Sample records for stereodivergent cation-controlled cyclizations1

  1. Stereodivergent synthesis with a programmable molecular machine (United States)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone


    It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångström precision are unlikely to be realized. However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences, from sequence-specific synthesis by the ribosome to polyketide synthases, where tethered molecules are passed from active site to active site in multi-enzyme complexes. Artificial molecular machines have been developed for tasks that include sequence-specific oligomer synthesis and the switching of product chirality, a photo-responsive host molecule has been described that is able to mechanically twist a bound molecular guest, and molecular fragments have been selectively transported in either direction between sites on a molecular platform through a ratchet mechanism. Here we detail an artificial molecular machine that moves a substrate between different activating sites to achieve different product outcomes from chemical synthesis. This molecular robot can be programmed to stereoselectively produce, in a sequential one-pot operation, an excess of any one of four possible diastereoisomers from the addition of a thiol and an alkene to an α,β-unsaturated aldehyde in a tandem reaction process. The stereodivergent synthesis includes diastereoisomers that cannot be selectively synthesized through conventional iminium-enamine organocatalysis. We anticipate that future generations of programmable molecular machines may have significant roles in chemical synthesis and molecular manufacturing.

  2. Asymmetric, Stereodivergent Synthesis of (−)-Clusianone Utilizing a Biomimetic Cationic Cyclization ** (United States)

    Boyce, Jonathan H.


    We report a stereodivergent, asymmetric total synthesis of (−)-clusianone in six steps from commercial materials. We implement a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbons. Mechanistic studies point to the unique ability of formic acid to bring about successful cyclization to the clusianone framework. PMID:24916169

  3. Origin of Stereodivergence in Cooperative Asymmetric Catalysis with Simultaneous Involvement of Two Chiral Catalysts. (United States)

    Bhaskararao, Bangaru; Sunoj, Raghavan B


    Accomplishing high diastereo- and enantioselectivities simultaneously is a persistent challenge in asymmetric catalysis. The use of two chiral catalysts in one-pot conditions might offer new avenues to this end. Chirality transfer from a catalyst to product gets increasingly complex due to potential chiral match-mismatch issues. The origin of high enantio- and diastereoselectivities in the reaction between a racemic aldehyde and an allyl alcohol, catalyzed by using axially chiral iridium phosphoramidites PR/S-Ir and cinchona amine is established through transition-state modeling. The multipoint contact analysis of the stereocontrolling transition state revealed how the stereodivergence could be achieved by inverting the configuration of the chiral catalysts that are involved in the activation of the reacting partners. While the enantiocontrol is identified as being decided in the generation of PR/S-Ir-π-allyl intermediate from the allyl alcohol, the diastereocontrol arises due to the differential stabilizations in the C-C bond formation transition states. The analysis of the weak interactions in the transition states responsible for chiral induction revealed that the geometric disposition of the quinoline ring at the C8 chiral carbon of cinchona-enamine plays an anchoring role. The quinolone ring is noted as participating in a π-stacking interaction with the phenyl ring of the Ir-π-allyl moiety in the case of PR with the (8R,9R)-cinchona catalyst combination, whereas a series of C-H···π interactions is identified as vital to the relative stabilization of the stereocontrolling transition states when PR is used with (8S,9S)-cinchona.

  4. Stereodivergent synthesis of jaspine B and its isomers using a carbohydrate-derived alkoxyallene as C3-building block

    Directory of Open Access Journals (Sweden)

    Volker M. Schmiedel


    Full Text Available Herein we present the synthesis of the anhydrophytosphingosine jaspine B and three of its stereoisomers using a carbohydrate-derived alkoxyallene in order to obtain the products in enantiopure form. Key step of the reaction sequence is the addition of the lithiated alkoxyallene to pentadecanal, setting the configuration at the later C-2 of the ring system. This reaction step proceeds with moderate selectivity and therefore leads to a stereodivergent approach to the natural product and its enantiomer. The gold-catalyzed 5-endo-cyclization affords the corresponding dihydrofurans, which after separation, azidation of the enol ether moiety and two subsequent reduction steps give the natural product and its stereoisomers.

