which will act as far detector after the completion of the overhauling at CERN and its transportation to FNAL. The program foresees the data taking for three years.

  3. Neutrino physics with DARWIN

    Science.gov (United States)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  4. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  5. The NESSiE way to searches for sterile neutrinos at FNAL

    CERN Document Server

    Stanco, L.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Creti, P.; Dal Corso, F.; Dalkarov, O.; Del Prete, A.; De Robertis, G.; De Serio, M.; Esposti, L.Degli; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fanin, C.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Golovanov, S.; Guerzoni, M.; Klicek, B.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mengucci, A.; Mingazheva, R.; Morgunova, O.; Muciaccia, M.T.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanko, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Ventura, M.; Vladymyrov, M.; Kose, U.; Nessi, M.

    2016-01-01

    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $\\theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far...

  6. Interpreting OPERA results on superluminal neutrino

    CERN Document Server

    Giudice, Gian F; Strumia, Alessandro

    2012-01-01

    OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. The superluminal limit velocity of neutrinos must be nearly flavor independent, must decrease steeply in the low-energy domain, and its energy dependence must depart from a simple power law. We construct illustrative models that satisfy these conditions, by introducing Lorentz violation in a sector with light sterile neutrinos. We point out that, quite generically, electroweak quantum corrections transfer the information of superluminal neutrino properties into Lorentz violations in the electron and muon sector, in apparent conflict with experimental data.

  7. Lepton number violating processes and Majorana neutrinos

    International Nuclear Information System (INIS)

    Dib, C.; Schmidt, I.; Gribanov, V.; Kovalenko, S.

    2001-01-01

    Some generic properties of lepton number violating processes and their relation to different entries of the Majorana neutrino mass matrix are discussed. Present and near future experiments searching for these processes, except the neutrinoless double beta decay, are unable to probe light (eV mass region) and heavy (hundred GeV mass region) neutrinos. On the other hand, due to the effect of a resonant enhancement, some of lepton number violating decays can be very sensitive to the intermediate-mass neutrinos with typical masses in the hundred MeV region. These neutrinos may appear as admixtures of the three active and an arbitrary number of sterile neutrino species. The experimental constraints on these massive neutrino states are analyzed and their possible cosmological and astrophysical implications are discussed

  8. Results of the Nucifer reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred [MPIK Heidelberg (Germany)

    2016-07-01

    Nuclear reactors are a strong and pure source of electron antineutrinos. With neutrino experiments close to compact reactor cores new insights into neutrino properties and reactor physics can be obtained. The Nucifer experiment is one of the pioneers in this class of very short baseline projects. Its detector to reactor distance is only about 7 m. The data obtained in the last years allowed to estimate the plutonium concentration in the reactor core by the neutrino flux measurement. This is of interest for safeguard applications and non proliferation efforts. The antineutrinos in Nucifer are detected via the inverse beta decay on free protons. Those Hydrogen nuclei are provided by 850 liters of organic liquid scintillator. For higher detection efficiency and background reduction the liquid is loaded with Gadolinium. Despite all shielding efforts and veto systems the background induced by the reactor activity and cosmogenic particles is still the main challenge in the experiment. The principle of the Nucifer detector is similar to the needs of upcoming experiments searching for sterile neutrinos. Therefore, the Nucifer results are also valuable input for the understanding and optimization of those next generation projects. The observation of sterile neutrinos would imply new physics beyond the standard model.

  9. Hunting for a massive neutrino

    CERN Document Server

    AUTHOR|(CDS)2108802

    1997-01-01

    A great effort is devoted by many groups of physicists all over the world to give an answer to the following question: Is the neutrino massive ? This question has profound implications with particle physics, astrophysics and cosmology, in relation to the so-called Dark Matter puzzle. The neutrino oscillation process, in particular, can only occur if the neutrino is massive. An overview of the neutrino mass measurements, of the oscillation formalism and experiments will be given, also in connection with the present experimental programme at CERN with the two experiments CHORUS and NOMAD.

  10. Decoherence effect in neutrinos produced in microquasar jets

    Science.gov (United States)

    Mosquera, M. E.; Civitarese, O.

    2018-04-01

    We study the effect of decoherence upon the neutrino spectra produced in microquasar jets. In order to analyse the precession of the polarization vector of neutrinos we have calculated its time evolution by solving the corresponding equations of motion, and by assuming two different scenarios, namely: (i) the mixing between two active neutrinos, and (ii) the mixing between one active and one sterile neutrino. The results of the calculations corresponding to these scenarios show that the onset of decoherence does not depends on the activation of neutrino-neutrino interactions when realistic values of the coupling are used in the calculations. We discuss also the case of neutrinos produced in windy microquasars and compare the results which those obtained with more conventional models of microquasars.