  5. Stereodivergent Synthesis of 1,3-Syn-Polyol Natural Product for Stereochemical-Based Structure Activity Relationship Studies (United States)

    Zheng, Jiamin

    The 1,3-syn-diol functionality is very common in many natural products. An important class containing this moiety are the 1,3-syn-polyol/pyranone natural products, which have been isolated from a variety of plant sources, and possess biological activities like plant growth inhibition as well as antifeedant, antifungal, antibacterial, and antitumor properties. The feature of this class is a 6-membered lactone where the lactoe oxygen is part of a 1,3-syn-diol motif. To pursue the 1,3-syn-polyol/pyranone natural products, an iterative hydration of polyene strategy was utilized to provide the 1,3- syn-diol functionality, and asymmetric synthetic strategies were explored to form the requisite stereochemistry. The versatility of the asymmetric approach was demonstrated in the synthesis of eupatorium pyranone and also in an ongoing project aimed at the synthesis of SIA7248. As an outgrowth of our work on the total syntheses of 1,3-syn -polyol natural products inspired a stereo-divergent synthesis of 1,3-syn-polyol natural products and their analogs for stereochemical-based structure-activity relationship (SSAR) studies. To identify the key structural factors important for the anticancer activity of the 1,3-syn-polyol/pyranones, a stereo-divergent 16-member library of pyranone/polyol congeners was designed, synthesized and tested with variations in both stereochemistry and numbers of polyol repeat units. Having access to stereochemical isomers of the biologically active natural products allowed us to design experiments that help illustrate their mechanisms of action.

  6. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes. (United States)

    Liu, Kai; Zhu, Chenghao; Min, Junxiang; Peng, Shiyong; Xu, Guangyang; Sun, Jiangtao


    A stereodivergent synthesis of five-membered N-heterocycles, such as 2,3-dihydropyrroles, and 2-methylene and 3-methylene pyrrolidines, has been developed through a tandem annulation of amino alkynes with diazo compounds and involves the trapping of in situ formed intermediates. Mechanistic investigations indicate that the copper-catalyzed tandem annulations proceed by allenoate formation and subsequent intramolecular hydroamination. In contrast, the rhodium-catalyzed protocol features a carbenoid insertion into the NH bond and subsequent Conia-ene cyclization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing (United States)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping


    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  8. Stereodivergent-at-metal synthesis of [60]fullerene hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Martinez, Juan; Vidal, Sara; Fernandez, Israel; Filippone, Salvatore [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Martin, Nazario [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); IMDEA-Nanociencia, C/Faraday, Universidad Autonoma de Madrid (Spain)


    Chiral fullerene-metal hybrids with complete control over the four stereogenic centers, including the absolute configuration of the metal atom, have been synthesized for the first time. The stereochemistry of the four chiral centers formed during [60]fullerene functionalization is the result of both the chiral catalysts employed and the diastereoselective addition of the metal complexes used (iridium, rhodium, or ruthenium). DFT calculations underpin the observed configurational stability at the metal center, which does not undergo an epimerization process. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Metal cation controls phosphate release in the myosin ATPase. (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E


    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  10. Lewis acid tuned facial stereodivergent HDA reactions using beta-substituted N-vinyloxazolidinones. (United States)

    Gohier, Frédéric; Bouhadjera, Keltoum; Faye, Djibril; Gaulon, Catherine; Maisonneuve, Vincent; Dujardin, Gilles; Dhal, Robert


    The [4 + 2] acido-catalyzed heterocycloaddition between new beta-substituted N-vinyl-1,3-oxazolidin-2-ones (with R' = Me, Ar, CH2 Ar) and beta,gamma-unsaturated alpha-ketoesters (R = Ar) afforded heteroadducts with high levels of endo and facial selectivities. A complete reversal of facial differentiation was achieved by varying the Lewis acid, leading to the stereoselective formation of either endo-alpha or endo-beta adducts. [reaction: see text].