  11. A 4-neutrino model with a Higgs triplet

    International Nuclear Information System (INIS)

    Grimus, W.; Pfeiffer, R.; Schwetz, T.

    2000-01-01

    We take as a starting point the Gelmini-Roncadelli model enlarged by a term with explicit lepton number violation in the Higgs potential and add a neutrino singlet field that is coupled via a scalar doublet to the usual leptons. This scenario allows us to take into account all three present indications in favor of neutrino oscillations provided by the solar, atmospheric, and LSND neutrino oscillation experiments. Furthermore, it suggests a model which reproduces naturally one of the two 4-neutrino mass spectra favored by the data. In this model, the solar neutrino problem is solved by large mixing MSW ν e →ν τ transitions, and the atmospheric neutrino problem by transitions of ν μ into a sterile neutrino. (orig.)

  12. Self-interacting dark matter and Higgs bosons in the SU(3)C x SU(3)L x U(1)N model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Nguyen Quynh Lan

    2003-05-01

    We show that the SU(3) C x SU(3) L x U(1) N (3-3-1) model with right-handed neutrinos can provide candidates for self-interacting dark matter, namely they are the CP-even and odd Higgs bosons. These dark matters are stable without imposing of new symmetry and should be weak-interacting. (author)

  13. How neutrino oscillations can induce an effective neutrino number of less than three during big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Foot, R.; Volkas, R.R.

    1997-01-01

    Ordinary-sterile neutrino oscillations can generate significant neutrino asymmetry in the early Universe. In this paper we extend this work by computing the evolution of neutrino asymmetries and light element abundances during the big bang nucleosynthesis (BBN) epoch. We show that a significant electron-neutrino asymmetry can be generated in a way that is approximately independent of the oscillation parameters δm 2 and sin 2 2θ for a range of parameters in an interesting class of models. The numerical value of the asymmetry leads to the prediction that the effective number of neutrino flavors during BBN is either about 2.5 or 3.4, depending on the sign of the asymmetry. Interestingly, one class of primordial deuterium abundance data favors an effective number of neutrino flavors during the epoch of BBN of less than 3. copyright 1997 The American Physical Society

  14. Determining the dark matter mass with DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chitta R. [Centro de Física Teórica de Partículas, Instituto Superior Técnico (CFTP), Universidade Tćnica de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Palomares-Ruiz, Sergio, E-mail: sergio.palomares.ruiz@ist.utl.pt [Centro de Física Teórica de Partículas, Instituto Superior Técnico (CFTP), Universidade Tćnica de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Pascoli, Silvia [IPPP, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2013-10-01

    Cosmological and astrophysical observations provide increasing evidence of the existence of dark matter in our Universe. Dark matter particles with a mass above a few GeV can be captured by the Sun, accumulate in the core, annihilate, and produce high energy neutrinos either directly or by subsequent decays of Standard Model particles. We investigate the prospects for indirect dark matter detection in the IceCube/DeepCore neutrino telescope and its capabilities to determine the dark matter mass.

  15. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  16. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    Science.gov (United States)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-05-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  17. Future short baseline neutrino oscillation experiments

    CERN Document Server

    Camilleri, L L

    1999-01-01

    A neutrino mass that would make a significant contribution to the hidden mass of the universe and thus contribute to the solving of the dark matter puzzle is still the most valuable prize in neutrino physics. This would presumably be through a mixed dark matter scenario and would involve a neutrino mass of 1-2 eV. Assuming the Delta m/sup 2/ observed in neutrino oscillations is the difference between this mass and a negligible mass of a second neutrino, CHORUS and NOMAD would only have a sensitivity of sin/sup 2/ 2 theta ~10/sup -3/ in this domain. The aim of future nu /sub mu /- nu /sub tau / oscillation searches is therefore to improve the sensitivity of the search by about an order of magnitude. NOMAD has a number of events looking exactly like a nu /sub tau / interaction should but, in spite of the good kinematical capabilities of the experiment, the number of such events is consistent with the number of expected background events. Therefore to improve on this situation it is imperative to be able to dete...

  18. Flipped neutrino emissivity from strange matter

    International Nuclear Information System (INIS)

    Goyal, A.; Dutta, S.

    1994-01-01

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos

  19. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2014-12-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{sub em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.

  20. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up