  11. A stereodivergent strategy to both product enantiomers from the same enantiomer of a stereoinducing catalyst: agelastatin A. (United States)

    Trost, Barry M; Dong, Guangbin


    In this article, we report a full account of our recent development of pyrroles and N-alkoxyamides as new classes of nucleophiles for palladium-catalyzed AAA reactions, along with application of these methodologies in the total synthesis of agelastatin A, a marine natural product with exceptional anticancer activity and other biological properties. Our method allows for access to either regioisomer of the pyrrolopiperazinones (6 and 19) with high efficiency and enantioselectivity. Note that isomer 19 was obtained via a cascade reaction through a double allylic alkylation pathway. From regioisomer 6, the total synthesis of (+)-agelastatin A was completed in a very short fashion (four steps from 6), during the course of which we developed a new copper catalyst for aziridination and an In(OTf)(3)/DMSO system to oxidatively open an N-tosyl aziridine. Starting with the other pyrrolopiperazinone 19, a five-step sequence has been developed to furnish a formal total synthesis of (-)-agelastatin A. A unique feature of our syntheses is the use of two rather different strategies for the total syntheses of both enantiomers of agelastatin A using the same enantiomer of a chiral palladium catalyst.

  12. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide. (United States)

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T


    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Syntheses of the Stemona Alkaloids (±)-Stenine, (±)-Neostenine, and (±)-13-Epineostenine Using a Stereodivergent Diels-Alder/Azido-Schmidt Reaction (United States)

    Frankowski, Kevin J.; Golden, Jennifer E.; Zeng, Yibin; Lei, Yao; Aubé, Jeffrey


    A tandem Diels-Alder/azido Schmidt reaction sequence provides rapid access to the core skeleton shared by several Stemona alkaloids including stenine, neostenine, tuberstemonine, and neotubererostemonine. The discovery and evolution of inter- and intramolecular variations of this process and their applications to total syntheses of (±)–stenine and (±)–neostenine is described. The stereochemical outcome of the reaction depends on both substrate type and reaction condition, enabling the preparation of both (±)–stenine and (±)–neostenine from the same diene/dienophile combination. PMID:18396881

  14. Synthesis of 3-substituted 4-piperidinones via a one-pot tandem oxidation-cyclization-oxidation process: stereodivergent reduction to 3,4-disubstituted piperidines. (United States)

    Bahia, Perdip S; Snaith, John S


    A novel approach to 3-substituted 4-piperidinones is described. The one-pot tandem oxidation-cyclization-oxidation of unsaturated alcohols 1a-e by PCC or PCC and trifluoromethanesulfonic acid affords piperidinones 2a-e in good yield. Reduction of 2a-e by L-Selectride gives the corresponding cis 3,4-disubstituted piperidines with diastereomeric ratios of >99:1. By contrast, reduction of 2a-e by Al-isopropoxydiisobutylalane gives the trans products with diastereomeric ratios of up to 99:1.

  15. Stereodivergent Mannich reaction of bis(trimethylsilyl)ketene acetals with N-tert-butanesulfinyl imines by Lewis acid or Lewis base activation, a one-pot protocol to obtain chiral β-amino acids. (United States)

    Cantú-Reyes, Margarita; Alvarado-Beltrán, Isabel; Ballinas-Indilí, Ricardo; Álvarez-Toledano, Cecilio; Hernández-Rodríguez, Marcos


    We report a one-pot synthesis of chiral β 2,2,3 -amino acids by the Mannich addition of bistrimethylsilyl ketene acetals to N-tert-butanesulfinyl imines followed by the removal of the chiral auxiliary. The synthesis and isolation of pure β-amino acid hydrochlorides were conducted under mild conditions, without strong bases and this method is operationally simple. The stereoselective reaction was promoted by two different activation methods that lead to different stereoisomers: (1) Lewis Acid (LA) catalysis with boron trifluoride diethyl etherate and (2) Lewis Base (LB) catalysis with tetrabutylammonium difluorotriphenylsilicate. The reaction presented good diastereoselectivity with LB activation and moderate to good dr with LA catalysis. The exceptions in both protocols were imines with electron donating groups in the aromatic ring.

  16. Total Synthesis of Plukenetione A (United States)

    Zhang, Qiang; Mitasev, Branko; Qi, Ji; Porco, John A.


    We describe an alkylative dearomatization/acid-mediated adamantane annulation sequence which allows facile access to type A polyprenylated acylphloroglucinol (PPAP) natural products including plukenetione A. Introduction of the 2-methyl-1-propenyl moiety was achieved via stereodivergent SN2 and SN1 cyclizations of allylic alcohol substrates. PMID:20843036

  17. Diastereoselective Au-Catalyzed Allene Cycloisomerizations to Highly Substituted Cyclopentenes. (United States)

    Reeves, Ryan D; Phelps, Alicia M; Raimbach, William A T; Schomaker, Jennifer M


    Site- and regiocontrolled Au-catalyzed allene carbocyclizations furnish highly substituted cyclopentenes in >1:1 dr. Significant substitution on the substrate is tolerated, with potential to install five contiguous stereocenters after alkene functionalization. Major challenges include identifying a Au/Cu catalyst that controls both the relative rates of allene epimerization/cyclization and the facial selectivity in addition of a metal enolate to the allene. Experiments to achieve stereodivergent cyclizations and transform key cyclopentenes into useful synthetic building blocks are described.

  18. Cyclopropenes in Metallacycle-Mediated Cross-Coupling with Alkynes: Convergent Synthesis of Highly Substituted Vinylcyclopropanes. (United States)

    O'Rourke, Natasha F; Micalizio, Glenn C


    Stereodivergent metallacycle-mediated cross-coupling reactions are described for the synthesis of densely functionalized vinylcyclopropanes from the union of alkynes with cyclopropenes. Strategies explored include hydroxyl-directed and nondirected processes, with the latter of these delivering vinylcyclopropanes with exquisite levels of regio- and stereoselectivity. Challenges inherent to these coupling reactions include diastereoselectivity (with respect to the cyclopropene) and regioselectivity (with respect to both coupling partners).

  19. Stereocontrolled synthesis of polyhydroxylated bicyclic azetidines as a new class of iminosugars. (United States)

    Malinowski, Maciej; Hensienne, Raphaël; Kern, Nicolas; Tardieu, Damien; Bodlenner, Anne; Hazelard, Damien; Compain, Philippe


    We report herein the development of a stereodivergent route towards polyhydroxylated bicyclic azetidine scaffolds, namely 6-azabicyclo[3.2.0]heptane derivatives. The strategy hinges on a common bicyclic β-lactam precursor, which is forged by way of a rare example of a cationic Dieckmann-type reaction, followed by IBX-mediated desaturation. Substrate-controlled diastereoselective oxidations then allow the divergent preparation of novel iminosugar mimics.

  20. A divergent synthesis of the delta(13)-9-isofurans. (United States)

    Taber, Douglass F; Gu, Peiming; Li, Rui


    A stereodivergent total synthesis of the Delta(13)-9-isofurans has been developed. The four core substituted tetrahydrofurans were prepared by the Sharpless asymmetric epoxidation and Sharpless asymmetric dihydroxylation followed by cascade cyclization. The relative configuration at C-8 was inverted by oxidation followed by immediate L-Selectride reduction. The relative configuration of the C-15 diastereomers was assigned by (S)-Binol/LAH/EtOH reduction of the corresponding enone. This synthesis of the Delta(13)-9-isofurans will provide sufficient material for further investigation of their biological activity.

  1. A Divergent Synthesis of the Δ13-9-Isofurans (United States)

    Taber, Douglass F.; Gu, Peiming; Li, Rui


    A stereodivergent total synthesis of the Δ13-9-isofurans has been developed. The four core substituted tetrahydrofurans were prepared by the Sharpless asymmetric epoxidation and Sharpless asymmetric dihydroxylation followed by cascade cyclization. The relative configuration at C-8 was inverted by oxidation followed by immediate L-selectride reduction. The relative configuration of the C-15 diastereomers were assigned by (S)-Binol/LAH/EtOH reduction of the corresponding enone. This synthesis of the Δ13-9-isofurans will provide sufficient material for further investigation of their biological activity. PMID:19572754

  2. Stereopermutation on the Putative Structure of the Marine Natural Product Mucosin. (United States)

    Antonsen, Simen G; Gallantree-Smith, Harrison; Görbitz, Carl Henrik; Hansen, Trond Vidar; Stenstrøm, Yngve H; Nolsøe, Jens M J


    A stereodivergent total synthesis has been executed based on the plausibly misassigned structure of the unusual marine hydrindane mucosin ( 1 ). The topological connectivity of the four contiguous all -carbon stereocenters has been examined by selective permutation on the highlighted core. Thus, capitalizing on an unprecedented stereofacial preference of the cis -fused bicycle[4.3.0]non-3-ene system when a Michael acceptor motif is incorporated, copper-mediated conjugate addition furnished a single diastereomer. Cued by the relative relationship reported for the appendices in the natural product, the resulting anti -adduct was elaborated into a probative target structure 1* .

  3. Synthesis and antiacetylcholinesterase activity of new D-glyceraldehyde heterocyclic derivatives

    International Nuclear Information System (INIS)

    Scorzo, Cecilia M.; Fascio, Mirta L.; D'Accorso, Norma B.; Cabrera, Margarita Gutierrez; Saavedra, Luis Astudillo


    We report herein the convenient procedures for the syntheses of different heterocyclic compounds from 2,3-O-isopropylidene-D-glyceraldehyde using intramolecular cyclization, 1,3-dipolar cycloaddition or bimolecular coupling reactions. The products were characterized by 1 H and 13 C NMR spectroscopy and elemental analysis. The new heterocycles and their derivatives were evaluated as inhibitors of acetylcholinesterase enzyme. (author)

  4. Rationalization of the selectivity between 1,3- and 1,2-migration: a DFT study on gold(i)-catalyzed propargylic ester rearrangement. (United States)

    Jiang, Jingxing; Liu, Yan; Hou, Cheng; Li, Yinwu; Luan, Zihong; Zhao, Cunyuan; Ke, Zhuofeng


    Gold catalyzed rearrangement of propargylic esters can undergo 1,3-acyloxy migration to form allenes, or undergo 1,2-acyloxy migration to access gold-carbenoids. The variation in migration leads to different reactivities and diverse cascade transformations. The effect of terminal substituents is very important for the rearrangement. However, it remains ambiguous how terminal substituents govern the selectivity of the rearrangement. This study presents a theoretical model based on the resonance structure of gold activated propargylic ester complexes to rationalize the rearrangement selectivity. Substrates with a major resonance contributor A prefer 5-exo-dig cyclization (1,2-migration), while those with a major resonance contributor B prefer 6-endo-dig cyclization (1,3-migration). This concise model would be helpful in understanding and tuning the selectivity of the metal catalyzed rearrangement of propargylic esters.

  5. Synthesis and antiacetylcholinesterase activity of new D-glyceraldehyde heterocyclic derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Scorzo, Cecilia M.; Fascio, Mirta L.; D' Accorso, Norma B. [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Organica; Cabrera, Margarita Gutierrez; Saavedra, Luis Astudillo [Universidad de Talca (Chile). Inst. de Quimica de Productos Naturales. Lab. de Sintesis Organica


    We report herein the convenient procedures for the syntheses of different heterocyclic compounds from 2,3-O-isopropylidene-D-glyceraldehyde using intramolecular cyclization, 1,3-dipolar cycloaddition or bimolecular coupling reactions. The products were characterized by {sup 1}H and {sup 13}C NMR spectroscopy and elemental analysis. The new heterocycles and their derivatives were evaluated as inhibitors of acetylcholinesterase enzyme. (author)

  6. Selective alkylation of toluene over basic zeolites: an in situ infrared spectroscopic investigation

    NARCIS (Netherlands)

    Palomares gimeno, A.E.; Palomares, A.E.; Eder-Mirth, G.; Mirth, G.C.; Lercher, J.A.


    In situinfrared spectroscopy was used to study the sorption and reaction of toluene and methanol over various alkali exchanged X zeolites. The size of the metal cations controls the preference of sorbing methanol or toluene. The smaller the cation, the higher the preference for methanol is. A

  7. alkylation of toluene over basic catalysts - key requirements for side chain alkylation

    NARCIS (Netherlands)

    Palomares gimeno, A.E.; Palomares, A.E.; Eder-Mirth, G.; Mirth, G.C.; Rep, M.; Rep, M.; Lercher, J.A.


    In situinfrared spectroscopy was used to study sorption and reaction of toluene and methanol over various basic catalysts (MgO, hydrotalcites, and basic zeolites). The size of the metal cations controls the preference of sorbing methanol or toluene; i.e., the larger the metal cation, the higher the

  8. Total Syntheses of Polycyclic Polyprenylated Acylphloroglucinol Natural Products and Analogs Utilizing Alkylative Dearomatizations and Cationic Cyclizations (United States)

    Boyce, Jonathan H.

    Polycyclic polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. These compounds have interesting anticancer and anti-HIV properties as well as other biological activities making them highly attractive synthetic targets. We report a stereodivergent, asymmetric total synthesis of (-)-clusianone in six steps from commercial materials. We have implemented a challenging cationic cyclization forging a bond between two sterically encumbered quaternary carbon atoms. Mechanistic studies point to the unique ability of formic acid to mediate the cyclization forming the clusianone framework. We also present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via palladium-catalyzed dearomative conjunctive allylic alkylation (DCAA). These efficient palladium-catalyzed protocols construct the [3.3.1]-bicyclic PPAP core in a single step from their stable aromatic precursors. The first syntheses of 13,14-didehydroxyisogarcinol and garcimultiflorone A stereoisomers are reported in six steps from a commercially available phloroglucinol. Lewis acid-controlled, diastereoselective cationic oxycyclizations enabled asymmetric syntheses of (-)-6-epi-13,14-didehydroxyisogarcinol and (+)-30-epi-13,14-didehydroxyisogarcinol. A similar strategy enabled production of the meso-derived isomers (+/-)-6,30- epi-13,14-didehydroxyisogarcinol and (+/-)-6,30-epi -garcmultiflorone A. A convenient strategy for gram scale synthesis of these stereoisomers was developed utilizing diastereomer separation at a later stage in the synthesis that minimized the number of necessary synthetic operations to access all possible stereoisomers. Finally, we report cationic rearrangements of dearomatized acylphloroglucinols leading to the formation of unprecedented PPAP scaffolds. A novel type A [3.3.1]-bicyclic PPAP was produced as a major product and the structure confirmed by X-ray crystallographic

  9. Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells. (United States)

    Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay


    Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.

  10. Cooperative effect of adsorbed cations on electron transport and recombination behavior in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kou, Dongxing; Liu, Weiqing; Hu, Linhua; Dai, Songyuan


    Highlights: • Disclose the mechanism of cooperative effects of adsorbed cations in DSCs. • Characterize the influence of adsorption of Im + s on photoinduced electron density. • The effect of Li + is orderly enhanced in DSCs with increasing alkyl chain length. • The DSCs efficiencies are relatively depended on the trade-off between J sc and FF. -- Abstract: Lithium ion (Li + ) and imidazolium cations (Im + s) had been reported to have competitive effects on the photoinduced electrons in TiO 2 -electrolyte systems. Herein, a further investigation about their cooperative effect in dye-sensitized solar cells (DSCs) using organic liquid electrolyte is developed by altering alkyl chain length. Imidazolium iodides (Im + I − s) with different alkyl chain length (3, 6, and 12) were synthesized and used as iodide sources. The adsorption amount of Im + s onto TiO 2 , band edge shifts, trap states distribution, electron recombination/transport processes and ion transport within the electrolyte for DSCs were detected. It is found that the multilayered adsorption of Im + s can induce a lower photoinduced electron density. In-depth characterizations indicate that this negative effect can be reduced as the adsorption amount decreased with increasing alkyl chain length and the effect of Li + is consequently strengthened in varying degrees. The decisive role of Li + in cation-controlled interfacial charge injection process finally contributes an ordinal increase of short-circuit photocurrent density J sc for DSCs with increasing alkyl chain length because of the increasing charge injection efficiency η inj . Additionally, a large power dissipation in ions transport process is induced by the long alkyl chain of Im + s. Overall, the cell efficiencies are relatively dependent of the trade-off between J sc and FF, which is essentially related to the cooperative effect of adsorbed cations

  11. Redox kinetics and mechanism in silicate melts

    International Nuclear Information System (INIS)

    Cochain, B.


    This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)

  12. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack (United States)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion