WorldWideScience

Sample records for step real-time rt-pcr

  1. Detection of Tomato black ring virus by real-time one-step RT-PCR.

    Science.gov (United States)

    Harper, Scott J; Delmiglio, Catia; Ward, Lisa I; Clover, Gerard R G

    2011-01-01

    A TaqMan-based real-time one-step RT-PCR assay was developed for the rapid detection of Tomato black ring virus (TBRV), a significant plant pathogen which infects a wide range of economically important crops. Primers and a probe were designed against existing genomic sequences to amplify a 72 bp fragment from RNA-2. The assay amplified all isolates of TBRV tested, but no amplification was observed from the RNA of other nepovirus species or healthy host plants. The detection limit of the assay was estimated to be around nine copies of the TBRV target region in total RNA. A comparison with conventional RT-PCR and ELISA, indicated that ELISA, the current standard test method, lacked specificity and reacted to all nepovirus species tested, while conventional RT-PCR was approximately ten-fold less sensitive than the real-time RT-PCR assay. Finally, the real-time RT-PCR assay was tested using five different RT-PCR reagent kits and was found to be robust and reliable, with no significant differences in sensitivity being found. The development of this rapid assay should aid in quarantine and post-border surveys for regulatory agencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  3. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    Science.gov (United States)

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR) for detection of avian metapneumovirus subtype A

    OpenAIRE

    Ferreira, HL; Spilki, FR; dos Santos, MMAB; de Almeida, RS; Arns, CW

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  5. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  6. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    Science.gov (United States)

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of single step RT-PCR for detection of Kyasanur forest disease virus from clinical samples

    Directory of Open Access Journals (Sweden)

    Gouri Chaubal

    2018-02-01

    Discussion and conclusion: The previously published sensitive real time RT-PCR assay requires higher cost in terms of reagents and machine setup and technical expertise has been the primary reason for development of this assay. A single step RT-PCR is relatively easy to perform and more cost effective than real time RT-PCR in smaller setups in the absence of Biosafety Level-3 facility. This study reports the development and optimization of single step RT-PCR assay which is more sensitive and less time-consuming than nested RT-PCR and cost effective for rapid diagnosis of KFD viral RNA.

  8. Quantitative real-time RT-PCR and chromogenic in situ hybridization

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia G T

    2009-01-01

    . METHODS: To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. RESULTS: The concordance...

  9. Real-Time RT-PCR for the Detection of Lyssavirus Species

    Directory of Open Access Journals (Sweden)

    A. Deubelbeiss

    2014-01-01

    Full Text Available The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV. Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.

  10. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated associated virus 3 variant groups I, II, III and VI

    Directory of Open Access Journals (Sweden)

    Bester Rachelle

    2012-09-01

    Full Text Available Abstract Background Grapevine leafroll-associated virus 3 (GLRaV-3 is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. Methods In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. Results A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM

  11. Comparative Evaluation Of Conventional Rt-pcr And Real-time Rt-pcr (rrt-pcr) For Detection Of Avian Metapneumovirus Subtype A [comparação Entre As Técnicas De Rt-pcr Convencional E Rt-pcr Em Tempo Real Para A Detecção Do Metapneumovírus Aviários Subtipo A

    OpenAIRE

    Ferreira H.L.; Spilki F.R.; dos Santos M.M.A.B.; de Almeida R.S.; Arns C.W.

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  12. Canine distemper virus detection by different methods of One-Step RT-qPCR

    Directory of Open Access Journals (Sweden)

    Claudia de Camargo Tozato

    2016-01-01

    Full Text Available ABSTRACT: Three commercial kits of One-Step RT-qPCR were evaluated for the molecular diagnosis of Canine Distemper Virus. Using the kit that showed better performance, two systems of Real-time RT-PCR (RT-qPCR assays were tested and compared for analytical sensitivity to Canine Distemper Virus RNA detection: a One-Step RT-qPCR (system A and a One-Step RT-qPCR combined with NESTED-qPCR (system B. Limits of detection for both systems were determined using a serial dilution of Canine Distemper Virus synthetic RNA or a positive urine sample. In addition, the same urine sample was tested using samples with prior centrifugation or ultracentrifugation. Commercial kits of One-Step RT-qPCR assays detected canine distemper virus RNA in 10 (100% urine samples from symptomatic animals tested. The One-Step RT-qPCR kit that showed better results was used to evaluate the analytical sensitivity of the A and B systems. Limit of detection using synthetic RNA for the system A was 11 RNA copies µL-1 and 110 RNA copies µl-1 for first round System B. The second round of the NESTED-qPCR for System B had a limit of detection of 11 copies µl-1. Relationship between Ct values and RNA concentration was linear. The RNA extracted from the urine dilutions was detected in dilutions of 10-3 and10-2 by System A and B respectively. Urine centrifugation increased the analytical sensitivity of the test and proved to be useful for routine diagnostics. The One-Step RT-qPCR is a fast, sensitive and specific method for canine distemper routine diagnosis and research projects that require sensitive and quantitative methodology.

  13. Identification of Dobrava, Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR.

    Science.gov (United States)

    Aitichou, Mohamed; Saleh, Sharron S; McElroy, Anita K; Schmaljohn, C; Ibrahim, M Sofi

    2005-03-01

    We developed four assays for specifically identifying Dobrava (DOB), Hantaan (HTN), Puumala (PUU), and Seoul (SEO) viruses. The assays are based on the real-time one-step reverse transcriptase polymerase chain reaction (RT-PCR) with the small segment used as the target sequence. The detection limits of DOB, HTN, PUU, and SEO assays were 25, 25, 25, and 12.5 plaque-forming units, respectively. The assays were evaluated in blinded experiments, each with 100 samples that contained Andes, Black Creek Canal, Crimean-Congo hemorrhagic fever, Rift Valley fever and Sin Nombre viruses in addition to DOB, HTN, PUU and SEO viruses. The sensitivity levels of the DOB, HTN, PUU, and SEO assays were 98%, 96%, 92% and 94%, respectively. The specificity of DOB, HTN and SEO assays was 100% and the specificity of the PUU assay was 98%. Because of the high levels of sensitivity, specificity, and reproducibility, we believe that these assays can be useful for diagnosing and differentiating these four Old-World hantaviruses.

  14. Improvement of a real-time RT-PCR assay for the detection of enterovirus RNA

    Directory of Open Access Journals (Sweden)

    Bruynseels Peggy

    2009-07-01

    Full Text Available Abstract We describe an improvement of an earlier reported real-time RT-PCR assay for the detection of enterovirus RNA, based on the 5' exonuclease digestion of a dual-labeled fluorogenic probe by Taq DNA polymerase. A different extraction method, real-time RT-PCR instrument and primer set were evaluated. Our data show that the optimized assay yields a higher sensitivity and reproducibility and resulted in a significant reduced hands-on time per sample.

  15. Real-time onestep RT-PCR for the detection and differentiation of European and North American types of PRRSV in boar semen

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Larsen, Lars Erik

    and safe diagnostic procedure, since cDNA synthesis and PCR is performed sequentially without inbetween opening of the PCR-tubes, thus eliminating a substantial contamination risk. The aim of the present study was to validate a real-time OneStep RT-PCR assay for the simultaneous detection...

  16. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    Science.gov (United States)

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  17. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1.

    Science.gov (United States)

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R (2) values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.

  18. Cross-Platform Evaluation of Commercial Real-Time SYBR Green RT-PCR Kits for Sensitive and Rapid Detection of European Bat Lyssavirus Type 1

    Directory of Open Access Journals (Sweden)

    Evelyne Picard-Meyer

    2015-01-01

    Full Text Available This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R2 values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.

  19. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Directory of Open Access Journals (Sweden)

    Aili Cui

    Full Text Available Large-scale Hand, Foot, and Mouth Disease (HFMD outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs. Among them, human enterovirus 71 (HEV71 and coxsackievirus A16 (CVA16 are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells. The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11 by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.

  20. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    Science.gov (United States)

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR for detection of avian metapneumovirus subtype A Comparação entre as técnicas de RT-PCR convencional e RT-PCR em tempo real para a detecção do metapneumovírus aviários subtipo A

    Directory of Open Access Journals (Sweden)

    Helena Lage Ferreira

    2009-08-01

    Full Text Available Avian metapneumovirus (AMPV belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F gene and nucleocapsid (N gene were compared with an established test for the attachment (G gene. All the RT-PCR tested assays were able to detect the AMPV/A. The lower detection limits were observed using the N-, F- based RRT-PCR and F-based conventional RT-PCR (10(0.3 to 10¹ TCID50 mL-1. The present study suggests that the conventional F-based RT-PCR presented similar detection limit when compared to N- and F-based RRT-PCR and they can be successfully used for AMPV/A detection.O metapneumovírus aviário (AMPV pertence ao gênero Metapneumovirus, família Paramyxoviridae. Isolamento viral, sorologia e detecção do RNA genômico são atualmente as técnicas utilizadas para o diagnóstico desse agente. O objetivo do presente estudo foi comparar a detecção de RNA viral de seis isolados de AMPV, subtipo A (AMPV/A, utilizando diferentes métodos de RT-PCR convencional e real time RT-PCR (RRT-PCR. Duas novas técnicas de RT-PCR convencional e duas técnicas de RRT-PCR, ambas para a detecção dos genes da nucleoproteína (N e da proteína de fusão (F, foram comparadas com um RT-PCR previamente estabelecido para a detecção do AMPV (gene da glicoproteína -G. Todos esses métodos foram capazes de detectar os isolados AMPV/A. As técnicas RRT-PCR (genes F e N mostraram os menores limites de detecção (10(0.3 to 10¹ TCID50 mL-1. Os resultados sugerem que as técnicas RT-PCR convencional (gene F e as técnicas de RRT-PCR (gene F e N desenvolvidas no presente estudo podem ser utilizadas com sucesso para a detecção do

  2. A novel and highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus.

    Science.gov (United States)

    Shen, Xin-Xin; Qiu, Fang-Zhou; Zhao, Huai-Long; Yang, Meng-Jie; Hong, Liu; Xu, Song-Tao; Zhou, Shuai-Feng; Li, Gui-Xia; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-03-01

    The sensitivity of qRT-PCR assay is not adequate for the detection of the samples with lower viral load, particularly in the cerebrospinal fluid (CSF) of patients. Here, we present the development of a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of human enterovirus (HEV). The clinical performance of both RTN RT-PCR and qRT-PCR was also tested and compared using 140 CSF and fecal specimens. The sensitivities of RTN RT-PCR assay for EV71, Coxsackievirus A (CVA)16, CVA6 and CVA10 achieved 10 -8 dilution with a corresponding Ct value of 38.20, 36.45, 36.75, and 36.45, respectively, which is equal to traditional two-step nested RT-PCR assay and approximately 2-10-fold lower than that of qRT-PCR assay. The specificity of RTN RT-PCR assay was extensively analyzed insilico and subsequently verified using the reference isolates and clinical samples. Sixteen qRT-PCR-negative samples were detected by RTN RT-PCR and a variety of enterovirus serotypes was identified by sequencing of inner PCR products. We conclude RTN RT-PCR is more sensitive than qRT-PCR for the detection of HEV in clinical samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparison of the genexpert enterovirus assay (GXEA) with real-time one step RT-PCR for the detection of enteroviral RNA in the cerebrospinal fluid of patients with meningitis.

    Science.gov (United States)

    Hong, JiYoung; Kim, Ahyoun; Hwang, Seoyeon; Cheon, Doo-Sung; Kim, Jong-Hyen; Lee, June-Woo; Park, Jae-Hak; Kang, Byunghak

    2015-02-13

    Enteroviruses (EVs) are the leading cause of aseptic meningitis worldwide. Detection of enteroviral RNA in clinical specimens has been demonstrated to improve the management of patient care, especially that of neonates and young children. To establish a sensitive and reliable assay for routine laboratory diagnosis, we compared the sensitivity and specificity of the GeneXpert Enterovirus Assay (GXEA) with that of the reverse transcription polymerase chain reaction (RT-PCR) based assay referred to as real-time one step RT-PCR (RTo-PCR). The sensitivity/specificity produced by GXEA and RTo-PCR were 100%/100% and 65%/100%, respectively. Both methods evaluated in this article can be used for detection of enterovirus in clinical specimens and these nucleic acid amplification methods are useful assays for the diagnosis of enteroviral infection.

  4. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  5. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    Science.gov (United States)

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  6. Development and implementation of the quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1 surveillance network in mainland China

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2011-03-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR and real time RT-PCR (rRT-PCR have been indispensable methods for influenza surveillance, especially for determination of avian influenza. The movement of testing beyond reference lab introduced the need of quality control, including the implementation of an evaluation system for validating personal training and sample proficiency testing. Methods We developed a panel with lysates of seasonal influenza virus (H1N1, H3N2 and B, serials of diluted H5N1 virus lysates, and in-vitro transcribed H5 hemaglutinin (HA and an artificial gene RNAs for RT-PCR and rRT-PCR quality control assessment. The validations of stability and reproducibility were performed on the panel. Additionally, the panel was implemented to assess the detection capability of Chinese human avian influenza networks. Results The panel has relatively high stability and good reproducibility demonstrated by kappa's tests. In the implementation of panel on Chinese human avian influenza networks, the results suggested that there were a relatively low number of discrepancies for both concise and reproducibility in Chinese avian influenza virus net works. Conclusions A quality control panel of RT-PCR and real-time RT-PCR for avian influenza A (H5N1 surveillance network was developed. An availably statistical data, which are used to assess the detection capability of networks on avian influenza virus (H5N1, can be obtained relatively easily through implementation of the panel on networks.

  7. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    Science.gov (United States)

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  8. Real-time PCR (qPCR) primer design using free online software.

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  9. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    Science.gov (United States)

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8

  10. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas

    DEFF Research Database (Denmark)

    Lyng, Maria B; Laenkholm, Anne-Vibeke; Pallisgaard, Niels

    2008-01-01

    BACKGROUND: Quantitative real-time RT-PCR (RT-qPCR) has become a valuable molecular technique in basic and translational biomedical research, and is emerging as an equally valuable clinical tool. Correlation of inter-sample values requires data normalization, which can be accomplished by various...... means, the most common of which is normalization to internal, stably expressed, reference genes. Recently, such traditionally utilized reference genes as GAPDH and B2M have been found to be regulated in various circumstances in different tissues, emphasizing the need to identify genes independent...... of factors influencing the tissue, and that are stably expressed within the experimental milieu. In this study, we identified genes for normalization of RT-qPCR data for invasive breast cancer (IBC), with special emphasis on estrogen receptor positive (ER+) IBC, but also examined their applicability to ER...

  11. Real time RT-PCR assay for detection of different serotypes of FMDV in Egypt

    Directory of Open Access Journals (Sweden)

    Laila El-Shehawy

    Full Text Available Aim: The present study indicated that rRT-PCR could be provided for the detection of FMDV in infected, contact and carrier cattle and also provide a rapid sensitive tool aiming to aid in rapid disease detection and control. Foot and Mouth disease virus serotypes O and A still existing in Egypt. In January 2012, sever outbreaks struck the animal population in most Egyptian 1 governorates. The causative virus was identified as FMDV SAT2. Material and Methods: Five samples of tongue epithelium (ET and five oesophageal-pharyngeal (OP fluid samples were collected from FMD suspected cattle in infected farm at El-Fayoum and 20 OP samples from in-contact cattle at the same farm in addition to 30 OP samples from apparently healthy cattle at three different localities in El-Fayoum governorate (12 from Fayoum; 9 from Sinoras and 9 from Edsa in order to detect carrier cattle. All of these samples were collected during November and December 2011 and January 2012. Results: All the ET and OP samples were inoculated on BHK cell culture and baby mice. The obtained results were identified using complement fixation test in addition to real-time reverse transcriptase polymerase chain reaction (rRT-PCR. In the infected farm at El-Fayoum FMDV type SAT2 was detected in cattle which are considered as the first introduction of this type while FMDV type O and SAT2 were detected in the in-contact cattle in the same farm. The sensitivity of rRT-PCR was cleared in the in-contact cattle as 13 out of 20 OP samples were positive to FMDV by rRT-PCR while 11 out of 20 OP samples were positive to FMDV by CFT. The OP samples collected from apparently healthy cattle from Fayoum, Sinoras and Edsa localities in Fayoum governorate demonstrate the circulation of the FMDV type A, O and the recent SAT2 in carrier cattle which threaten cattle population in Fayoum governorate. Also the sensitivity of real time RT-PCR over the CFT in detection of FMDV carrier cattle was clearly noticed in

  12. Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler's murine encephalomyelitis virus and rat theilovirus.

    Science.gov (United States)

    Yuan, Wen; Wang, Jing; Xu, Fengjiao; Huang, Bihong; Lian, Yuexiao; Rao, Dan; Yin, Xueqin; Wu, Miaoli; Zhu, Yujun; Zhang, Yu; Huang, Ren; Guo, Pengju

    2016-10-01

    Theiler's murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×10(1) copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evaluation of a multiplex real-time PCR assay for the detection of respiratory viruses in clinical specimens.

    Science.gov (United States)

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun; Kim, Jong Wan

    2012-11-01

    In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR.

  14. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time

  15. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    Science.gov (United States)

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  16. Detection panel for identification of twelve hemorrhagic viruses using real-time RT-PCR.

    Science.gov (United States)

    Fajfr, M; Neubauerová, V; Pajer, P; Kubíčková, P; Růžek, D

    2014-09-01

    Viral hemorrhagic fevers are caused by viruses from four viral families and develop diseases with high fatality rates. However, no commercial diagnostic assay for these pathogens is available. We developed real-time RT-PCR assays for viruses Ebola, Marburg, Lassa, Guanarito, Machupo, Junin, Sabiá, Seoul, Puumala, Hantaan, Crimean-Congo hemorrhagic fever virus and Rift Valley fever virus. The assays were optimized for identical reaction conditions and can be performed using several types of real-time PCR instruments, both capillary and plate, including a portable Ruggedized Advanced Pathogen Identification Device (R.A.P.I.D.) (Idaho Technology, Inc.). In combination with primers and probes from previously published studies, we present a simple system for rapid identification of hemorrhagic filoviruses, arenaviruses and bunyaviruses with sufficient sensitivity for first contact laboratory and diagnosis under field conditions.

  17. A one-step, triplex, real-time RT-PCR assay for the simultaneous detection of enterovirus 71, coxsackie A16 and pan-enterovirus in a single tube.

    Directory of Open Access Journals (Sweden)

    Shiyin Zhang

    Full Text Available The recent, ongoing epidemic of hand, foot, and mouth disease (HFMD, which is caused by enterovirus infection, has affected millions of children and resulted in thousands of deaths in China. Enterovirus 71 (EV71 and coxsackie A16 (CA16 are the two major distinct pathogens for HFMD. However, EV71 is more commonly associated with neurologic complications and even fatalities. Therefore, simultaneously detecting and differentiating EV71 and CA16 specifically from other enteroviruses for diagnosing HFMD is important. Here, we developed a one-step, triplex, real-time RT-PCR assay for the simultaneous detection of EV71, CA16, and pan-enterovirus (EVs in a single tube with an internal amplification control. The detection results for the serially diluted viruses indicate that the lower limit of detection for this assay is 0.001-0.04 TCID50/ml, 0.02 TCID50/ml, and 0.001 TCID50/ml for EVs, EV71, and CA16, respectively. After evaluating known HFMD virus stocks of 17 strains of 16 different serotypes, this assay showed a favorable detection spectrum and no obvious cross-reactivity. The results for 141 clinical throat swabs from HFMD-suspected patients demonstrated sensitivities of 98.4%, 98.7%, and 100% for EVs, EV71, and CA16, respectively, and 100% specificity for each virus. The application of this one-step, triplex, real-time RT-PCR assay in clinical units will contribute to HFMD surveillance and help to identify causative pathogen in patients with suspected HFMD.

  18. A one-step, triplex, real-time RT-PCR assay for the simultaneous detection of enterovirus 71, coxsackie A16 and pan-enterovirus in a single tube.

    Science.gov (United States)

    Zhang, Shiyin; Wang, Jin; Yan, Qiang; He, Shuizhen; Zhou, Wenbin; Ge, Shengxiang; Xia, Ningshao

    2014-01-01

    The recent, ongoing epidemic of hand, foot, and mouth disease (HFMD), which is caused by enterovirus infection, has affected millions of children and resulted in thousands of deaths in China. Enterovirus 71 (EV71) and coxsackie A16 (CA16) are the two major distinct pathogens for HFMD. However, EV71 is more commonly associated with neurologic complications and even fatalities. Therefore, simultaneously detecting and differentiating EV71 and CA16 specifically from other enteroviruses for diagnosing HFMD is important. Here, we developed a one-step, triplex, real-time RT-PCR assay for the simultaneous detection of EV71, CA16, and pan-enterovirus (EVs) in a single tube with an internal amplification control. The detection results for the serially diluted viruses indicate that the lower limit of detection for this assay is 0.001-0.04 TCID50/ml, 0.02 TCID50/ml, and 0.001 TCID50/ml for EVs, EV71, and CA16, respectively. After evaluating known HFMD virus stocks of 17 strains of 16 different serotypes, this assay showed a favorable detection spectrum and no obvious cross-reactivity. The results for 141 clinical throat swabs from HFMD-suspected patients demonstrated sensitivities of 98.4%, 98.7%, and 100% for EVs, EV71, and CA16, respectively, and 100% specificity for each virus. The application of this one-step, triplex, real-time RT-PCR assay in clinical units will contribute to HFMD surveillance and help to identify causative pathogen in patients with suspected HFMD.

  19. Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

    Science.gov (United States)

    Sailleau, Corinne; Viarouge, Cyril; Breard, Emmanuel; Vitour, Damien; Zientara, Stephan

    2017-05-01

    Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.

  20. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  1. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  2. Laboratory validation of two real-time RT-PCR methods with 5'-tailed primers for an enhanced detection of foot-and-mouth disease virus.

    Science.gov (United States)

    Vandenbussche, Frank; Lefebvre, David J; De Leeuw, Ilse; Van Borm, Steven; De Clercq, Kris

    2017-08-01

    The 3D and 5UTR real-time RT-PCR assays (RT-qPCR) from Callahan et al. (2002) and Reid et al. (2002) are commonly used reference methods for the detection of foot-and-mouth disease virus (FMDV). For an optimal detection of FMDV in clinical samples, it is advised to use both assays simultaneously (King et al., 2006). Recently, Vandenbussche et al. (2016) showed that the addition of 5'-tails to the FMDV-specific primers enhances the detection of FMDV in both the 3D and the 5UTR RT-qPCR assay. To validate the 3D and 5UTR RT-qPCR assays with 5'-tailed primers for diagnostic purposes, both assays were run in parallel in a triplex one-step RT-qPCR protocol with beta-actin as an internal control and synthetic RNA as an external control. We obtained low limits of detection and high linearity's, high repeatability and reproducibility, near 100% analytical specificity and >99% diagnostic accuracy for both assays. It was concluded that the 3D and 5UTR RT-qPCR assays with 5'-tailed primers are particularly suited for the detection of FMDV as well as to exclude the presence of FMDV. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Detection of ROS1 Gene Rearrangement in Lung Adenocarcinoma: Comparison of IHC, FISH and Real-Time RT-PCR

    OpenAIRE

    Shan, Ling; Lian, Fang; Guo, Lei; Qiu, Tian; Ling, Yun; Ying, Jianming; Lin, Dongmei

    2015-01-01

    Aims To compare fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative real-time reverse transcription-PCR (qRT-PCR) assays for detection of ROS1 fusion in a large number of ROS1-positive lung adenocatcinoma (ADC) patients. Methods Using IHC analysis, sixty lung ADCs including 16 cases with ROS1 protein expression and 44 cases without ROS1 expression were selected for this study. The ROS1 fusion status was examined by FISH and qRT-PCR assay. Results Among 60 ca...

  4. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  5. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    Science.gov (United States)

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M; Zhao, Hui; Ma, Xiaoyue; Ellison, James A; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian; Li, Yu

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  6. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    Directory of Open Access Journals (Sweden)

    Ashutosh Wadhwa

    2017-01-01

    Full Text Available Rabies, resulting from infection by Rabies virus (RABV and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses

  7. A one-step, real-time PCR assay for rapid detection of rhinovirus.

    Science.gov (United States)

    Do, Duc H; Laus, Stella; Leber, Amy; Marcon, Mario J; Jordan, Jeanne A; Martin, Judith M; Wadowsky, Robert M

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID(50) (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform.

  8. Simple, specific molecular typing of dengue virus isolates using one-step RT-PCR and restriction fragment length polymorphism.

    Science.gov (United States)

    Ortiz, Alma; Capitan, Zeuz; Mendoza, Yaxelis; Cisneros, Julio; Moreno, Brechla; Zaldivar, Yamitzel; Garcia, Mariana; Smith, Rebecca E; Motta, Jorge; Pascale, Juan Miguel

    2012-10-01

    A one-step RT-PCR and one-enzyme RFLP was used to detect and distinguish among flaviviruses, including the four serotypes of dengue and the St. Louis Encephalitis, West Nile and Yellow Fever viruses in cultured virus samples or acute-phase human serum. Using a previously described RT-PCR, but novel RFLP procedure, results are obtained in 24 h with basic PCR and electrophoresis equipment. There is 95% agreement between RT-PCR/RFLP results and those achieved by indirect immunofluorescence assays, and 100% agreement between RT-PCR/RFLP results and gene sequencing. This method is more rapid than tests of cytopathic effect based on virus isolation in tissue culture, and simpler than real-time PCR. It does not require specialized equipment, radioisotopes or computer analysis and is a method that can be applied widely in the developing world. It allows for prompt determination of whether a flavivirus is the cause of illness in a febrile patient, rapid identification of dengue serotypes in circulation, and improved patient management in cases where prior dengue exposure make dengue hemorrhagic fever or dengue shock syndrome a risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  10. Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR.

    Science.gov (United States)

    Malandraki, Ioanna; Beris, Despoina; Isaioglou, Ioannis; Olmos, Antonio; Varveri, Christina; Vassilakos, Nikon

    2017-01-01

    A one-step multiplex real-time reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan probes was developed for the simultaneous detection of Apple mosaic virus (ApMV), Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) in total RNA of pome trees extracted with a CTAB method. The sensitivity of the method was established using in vitro synthesized viral transcripts serially diluted in RNA from healthy, virus-tested (negative) pome trees. The three viruses were simultaneously detected up to a 10-4 dilution of total RNA from a naturally triple-infected apple tree prepared in total RNA of healthy apple tissue. The newly developed RT-qPCR assay was at least one hundred times more sensitive than conventional single RT-PCRs. The assay was validated with 36 field samples for which nine triple and 11 double infections were detected. All viruses were detected simultaneously in composite samples at least up to the ratio of 1:150 triple-infected to healthy pear tissue, suggesting the assay has the capacity to examine rapidly a large number of samples in pome tree certification programs and surveys for virus presence.

  11. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    Science.gov (United States)

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.

    Science.gov (United States)

    Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram

    2014-12-01

    Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.

  13. Selection of Housekeeping Genes for Transgene Expression Analysis in Eucommia ulmoides Oliver Using Real-Time RT-PCR

    Directory of Open Access Journals (Sweden)

    Ren Chen

    2010-01-01

    Full Text Available In order to select appropriate housekeeping genes for accurate calibration of experimental variations in real-time (RT- PCR results in transgene expression analysis, particularly with respect to the influence of transgene on stability of endogenous housekeeping gene expression in transgenic plants, we outline a reliable strategy to identify the optimal housekeeping genes from a set of candidates by combining statistical analyses of their (RT- PCR amplification efficiency, gene expression stability, and transgene influences. We used the strategy to select two genes, ACTα and EF1α, from 10 candidate housekeeping genes, as the optimal housekeeping genes to evaluate transgenic Eucommia ulmoides Oliver root lines overexpressing IPPI or FPPS1 genes, which are involved in isoprenoid biosynthesis.

  14. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.

    Science.gov (United States)

    Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A

    2018-01-01

    Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma

    International Nuclear Information System (INIS)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia GT; Bérgamo, Nádia A; Neto, Francisco A Moraes; Domingues, Maria AC; Soares, Fernando A; Caldeira, José RF; Rogatto, Silvia R

    2009-01-01

    HER-2 gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). These procedures permit correlation between HER-2 expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic in situ hybridization) is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas. To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of HER-2 status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4%) and HER-2 transcript overexpression (20%). Moreover, 2+ immunostaining cases presented nonamplified status (50%) by CISH and HER-2 downexpression (38.5%) by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between HER-2 downexpression and the involvement of less than four lymph nodes (P = 0.0350). Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the HER-2 gene

  16. Detection and typing of highly pathogenic porcine reproductive and respiratory syndrome virus by multiplex real-time rt-PCR.

    Directory of Open Access Journals (Sweden)

    Kerstin Wernike

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS causes economic losses in the pig industry worldwide, and PRRS viruses (PRRSV are classified into the two distinct genotypes "North American (NA, type 2" and "European (EU, type 1". In 2006, a highly pathogenic NA strain of PRRSV (HP-PRRSV, characterized by high fever as well as high morbidity and mortality, emerged in swine farms in China. Therefore, a real-time reverse transcription polymerase chain reaction (RT-qPCR assay specific for HP-PRRSV was developed and combined with type 1- and type 2-specific RT-qPCR systems. Furthermore, an internal control, based on a heterologous RNA, was successfully introduced. This final multiplex PRRSV RT-qPCR, detecting and typing PRRSV, had an analytical sensitivity of less than 200 copies per µl for the type 1-assay and 20 copies per µl for the type 2- and HP assays and a high diagnostic sensitivity. A panel of reference strains and field isolates was reliably detected and samples from an animal trial with a Chinese HP-PRRS strain were used for test validation. The new multiplex PRRSV RT-qPCR system allows for the first time the highly sensitive detection and rapid differentiation of PRRSV of both genotypes as well as the direct detection of HP-PRRSV.

  17. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs.

    Science.gov (United States)

    Sehata, Go; Sato, Hiroaki; Ito, Toshihiro; Imaizumi, Yoshitaka; Noro, Taichi; Oishi, Eiji

    2015-07-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication.

  18. Comparison of ELISA and dual stage real time RT-PCR to differentiate Sabin like and non-Sabin like poliovirus isolates.

    Science.gov (United States)

    Kaundal, Nirmal; Sarkate, Purva; Prakash, Charu; Rishi, Narayan

    2017-06-01

    Environmental surveillance of polioviruses has been used as an important tool in monitoring circulation of wild polioviruses and/or Vaccine derived polioviruses in sewage samples. It is important to distinguish Sabin like isolates from non-Sabin like; ELISA & dual stage real time RT-PCR have been used for the same. Current study was carried out on sewage isolates to compare ELISA & RT-PCR with sequencing to distinguish Sabin like from non-Sabin like. Out of 468 sewage specimens, 91 (19.44%) were non-polio enteroviruses positive and 377 (80.56%) were polio positive by virus isolation method. A total of 488 polio virus isolates were detected by L20B and RD route which were further subjected to ELISA and RT-PCR. The results were compared with sequencing. On comparison, the specificity of ELISA was only 66.67% in spite of very low sensitivity (3.43%). The sensitivity of RT-PCR was 97.71% which makes it a good primary screening test for detection of non-Sabin like viruses. However, the specificity was only 33.33%. RT-PCR appears to be a sensitive tool for detecting non-Sabin like viruses however; the isolates which are non-Sabin like by RT-PCR may not necessarily be mutated viruses. ELISA cannot be used for differentiation of Sabin likes from non-Sabin likes due to low sensitivity.

  19. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    OpenAIRE

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-01-01

    Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same a...

  20. Correlation of immune activation with HIV-1 RNA levels assayed by real-time RT-PCR in HIV-1 Subtype C infected patients in Northern India

    Science.gov (United States)

    Agarwal, Atima; Sankaran, Sumathi; Vajpayee, Madhu; Sreenivas, V; Seth, Pradeep; Dandekar, Satya

    2014-01-01

    Background Assays with specificity and cost effectiveness are needed for the measurement of HIV-1 burden to monitor disease progression or response to anti-retroviral therapy (ART) in HIV-1 subtype C infected patients. Objectives The objective of this study was to develop and validate an affordable; one step Real-Time RT-PCR assay with high specificity and sensitivity to measure plasma HIV-1 loads in HIV-1 subtype C infected patients. Results We developed an RT-PCR assay to detect and quantitate plasma HIV-1 levels in HIV-1 subtype C infected patients. An inverse correlation between plasma viral loads (PVL) and CD4+ T-cell numbers was detected at all CDC stages. Significant correlations were found between CD8+ T-cell activation and PVL, as well as with the clinical and immunological status of the patients. Conclusions The RT-PCR assay provides a sensitive method to measure PVL in HIV-1 subtype C infected patients. Viral loads correlated with immune activation and can be used to monitor HIV care in India. PMID:17962068

  1. Evaluation of different enrichment methods for pathogenic Yersinia species detection by real time PCR

    Science.gov (United States)

    2014-01-01

    Background Yersiniosis is a zoonotic disease reported worldwide. Culture and PCR based protocols are the most common used methods for detection of pathogenic Yersinia species in animal samples. PCR sensitivity could be increased by an initial enrichment step. This step is particularly useful in surveillance programs, where PCR is applied to samples from asymptomatic animals. The aim of this study was to evaluate the improvement in pathogenic Yersinia species detection using a suitable enrichment method prior to the real time PCR (rtPCR). Nine different enrichment protocols were evaluated including six different broth mediums (CASO, ITC, PSB, PBS, PBSMSB and PBSSSB). Results The analysis of variance showed significant differences in Yersinia detection by rtPCR according to the enrichment protocol used. These differences were higher for Y. pseudotuberculosis than for Y. enterocolitica. In general, samples incubated at lower temperatures yielded the highest detection rates. The best results were obtained with PBSMSB and PBS2. Application of PBSMSB protocol to free-ranging wild board samples improved the detection of Y. enterocolitica by 21.2% when compared with direct rtPCR. Y. pseudotuberculosis detection was improved by 10.6% when results obtained by direct rtPCR and by PBSMSB enrichment before rtPCR were analyzed in combination. Conclusions The data obtained in the present study indicate a difference in Yersinia detection by rtPCR related to the enrichment protocol used, being PBSMSB enrichment during 15 days at 4°C and PBS during 7 days at 4°C the most efficient. The use of direct rtPCR in combination with PBSMSB enrichment prior to rtPCR resulted in an improvement in the detection rates of pathogenic Yersinia in wild boar and could be useful for application in other animal samples. PMID:25168886

  2. Early diagnosis of dengue in travelers: comparison of a novel real-time RT-PCR, NS1 antigen detection and serology.

    Science.gov (United States)

    Huhtamo, Eili; Hasu, Essi; Uzcátegui, Nathalie Y; Erra, Elina; Nikkari, Simo; Kantele, Anu; Vapalahti, Olli; Piiparinen, Heli

    2010-01-01

    The increased traveling to dengue endemic regions and the numerous epidemics have led to a rise in imported dengue. The laboratory diagnosis of acute dengue requires several types of tests and often paired samples are needed for obtaining reliable results. Although several diagnostic methods are available, proper comparative data on their performance are lacking. To compare the performance of novel methods including a novel pan-DENV real-time RT-PCR and a commercially available NS1 capture-EIA in regard to IgM detection for optimizing the early diagnosis of DENV in travelers. A panel of 99 selected early phase serum samples of dengue patients was studied by real-time RT-PCR, NS1 antigen ELISA, IgM-EIA, IgG-IFA and cell culture virus isolation. The novel real-time RT-PCR was shown specific and sensitive for detection of DENV-1-4 RNA and suitable for diagnostic use. The diagnostic rate using combination of RNA and IgM detection was 99% and using NS1 and IgM detection 95.9%. The results of RNA and NS1 antigen detection disagreed in 15.5% of samples that had only RNA or NS1 antigen detected. The diagnostic rates of early samples are higher when either RNA or NS1 antigen detection is combined with IgM detection. Besides the differences in the RNA and NS1 detection assays, the observed discrepancy of results could suggest individual variation or differences in timing of these markers in patient serum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2009-03-01

    Full Text Available Abstract Background HER-2 gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC and fluorescence in situ hybridization (FISH. These procedures permit correlation between HER-2 expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic in situ hybridization is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas. Methods To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. Results The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of HER-2 status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4% and HER-2 transcript overexpression (20%. Moreover, 2+ immunostaining cases presented nonamplified status (50% by CISH and HER-2 downexpression (38.5% by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between HER-2 downexpression and the involvement of less than four lymph nodes (P = 0.0350. Conclusion Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the HER-2 gene.

  4. Simultaneous DNA-RNA Extraction from Coastal Sediments and Quantification of 16S rRNA Genes and Transcripts by Real-time PCR.

    Science.gov (United States)

    Tatti, Enrico; McKew, Boyd A; Whitby, Corrine; Smith, Cindy J

    2016-06-11

    Real Time Polymerase Chain Reaction also known as quantitative PCR (q-PCR) is a widely used tool in microbial ecology to quantify gene abundances of taxonomic and functional groups in environmental samples. Used in combination with a reverse transcriptase reaction (RT-q-PCR), it can also be employed to quantify gene transcripts. q-PCR makes use of highly sensitive fluorescent detection chemistries that allow quantification of PCR amplicons during the exponential phase of the reaction. Therefore, the biases associated with 'end-point' PCR detected in the plateau phase of the PCR reaction are avoided. A protocol to quantify bacterial 16S rRNA genes and transcripts from coastal sediments via real-time PCR is provided. First, a method for the co-extraction of DNA and RNA from coastal sediments, including the additional steps required for the preparation of DNA-free RNA, is outlined. Second, a step-by-step guide for the quantification of 16S rRNA genes and transcripts from the extracted nucleic acids via q-PCR and RT-q-PCR is outlined. This includes details for the construction of DNA and RNA standard curves. Key considerations for the use of RT-q-PCR assays in microbial ecology are included.

  5. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Cecchinato, Mattia; Lupini, Caterina; Munoz Pogoreltseva, Olga Svetlana; Listorti, Valeria; Mondin, Alessandra; Drigo, Michele; Catelli, Elena

    2013-01-01

    In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were 0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.

  6. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides.

    Science.gov (United States)

    Valle-Maldonado, Marco I; Jácome-Galarza, Irvin E; Gutiérrez-Corona, Félix; Ramírez-Díaz, Martha I; Campos-García, Jesús; Meza-Carmen, Víctor

    2015-03-01

    Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.

  7. Listeria monocytogenes Identification in Food of Animal Origin Used with Real Time PCR

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-10-01

    Full Text Available The aim of this study was to follow the contamination of food with Listeria monocytogenes by using Step One real time polymerase chain reaction (RT PCR. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In 20 samples of food of animal origin with incubation were detected strains of Listeria monocytogenes in 9 samples (swabs. Eleven samples were negative. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in food of animal origin without incubation. This could prevent infection caused by Listeria monocytogenes, and also could benefit food manufacturing companies by extending their product’s shelf-life as well as saving the cost of warehousing their food products while awaiting pathogen testing results. The rapid real-time PCR-based method performed very well compared to the conventional method. It is a fast, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future.

  8. Searching for the best real-time RT-PCRs to detect Zika virus infections: the importance of comparing several protocols

    Directory of Open Access Journals (Sweden)

    F.M. de Moraes

    2018-05-01

    Full Text Available Clinical manifestations of Zika, dengue, and chikungunya virus infections are very similar, making it difficult to reach a diagnosis based only on clinical grounds. In addition, there is an intense cross-reactivity between antibodies directed to Zika virus and other flaviviruses, and an accurate Zika diagnosis is best achieved by real-time RT-PCR. However, some real-time RT-PCR show better performance than others. To reach the best possible Zika diagnosis, the analytic sensitivity of some probe-based real-time RT-PCR amplifying Zika virus RNA was evaluated in spiked and clinical samples. We evaluated primers and probes to detect Zika virus, which had been published before, and tested sensitivity using serum spiked and patient samples by real-time RT-PCR. When tested against spiked samples, the previously described primers showed different sensitivity, with very similar results when samples from patients (serum and urine were analyzed. Real-time RT-PCR designed to amplify Zika virus NS1 showed the best analytical sensitivity for all samples.

  9. Comparison of multiplex RT-PCR and real-time HybProbe assay for serotyping of dengue virus using reference strains and clinical samples from India

    Directory of Open Access Journals (Sweden)

    Anita Chakravarti

    2016-01-01

    Full Text Available Background: Dengue virus serotyping is crucial from clinical management and epidemiological point of view. Aims: To compare efficacy of two molecular detection and typing methods, namely, multiplex reverse transcription polymerase chain reaction (RT-PCR and real-time Hybprobe assay using a panel of known dilution of four reference Dengue virus strains and a panel of sera collected from clinically suspected dengue patients. Settings: This study was conducted at a tertiary-care teaching hospital in Delhi, India. Materials and Methods: Dengue serotype specific virus strains were used as prototypes for serotyping assays. Viral load was quantified by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR. Acute phase serum samples were collected from 79 patients with clinically suspected Dengue fever on their first day of presentation during September-October 2012. Viral RNA from serum and cell culture supernatant was extracted. Reverse transcription was carried out. Quantitative detection of DENV RNA from reference strain culture supernatants and each of the 79 patient samples by real-time PCR was performed using light cycler Taqman master mix kit. Serotyping was done by multiplex RT-PCR assay and Hybprobe assay. Results: The multiplex RT-PCR assay, though found to be 100% specific, couldn't serotype either patient or reference strains with viral load less than 1000 RNA copies/ml. The Hybprobe assay was found to have 100% specificity and had a lower limit of serotype detection of merely 3.54 RNA copies/ml. Conclusions: HybProbe assay has an important role especially in situations where serotyping is to be performed in clinical samples with low viral load.

  10. Absolute estimation of initial concentrations of amplicon in a real-time RT-PCR process

    Directory of Open Access Journals (Sweden)

    Kohn Michael

    2007-10-01

    Full Text Available Abstract Background Since real time PCR was first developed, several approaches to estimating the initial quantity of template in an RT-PCR reaction have been tried. While initially only the early thermal cycles corresponding to exponential duplication were used, lately there has been an effort to use all of the cycles in a PCR. The efforts have included both fitting empirical sigmoid curves and more elaborate mechanistic models that explore the chemical reactions taking place during each cycle. The more elaborate mechanistic models require many more parameters than can be fit from a single amplification, while the empirical models provide little insight and are difficult to tailor to specific reactants. Results We directly estimate the initial amount of amplicon using a simplified mechanistic model based on chemical reactions in the annealing step of the PCR. The basic model includes the duplication of DNA with the digestion of Taqman probe and the re-annealing between previously synthesized DNA strands of opposite orientation. By modelling the amount of Taqman probe digested and matching that with the observed fluorescence, the conversion factor between the number of fluorescing dye molecules and observed fluorescent emission can be estimated, along with the absolute initial amount of amplicon and the rate parameter for re-annealing. The model is applied to several PCR reactions with known amounts of amplicon and is shown to work reasonably well. An expanded version of the model allows duplication of amplicon without release of fluorescent dye, by adding 1 more parameter to the model. The additional process is helpful in most cases where the initial primer concentration exceeds the initial probe concentration. Software for applying the algorithm to data may be downloaded at http://www.niehs.nih.gov/research/resources/software/pcranalyzer/ Conclusion We present proof of the principle that a mechanistically based model can be fit to observations

  11. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  12. Evaluation of RIDA®GENE norovirus GI/GII real time RT-PCR using stool specimens collected from children and adults with acute gastroenteritis.

    Science.gov (United States)

    Kanwar, N; Hassan, F; Barclay, L; Langley, C; Vinjé, J; Bryant, P W; George, K St; Mosher, L; Matthews-Greer, J M; Rocha, M A; Beenhouwer, D O; Harrison, C J; Moffatt, M; Shastri, N; Selvarangan, R

    2018-04-10

    Norovirus is the leading cause of epidemic and sporadic acute gastroenteritis (AGE) in the United States. Widespread prevalence necessitates implementation of accurate norovirus detection assays in clinical diagnostic laboratories. To evaluate RIDA ® GENE norovirus GI/GII real-time RT-PCR assay (RGN RT-PCR) using stool samples from patients with sporadic AGE. Patients between 14 days to 101 years of age with symptoms of AGE were enrolled prospectively at four sites across the United States during 2014-2015. Stool specimens were screened for the presence of norovirus RNA by the RGN RT-PCR assay. Results were compared with a reference method that included conventional RT-PCR and sequencing of a partial region of the 5'end of the norovirus ORF2 gene. A total of 259 (36.0%) of 719 specimens tested positive for norovirus by the reference method. The RGN RT-PCR assay detected norovirus in 244 (94%) of these 259 norovirus positive specimens. The sensitivity and specificity (95% confidence interval) of the RGN RT-PCR assay for detecting norovirus genogroup (G) I was 82.8% (63.5-93.5) and 99.1% (98.0-99.6) and for GII was 94.8% (90.8-97.2) and 98.6% (96.9-99.4), respectively. Seven specimens tested positive by the RGN-RT PCR that were negative by the reference method. The fifteen false negative samples were typed as GII.4 Sydney, GII.13, GI.3, GI.5, GI.2, GII.1, and GII.3 in the reference method. The RGN RT-PCR assay had a high sensitivity and specificity for the detection of norovirus in stool specimens from patients with sporadic AGE. Copyright © 2018. Published by Elsevier B.V.

  13. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    Science.gov (United States)

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1

    Directory of Open Access Journals (Sweden)

    Karla L. González-Aguilera

    2016-09-01

    Full Text Available Quantitative real-time RT-PCR (qRT-PCR has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L. cultivar Micro-Tom (MT is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 (FUL1 and APETALA2c (AP2c during fruit development are comparable to previous reports using other tomato cultivars.

  15. Estudio comparativo entre una prueba rápida y RT-PCR tiempo real en el diagnóstico de influenza AH1N1 2009 Comparative study of a rapid testing with real time RT-PCR for diagnosis of influenza AH1N1 2009

    Directory of Open Access Journals (Sweden)

    Luz Araceli Castro-Cárdenas

    2011-08-01

    Full Text Available OBJETIVO: Comparar la prueba QuickVue Influenza A+B empleando como estándar la RT-PCR tiempo real para influenza AH1N1 2009. MATERIAL Y MÉTODOS: Estudio retrospectivo-comparativo de 135 muestras de vías respiratorias de individuos sintomáticos para influenza procesadas de mayo 2009 a octubre 2010.Las pruebas citadas se realizaron simultáneamente. Se utilizó el software Confidence Interval Analysis 2000. RESULTADOS: Sensibilidad 62.96; especificidad 94.44; valor predictivo negativo 62.9; valor predictivo positivo 94.44; razón de probabilidad positiva 11.33 y razón de probabilidad negativa 0.39. Se calcularon intervalos de confianza a 95. DISCUSIÓN: Los valores obtenidos concuerdan con otros estudios donde la sensibilidad fluctúa de 50 a 70 y especificidad entre 90 y 95 por ciento. La prueba QuickVue Influenza A+B es rápida, simple y de menor costo que el RT-PCR tiempo real, útil para identificar el tipo de virus en brotes de influenza de una población determinadaOBJECTIVE: Compare QuickVue Influenza A+B test with real-time RT-PCR for the diagnosis of influenza AH1N1 2009. MATERIAL AND METHODS: Retrospective-comparative study of 135 respiratory specimens from individuals with symptoms of influenza processed from May 2009 to October 2010.The above mentioned tests were performed simultaneously. For statistic analysisthe softwareof Confidence IntervalAnalysis 2000 was used. RESULTS: The parameters obtained were: sensitivity 62.96; specificity 94.44; negative predictive value 62.9; positive predictive value 94.44; positive likelihood ratio 11.33; negative likelihood ratio 0.39. Confidence intervals to 95,were calculated to all of the above data. DISCUSSION: The test QuickVue InfluenzaA+B is a rapid,simple test,with lower cost than real-time RT-PCR useful for identifying the type of virus outbreaks of influenza in a given population.It correlates well with more specific test and similar reports.

  16. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease.

    Science.gov (United States)

    Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong

    2017-10-01

    Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-time RT-PCR quantification.

    Science.gov (United States)

    Tucciarone, C M; Franzo, G; Berto, G; Drigo, M; Ramon, G; Koutoulis, K C; Catelli, E; Cecchinato, M

    2018-01-01

    Infectious bronchitis virus (IBV) is a great economic burden both for productive losses and costs of the control strategies. Many different vaccination protocols are applied in the same region and even in consecutive cycles on the same farm in order to find the perfect balance between costs and benefits. In Northern Italy, the usual second vaccination is more and more often moved up to the chick's first d of life. The second strain administration together with the common Mass priming by spray at the hatchery allows saving money and time and reducing animal stress. The present work compared the different vaccine strains (Mass-like or B48, and 1/96) kinetics both in field conditions and in a 21-day-long experimental trial in broilers, monitoring the viral replication by upper respiratory tract swabbing and vaccine specific real time reverse transcription PCR (RT-PCR) quantification. In both field and experimental conditions, titers for all the vaccines showed an increasing trend in the first 2 wk and then a decrease, though still remaining detectable during the whole monitored period. IBV field strain and avian Metapneumovirus (aMPV) presence also was also investigated by RT-PCR and sequencing, and by multiplex real-time RT-PCR, respectively, revealing a consistency in the pathogen introduction timing at around 30 d, in correspondence with the vaccine titer's main decrease. These findings suggest the need for an accurate knowledge of live vaccine kinetics, whose replication can compete with the other pathogen one, providing additional protection to be added to what is conferred by the adaptive immune response. © 2017 Poultry Science Association Inc.

  18. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    Directory of Open Access Journals (Sweden)

    Tian Ding

    2017-05-01

    Full Text Available This study firstly developed a multiplex real-time PCR (RT-PCR technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus, Listeria monocytogenes (L. monocytogenes and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water in one reaction. Brain heart infusion (BHI broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  19. Microdroplet sandwich real-time rt-PCR for detection of pandemic and seasonal influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Stephanie L Angione

    Full Text Available As demonstrated by the recent 2012/2013 flu epidemic, the continual emergence of new viral strains highlights the need for accurate medical diagnostics in multiple community settings. If rapid, robust, and sensitive diagnostics for influenza subtyping were available, it would help identify epidemics, facilitate appropriate antiviral usage, decrease inappropriate antibiotic usage, and eliminate the extra cost of unnecessary laboratory testing and treatment. Here, we describe a droplet sandwich platform that can detect influenza subtypes using real-time reverse-transcription polymerase chain reaction (rtRT-PCR. Using clinical samples collected during the 2010/11 season, we effectively differentiate between H1N1p (swine pandemic, H1N1s (seasonal, and H3N2 with an overall assay sensitivity was 96%, with 100% specificity for each subtype. Additionally, we demonstrate the ability to detect viral loads as low as 10(4 copies/mL, which is two orders of magnitude lower than viral loads in typical infected patients. This platform performs diagnostics in a miniaturized format without sacrificing any sensitivity, and can thus be easily developed into devices which are ideal for small clinics and pharmacies.

  20. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  1. Subtyping of swine influenza viruses using a high-throughput real time PCR platform

    DEFF Research Database (Denmark)

    Goecke, Nicole Bakkegård; Krog, Jesper Schak; Hjulsager, Charlotte Kristiane

    ). The results revealed that the performance of the dynamic chip was similar to conventional real time analysis. Discussion and conclusion. Application of the chip for subtyping of swine influenza has resulted in a significant reduction in time, cost and working hours. Thereby, it is possible to offer diagnostic...... test and subsequent subtyping is performed by real time RT-PCR (RT-qPCR) but several assays are needed to cover the wide range of circulating subtypes which is expensive,resource and time demanding. To mitigate these restrictions the high-throughput qPCR platform BioMark (Fluidigm) has been explored...... services with reduced price and turnover time which will facilitate choice of vaccines and by that lead to reduction of antibiotic used....

  2. Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis.

    Science.gov (United States)

    Fischer, Cristine Dossin Bastos; Ikuta, Nilo; Canal, Cláudio Wageck; Makiejczuk, Aline; Allgayer, Mariangela da Costa; Cardoso, Cristine Hoffmeister; Lehmann, Fernanda Kieling; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2013-12-01

    Canine distemper virus (CDV) is the cause of a severe and highly contagious disease in dogs. Practical diagnosis of canine distemper based on clinical signs and laboratory tests are required to confirm CDV infection. The present study aimed to develop a molecular assay to detect and differentiate field and vaccine CDV strains. Reverse transcription followed by nested real time polymerase chain reaction (RT-nqPCR) was developed, which exhibited analytical specificity (all the samples from healthy dogs and other canine infectious agents were not incorrectly detected) and sensitivity (all replicates of a vaccine strain were positive up to the 3125-fold dilution - 10(0.7) TCID50). RT-nqPCR was validated for CDV detection on different clinical samples (blood, urine, rectal and conjunctival swabs) of 103 animals suspected to have distemper. A total of 53 animals were found to be positive based on RT-nqPCR in at least one clinical sample. Blood resulted in more positive samples (50 out of 53, 94.3%), followed by urine (44/53, 83.0%), rectal (38/53, 71%) and conjunctival (27/53, 50.9%) swabs. A commercial immunochromatography (IC) assay had detected CDV in only 30 conjunctival samples of these positive dogs. Nucleoprotein (NC) gene sequencing of 25 samples demonstrated that 23 of them were closer to other Brazilian field strains and the remaining two to vaccine strains. A single nucleotide sequences difference, which creates an Msp I restriction enzyme digestion, was used to differentiate between field and vaccine CDV strains by restriction fragment length polymorphism (RFLP) analysis. The complete assay was more sensitive than was IC for the detection of CDV. Blood was the more frequently positive specimen and the addition of a restriction enzyme step allowed the differentiation of vaccine and Brazilian field strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa

    DEFF Research Database (Denmark)

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R.; Wadsworth, Jemma

    2016-01-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping...... methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within...... sequencing. Samples (n = 71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious...

  4. SASqPCR: robust and rapid analysis of RT-qPCR data in SAS.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available Reverse transcription quantitative real-time PCR (RT-qPCR is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.

  5. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward...

  6. Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of Foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; de Stricker, K.

    2003-01-01

    Foot-and-mouth disease virus (FMDV) spreads extremely fast and the need for rapid and robust diagnostic virus detection systems was obvious during the recent European epidemic. Using a novel real-time RT-PCR system based on primer-probe energy transfer (PriProET) we present here an assay targeting...

  7. Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus.

    Science.gov (United States)

    Faye, Martin; Dacheux, Laurent; Weidmann, Manfred; Diop, Sylvie Audrey; Loucoubar, Cheikh; Bourhy, Hervé; Sall, Amadou Alpha; Faye, Ousmane

    2017-05-01

    Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. One-step triplex PCR/RT-PCR to detect canine distemper virus, canine parvovirus, and canine kobuvirus.

    Science.gov (United States)

    Liu, Dafei; Liu, Fei; Guo, Dongchun; Hu, Xiaoliang; Li, Zhijie; Li, Zhigang; Ma, Jianzhang; Liu, Chunguo

    2018-01-23

    To rapidly distinguish Canine distemper virus (CDV), canine parvovirus (CPV), and canine kobuvirus (CaKoV) in practice, a one-step multiplex PCR/RT-PCR assay was developed, with detection limits of 10 2.1 TCID 50 for CDV, 10 1.9 TCID 50 for CPV and 10 3 copies for CaKoV. This method did not amplify nonspecific DNA or RNA from other canine viruses. Therefore, the assay provides a sensitive tool for the rapid clinical detection and epidemiological surveillance of CDV, CPV and CaKoV in dogs.

  9. One-step cross-genogroup multiplex RT-qPCR with an internal control system for the detection of infectious pancreatic necrosis virus (IPNV).

    Science.gov (United States)

    Hoferer, Marc; Braun, Anne; Skrypski, Julia; Bock, Sabine; Thalheim, Sabine; Sting, Reinhard

    2017-09-01

    Infectious pancreatic necrosis virus (IPNV) causes great losses in fish hatcheries world-wide. The detection of IPNV can be challenging in certain circumstances, particularly due to low viral load and the genetic variability of this RNA virus. For the first time, this project created a quantitative triplex real-time reverse transcription PCR (RT-qPCR), including an endogenous control system, for specific, sensitive and rapid detection of IPNV in routine diagnostics. Multiple sequence alignment of 46 nucleotide sequences of the segment A genome obtained from the NCBI database allowed the design of two RT-qPCR systems covering the IPNV genogroup 1 and genogroups 2-5, respectively. The completed triplex RT-qPCR including a salmonid-specific endogenous control showed high specificity and an analytical sensitivity of 20-40 oligonucleotide copies. Testing of dilution series of virus-loaded cell culture suspensions proved equality of the triplex RT-qPCR with virus detection in cell culture and a higher sensitivity than conventional RT-PCR in field samples. In comparative studies of a total of 77 field samples tested, 51 showed identical positive and 19 identical negative results in cell culture and the triplex RT-qPCR. However, seven other samples yielded positive results in the triplex RT-qPCR, but negative results in cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    Science.gov (United States)

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera serogroup viruses with a suitable

  11. Table 1. Primer sequences used for real-time qRT-PCR analysis of ...

    Indian Academy of Sciences (India)

    User

    TGTCCCAGTAAACCGCTC. GAATCCAGCACGATACCAGT. Figure 1. Expression analysis of candidate CsActin and CsFbox genes by qRT-PCR in response to 4°C treatment. The y-axis indicates Cq values, and error bars represent standard deviations of the mean values of four replicates. Rt, roots; St, stems; Le, leaves; Fl ...

  12. Identification of normalization factors for quantitative real-time RT-PCR analysis of gene expression in Pacific abalone Haliotis discus hannai

    Science.gov (United States)

    Qiu, Reng; Sun, Boguang; Fang, Shasha; Sun, Li; Liu, Xiao

    2013-03-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is widely used in studies of gene expression. In most of these studies, housekeeping genes are used as internal references without validation. To identify appropriate reference genes for qRT-PCR in Pacific abalone Haliotis discus hannai, we examined the transcription stability of six housekeeping genes in abalone tissues in the presence and absence of bacterial infection. For this purpose, abalone were infected with the bacterial pathogen Vibrio anguillarum for 12 h and 48 h. The mRNA levels of the housekeeping genes in five tissues (digestive glands, foot muscle, gill, hemocyte, and mantle) were determined by qRT-PCR. The PCR data was subsequently analyzed with the geNorm and NormFinder algorithms. The results show that in the absence of bacterial infection, elongation factor-1-alpha and beta-actin were the most stably expressed genes in all tissues, and thus are suitable as cross-tissue type normalization factors. However, we did not identify any universal reference genes post infection because the most stable genes varied between tissue types. Furthermore, for most tissues, the optimal reference genes identified by both algorithms at 12 h and 48 h post-infection differed. These results indicate that bacterial infection induced significant changes in the expression of abalone housekeeping genes in a manner that is dependent on tissue type and duration of infection. As a result, different normalization factors must be used for different tissues at different infection points.

  13. Evaluation of FTA cards as a laboratory and field sampling device for the detection of foot-and-mouth disease virus and serotyping by RT-PCR and real-time RT-PCR.

    Science.gov (United States)

    Muthukrishnan, Madhanmohan; Singanallur, Nagendrakumar B; Ralla, Kumar; Villuppanoor, Srinivasan A

    2008-08-01

    Foot-and-mouth disease virus (FMDV) samples transported to the laboratory from far and inaccessible areas for serodiagnosis pose a major problem in a tropical country like India, where there is maximum temperature fluctuation. Inadequate storage methods lead to spoilage of FMDV samples collected from clinically positive animals in the field. Such samples are declared as non-typeable by the typing laboratories with the consequent loss of valuable epidemiological data. The present study evaluated the usefulness of FTA Classic Cards for the collection, shipment, storage and identification of the FMDV genome by RT-PCR and real-time RT-PCR. The stability of the viral RNA, the absence of infectivity and ease of processing the sample for molecular methods make the FTA cards a useful option for transport of FMDV genome for identification and serotyping. The method can be used routinely for FMDV research as it is economical and the cards can be transported easily in envelopes by regular document transport methods. Live virus cannot be isolated from samples collected in FTA cards, which is a limitation. This property can be viewed as an advantage as it limits the risk of transmission of live virus.

  14. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  15. Avian metapneumovirus RT-nested-PCR: a novel false positive reducing inactivated control virus with potential applications to other RNA viruses and real time methods.

    Science.gov (United States)

    Falchieri, Marco; Brown, Paul A; Catelli, Elena; Naylor, Clive J

    2012-12-01

    Using reverse genetics, an avian metapneumovirus (AMPV) was modified for use as a positive control for validating all stages of a popular established RT-nested PCR, used in the detection of the two major AMPV subtypes (A and B). Resultant amplicons were of increased size and clearly distinguishable from those arising from unmodified virus, thus allowing false positive bands, due to control virus contamination of test samples, to be identified readily. Absorption of the control virus onto filter paper and subsequent microwave irradiation removed all infectivity while its function as an efficient RT-nested-PCR template was unaffected. Identical amplicons were produced after storage for one year. The modified virus is likely to have application as an internal standard as well as in real time methods. Additions to AMPV of RNA from other RNA viruses, including hazardous examples such HIV and influenza, are likely to yield similar safe RT-PCR controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa.

    Science.gov (United States)

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R; Wadsworth, Jemma; Mioulet, Valerie; Sallu, Raphael; Belsham, Graham J; Kasanga, Christopher J; Knowles, Nick J; King, Donald P

    2016-11-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce C T values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Conventional and real time RT-PCR assays for the detection and differentiation of variant rabbit hemorrhagic disease virus (RHDVb) and its recombinants.

    Science.gov (United States)

    Dalton, K P; Arnal, J L; Benito, A A; Chacón, G; Martín Alonso, J M; Parra, F

    2018-01-01

    Since its emergence, variant RHDV (RHDVb/RHDV2) has spread throughout the Iberian Peninsula aided by the apparent lack of cross protection provided by classic (genogroup 1; G1) strain derived vaccines. In addition to RHDVb, full-length genome sequencing of RHDV strains has recently revealed the circulation of recombinant viruses on the Iberian Peninsula. These recombinant viruses contain the RHDVb structural protein encoding sequences and the non-structural coding regions of either pathogenic RHDV-G1 strains or non-pathogenic (np) rabbit caliciviruses. The aim of the work was twofold: firstly to validate a diagnostic real time RT-PCR developed in 2012 for the detection of RHDVb strains and secondly, to design a conventional RT-PCR for the differentiation of RHDVb strains from RHDVb recombinants by subsequent sequencing of the amplicon. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Novel Molecular Beacon Probe-Based Real-Time RT-PCR Assay for Diagnosis of Crimean-Congo Hemorrhagic Fever Encountered in India

    Directory of Open Access Journals (Sweden)

    Aman Kamboj

    2014-01-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is an emerging zoonotic disease in India and requires immediate detection of infection both for preventing further transmission and for controlling the infection. The present study describes development, optimization, and evaluation of a novel molecular beacon-based real-time RT-PCR assay for rapid, sensitive, and specific diagnosis of Crimean-Congo hemorrhagic fever virus (CCHFV. The developed assay was found to be a better alternative to the reported TaqMan assay for routine diagnosis of CCHF.

  19. Development of a real-time RT-PCR and Reverse Line probe Hybridisation assay for the routine detection and genotyping of Noroviruses in Ireland.

    LENUS (Irish Health Repository)

    Menton, John F

    2007-01-01

    BACKGROUND: Noroviruses are the most common cause of non-bacterial gastroenteritis. Improved detection methods have seen a large increase in the number of human NoV genotypes in the last ten years. The objective of this study was to develop a fast method to detect, quantify and genotype positive NoV samples from Irish hospitals. RESULTS: A real-time RT-PCR assay and a Reverse Line Blot Hybridisation assay were developed based on the ORF1-ORF2 region. The sensitivity and reactivity of the two assays used was validated using a reference stool panel containing 14 NoV genotypes. The assays were then used to investigate two outbreaks of gastroenteritis in two Irish hospitals. 56 samples were screened for NoV using a real-time RT-PCR assay and 26 samples were found to be positive. Genotyping of these positive samples found that all positives belonged to the GII\\/4 variant of NoV. CONCLUSION: The combination of the Real-time assay and the reverse line blot hybridisation assay provided a fast and accurate method to investigate a NoV associated outbreak. It was concluded that the predominant genotype circulating in these Irish hospitals was GII\\/4 which has been associated with the majority of NoV outbreaks worldwide. The assays developed in this study are useful tools for investigating NoV infection.

  20. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Directory of Open Access Journals (Sweden)

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  1. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    Science.gov (United States)

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  2. Rapid detection of Van genes in rectal swabs by real time PCR in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Vlademir Cantarelli

    2011-10-01

    Full Text Available INTRODUCTION: Laboratory-based surveillance is an important component in the control of vancomycin resistant enterococci (VRE. METHODS: The study aimed to evaluate real-time polymerase chain reaction (RT-PCR (genes vanA-vanB for VRE detection on 115 swabs from patients included in a surveillance program. RESULTS: Sensitivity of RT-PCR was similar to primary culture (75% and 79.5%, respectively when compared to broth enriched culture, whereas specificity was 83.1%. CONCLUSIONS: RT-PCR provides same day results, however it showed low sensitivity for VRE detection.

  3. A Real-Time PCR Detection of Genus Salmonella in Meat and Milk Samples

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-05-01

    Full Text Available The aim of this study was follow the contamination of ready to eat milk and meat products with Salmonella spp. by using the Step One real-time PCR. Classical microbiological methods for detection of food-borne bacteria involve the use of pre-enrichment and/or specific enrichment, followed by the isolation of the bacteria in solid media and a final confirmation by biochemical and/or serological tests. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In the investigated samples without incubation we could detect strain of Salmonella sp. in five out of twenty three samples (swabs. This Step One real-time PCR assay is extremely useful for any laboratory in possession of a real-time PCR. It is a fast, reproducible, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future. Our results indicated that the Step One real-time PCR assay developed in this study could sensitively detect Salmonella spp. in ready to eat food.

  4. Development of a novel real-time RT-PCR assay to detect Seneca Valley virus-1 associated with emerging cases of vesicular disease in pigs.

    Science.gov (United States)

    Fowler, Veronica L; Ransburgh, Russell H; Poulsen, Elizabeth G; Wadsworth, Jemma; King, Donald P; Mioulet, Valerie; Knowles, Nick J; Williamson, Susanna; Liu, Xuming; Anderson, Gary A; Fang, Ying; Bai, Jianfa

    2017-01-01

    Seneca Valley virus 1 (SVV-1) can cause vesicular disease that is clinically indistinguishable from foot-and-mouth disease, vesicular stomatitis and swine vesicular disease. SVV-1-associated disease has been identified in pigs in several countries, namely USA, Canada, Brazil and China. Diagnostic tests are required to reliably detect this emerging virus, and this report describes the development and evaluation of a novel real-time (r) reverse-transcription (RT) PCR assay (rRT-PCR), targeting the viral polymerase gene (3D) of SVV-1. This new assay detected all historical and contemporary SVV-1 isolates examined (n=8), while no cross-reactivity was observed with nucleic acid templates prepared from other vesicular disease viruses or common swine pathogens. The analytical sensitivity of the rRT-PCR was 0.79 TCID 50 /ml and the limit of detection was equivalent using two different rRT-PCR master-mixes. The performance of the test was further evaluated using pig nasal (n=25) and rectal swab samples (n=25), where concordant results compared to virus sequencing were generated for 43/50 samples. The availability of this assay, will enable laboratories to rapidly detect SVV-1 in cases of vesicular disease in pigs, negated for notifiable diseases, and could enable existing knowledge gaps to be investigated surrounding the natural epidemiology of SVV-1. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies.

    Science.gov (United States)

    Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi

    2018-03-01

    One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Result Variation and Efficiency Kinetics in Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Reza Shahsiah

    2010-10-01

    Full Text Available Fluorescent monitoring of DNA amplification is the basis of real-time PCR. Absolute quantification can be achieved using a standard curve method. The standard curve is constructed by amplifying known amounts of standards under identical conditions to that of the samples.The objective of the current study is to propose a mathematical model to assess the acceptability of PCR resulys.Four commercial standards for HCV-RNA (hepatitis C virus RNA along with 6 patient samples were measured by real-time PCR, using two different RT-PCR reagents. The standard deviation of regression (Sy,x was calculated for each group of standard and compared by F-Test. The efficiency kinetics was computed by logistic regression, c2 goodness of fit test was preformed to assess the appropriateness of the efficiency curves.Calculated efficiencies were not significantly different from the value predicted by logistic regression model. Reactions with more variation showed less stable efficiency curves, with wider range of amplification efficiencies.Amplification efficiency kinetics can be computed by fitting a logistic regression curve to the gathered fluorescent data of each reaction. This model can be employed to assess the acceptability of PCR results calculated by standard curve method.

  7. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  8. Penerapan Metode Diagnosis Cepat Virus Avian Influenza H5N1 dengan Metode Single Step Multiplex RT-PCR

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2010-12-01

    Full Text Available Avian influenza (AI virus is a segmented single stranded (ss RNA virus with negative polarity andbelong to the Orthomyxoviridae family. Diagnose of AI virus can be performed using conventional methodsbut it has low sensitivity and specificity. The objective of the research was to apply rapid, precise, andaccurate diagnostic method for AI virus and also to determine its type and subtype based on the SingleStep Multiplex Reverse Transcriptase-Polymerase Chain Reaction targeting M, H5, and N1 genes. In thismethod M, H5 and NI genes were simultaneously amplified in one PCR tube. The steps of this researchconsist of collecting viral RNAs from 10 different AI samples originated from Maros Disease InvestigationCenter during 2007. DNA Amplification was conducted by Simplex RT-PCR using M primer set. Then, bysingle step multiplex RT-PCR were conducted simultaneously using M, H5 and N1 primers set. The RTPCRproducts were then separated on 1.5% agarose gel, stained by ethidum bromide and visualized underUV transilluminator. Results showed that 8 of 10 RNA virus samples could be amplified by Simplex RTPCRfor M gene which generating a DNA fragment of 276 bp. Amplification using multiplex RT-PCRmethod showed two of 10 samples were AI positive using multiplex RT-PCR, three DNA fragments weregenerated consisting of 276 bp for M gene, 189 bp for H5 gene, and 131 bp for N1. In this study, rapid andeffective diagnosis method for AI virus can be conducted by using simultaneous Single Step Multiplex RTPCR.By this technique type and subtype of AI virus, can also be determined, especially H5N1.

  9. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    Science.gov (United States)

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  10. Galactomannan and Real-Time PCR in the diagnosis of invasive Aspergillosis: preliminary data

    Directory of Open Access Journals (Sweden)

    Cristina Pedrotti

    2014-03-01

    Full Text Available The diagnosis of invasive aspergillosis is notoriously difficult. The standard culture-based methods have shown considerable limitations in performance. For this reason, non-culture methods have been increasingly employed for the diagnosis of invasive aspergillosis, and, among them, the methods based on Real-Time polymerase chain reaction (RT-PCR. In this study we assess the contribution in lowering diagnosis errors provided by the RT-PCR method when run alongside other methods. We analyzed 23 biological samples, 14 serum samples, and 9 bronchoalveolar lavage samples (BAL from 10 immunocompromised patients who were selected according to EORTC/MSG criteria (European Organization for Research and Treatment of Cancer/Mycoses Study Group. On the serum sample we searched the galactomannan (GM (Platelia Aspergillus® and the fungal genome (MycAssayTMAspergillus; the BAL samples were subjected also to the culture tests. In 11 serum samples the results showed concordance between GM and RT–PCR tests, while in 3 samples we report discordance: 2 results were GM positive and RT-PCR negative, and 1 results GM negative and RT-PCR indeterminate. In 5 BAL samples the results showed concordance between the two methods, while 4 were GM positive and RT-PCR negative. The data, although still preliminary, suggest an increased accuracy in the diagnosis of suspected invasive aspergillosis when employing both RT-PCR and GM tests given that the RT-PCR test eliminates the false positive results of the GM test. The PCR methods require, however, further applications of this type of diagnostic because of the severe limit given by the lack of standardization.

  11. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    Science.gov (United States)

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  12. Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction.

    Directory of Open Access Journals (Sweden)

    Jeni Vuong

    Full Text Available Neisseria meningitidis (Nm, Haemophilus influenzae (Hi, and Streptococcus pneumoniae (Sp are the lead causes of bacterial meningitis. Detection of these pathogens from clinical specimens using traditional real-time PCR (rt-PCR requires DNA extraction to remove the PCR inhibitors prior to testing, which is time consuming and labor intensive. In this study, five species-specific (Nm-sodC and -ctrA, Hi-hpd#1 and -hpd#3 and Sp-lytA and six serogroup-specific rt-PCR tests (A, B, C, W, X, Y targeting Nm capsular genes were evaluated in the two direct rt-PCR methods using PerfeCTa and 5x Omni that do not require DNA extraction. The sensitivity and specify of the two direct rt-PCR methods were compared to TaqMan traditional rt-PCR, the current standard rt-PCR method for the detection of meningitis pathogens. The LLD for all 11 rt-PCR tests ranged from 6,227 to 272,229 CFU/ml for TaqMan, 1,824-135,982 for 5x Omni, and 168-6,836 CFU/ml for PerfeCTa. The diagnostic sensitivity using TaqMan ranged from 89.2%-99.6%, except for NmB-csb, which was 69.7%. For 5x Omni, the sensitivity varied from 67.1% to 99.8%, with three tests below 90%. The sensitivity of these tests using PerfeCTa varied from 89.4% to 99.8%. The specificity ranges of the 11 tests were 98.0-99.9%, 97.5-99.9%, and 92.9-99.9% for TaqMan, 5x Omni, and PerfeCTa, respectively. PerfeCTa direct rt-PCR demonstrated similar or better sensitivity compared to 5x Omni direct rt-PCR or TaqMan traditional rt-PCR. Since the direct rt-PCR method does not require DNA extraction, it reduces the time and cost for processing CSF specimens, increases testing throughput, decreases the risk of cross-contamination, and conserves precious CSF. The direct rt-PCR method will be beneficial to laboratories with high testing volume.

  13. Detection of live Salmonella enterica in fresh-cut vegetables by a TaqMan-based one-step reverse transcription real-time PCR.

    Science.gov (United States)

    Miao, Y J; Xiong, G T; Bai, M Y; Ge, Y; Wu, Z F

    2018-05-01

    Fresh-cut produce is at greater risk of Salmonella contamination. Detection and early warning systems play an important role in reducing the dissemination of contaminated products. One-step Reverse Transcription Polymerase Chain Reaction (RT-qPCR) targeting Salmonella tmRNA with or without a 6-h enrichment was evaluated for the detection of Salmonella in fresh-cut vegetables after 6-h storage. LOD of one-step RT-qPCR was 1·0 CFU per ml (about 100 copies tmRNA per ml) by assessed 10-fold serially diluted RNA from 10 6 CFU per ml bacteria culture. Then, one-step RT-qPCR assay was applied to detect viable Salmonella cells in 14 fresh-cut vegetables after 6-h storage. Without enrichment, this assay could detect 10 CFU per g for fresh-cut lettuce, cilantro, spinach, cabbage, Chinese cabbage and bell pepper, and 10 2 CFU per g for other vegetables. With a 6-h enrichment, this assay could detect 10 CFU per g for all fresh-cut vegetables used in this study. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. Significance and Impact of the Study: Fresh-cut produce is at greater risk of Salmonella contamination. Rapid detection methods play an important role in reducing the dissemination of contaminated products. One-step RT-qPCR assay used in this study could detect 10 CFU per g Salmonella for 14 fresh-cut vegetables with a 6-h short enrichment. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. © 2018 The Society for Applied Microbiology.

  14. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study...

  15. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq data

    Directory of Open Access Journals (Sweden)

    Perkins James R

    2012-07-01

    Full Text Available Abstract Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s. Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  16. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  17. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    Science.gov (United States)

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific

  18. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test.

    Science.gov (United States)

    Suin, Vanessa; Nazé, Florence; Francart, Aurélie; Lamoral, Sophie; De Craeye, Stéphane; Kalai, Michael; Van Gucht, Steven

    2014-01-01

    A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  19. Performance of a commercial assay for the diagnosis of influenza A (H1N1 infection in comparison to the Centers for Disease Control and Prevention protocol of real time RT-PCR

    Directory of Open Access Journals (Sweden)

    María G Barbás

    2012-03-01

    Full Text Available At the time of influenza A (H1N1 emergency, the WHO responded with remarkable speed by releasing guidelines and a protocol for a real-time RT-PCR assay (rRT-PCR. The aim of the present study was to evalúate the performance of the "Real Time Ready Influenza A/H1N1 Detection Set" (June 2009-Roche kit in comparison to the CDC reference rRT-PCR protocol. The overall sensitivity of the Roche assay for detection of the Inf A gene in the presence or absence of the H1 gene was 74.5 %. The sensitivity for detecting samples that were only positive for the Inf A gene (absence of the H1 gene was 53.3 % whereas the sensitivity for H1N1-positive samples (presence of the Inf A gene and any other swine gene was 76.4 %. The specificity of the assay was 97.1 %. A new version of the kit (November 2009 is now available, and a recent evaluation of its performance showed good sensitivity to detect pandemic H1N1 compared to other molecular assays.Durante la pandemia de influenza A (H1N1, la OMS recomendó algoritmos y protocolos de detección del virus mediante RT-PCR en tiempo real. El objetivo del presente estudio fue evaluar el desempeño del equipo que comercializa la empresa Roche, Real Time Ready Influenza A/H1N1 Detection Set (junio de 2009, en comparación con el protocolo de RT-PCR en tiempo real de los CDC. La sensibilidad global del ensayo de Roche para la detección del gen Inf A en presencia o ausencia del gen H1 fue 74,5 %. La sensibilidad para la detección de muestras positivas solo para el gen Inf A (ausencia del gen H1 fue 53,3 % y la sensibilidad para la detección de muestras positivas para H1N1 (presencia del gen Inf A y cualquier otro gen porcino fue 76,4 %. La especificidad fue 97,1 %. Existe una nueva versión del equipo (noviembre 2009 que, según se ha descrito, presenta buena sensibilidad en comparación con otros ensayos moleculares para detectar H1N1 pandémica.

  20. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    Science.gov (United States)

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  1. A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control

    Directory of Open Access Journals (Sweden)

    Delogu Mauro

    2006-05-01

    Full Text Available Abstract Background Avian influenza viruses (AIVs are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR with a Minor Groove Binder (MGB probe for the detection of different subtypes of AIVs. This technique also includes an IPC. Methods RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. Results The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 108 copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. Conclusion The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with

  2. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    Science.gov (United States)

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  3. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  4. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum using quantitative real-time RT-PCR.

    Directory of Open Access Journals (Sweden)

    Jacinta Gimeno

    Full Text Available Switchgrass (Panicum virgatum has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.

  5. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  6. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    zino

    2014-02-05

    Feb 5, 2014 ... ecological studies - A review ... The objective of this review is to assess the importance of RT-qPCR in soil related ... phenol extraction step with heat inactivation of the added .... Real time polymerase chain reaction (PCR).

  7. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus.

    Science.gov (United States)

    Santiago, Gilberto A; Vergne, Edgardo; Quiles, Yashira; Cosme, Joan; Vazquez, Jesus; Medina, Juan F; Medina, Freddy; Colón, Candimar; Margolis, Harold; Muñoz-Jordán, Jorge L

    2013-01-01

    Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1-4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1-4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1-4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1-4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

  8. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East.

    Science.gov (United States)

    Reid, Scott M; Mioulet, Valerie; Knowles, Nick J; Shirazi, Nazeem; Belsham, Graham J; King, Donald P

    2014-10-01

    Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). In countries where FMD is endemic, identification of the serotypes of the causative virus strains is important for vaccine selection and tracing the source of outbreaks. In this study, real-time reverse transcription polymerase chain reaction (rRT-PCR) assays using primer/probe sets designed from the VP1 coding region of the virus genomes were developed for the specific detection of serotype O, A and Asia-1 FMD viruses (FMDVs) circulating in the Middle East. These assays were evaluated using representative field samples of serotype O strains belonging exclusively to the PanAsia-2 lineage, serotype A strains of the Iran-05 lineage and serotype Asia-1 viruses from three relevant sub-groups. When RNA extracted from archival and contemporary field strains was tested using one- or two-step rRT-PCR assays, all three primer/probe sets detected the RNA from homotypic viruses and no cross-reactivity was observed with heterotypic viruses. Similar results were obtained using both single- and multiplex assay formats. Using plasmid standards, the minimum detection level of these tests was found to be lower than two copies. The results illustrate the potential of tailored rRT-PCR tools for the detection and categorization of viruses circulating in the Middle East belonging to distinct subgroups of serotypes O, A and Asia-1. These assays can also overcome the problem of serotyping samples which are found positive by the generic rRT-PCR diagnostic assays but negative by virus isolation and antigen-detection ELISA which would otherwise have to be serotyped by nucleotide sequencing. A similar approach could be used to develop serotyping assays for FMDV strains circulating in other regions of the world. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. [Detecting HB-1 Expression Level in Bone Marrow of Acute Leukemia Patients by Real-Time Fluorescence Quantitative RT-PCR].

    Science.gov (United States)

    Wang, Qing-Yun; Li, Yuan; Ji, Li; Liang, Ze-Yin; Liu, Wei; Ren, Han-Yun; Qiu, Zhi-Xiang

    2018-02-01

    To investigate the expression level of HB-1 gene in patients with acute lymphoblastic leukemia (ALL) and the significance of HB-1 gene in monitoring of minimal residual disease (MRD). The method of real-time fluorescence quantitative RT-PCR (Taqman probe) was established to detect the expression levels of HB-1 gene; then the sensitivity, specificity and repeatability of this assay were evaluated and verified. The HB-1 gene expression levels in bone marrow of 183 cases of ALL, 70 cases of acute myeloid leukemias (AML), 52 cases of non-malignant hematologic diseases and 24 healthy hematopoietic stem cell donors were detected. The correlation of HB-1 level with diagnosis and relapse was analyzed by detecting bone marrow samples of 33 B-ALL. The sensitivity of this assay reached the 10 -4 level. The coefficient of variation for inter-batch and inter-tube of HB-1 were 6.79% and 4.80%, respectively. It was found that HB-1 gene specifically expressed in acute B lymphoblastic leukemia. The median expression levels of HB-1 gene in newly diagnosed and relapsed B-ALL patients were statistically significantly higher than those in ALL in complete remission(CR), newly diagnosed T-ALL, newly diagnosed AML, non-malignant hematologic diseases, and healthy hematopoietic stem cell donors(33.0% vs 0.68%, 0.07%, 0.02%, 0.58% and 0, respectively) (P0.05). The expression level of HB-1 gene declined sharply when B-ALL patients reached complete remission (0-7.99%, with median level 0.68%), but increased when relapsed (7.69%, 8.08% and 484.0% in 3 relapsed samples), which was in accordance with results of flow cytometry. HB-1 gene specifically expressed in acute B lymphoblastic leukemia cells. The established real-time fluorescence quantitative RT-PCR assay shows good sensitivity, specificity and repeatability, thus, can be used as a biological marker in the clinical detection, monitoring MRD and predicting of early relapse for B-ALL patients.

  10. Modeling qRT-PCR dynamics with application to cancer biomarker quantification.

    Science.gov (United States)

    Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.

  11. Development and evaluation of novel one-step TaqMan realtime RT-PCR assays for the detection and direct genotyping of genogroup I and II noroviruses

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Vega, Everado; Dalsgaard, Anders

    2011-01-01

    BackgroundCurrent detection and genotyping methods of genogroup (G) I and II noroviruses (NoVs) consist of a 2-step approach including detection of viral RNA by TaqMan realtime RT-PCR (RT-qPCR) followed by conventional RT-PCR and sequencing of partial regions of ORF1 or ORF2. ObjectiveTo develop ......Man RT-qPCR assays for the sensitive detection and direct genotyping of GI and GII NoVs from clinical and environmental matrices...... novel long-template one-step TaqMan assays (L-RT-qPCR) for the rapid detection and direct genotyping of GI and GII NoVs and to evaluate the sensitivity and specificity of the assays. Study designGI and GII-specific broadly reactive L-RT-qPCR assays were developed by combining existing NoV primers...... and probes targeting the open reading frame (ORF)1–ORF2 junction as well as region C at the 5′–ORF2. The assays were validated using GI and GII RNA transcripts and a coded panel of 75 stool samples containing NoV strains representing 9 GI genotypes and 12 GII genotypes, as well as sapoviruses, astroviruses...

  12. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus.

    Directory of Open Access Journals (Sweden)

    Gilberto A Santiago

    Full Text Available Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV. There are four genetically distinct DENVs (DENV-1-4 that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1-4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1-4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1-4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

  13. A Two-Step Lyssavirus Real-Time Polymerase Chain Reaction Using Degenerate Primers with Superior Sensitivity to the Fluorescent Antigen Test

    Directory of Open Access Journals (Sweden)

    Vanessa Suin

    2014-01-01

    Full Text Available A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR, based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.

  14. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    Science.gov (United States)

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  15. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    Science.gov (United States)

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Development of a one-step duplex RT-qPCR for the quantification of phocine distemper virus.

    Science.gov (United States)

    Bogomolni, Andrea L; Frasca, Salvatore; Matassa, Keith A; Nielsen, Ole; Rogers, Kara; De Guise, Sylvain

    2015-04-01

    Worldwide, stranded marine mammals and the network personnel who respond to marine mammal mortality have provided much of the information regarding marine morbillivirus infections. An assay to determine the amount of virus present in tissue samples would be useful to assist in routine surveying of animal health and for monitoring large-scale die-off events. False negatives from poor-quality samples prevent determination of the true extent of infection, while only small amounts of tissue samples or archived RNA may be available at the time of collection for future retrospective analysis. We developed a one-step duplex real-time reverse transcriptase-quantitative-PCR assay (RT-qPCR) based on Taqman probe technology to quantify phocine distemper virus (PDV) isolated from an outbreak in harbor (Phoca vitulina concolor) and gray seals (Halichoerus grypus) along the northeast US coast in 2006. The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected to assess RNA quality. This duplex assay is specific for PDV and sensitive through a range of 10(0) to 10(9) copies ds-plasmid DNA. For the GAPDH target, the reaction in duplex amplified 10(0) to 10(9) copies of ds-plasmid DNA and was detectable in multiple seal species. This assay reduced the likelihood of false negative results due to degradation of tissues and well-to-well variability while providing sensitive and specific detection of PDV, which would be applicable in molecular epidemiologic studies and pathogen detection in field and laboratory investigations involving a variety of seal species.

  17. Sensitive real-time PCR detection of pathogenic Leptospira spp. and a comparison of nucleic acid amplification methods for the diagnosis of leptospirosis.

    Science.gov (United States)

    Waggoner, Jesse J; Balassiano, Ilana; Abeynayake, Janaki; Sahoo, Malaya K; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Pinsky, Benjamin A

    2014-01-01

    Bacteria of the genus Leptospira, the causative agents of leptospirosis, are categorized into pathogenic and non-pathogenic species. However, the benefit of using a clinical diagnostic that is specific for pathogenic species remains unclear. In this study, we present the development of a real-time PCR (rtPCR) for the detection of pathogenic Leptospira (the pathogenic rtPCR), and we perform a comparison of the pathogenic rtPCR with a published assay that detects all Leptospira species [the undifferentiated febrile illness (UFI) assay] and a reference 16S Leptospira rtPCR, which was originally designed to detect pathogenic species. For the pathogenic rtPCR, a new hydrolysis probe was designed for use with primers from the UFI assay, which targets the 16S gene. The pathogenic rtPCR detected Leptospira DNA in 37/37 cultured isolates from 5 pathogenic and one intermediate species. Two strains of the non-pathogenic L. biflexa produced no signal. Clinical samples from 65 patients with suspected leptospirosis were then tested using the pathogenic rtPCR and a reference Leptospira 16S rtPCR. All 65 samples had tested positive for Leptospira using the UFI assay; 62 (95.4%) samples tested positive using the pathogenic rtPCR (p = 0.24). Only 24 (36.9%) samples tested positive in the reference 16S rtPCR (pLeptospira species in 49/50 cases, including 3 cases that were only detected using the UFI assay. The pathogenic rtPCR displayed similar sensitivity to the UFI assay when testing clinical specimens with no difference in specificity. Both assays proved significantly more sensitive than a real-time molecular test used for comparison. Future studies are needed to investigate the clinical and epidemiologic significance of more sensitive Leptospira detection using these tests.

  18. Cost-effectiveness of a modified two-step algorithm using a combined glutamate dehydrogenase/toxin enzyme immunoassay and real-time PCR for the diagnosis of Clostridium difficile infection.

    Science.gov (United States)

    Vasoo, Shawn; Stevens, Jane; Portillo, Lena; Barza, Ruby; Schejbal, Debra; Wu, May May; Chancey, Christina; Singh, Kamaljit

    2014-02-01

    The analytical performance and cost-effectiveness of the Wampole Toxin A/B EIA, the C. Diff. Quik Chek Complete (CdQCC) (a combined glutamate dehydrogenase antigen/toxin enzyme immunoassay), two RT-PCR assays (Progastro Cd and BD GeneOhm) and a modified two-step algorithm using the CdQCC reflexed to RT-PCR for indeterminate results were compared. The sensitivity of the Wampole Toxin A/B EIA, CdQCC (GDH antigen), BD GeneOhm and Progastro Cd RT-PCR were 85.4%, 95.8%, 100% and 93.8%, respectively. The algorithm provided rapid results for 86% of specimens and the remaining indeterminate results were resolved by RT-PCR, offering the best balance of sensitivity and cost savings per test (algorithm ∼US$13.50/test versus upfront RT-PCR ∼US$26.00/test). Copyright © 2012. Published by Elsevier B.V.

  19. Low-cost HIV-1 diagnosis and quantification in dried blood spots by real time PCR.

    Science.gov (United States)

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A S; Eliot, Melissa N; Lin, Rongheng; Foulkes, Andrea S; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-06-05

    Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log(10), and %CV real-time systems demonstrated similar performance. The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings.

  20. Evaluation of ALK gene rearrangement in central nervous system metastases of non-small-cell lung cancer using two-step RT-PCR technique.

    Science.gov (United States)

    Nicoś, M; Krawczyk, P; Wojas-Krawczyk, K; Bożyk, A; Jarosz, B; Sawicki, M; Trojanowski, T; Milanowski, J

    2017-12-01

    RT-PCR technique has showed a promising value as pre-screening method for detection of mRNA containing abnormal ALK sequences, but its sensitivity and specificity is still discussable. Previously, we determined the incidence of ALK rearrangement in CNS metastases of NSCLC using IHC and FISH methods. We evaluated ALK gene rearrangement using two-step RT-PCR method with EML4-ALK Fusion Gene Detection Kit (Entrogen, USA). The studied group included 145 patients (45 females, 100 males) with CNS metastases of NSCLC and was heterogeneous in terms of histology and smoking status. 21% of CNS metastases of NSCLC (30/145) showed presence of mRNA containing abnormal ALK sequences. FISH and IHC tests confirmed the presence of ALK gene rearrangement and expression of ALK abnormal protein in seven patients with positive result of RT-PCR analysis (4.8% of all patients, 20% of RT-PCR positive patients). RT-PCR method compared to FISH analysis achieved 100% of sensitivity and only 82.7% of specificity. IHC method compared to FISH method indicated 100% of sensitivity and 97.8% of specificity. In comparison to IHC, RT-PCR showed identical sensitivity with high number of false positive results. Utility of RT-PCR technique in screening of ALK abnormalities and in qualification patients for molecularly targeted therapies needs further validation.

  1. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. A quantitative method to evaluate mesenchymal stem cell lipofection using real-time PCR.

    Science.gov (United States)

    Ribeiro, S C; Mendes, R; Madeira, C; Monteiro, G A; da Silva, C L; Cabral, J M S

    2010-01-01

    Genetic modification of human mesenchymal stem cells (MSC) is a powerful tool to improve the therapeutic utility of these cells and to increase the knowledge on their regulation mechanisms. In this context, strong efforts have been made recently to develop efficient nonviral gene delivery systems. Although several studies addressed this question most of them use the end product of a reporter gene instead of the DNA uptake quantification to test the transfection efficiency. In this study, we established a method based on quantitative real-time PCR (RT-PCR) to determine the intracellular plasmid DNA copy number in human MSC after lipofection. The procedure requires neither specific cell lysis nor DNA purification. The influence of cell number on the RT-PCR sensitivity was evaluated. The method showed good reproducibility, high sensitivity, and a wide linear range of 75-2.5 x 10⁶ plasmid DNA copies per cell. RT-PCR results were then compared with the percentage of transfected cells assessed by flow cytometry analysis, which showed that flow cytometry-based results are not always proportional to plasmid cellular uptake determined by RT-PCR. This work contributed for the establishment of a rapid quantitative assay to determine intracellular plasmid DNA in stem cells, which will be extremely beneficial for the optimization of gene delivery strategies. © 2010 American Institute of Chemical Engineers

  3. Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR.

    Science.gov (United States)

    Alidjinou, Enagnon Kazali; Sane, Famara; Lefevre, Christine; Baras, Agathe; Moumna, Ilham; Engelmann, Ilka; Vantyghem, Marie-Christine; Hober, Didier

    2017-11-01

    Enteroviruses (EV) have been associated with type 1 diabetes (T1D), but EV RNA detection has been reported in only a small proportion of T1D patients. We studied whether integrated cell culture and reverse transcription real-time PCR could improve EV detection in blood samples from patients with T1D. Blood was collected from 13 patients with T1D. The presence of EV RNA in blood was investigated by using real-time RT-PCR. In addition, plasma and white blood cells (WBC) were inoculated to BGM and Vero cell line cultures. Culture supernatants and cells collected on day 7 and day 14 were tested for EV RNA by real-time RT-PCR. Enterovirus identification was performed through sequencing of the VP4/VP2 region. Enterovirus RNA was detected in blood by using real-time RT-PCR in only one out of 13 patients. The detection of EV RNA in cultures inoculated with clinical samples (plasma and/or WBC) gave positive results in five other patients. The viral loads were low, ranging from 45 to 4420 copies/ng of total RNA. One isolate was successfully identified as coxsackievirus B1. Integrated cell culture and reverse transcription real-time PCR can improve the detection rate of EV in blood samples of patients with T1D and can be useful to investigate further the relationship between EV and the disease.

  4. Data acquisition and real-time bolometer tomography using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Eich, T.; Fuchs, J.C.; Ravindran, M.; Ruan, Q.; Wenzel, L.; Cerna, M.; Concezzi, S.

    2011-01-01

    The currently available multi-core PCI Express systems running LabVIEW RT (real-time), equipped with FPGA cards for data acquisition and real-time parallel signal processing, greatly shorten the design and implementation cycles of large-scale, real-time data acquisition and control systems. This paper details a data acquisition and real-time tomography system using LabVIEW RT for the bolometer diagnostic on the ASDEX Upgrade tokamak (Max Planck Institute for Plasma Physics, Garching, Germany). The transformation matrix for tomography is pre-computed based on the geometry of distributed radiation sources and sensors. A parallelized iterative algorithm is adapted to solve a constrained linear system for the reconstruction of the radiated power density. Real-time bolometer tomography is performed with LabVIEW RT. Using multi-core machines to execute the parallelized algorithm, a cycle time well below 1 ms is reached.

  5. Diagnosis of Barmah Forest Virus Infection by a Nested Real-Time SYBR Green RT-PCR Assay

    OpenAIRE

    Hueston, Linda; Toi, Cheryl S.; Jeoffreys, Neisha; Sorrell, Tania; Gilbert, Gwendolyn

    2013-01-01

    Barmah Forest virus (BFV) is a mosquito borne (+) ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR ne...

  6. Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays.

    Directory of Open Access Journals (Sweden)

    Roujian Lu

    Full Text Available BACKGROUND: In addition to SARS associated coronaviruses, 4 non-SARS related human coronaviruses (HCoVs are recognized as common respiratory pathogens. The etiology and clinical impact of HCoVs in Chinese adults with acute upper respiratory tract infection (URTI needs to be characterized systematically by molecular detection with excellent sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we detected 4 non-SARS related HCoV species by real-time RT-PCR in 981 nasopharyngeal swabs collected from March 2009 to February 2011. All specimens were also tested for the presence of other common respiratory viruses and newly identified viruses, human metapneumovirus (hMPV and human bocavirus (HBoV. 157 of the 981 (16.0% nasopharyngeal swabs were positive for HCoVs. The species detected were 229E (96 cases, 9.8%, OC43 (42 cases, 4.3%, HKU1 (16 cases, 1.6% and NL63 (11 cases, 1.1%. HCoV-229E was circulated in 21 of the 24 months of surveillance. The detection rates for both OC43 and NL63 were showed significantly year-to-year variation between 2009/10 and 2010/11, respectively (P<0.001 and P = 0.003, and there was a higher detection frequency of HKU1 in patients aged over 60 years (P = 0.03. 48 of 157(30.57% HCoV positive patients were co-infected. Undifferentiated human rhinoviruses and influenza (Flu A were the most common viruses detected (more than 35% in HCoV co-infections. Respiratory syncytial virus (RSV, human parainfluenza virus (PIV and HBoV were detected in very low rate (less than 1% among adult patients with URTI. CONCLUSIONS/SIGNIFICANCE: All 4 non-SARS-associated HCoVs were more frequently detected by real-time RT-PCR assay in adults with URTI in Beijing and HCoV-229E led to the most prevalent infection. Our study also suggested that all non-SARS-associated HCoVs contribute significantly to URTI in adult patients in China.

  7. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    Science.gov (United States)

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Novel Reverse-Transcriptase Real-Time PCR Method for Quantification of Viable Vibrio Parahemolyticus in Raw Shrimp Based on a Rapid Construction of Standard Curve Method

    OpenAIRE

    Mengtong Jin; Haiquan Liu; Wenshuo Sun; Qin Li; Zhaohuan Zhang; Jibing Li; Yingjie Pan; Yong Zhao

    2015-01-01

    Vibrio parahemolyticus is an important pathogen that leads to food illness associated seafood. Therefore, rapid and reliable methods to detect and quantify the total viable V. parahaemolyticus in seafood are needed. In this assay, a RNA-based real-time reverse-transcriptase PCR (RT-qPCR) without an enrichment step has been developed for detection and quantification of the total viable V. parahaemolyticus in shrimp. RNA standards with the target segments were synthesized in vitro with T7 RNA p...

  9. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  10. Detection of human papillomavirus by hybrid capture and real time PCR methods in patients with chronic cervicitis and cervical intraepithelial

    Directory of Open Access Journals (Sweden)

    Elisha Khandker

    2016-07-01

    Full Text Available Background and objectives:Cervical cancer due to Human papillomavirus (HPV is one of the leading causes of morbidity and mortality in women. Testing of HPV can identify women who are at risk of cervical cancer. Nowadays, molecular methods like real time polymerase chain reaction (PCR and hybrid capture technique are applied for detecting HPV in cervical specimens. The objective of the present study was to determine the rate of HPV infection in women with chronic cervicitis and cervical intraepithelial neoplasia (CIN by a commercial real time polymerase chain reaction test kit and by a hybrid capture HPV DNA test. Methods:Women aged between 20 to 55 years with chronic cervicitis and CIN were enrolled in the study after obtaining informed consent. Cervical specimen was collected by using cervical brush and stored in transport medium until used. HPV was detected by High Risk Screen Real-TM Quant 2x (Sacace, Biotechnologies SrI, Italy real time PCR kit (HR RT-PCR and by Hybrid Capture-2 High-Risk HPV DNA (Hc-2; Digene Corporation, USA test. Results: Total 72 women with chronic cervicitis and CIN of different grades were included in the study. Out of this, HPV infection detected by HR RT-PCR was 31 (43% and by Hc-2 was 14 (19.4%. Both the tests were able to detect HPV infection in all the CIN 3 cases and in most of the CIN 2 cases. However, HR RT-PCR detected higher number of HPV in chronic cervicitis and CIN1 cases. Conclusion:The study has shown that HR RT-PCR and Hc-2 tests are equally effective in detecting HPV infection in patients with CIN 2 and CIN 3 lesions. However, HR RT-PCR is more sensitive test for detecting HPV in chronic cervicitis and early CIN lesions and, therefore can be used in epidemiological study to detect presence of HPV in general population. IMC J Med Sci 2016; 10(2: 45-48

  11. Performance of nested RT-PCR on CSF for tuberculous meningitis diagnosis in HIV-infected patients.

    Science.gov (United States)

    Gualberto, F A S; Gonçalves, M G; Fukasawa, L O; Santos, A M Ramos Dos; Sacchi, C T; Harrison, L H; Boulware, D R; Vidal, J E

    2017-10-01

    Timely diagnosis of tuberculous meningitis (TBM) in patients with human immunodeficiency virus (HIV) infection remains a challenge. Despite the current scale-up of the Xpert® MTB/RIF assay, other molecular diagnostic tools are necessary, particularly in referral centres in low- and middle-income countries without Xpert testing. To determine the diagnostic performance of nested real-time polymerase chain reaction (nRT-PCR) in HIV-infected TBM patients categorised according to standardised clinical case definitions. Based on clinical, laboratory and imaging data, HIV-infected patients with suspected TBM were prospectively categorised as 'definite TBM', 'probable TBM', 'possible TBM' or 'not TBM'. We evaluated nRT-PCR sensitivity and specificity in diagnosing TBM among definite TBM cases, and among definite + probable TBM cases. Ninety-two participants were enrolled in the study. nRT-PCR sensitivity for definite TBM (n = 8) was 100% (95%CI 67-100) and 86% (95%CI 60-96) for both definite and probable TBM (n = 6). Assuming that 'not TBM' patients (n = 74) were true-negatives, nRT-PCR specificity was 100% (95%CI 95-100). The possible TBM group (n = 4) had no nRT-PCR positives. The nRT-PCR is a useful rule-in test for HIV-infected patients with TBM according to international consensus case definitions. As nRT-PCR cannot exclude TBM, studies comparing and combining nRT-PCR with other assays are necessary for a rule-out test.

  12. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    Science.gov (United States)

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    Science.gov (United States)

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    Campylobacter spp. is the most common cause of bacterial diarrhoea in humans worldwide. Therefore, rapid and reliable methods fordetection and quantification of this pathogen are required. In this study, we have developed a reverse transcription quantitative real-time PCR(RT-qPCR) for detection a...

  15. Selection of reference genes for RT-qPCR analysis in the monarch butterfly, Danaus plexippus (L.), a migrating bio-indicator

    Science.gov (United States)

    Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...

  16. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  17. Study of the Efficacy of Real Time-PCR Method for Amikacin Determination Using Microbial Assay

    Directory of Open Access Journals (Sweden)

    Farzaneh Lotfipour

    2015-06-01

    Full Text Available Purpose: Microbial assay is used to determine the potency of antibiotics and vitamins. In spite of its advantages like simplicity and easiness, and to reveal the slight changes in the molecules, the microbial assay suffers from significant limitations; these methods are of lower specificity, accuracy and sensitivity. The objective of the present study is to evaluate the efficacy of real time-PCR technique in comparison with turbidimetric method for microbial assay of amikacin. Methods: Microbial determination of amikacin by turbidimetric method was performed according to USP. Also amikacin concentrations were determined by microbial assay using taq-man quantitative PCR method. Standard curves in different concentration for both methods were plotted and method validation parameters of linearity, precision and accuracy were calculated using statistical procedures. Results: The RT-PCR method was linear in the wider concentration range (5.12 – 38.08 for RT-PCR versus 8.00 – 30.47 for turbidimetric method with a better correlation coefficient (0.976 for RT-PCR versus 0.958 for turbidimetric method. RT-PCR method with LOQ of 5.12 ng/ml was more sensitive than turbidimetric method with LOQ of 8.00 ng/ml and the former could detect and quantify low concentrations of amikacin. The results of accuracy and precision evaluation showed that the RT-PCR method was accurate and precise in all of the tested concentration. Conclusion: The RT-PCR method described here provided an accurate and precise technique for measurement of amikacin potency and it can be a candidate for microbial determination of the antibiotics with the same test organism.

  18. RT-PCR Detection of HIV in Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Golubinka Bosevska

    2008-11-01

    Full Text Available The aim of the study was to detect HIV RNA in seropositive patients using RT-PCR method and thus, to establish PCR methodology in the routine laboratory works.The total of 33 examined persons were divided in two groups: 1 13 persons seropositive for HIV; and 2 20 healthy persons - randomly selected blood donors that made the case control group. The subjects age was between 25 and 52 years (average 38,5.ELFA test for combined detection of HIV p24 antigen and anti HIV-1 + 2 IgG and ELISA test for detection of antibodies against HIV-1 and HIV-2, were performed for each examined person. RNA from the whole blood was extracted using a commercial kit based on salt precipitation. Detection of HIV RNA was performed using RT-PCR kit. Following nested PCR, the product was separated by electrophoresis in 1,5 % agarose gel. The result was scored positive if the band of 210bp was visible regardless of intensity Measures of precaution were taken during all the steps of the work and HIV infected materials were disposed of accordingly.In the group of blood donors ELFA, ELISA and RT-PCR were negative. Assuming that prevalence of HIV infection is zero, the clinical specificity of RT-PCR is 100 %. The analytical specificity of RT-PCR method was tested against Hepatitis C and B, Human Papiloma Virus, Cytomegalovirus, Herpes Simplex Virus, Rubella Virus, Mycobacterium tuberculosis, Chlamydia trachomatis. None of these templates yielded amplicon. In the group of 13 seropositive persons, 33 samples were analyzed. HIV RNA was detected in 15 samples. ELISA and ELFA test were positive in all samples. Different aliquots of the samples were tested independently and showed the same results. After different periods of storing the RNA samples at -70°C, RT-PCR reaction was identical to the one performed initially. The obtained amplicons were maintained frozen at -20°C for a week and the subsequently performed electrophoresis was identical to the previous one. The reaction is

  19. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    Science.gov (United States)

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  20. Diagnosis of Barmah Forest virus infection by a nested real-time SYBR green RT-PCR assay.

    Directory of Open Access Journals (Sweden)

    Linda Hueston

    Full Text Available Barmah Forest virus (BFV is a mosquito borne (+ ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR negative. Two culture-positive (neutralizing antibody negative samples were positive on first round PCR, while one sample (IgM and neutralizing antibody strongly positive, IgG negative was positive on second round PCR, suggesting that viral RNA is detectable and transiently present in early infection. PCR can provide results faster than culture, is capable of high throughput and by sequencing the PCR product strain variants can be characterized.

  1. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    Directory of Open Access Journals (Sweden)

    Parida Manmohan

    2008-01-01

    Full Text Available Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Japanese encephalitis, West Nile, Yellow fever and alphavirus (Chikungunya. The feasibility of M-RT-PCR assay for clinical diagnosis was validated with 620 acute phase dengue patient sera samples of recent epidemics in India. The comparative evaluation vis a vis conventional virus isolation revealed higher sensitivity. None of the forty healthy serum samples screened in the present study revealed any amplification, thereby establishing specificity of the reported assay for dengue virus only. Conclusion These findings clearly suggested that M-RT-PCR assay reported in the present study is the rapid and cost-effective method for simultaneous detection as well as typing of the dengue virus in acute phase patient serum samples. Thus, the M-RT-PCR assay developed in this study will serve as a very useful tool for rapid diagnosis and typing of dengue infections in endemic areas.

  2. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs.

    Science.gov (United States)

    Henritzi, Dinah; Zhao, Na; Starick, Elke; Simon, Gaelle; Krog, Jesper S; Larsen, Lars Erik; Reid, Scott M; Brown, Ian H; Chiapponi, Chiara; Foni, Emanuela; Wacheck, Silke; Schmid, Peter; Beer, Martin; Hoffmann, Bernd; Harder, Timm C

    2016-11-01

    A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost-effective large-scale analysis. New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages "av" (European avian-derived), "hu" (European human-derived) and "pdm" (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage "pdm" is differentiated. An RT-PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT-qPCR subtyping. These new multiplex RT-qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  3. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand.

    Science.gov (United States)

    Klungthong, Chonticha; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Chinnawirotpisan, Piyawan; Rodpradit, Prinyada; Hussem, Kittinun; Thaisomboonsuk, Butsaya; Ong-ajchaowlerd, Prapapun; Nisalak, Ananda; Kalayanarooj, Siripen; Buddhari, Darunee; Gibbons, Robert V; Jarman, Richard G; Yoon, In-Kyu; Fernandez, Stefan

    2015-02-01

    AFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA. To examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance. A retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011-2013. The percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods. Published by Elsevier B.V.

  4. REAL-TIME PCR DETECTION OF LISTERIA MONOCYTOGENES IN FOOD SAMPLES OF ANIMAL ORIGIN

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-02-01

    Full Text Available The aim of this study was to follow the contamination of food with Listeria monocytogenes by using Step One real time polymerase chain reaction (PCR. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In 24 samples of food of animal origin without incubation were detected strains of Listeria monocytogenes in 15 samples (swabs. Nine samples were negative. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in food of animal origin without incubation. This could prevent infection caused by Listeria monocytogenes, and also could benefit food manufacturing companies by extending their product’s shelf-life as well as saving the cost of warehousing their food products while awaiting pathogen testing results. The rapid real-time PCR-based method performed very well compared to the conventional method. It is a fast, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future.

  5. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    Science.gov (United States)

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  6. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Chiwan Koo

    Full Text Available Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  7. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Franzo, G; Drigo, M; Lupini, C; Catelli, E; Laconi, A; Listorti, V; Bonci, M; Naylor, C J; Martini, M; Cecchinato, M

    2014-06-01

    Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.

  8. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR

    Directory of Open Access Journals (Sweden)

    Nagorsen Dirk

    2003-12-01

    Full Text Available Abstract The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV and Influenza (Flu, were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ, Interleukin-2 (IL-2, Interleukin-4 (IL-4, and Interleukin-10 (IL-10. We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization.

  9. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR)

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone; Bonginelli, Paola; Nagorsen, Dirk; Kwon, Seog-Woon; Stroncek, David

    2003-01-01

    The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA) polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs) from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV) and Influenza (Flu), were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR) was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-4 (IL-4), and Interleukin-10 (IL-10). We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization. PMID:14675481

  10. MINIX4RT: Real-Time Semaphores

    OpenAIRE

    Pessolani, Pablo Andrés

    2007-01-01

    MINIX4RT es una extensión del conocido Sistema Operativo MINIX que incorpora servicios de Tiempo Real Estricto en un nuevo microkernel pero manteniendo compatibilidad con las versiones anteriores del MINIX estándar. Los semáforos son el mecanismo primitivo para la sincronización y exclusion mutua en varios sistemas operativos, pero MINIX no brinda esa facilidad. Se adicionaron semáforos a MINIX4RT y, como éste es un Sistema Operativo de Tiempo Real, deben reunir ciertos requisitos de procesam...

  11. Real-time PCR in virology

    OpenAIRE

    Mackay, Ian M.; Arden, Katherine E.; Nitsche, Andreas

    2002-01-01

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of P...

  12. Determinazione quantitativa di HCV-RNA: valutazione comparativa dei saggi Abbott Real-Time e Versant bDNA v.3

    Directory of Open Access Journals (Sweden)

    Aldo Manzin

    2007-06-01

    Full Text Available Hepatitis C virus (HCV RNA measurement before, during and after antiviral therapy has become an essential tool in the management of interferon-based treatment of HCV-related infections. Conventional Polymerase Chain Reaction (PCR has been largely used to obtain quantitative data, but laborious, time-consuming post-PCR handling steps are required to gain valuable results. Real time (RT PCR now provides advantages over end-point (EP PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination, and has now proven itself to be valuable for the more precise monitoring of viral load kinetics and assessing antiviral response.The Abbott Real-Time HCV-RNA is a recently introduced assay for the automated processing of clinical samples and HCV-RNA quantitation: its basic technology relies on use of fluorescent linear probes (dynamic range using 0.5 ml as input target= 12-108 IU/mL and a hybridization/detection step at low temperature (35°C, which allows target mismatches to be tolerated. To determine the clinical application of the Abbott Real-Time assay and defining its correlation with the Bayer Versant bDNA v.3 assay, 68 consecutive samples from unselected HCV-infected patients were retrospectively analysed with RT and the results obtained using the two tests compared.A good correlation was found between RT-PCR and bDNA: 97% of samples tested had a result within a 0.5 log HCV IU/mL difference (bias=0.15 log, whereas 6 samples negative with bDNA gave positive results with Abbott RT (range, 1.89-3.07 log IU/mL and “in-house” qualitative RT-PCR assays.

  13. Outcome on EPIZONE Extension on VER/ VNN: Diagnostics, proficiency test and qRT-PCR validation

    DEFF Research Database (Denmark)

    Bigarré, Laurent; Panzarin, Valentina; Baud, Marine

    2012-01-01

    1 is to bring valuable genetic information on the second genome component of a given isolate. ANSES has developed new DNA probes targeting RNA1 with the goal of detecting all genotypes of nodaviruses. The aim of the project is thus: - To organize, conduct and report an inter-laboratory proficiency...... test for detection of aquatic nodaviruses by real time RT-PCR targeting RNA1 and RNA2, respectively. - To test a newly developed real-time RT-PCR targeting RNA1: sensitivity, specificity, range of detection and genetic information provided by sequencing the PCR product. Materials & methods Primers...... to be extracted by each partner. In the meantime, ANSES produced and distributed RNA extracted from healthy or infected fish (2 genogroups), or cell culture; one sample from cell culture had to be serially diluted to test the sensitivity of each method in partners’ hands. Samples were tested in duplicates...

  14. Modified Polyadenylation-Based RT-qPCR Increases Selectivity of Amplification of 3′-MicroRNA Isoforms

    Directory of Open Access Journals (Sweden)

    Charlotte Nejad

    2018-01-01

    Full Text Available MicroRNA (miRNA detection by reverse transcription (RT quantitative real-time PCR (RT-qPCR is the most popular method currently used to measure miRNA expression. Although the majority of miRNA families are constituted of several 3′-end length variants (“isomiRs”, little attention has been paid to their differential detection by RT-qPCR. However, recent evidence indicates that 3′-end miRNA isoforms can exhibit 3′-length specific regulatory functions, underlining the need to develop strategies to differentiate 3′-isomiRs by RT-qPCR approaches. We demonstrate here that polyadenylation-based RT-qPCR strategies targeted to 20–21 nt isoforms amplify entire miRNA families, but that primers targeted to >22 nt isoforms were specific to >21 nt isoforms. Based on this observation, we developed a simple method to increase selectivity of polyadenylation-based RT-qPCR assays toward shorter isoforms, and demonstrate its capacity to help distinguish short RNAs from longer ones, using synthetic RNAs and biological samples with altered isomiR stoichiometry. Our approach can be adapted to many polyadenylation-based RT-qPCR technologies already exiting, providing a convenient way to distinguish long and short 3′-isomiRs.

  15. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  16. Real-Time PCR for Universal Phytoplasma Detection and Quantification

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Nyskjold, Henriette; Nicolaisen, Mogens

    2013-01-01

    Currently, the most efficient detection and precise quantification of phytoplasmas is by real-time PCR. Compared to nested PCR, this method is less sensitive to contamination and is less work intensive. Therefore, a universal real-time PCR method will be valuable in screening programs and in other...

  17. Immunomagnetic separation combined with RT-qPCR for determining the efficacy of disinfectants against human noroviruses

    Directory of Open Access Journals (Sweden)

    Pengbo Liu

    2015-03-01

    Full Text Available Summary: Little is known about the effectiveness of disinfectants against human noroviruses (NoV partially because human NoV cannot be routinely cultured in laboratory. The objective of this study was to develop a NoV monoclonal antibody-conjugated immunomagnetic separation (IMS procedure combined with real-time reverse transcription polymerase chain reaction (RT-qPCR assays to study the in vitro efficacy of disinfectants against human NoV. Monoclonal antibodies against Norwalk virus (NV, GI.1 and NoV GII.4 were produced using unique NoV capsid proteins, and the antibodies were conjugated to magnetic Dynalbeads. The immunomagnetic beads were used to simultaneously capture intact NoV in samples and effectively remove PCR inhibitors. We examined the efficacy of ethanol, sodium hypochlorite, nine commercially available disinfectants, and one prototype disinfectant using the IMS/RT-qPCR. The sensitivity of this procedure was approximately 100 virus particles for both the NV and GII.4 viruses. The average log reductions in in vitro activities varied between disinfectants. The prototype disinfectant produced an average 3.19-log reduction in NV and a 1.38-log reduction in GII.4. The prototype disinfectant is promising of inactivating NoV. This method can be used to evaluate in vitro activity of disinfectants against human NoV. The IMS/RT-qPCR method is promising as an effective method to remove PCR inhibitors in disinfectants and enable the evaluation of the efficacy of disinfectants. Keywords: Disinfectant, Norovirus, Immunomagnetic separation, Real-time RT-PCR, PCR inhibition

  18. Prospective comparison of the detection rates of human enterovirus and parechovirus RT-qPCR and viral culture in different pediatric specimens

    NARCIS (Netherlands)

    de Crom, S C M; Obihara, C C; de Moor, R A; Veldkamp, E J M; van Furth, A M; Rossen, J W A

    2013-01-01

    BACKGROUND: Reverse-transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) has become the gold standard for the diagnosis of human enterovirus (EV) and parechovirus (HPeV) infections. The detection rate of RT-qPCR in different pediatric body specimens has not been compared

  19. Trends and advances in food analysis by real-time polymerase chain reaction.

    Science.gov (United States)

    Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin

    2016-05-01

    Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.

  20. A standard curve based method for relative real time PCR data processing

    Directory of Open Access Journals (Sweden)

    Krause Andreas

    2005-03-01

    Full Text Available Abstract Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II The optimal threshold is selected automatically from regression parameters of the standard curve. (III Crossing points (CPs are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV The means and their variances are calculated for CPs in PCR replicas. (V The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that

  1. High-level expression of podoplanin in benign and malignant soft tissue tumors: immunohistochemical and quantitative real-time RT-PCR analysis.

    Science.gov (United States)

    Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto

    2011-03-01

    Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.

  2. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    Science.gov (United States)

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  3. A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience

    DEFF Research Database (Denmark)

    Nielsen, A. C. Y.; Bottiger, B.; Midgley, S. E.

    2013-01-01

    As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay....... The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel...... testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses...

  4. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    International Nuclear Information System (INIS)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues or cells under investigation

  5. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Radtke Arnold

    2008-11-01

    Full Text Available Abstract Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR. The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC is presented. Methods Six genes, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hydroxymethyl-bilane synthase (HMBS, hypoxanthine phosphoribosyl-transferase 1 (HPRT1, succinate dehydrogenase complex, subunit A (SDHA and ubiquitin C (UBC, with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the

  6. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Science.gov (United States)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Methods Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues

  7. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    OpenAIRE

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-01-01

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain sampl...

  8. Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens

    Science.gov (United States)

    Beyhan, Yunus Emre; Taş Cengiz, Zeynep

    2017-08-23

    Background/aim: This study included patients who had digestive system complaints between August 2015 and October 2015. The research was designed to compare conventional microscopy with an antigen detection ELISA kit and the TaqMan-based real-time PCR (RT-PCR) technique for detection of Giardia intestinalis in human stool specimens. Materials and methods: Samples were concentrated by formalin-ether sedimentation technique and microscopic examinations were carried out on wet mount slides. A commercially available ELISA kit (Giardia CELISA, Cellabs, Brookvale, Australia) was used for immunoassay. DNA was extracted from fecal samples of about 200 mg using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and the LightCycler Nano system (Roche Diagnostics, Mannheim, Germany) was used for the TaqMan-based RT-PCR assay. Results: A total of 94 stool samples, 38 of them diagnosed positive (40.4%) and 56 of them diagnosed negative by microscopy, were selected for evaluation by antigen detection and molecular assays. The prevalence of G. intestinalis infection was found as 46.8% (n: 44) and 79.8% (n: 75) by ELISA and RT-PCR, respectively. RT-PCR revealed by far the highest positivity rate compared to the other two methods. The difference between these methods was found to be statistically significant (P PCR, the sensitivity and specificity of microscopy and ELISA were 50.7% and 100% and 53.3% and 79%, respectively. Conclusion: RT-PCR seems to be much more sensitive and beneficial for rapid and accurate diagnosis of G. intestinalis in human stools.

  9. Pandemic preparedness in Hawaii: a multicenter verification of real-time RT-PCR for the direct detection of influenza virus types A and B.

    Science.gov (United States)

    Whelen, A Christian; Bankowski, Matthew J; Furuya, Glenn; Honda, Stacey; Ueki, Robert; Chan, Amelia; Higa, Karen; Kumashiro, Diane; Moore, Nathaniel; Lee, Roland; Koyamatsu, Terrie; Effler, Paul V

    2010-01-01

    We integrated multicenter, real-time (RTi) reverse transcription polymerase chain reaction (RT-PCR) screening into a statewide laboratory algorithm for influenza surveillance and response. Each of three sites developed its own testing strategy and was challenged with one randomized and blinded panel of 50 specimens previously tested for respiratory viruses. Following testing, each participating laboratory reported its results to the Hawaii State Department of Health, State Laboratories Division for evaluation and possible discrepant analysis. Two of three laboratories reported a 100% sensitivity and specificity, resulting in a 100% positive predictive value and a 100% negative predictive value (NPV) for influenza type A. The third laboratory showed a 71% sensitivity for influenza type A (83% NPV) with 100% specificity. All three laboratories were 100% sensitive and specific for the detection of influenza type B. Discrepant analysis indicated that the lack of sensitivity experienced by the third laboratory may have been due to the analyte-specific reagent probe used by that laboratory. Use of a newer version of the product with a secondary panel of 20 specimens resulted in a sensitivity and specificity of 100%. All three laboratories successfully verified their ability to conduct clinical testing for influenza using diverse nucleic acid extraction and RTi RT-PCR platforms. Successful completion of the verification by all collaborating laboratories paved the way for the integration of those facilities into a statewide laboratory algorithm for influenza surveillance and response.

  10. Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples.

    Science.gov (United States)

    Hu, Hui; Jung, Kwonil; Wang, Qiuhong; Saif, Linda J; Vlasova, Anastasia N

    2018-06-01

    Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007-2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples. Copyright © 2018

  11. A real time Taqman RT-PCR for the detection of rabbit hemorrhagic disease virus 2 (RHDV2).

    Science.gov (United States)

    Duarte, Margarida Dias; Carvalho, Carina L; Barros, Silvia C; Henriques, Ana M; Ramos, Fernanda; Fagulha, Teresa; Luís, Tiago; Duarte, Elsa L; Fevereiro, Miguel

    2015-07-01

    A specific real time RT-PCR for the detection of RHDV2 was developed and validated using RHDV and RHDV2 RNA preparations from positive field samples. The system was designed to amplify a 127 nucleotide-long RNA region located within the vp60 gene, based on the alignment of six sequences originated in Portugal, obtained in our laboratory, and 11 sequences from France and Italy. The primers and probe target sequences are highly conserved in the vast majority of the RHDV2 sequences presently known. In the sequences showing variability, only one mismatch is found per strain, usually outlying the 3' end of the primer or probe hybridization sequences. The specificity of the method was demonstrated in vitro with a panel of common rabbit pathogens. Standardization was performed with RNA transcripts obtained from a recombinant plasmid harboring the target sequence. The method was able to detected nine RNA molecules with an efficiency of 99.4% and a R(2) value of 1. Repeatability and reproducibility of the method were very high, with coefficients of variation lower than 2.40%. The assay was proven a valuable tool to diagnose most of RDVH2 circulating strains, and may be also useful to monitor viral loads, and consequently, disease progression and vaccination efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    Science.gov (United States)

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  13. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    OpenAIRE

    Arun, Alok; Bauml?, V?ronique; Amelot, Ga?l; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at ident...

  14. Development of a novel real-time qPCR assay for the dual detection of canine and phocine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Linette Buxbom; Hjulsager, Charlotte Kristiane; Larsen, Helene

    conventional PCR assays with real-time PCR assays to obtain a uniform assay palette. The present work describes the development of a novel real-time RT-qPCR assay for the dual detection of canine and phocine distemper virus. The assay is relevant for the future detection of outbreaks of canine distemper virus...... in e.g. in farmed mink and wildlife and phocine distemper in seals. A set of primers and dual labelled probe was designed based on an alignment of distemper sequences in GenBank from various species and in-house sequences from recent outbreaks in Danish farmed mink. The assay amplifies a segment of 151...... bp in the Phosphoprotein (P) gene of the distemper virus genome. The dynamic range and PCR efficiency (E) was experimentally determined using 10-fold dilutions of a specially designed distemper DNA-oligo in addition to extracted RNA from clinical samples. E of the real-time assay was shown to range...

  15. Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus

    Directory of Open Access Journals (Sweden)

    Abdelfattah M. Selim

    2014-12-01

    Full Text Available Abortion among dairy cattle is one of the major causes of economic losses in the livestock industry. This study describes a 1-step multiplex real-time polymerase chain reaction (PCR to detect Brucella spp., Leptospira spp. and Campylobacter foetus, these are significant bacteria commonly implicated in bovine abortion. ß-actin was added to the same PCR reaction as an internal control to detect any extraction failure or PCR inhibition. The detection limit of multiplex real-time PCR using purified DNA from cultured organisms was set to 5 fg for Leptospira spp. and C. foetus and to 50 fg for Brucella spp. The multiplex real-time PCR did not produce any non-specific amplification when tested with different strains of the 3 pathogens. This multiplex real-time PCR provides a valuable tool for diagnosis, simultaneous and rapid detection for the 3 pathogens causing abortion in bovine.

  16. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    Directory of Open Access Journals (Sweden)

    Pengfei Lin

    Full Text Available The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS, NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  17. MINIX4RT: a real-time operating system based on MINIX

    OpenAIRE

    Pessolani, Pablo Andrés

    2006-01-01

    Tanenbaum's MINIX Operating System was extended with a Real-Time microkernel and services to conform MINIX4RT, a Real-Time Operating System for academic uses that includes more flexible Interprocess Communications facilities supporting basic priority inheritance protocol, a fixed priority scheduler, timer and event driven interrupt management, statistics and Real-Time metrics gathering keeping backward compatibility with standard MINIX versions. Facultad de Informática

  18. Establishment of realtime RT-PCR assay to detect polio virus in the Acute Flaccid Paralysis laboratory surveillance

    Directory of Open Access Journals (Sweden)

    Nike Susanti

    2016-07-01

    Full Text Available AbstrakLatar belakang: Virus polio indigenous terakhir ditemukan di Indonesia tahun 1995 tetapi ancaman viruspolio impor dan mutasi virus dari Oral Polio Vaccine (OPV menjadi Vaccine Derived Poliovirus (VDPVmasih berlanjut. Tahun 1991 WHO mengembangkan Surveilans Acute Flaccid Paralysis (AFP dan tahun2014, identifikasi virus polio dengan real-time reverse transcriptase Polymerase Chain Reaction (rRTPCRmulai digunakan di Laboratorium Nasional Polio Pusat Biomedis dan Teknologi Dasar Kesehatan.Tujuan dari penggunaan rRT-PCR untuk mendapatkan metode yang cepat dan lebih baik dalam memantausirkulasi dan mutasi virus polio.Metode: Isolat polio positif diidentifikasi menggunakanan rRT PCR dengan kombinasi primer dan probeyang ditetapkan WHO. RNA virus di konversi ke cDNA menggunakan reverse transcriptase lalu diamplifikasimenggunakan taq polymerase. Produk PCR di deteksi dan diidentifikasi dengan hibridisasi menggunakanprobe spesifik. Sintesis cDNA dan reaksi PCR menggunakan primer yang dilekatkan di probe. Kombinasiprimer dan probe menghasilkan identifikasi serotipe dan intratypic differentiation (ITD dari isolat virus.Hasil: Selama tahun 2014, NPL Jakarta menerima 604 kasus AFP dari surveilans dan lima kasusterdeteksi positif mengandung virus polio. Semua spesimen positif mengandung virus polio yang berasaldari vaksin. Dua kasus positif virus polio tipe P2 (40%, satu kasus jenis virus polio P1 (20%, 1 kasusjenis virus polio P3 (20% dan satu kasus virus polio campuran jenis P1 + P2 (20%.Kesimpulan: Real-time PCR dapat digunakan di Laboratorium Polio Jakarta untuk membantu identifikasivirus Polio secara cepat. Tes ini dapat digunakan untuk memantau sirkulasi virus polio pada populasiyang rutin diimunisasi dengan OPV. (Health Science Journal of Indonesia 2016;7:27-31Kata kunci: ITD, Poliovirus, Identification, rRT-PCR AbstractBackground: The last indigenous polio was detected in 1995 but the threat of wild type polio viruses and themutation of Oral

  19. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting.

    Science.gov (United States)

    Rashed-Ul Islam, S M; Jahan, Munira; Tabassum, Shahina

    2015-01-01

    Virological monitoring is the best predictor for the management of chronic hepatitis B virus (HBV) infections. Consequently, it is important to use the most efficient, rapid and cost-effective testing systems for HBV DNA quantification. The present study compared the performance characteristics of a one-step HBV polymerase chain reaction (PCR) vs the two-step HBV PCR method for quantification of HBV DNA from clinical samples. A total of 100 samples consisting of 85 randomly selected samples from patients with chronic hepatitis B (CHB) and 15 samples from apparently healthy individuals were enrolled in this study. Of the 85 CHB clinical samples tested, HBV DNA was detected from 81% samples by one-step PCR method with median HBV DNA viral load (VL) of 7.50 × 10 3 lU/ml. In contrast, 72% samples were detected by the two-step PCR system with median HBV DNA of 3.71 × 10 3 lU/ml. The one-step method showed strong linear correlation with two-step PCR method (r = 0.89; p Tabassum S. Evaluation of a Rapid One-step Real-time PCR Method as a High-throughput Screening for Quantification of Hepatitis B Virus DNA in a Resource-limited Setting. Euroasian J Hepato-Gastroenterol 2015;5(1):11-15.

  20. Comparison of culture, single and multiplex real-time PCR for detection of Sabin poliovirus shedding in recently vaccinated Indian children.

    Science.gov (United States)

    Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep

    2017-08-01

    Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.

  1. New approaches for the standardization and validation of a real-time qPCR assay using TaqMan probes for quantification of yellow fever virus on clinical samples with high quality parameters.

    Science.gov (United States)

    Fernandes-Monteiro, Alice G; Trindade, Gisela F; Yamamura, Anna M Y; Moreira, Otacilio C; de Paula, Vanessa S; Duarte, Ana Cláudia M; Britto, Constança; Lima, Sheila Maria B

    2015-01-01

    The development and production of viral vaccines, in general, involve several steps that need the monitoring of viral load throughout the entire process. Applying a 2-step quantitative reverse transcription real time PCR assay (RT-qPCR), viral load can be measured and monitored in a few hours. In this context, the development, standardization and validation of a RT-qPCR test to quickly and efficiently quantify yellow fever virus (YFV) in all stages of vaccine production are extremely important. To serve this purpose we used a plasmid construction containing the NS5 region from 17DD YFV to generate the standard curve and to evaluate parameters such as linearity, precision and specificity against other flavivirus. Furthermore, we defined the limits of detection as 25 copies/reaction, and quantification as 100 copies/reaction for the test. To ensure the quality of the method, reference controls were established in order to avoid false negative results. The qRT-PCR technique based on the use of TaqMan probes herein standardized proved to be effective for determining yellow fever viral load both in vivo and in vitro, thus becoming a very important tool to assure the quality control for vaccine production and evaluation of viremia after vaccination or YF disease.

  2. Absolute quantification by droplet digital PCR versus analog real-time PCR

    Science.gov (United States)

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  3. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Filipe Pinto

    Full Text Available Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works.

  4. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria.

    Science.gov (United States)

    Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J

    2008-09-01

    The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.

  5. Diagnosis of intestinal parasites in a rural community of Venezuela : Advantages and disadvantages of using microscopy or RT-PCR

    NARCIS (Netherlands)

    Incani, Renzo Nino; Ferrer, Elizabeth; Hoek, Denise; Ramak, Robbert; Roelfsema, Jeroen; Mughini-Gras, Lapo; Kortbeek, Titia M.; Pinelli, Elena

    2017-01-01

    A cross-sectional study was carried out to determine the prevalence and diagnostic performance of microscopy and real time PCR (RT-PCR) for 14 intestinal parasites in a Venezuelan rural community with a long history of persistent intestinal parasitic infections despite the implementation of regular

  6. The diagnostic utility of stabilized blood for detection of foot-and-mouth disease virus RNA by RT-qPCR

    DEFF Research Database (Denmark)

    S. Fontél, Kristina; Bøtner, Anette; Belsham, Graham

    In Europe, clinical signs indicative of foot-and-mouth disease (FMD), would immediately lead to collection of blood and relevant organ material for further laboratory examination for this vesicular disease virus. Today, the first line system for detection of virus in the sample material is real t...... time RT-PCR (RT-qPCR). The aim of this study was to investigate the diagnostic utility of stabilized blood for detection of FMDV RNA in this system....

  7. A plastome primer set for comprehensive quantitative real time RT-PCR analysis of Zea mays: a starter primer set for other Poaceae species

    Directory of Open Access Journals (Sweden)

    Dunn Sade N

    2008-06-01

    Full Text Available Abstract Background Quantitative Real Time RT-PCR (q2(RTPCR is a maturing technique which gives researchers the ability to quantify and compare very small amounts of nucleic acids. Primer design and optimization is an essential yet time consuming aspect of using q2(RTPCR. In this paper we describe the design and empirical optimization of primers to amplify and quantify plastid RNAs from Zea mays that are robust enough to use with other closely related species. Results Primers were designed and successfully optimized for 57 of the 104 reported genes in the maize plastome plus two nuclear genes. All 59 primer pairs produced single amplicons after end-point reverse transcriptase polymerase chain reactions (RT-PCR as visualized on agarose gels and subsequently verified by q2(RTPCR. Primer pairs were divided into several categories based on the optimization requirements or the uniqueness of the target gene. An in silico test suggested the majority of the primer sets should work with other members of the Poaceae family. An in vitro test of the primer set on two unsequenced species (Panicum virgatum and Miscanthus sinensis supported this assumption by successfully producing single amplicons for each primer pair. Conclusion Due to the highly conserved chloroplast genome in plant families it is possible to utilize primer pairs designed against one genomic sequence to detect the presence and abundance of plastid genes or transcripts from genomes that have yet to be sequenced. Analysis of steady state transcription of vital system genes is a necessary requirement to comprehensively elucidate gene expression in any organism. The primer pairs reported in this paper were designed for q2(RTPCR of maize chloroplast genes but should be useful for other members of the Poaceae family. Both in silico and in vitro data are presented to support this assumption.

  8. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    Science.gov (United States)

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  10. A Novel Duplex Real-Time Reverse-Transcription PCR Assay for the Detection of Influenza A and the Novel Influenza A(H1N1 Strain

    Directory of Open Access Journals (Sweden)

    Theo P. Sloots

    2009-12-01

    Full Text Available Timely implementation of antiviral treatment and other public health based responses are dependent on accurate and rapid diagnosis of the novel pandemic influenza A(H1N1 strain. In this study we developed a duplex real-time PCR (RT-PCR (dFLU-TM assay for the simultaneous detection of a broad range of influenza A subtypes and specific detection of the novel H1N1 2009 pandemic strain. The assay was compared to the combined results of two previously described monoplex RT-PCR assays using 183 clinical samples and 10 seasonal influenza A isolates. Overall, the results showed that the dFLU-TM RT-PCR method is suitable for detection of influenza A, including the novel H1N1 pandemic strain, in clinical samples.

  11. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    Science.gov (United States)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  12. RT-PCR Protocols - Methods in Molecular Biology

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2011-03-01

    Full Text Available “The first record I have of it, is when I made a computer file which I usually did whenever I had an idea, that would have been on the Monday when I got back, and I called it Chain Reaction.POL, meaning polymerase. That was the identifier for it and later I called the thing the Polymerase Chain Reaction, which a lot of people thought was a dumb name for it, but it stuck, and it became PCR”. With these words the Nobel prize winner, Kary Mullis, explains how he named the PCR: one of the most important techniques ever invented and currently used in molecular biology. This book “RT-PCR Protocols” covers a wide range of aspects important for the setting of a PCR experiment for both beginners and advanced users. In my opinion the book is very well structured in three different sections. The first one describes the different technologies now available, like competitive RT-PCR, nested RT-PCR or RT-PCR for cloning. An important part regards the usage of PCR in single cell mouse embryos, stressing how important...........

  13. Real Time RT-PCR with a Newly Designed Set of Promers Confirmed the Presence of 2b and 2x/d Myosim Heavy Chain mRNAs in the Rat Slow Soleus Muscle

    Czech Academy of Sciences Publication Activity Database

    Žurmanová, Jitka; Půta, F.; Stopková, R.; Soukup, Tomáš

    2008-01-01

    Roč. 57, č. 6 (2008), s. 973-978 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/1115; GA ČR(CZ) GA304/08/0256 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat slow soleus muscle * myosin heavy chain isoforms * real time RT-PCR Subject RIV: ED - Physiology Impact factor: 1.653, year: 2008

  14. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases.

    Science.gov (United States)

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-11-17

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer's disease (AD), Parkinson's disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.

  15. Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples

    Directory of Open Access Journals (Sweden)

    Whyte Paul

    2008-09-01

    Full Text Available Abstract Background A real-time multiplex PCR assay was developed for the detection of multiple Salmonella serotypes in chicken samples. Poultry-associated serotypes detected in the assay include Enteritidis, Gallinarum, Typhimurium, Kentucky and Dublin. The traditional cultural method according to EN ISO 6579:2002 for the detection of Salmonella in food was performed in parallel. The real-time PCR based method comprised a pre-enrichment step in Buffered Peptone Water (BPW overnight, followed by a shortened selective enrichment in Rappaport Vasilliadis Soya Broth (RVS for 6 hours and subsequent DNA extraction. Results The real-time multiplex PCR assay and traditional cultural method showed 100% inclusivity and 100% exclusivity on all strains tested. The real-time multiplex PCR assay was as sensitive as the traditional cultural method in detecting Salmonella in artificially contaminated chicken samples and correctly identified the serotype. Artificially contaminated chicken samples resulted in a detection limit of between 1 and 10 CFU per 25 g sample for both methods. A total of sixty-three naturally contaminated chicken samples were investigated by both methods and relative accuracy, relative sensitivity and relative specificity of the real-time PCR method were determined to be 89, 94 and 87%, respectively. Thirty cultures blind tested were correctly identified by the real-time multiplex PCR method. Conclusion Real-time PCR methodology can contribute to meet the need for rapid identification and detection methods in food testing laboratories.

  16. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    Science.gov (United States)

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    DEFF Research Database (Denmark)

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian

    2016-01-01

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results......, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected...... by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori...

  18. Real-Time Polymerase Chain Reaction: Applications in Diagnostic Microbiology

    Directory of Open Access Journals (Sweden)

    Kordo B. A. Saeed

    2013-11-01

    Full Text Available The polymerase chain reaction (PCR has revolutionized the detection of DNA and RNA. Real-Time PCR (RT-PCR is becoming the gold standard test for accurate, sensitive and fast diagnosis for a large range of infectious agents. Benefits of this procedure over conventional methods for measuring RNA include its sensitivity, high throughout and quantification. RT-PCR assays have advanced the diagnostic abilities of clinical laboratories particularly microbiology and infectious diseases. In this review we would like to briefly discuss RT-PCR in diagnostic microbiology laboratory, beginning with a general introduction to RT-PCR and its principles, setting up an RT PCR, including multiplex systems and the avoidance and remediation of contamination issues. A segment of the review would be devoted to the application of RT-PCR in clinical practice concentrating on its role in the diagnosis and treatment of infectious diseases.

  19. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    OpenAIRE

    Parida Manmohan; Shrivastava Ambuj; Santhosh SR; Dash Paban; Saxena Parag; Rao PV

    2008-01-01

    Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Jap...

  20. Evaluation of a single-tube fluorogenic RT-PCR assay for detection of bovine respiratory syncytial virus in clinical samples

    DEFF Research Database (Denmark)

    Hakhverdyan, Mikhayil; Hägglund, Sara; Larsen, Lars Erik

    2005-01-01

    understanding of the virus. In this study, a BRSV fluorogenic reverse transcription PCR (fRT-PCR) assay, based on TaqMan principle, was developed and evaluated on a large number of clinical samples, representing various cases of natural and experimental BRSV infections. By using a single-step closed-tube format......, the turn-around time was shortened drastically and results were obtained with minimal risk for cross-contamination. According to comparative analyses, the detection limit of the fRT-PCR was on the same level as that of a nested PCR and the sensitivity relatively higher than that of a conventional PCR......, antigen ELISA (Ag-ELISA) and virus isolation (VI). Interspersed negative control samples, samples from healthy animals and eight symptomatically or genetically related viruses were all negative, confirming a high specificity of the assay. Taken together, the data indicated that the fRT-PCR assay can...

  1. Comparative evaluation of the CerTest VIASURE flu A, B & RSV real time RT-PCR detection kit on the BD MAX system versus a routine in-house assay for detection of influenza A and B virus during the 2016/17 influenza season

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Bek-Thomsen, Malene; Andersen, Signe Dalsgaard

    2018-01-01

    laboratory technician "hands on" time but also the laboratory turnaround time is of interest. OBJECTIVES: We evaluated the performance of the VIASURE Flu A, B & RSV Real Time RT-PCR Detection Kit (CerTest Biotec) for detecting Influenza A and B viruses. STUDY DESIGN: During the 2016/17 influenza season 532...

  2. Diagnosis of aerobic vaginitis by quantitative real-time PCR

    OpenAIRE

    Rumyantseva, T. A.; Bellen, G.; Savochkina, Y. A.; Guschin, A. E.; Donders, G.G.G.

    2016-01-01

    Abstract: Purpose To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Methods Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Resu...

  3. Selection of housekeeping genes for normalization by real-time RT-PCR: analysis of Or-MYB1 gene expression in Orobanche ramosa development.

    Science.gov (United States)

    González-Verdejo, C I; Die, J V; Nadal, S; Jiménez-Marín, A; Moreno, M T; Román, B

    2008-08-15

    Real-time PCR has become the method of choice for accurate and in-depth expression studies of candidate genes. To avoid bias, real-time PCR is referred to one or several internal control genes that should not fluctuate among treatments. A need for reference genes in the parasitic plant Orobanche ramosa has emerged, and the studies in this area have not yet been evaluated. In this study, the genes 18S rRNA, Or-act1, Or-tub1, and Or-ubq1 were compared in terms of expression stability using the BestKeeper software program. Among the four common endogenous control genes, Or-act1 and Or-ubq1 were the most stable in O. ramosa samples. In parallel, a study was carried out studying the expression of the transcription factor Or-MYB1 that seemed to be implicated during preinfection stages. The normalization strategy presented here is a prerequisite to accurate real-time PCR expression profiling that, among other things, opens up the possibility of studying messenger RNA levels of low-copy-number-like transcription factors.

  4. Detection of Listeria monocytogenes in ready-to-eat food by Step One real-time polymerase chain reaction.

    Science.gov (United States)

    Pochop, Jaroslav; Kačániová, Miroslava; Hleba, Lukáš; Lopasovský, L'ubomír; Bobková, Alica; Zeleňáková, Lucia; Stričík, Michal

    2012-01-01

    The aim of this study was to follow contamination of ready-to-eat food with Listeria monocytogenes by using the Step One real time polymerase chain reaction (PCR). We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and MicroSEQ® Listeria monocytogenes Detection Kit for the real-time PCR performance. In 30 samples of ready-to-eat milk and meat products without incubation we detected strains of Listeria monocytogenes in five samples (swabs). Internal positive control (IPC) was positive in all samples. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in ready-to-eat food without incubation.

  5. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  6. A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience.

    Science.gov (United States)

    Nielsen, Alex Christian Yde; Böttiger, Blenda; Midgley, Sofie Elisabeth; Nielsen, Lars Peter

    2013-11-01

    As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay. The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses in 171 (8%) and 66 (3%) of the samples, respectively. 180 of the positive samples could be genotyped by PCR and sequencing and the most common genotypes found were human parechovirus type 3, echovirus 9, enterovirus 71, Coxsackievirus A16, and echovirus 25. During 2009 in Denmark, both enterovirus and human parechovirus type 3 had a similar seasonal pattern with a peak during the summer and autumn. Human parechovirus type 3 was almost invariably found in children less than 4 months of age. In conclusion, a multiplex assay was developed allowing simultaneous detection of 2 viruses, which can cause similar clinical symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Exploring valid reference genes for quantitative real - time rt - pce studies of hydrogenperoxide signaling in arabidopsis

    International Nuclear Information System (INIS)

    Zhou, H.; Han, B.; Xie, Y.; Zhang, J.; Shen, W.

    2015-01-01

    Hydrogen peroxide (H/sub 2/O/sub 2/ ) acts as a signaling molecule modulating the expression of various genes in plants. However, the reference gene(s) used for gene expression analysis of H/sub 2/O/sub 2/ signaling is still arbitrary. A reliable result obtained by quantitative real-time RT-PCR (RT-qPCR) highly depends on accurate transcript normalization using stably expressed reference genes, whereas the inaccurate normalization could easily lead to the false conclusions. In this report, by using geNorm and NormFinder algorithms, 12 candidate reference genes were evaluated and compared in root and shoot tissues of Arabidopsis upon different doses of H/sub 2/O/sub 2/. The results revealed that, in our experimental conditions, three novel reference genes (TIP41-like, UKN, and UBC21) were identified and validated as suitable reference genes for RT-qPCR normalization in both root and shoot tissues under oxidative stress. This conclusion was further confirmed by publicly available microarray data of methyl viologen and drought stress. In comparison with a single reference gene (EF-1a), the expression pattern of ZAT12 modulated by H/sub 2/O/sub 2/, when using TIP41-like, UKN, and UBC21 as multiple reference gene(s), was similar with the previous reports by using northern blotting. Thus, we proposed that these three reference genes might be good candidates for other researchers to include in their reference gene validation in gene expression studies under H/sub 2/O/sub 2/ related oxidative stress. (author)

  8. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    Science.gov (United States)

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evaluation of changes in periodontal bacteria in healthy dogs over 6 months using quantitative real-time PCR.

    Science.gov (United States)

    Maruyama, N; Mori, A; Shono, S; Oda, H; Sako, T

    2018-03-01

    Porphyromonas gulae, Tannerella forsythia and Campylobacter rectus are considered dominant periodontal pathogens in dogs. Recently, quantitative real-time PCR (qRT-PCR) methods have been used for absolute quantitative determination of oral bacterial counts. The purpose of the present study was to establish a standardized qRT-PCR procedure to quantify bacterial counts of the three target periodontal bacteria (P. gulae, T. forsythia and C. rectus). Copy numbers of the three target periodontal bacteria were evaluated in 26 healthy dogs. Then, changes in bacterial counts of the three target periodontal bacteria were evaluated for 24 weeks in 7 healthy dogs after periodontal scaling. Analytical evaluation of each self-designed primer indicated acceptable analytical imprecision. All 26 healthy dogs were found to be positive for P. gulae, T. forsythia and C. rectus. Median total bacterial counts (copies/ng) of each target genes were 385.612 for P. gulae, 25.109 for T. forsythia and 5.771 for C. rectus. Significant differences were observed between the copy numbers of the three target periodontal bacteria. Periodontal scaling reduced median copy numbers of the three target periodontal bacteria in 7 healthy dogs. However, after periodontal scaling, copy numbers of all three periodontal bacteria significantly increased over time (pperiodontal bacteria in dogs. Furthermore, the present study has revealed that qRT-PCR method can be considered as a new objective evaluation system for canine periodontal disease. Copyright© by the Polish Academy of Sciences.

  10. Detection of enteroviruses and hepatitis a virus in water by consensus primer multiplex RT-PCR

    Science.gov (United States)

    Li, Jun-Wen; Wang, Xin-Wei; Yuan, Chang-Qing; Zheng, Jin-Lai; Jin, Min; Song, Nong; Shi, Xiu-Quan; Chao, Fu-Huan

    2002-01-01

    AIM: To develop a rapid detection method of enteroviruses and Hepatitis A virus (HAV). METHODS: A one-step, single-tube consensus primers multiplex RT-PCR was developed to simultaneously detect Poliovirus, Coxsackie virus, Echovirus and HAV. A general upstream primer and a HAV primer and four different sets of primers (5 primers) specific for Poliovirus, Coxsacki evirus, Echovirus and HAV cDNA were mixed in the PCR mixture to reverse transcript and amplify the target DNA. Four distinct amplified DNA segments representing Poliovirus, Coxsackie virus, Echovirus and HAV were identified by gel electrophoresis as 589-, 671-, 1084-, and 1128 bp sequences, respectively. Semi-nested PCR was used to confirm the amplified products for each enterovirus and HAV. RESULTS: All four kinds of viral genome RNA were detected, and producing four bands which could be differentiated by the band size on the gel. To confirm the specificity of the multiplex PCR products, semi-nested PCR was performed. For all the four strains tested gave positive results. The detection sensitivity of multiplex PCR was similar to that of monoplex RT-PCR which was 24 PFU for Poliovrus, 21 PFU for Coxsackie virus, 60 PFU for Echovirus and 105 TCID50 for HAV. The minimum amount of enteric viral RNA detected by semi-nested PCR was equivalent to 2.4 PFU for Poliovrus, 2.1 PFU for Coxsackie virus, 6.0 PFU for Echovirus and 10.5 TCID50 for HAV. CONCLUSION: The consensus primers multiplex RT-PCR has more advantages over monoplex RT-PCR for enteric viruses detection, namely, the rapid turnaround time and cost effectiveness. PMID:12174381

  11. Detection of Brucella abortus DNA in aborted goats and sheep in Egypt by real-time PCR.

    Science.gov (United States)

    Wareth, Gamal; Melzer, Falk; Tomaso, Herbert; Roesler, Uwe; Neubauer, Heinrich

    2015-06-03

    Brucellosis is a major zoonoses affects wide range of domesticated as well as wild animals. Despite the eradication program of brucellosis in Egypt, the disease is still endemic among cattle, buffaloes, sheep, goats, and camels. In the present study, abortion occurred naturally among 25 animals (10 cows, 5 buffaloes, 9 Egyptian Baladi goats and 1 ewe) shared the same pasture were investigated by real-time polymerase chain reaction (RT-PCR). DNA of Brucella (B.) abortus was detected in serum of goats and sheep which has aborted recently by species-specific RT-PCR. The results suggest cross-species infection of B. abortus from cattle to non-preferred hosts raised in close contact. This article will renew our knowledge about the Brucella agent causing abortion in small ruminants in Egypt. Information provided in this study is important for surveillance program, because eradication programs and vaccination strategies may have to be adapted accordingly.

  12. DETECTION OF CLASSICAL SWINE FEVER VIRUS BY RT-PCR IN WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-12-01

    Full Text Available Classical swine fever is a deadly disease of swine, caused by a RNA virus. The present study has identified presence of the classical swine fever virus (CSFV in pigs of West Bengal by one step reverse transcriptase PCR (RT-PCR performed using 5’ NTR specific primers. Internal organs from clinically affected pigs were examined from three districts of West Bengal. RT-PCT has identified presence of CSFV in all the tissues examined confirming presence of CSFV in different parts of the state.

  13. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    Science.gov (United States)

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  14. Shape based kinetic outlier detection in real-time PCR

    Directory of Open Access Journals (Sweden)

    D'Atri Mario

    2010-04-01

    Full Text Available Abstract Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.

  15. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    OpenAIRE

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae...

  16. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  17. Rapid screening of β-Globin gene mutations by Real-Time PCR in ...

    African Journals Online (AJOL)

    Introduction of the real time PCR has made a revolution in the time taken for the PCR reactions. We present a method for the diagnosis of the common mutations of the B-thalassemia in Egyptian children & families. The procedure depends on the real-time PCR using specific fluorescently labeled hybridization probes.

  18. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    Science.gov (United States)

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The

  19. Real-Time-Simulation of IEEE-5-Bus Network on OPAL-RT-OP4510 Simulator

    Science.gov (United States)

    Atul Bhandakkar, Anjali; Mathew, Lini, Dr.

    2018-03-01

    The Real-Time Simulator tools have high computing technologies, improved performance. They are widely used for design and improvement of electrical systems. The advancement of the software tools like MATLAB/SIMULINK with its Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), real-time simulators are used extensively in many engineering fields, such as industry, education, and research institutions. OPAL-RT-OP4510 is a Real-Time Simulator which is used in both industry and academia. In this paper, the real-time simulation of IEEE-5-Bus network is carried out by means of OPAL-RT-OP4510 with CRO and other hardware. The performance of the network is observed with the introduction of fault at various locations. The waveforms of voltage, current, active and reactive power are observed in the MATLAB simulation environment and on the CRO. Also, Load Flow Analysis (LFA) of IEEE-5-Bus network is computed using MATLAB/Simulink power-gui load flow tool.

  20. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  1. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    Science.gov (United States)

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  2. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR "Double Check" Strategy

    DEFF Research Database (Denmark)

    Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.

    2010-01-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus...... sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany......), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome...

  3. The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR.

    Science.gov (United States)

    Suarez, D L; Spackman, E; Senne, D A; Bulaga, L; Welsch, A C; Froberg, K

    2003-01-01

    An avian influenza (AI) real time reverse transcriptase-polymerase chain reaction (RRT-PCR) test was previously shown to be a rapid and sensitive method to identify AI virus-infected birds in live-bird markets (LBMs). The test can also be used to identify avian influenza virus (AIV) from environmental samples. Consequently, the use of RRT-PCR was being considered as a component of the influenza eradication program in the LBMs to assure that each market was properly cleaned and disinfected before allowing the markets to be restocked. However, the RRT-PCR test cannot differentiate between live and inactivated virus, particularly in environmental samples where the RRT-PCR test potentially could amplify virus that had been inactivated by commonly used disinfectants, resulting in a false positive test result. To determine whether this is a valid concern, a study was conducted in three New Jersey LBMs that were previously shown to be positive for the H7N2 AIV. Environmental samples were collected from all three markets following thorough cleaning and disinfection with a phenolic disinfectant. Influenza virus RNA was detected in at least one environmental sample from two of the three markets when tested by RRT-PCR; however, all samples were negative by virus isolation using the standard egg inoculation procedure. As a result of these findings, laboratory experiments were designed to evaluate several commonly used disinfectants for their ability to inactivate influenza as well as disrupt the RNA so that it could not be detected by the RRT-PCR test. Five disinfectants were tested: phenolic disinfectants (Tek-trol and one-stroke environ), a quaternary ammonia compound (Lysol no-rinse sanitizer), a peroxygen compound (Virkon-S), and sodium hypochlorite (household bleach). All five disinfectants were effective at inactivating AIV at the recommended concentrations, but AIV RNA in samples inactivated with phenolic and quaternary ammonia compounds could still be detected by RRT-PCR

  4. A real-time PCR antibiogram for drug-resistant sepsis.

    Directory of Open Access Journals (Sweden)

    John R Waldeisen

    Full Text Available Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL. Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔC(t<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01. Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 gram-negative and 2 gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24

  5. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    Science.gov (United States)

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  6. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2010-01-01

    Full Text Available Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  7. QPCR: Application for real-time PCR data management and analysis

    Directory of Open Access Journals (Sweden)

    Eichhorn Heiko

    2009-08-01

    Full Text Available Abstract Background Since its introduction quantitative real-time polymerase chain reaction (qPCR has become the standard method for quantification of gene expression. Its high sensitivity, large dynamic range, and accuracy led to the development of numerous applications with an increasing number of samples to be analyzed. Data analysis consists of a number of steps, which have to be carried out in several different applications. Currently, no single tool is available which incorporates storage, management, and multiple methods covering the complete analysis pipeline. Results QPCR is a versatile web-based Java application that allows to store, manage, and analyze data from relative quantification qPCR experiments. It comprises a parser to import generated data from qPCR instruments and includes a variety of analysis methods to calculate cycle-threshold and amplification efficiency values. The analysis pipeline includes technical and biological replicate handling, incorporation of sample or gene specific efficiency, normalization using single or multiple reference genes, inter-run calibration, and fold change calculation. Moreover, the application supports assessment of error propagation throughout all analysis steps and allows conducting statistical tests on biological replicates. Results can be visualized in customizable charts and exported for further investigation. Conclusion We have developed a web-based system designed to enhance and facilitate the analysis of qPCR experiments. It covers the complete analysis workflow combining parsing, analysis, and generation of charts into one single application. The system is freely available at http://genome.tugraz.at/QPCR

  8. Human fecal source identification with real-time quantitative PCR

    Science.gov (United States)

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  9. Real-time PCR for detection of Theileria equi and Babesia caballi ...

    African Journals Online (AJOL)

    Real-time PCR for detection of Theileria equi and Babesia caballi parasites in ticks. ... This study aimed to develop a real-time PCR screening test for Babesia caballi and Theileria equi in ticks. Adult D. reticulatus were ... This test is suitable for application in epidemiological surveillance of equine babesiosis and theileriosis.

  10. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Hulless barley (Hordeum vulgare L. var. nudum. hook. f. has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin, E2 (Ubiquitin conjugating enzyme 2, TUBα (Alpha-tubulin, TUBβ6 (Beta-tubulin 6, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, EF-1α (Elongation factor 1-alpha, SAMDC (S-adenosylmethionine decarboxylase, PKABA1 (Gene for protein kinase HvPKABA1, PGK (Phosphoglycerate kinase, and HSP90 (Heat shock protein 90-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression

  11. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Science.gov (United States)

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis

  12. Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR.

    Science.gov (United States)

    Lee, Shin-Young; Kim, Mi-Ju; Kim, Hyun-Joong; Jeong, KwangCheol Casey; Kim, Hae-Yeong

    2018-02-28

    A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.

  13. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  14. Progesterone receptor isoform analysis by quantitative real-time polymerase chain reaction in formalin-fixed, paraffin-embedded canine mammary dysplasias and tumors

    DEFF Research Database (Denmark)

    Guil-Luna, S.; Stenvang, Jan; Brünner, Nils

    2014-01-01

    and its isoforms in formalin-fixed, paraffin-embedded tissue samples from canine mammary lesions (4 dysplasias, 10 benign tumors, and 46 carcinomas) using 1-step SYBR Green quantitative real-time polymerase chain reaction (RT-qPCR). Progesterone receptor was expressed in 75% of dysplasias, all benign...... in the expression of isoform A versus B. Analysis of progesterone receptor mRNA isoforms by RT-qPCR was successful in routinely formalin-fixed, paraffin-embedded tissue samples and enabled the distribution of isoforms A and B to be identified for the first time in dysplasias, benign tumors, and malignant tumors...

  15. Real-time RT-PCR systems for CTC detection from blood samples of breast cancer and gynaecological tumour patients (Review).

    Science.gov (United States)

    Andergassen, Ulrich; Kölbl, Alexandra C; Mahner, Sven; Jeschke, Udo

    2016-04-01

    Cells, which detach from a primary epithelial tumour and migrate through lymphatic vessels and blood stream are called 'circulating tumour cells'. These cells are considered to be the main root of remote metastasis and are correlated to a worse prognosis concerning progression-free and overall survival of the patients. Therefore, the detection of the minimal residual disease is of great importance regarding therapeutic decisions. Many different detection strategies are already available, but only one method, the CellSearch® system, reached FDA approval. The present review focusses on the detection of circulating tumour cells by means of real-time PCR, a highly sensitive method based on differences in gene expression between normal and malignant cells. Strategies for an enrichment of tumour cells are mentioned, as well as a large panel of potential marker genes. Drawbacks and advantages of the technique are elucidated, whereas, the greatest advantage might be, that by selection of appropriate marker genes, also tumour cells, which have already undergone epithelial to mesenchymal transition can be detected. Finally, the application of real-time PCR in different gynaecological malignancies is described, with breast cancer being the most studied cancer entity.

  16. Detection and characterization of Newcastle disease virus in clinical samples using real time RT-PCR and melting curve analysis based on matrix and fusion genes amplification

    Directory of Open Access Journals (Sweden)

    Saad Sharawi

    2013-10-01

    Full Text Available Aim: Newcastle disease is still one of the major threats for poultry industry allover the world. Therefore, attempt was made in this study to use the SYBR Green I real-time PCR with melting curves analysis as for detection and differentiation of NDV strains in suspected infected birds. Materials and Methods: Two sets of primers were used to amplify matrix and fusion genes in samples collected from suspectly infected birds (chickens and pigeons. Melting curve analysis in conjunction with real time PCR was conducted for identifying different pathotypes of the isolated NDVs. Clinical samples were propagated on specific pathogen free ECE and tested for MDT and ICIP. Results: The velogenic NDVs isolated from chickens and pigeons were distinguished with mean T 85.03±0.341 and m 83.78±0.237 respectively for M-gene amplification and for F-gene amplification the mean T were 84.04±0.037 and m 84.53±0.223. On the other hand the lentogenic NDV isolates including the vaccinal strains (HB1 and LaSota have a higher mean T (86.99±0.021 for M-gene amplification and 86.50±0.063 for F-gene amplification. The test showed no reaction with m unrelated RNA samples. In addition, the results were in good agreement with both virus isolation and biological pathotyping (MDT and ICIP. The assay offers an attractive alternative method for the diagnosis of NDV that can be easily applied in laboratory diagnosis as a screening test for the detection and differentiation of NDV infections. Conclusion: As was shown by the successful rapid detection and pathotyping of 15 NDV strains in clinical samples representing velogenic and lentogenic NDV strains, and the agreement with the results of virus isolation , biological pathotyping and pathogenicity indices. The results of this report suggests that the described SybrGreen I real-time RT-PCR assay in conjunction with Melting curve analysis used as a rapid, specific and simple diagnostic tools for detection and pathotyping of

  17. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    Science.gov (United States)

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  19. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Longjian Niu

    2015-06-01

    Full Text Available Real-time quantitative PCR (RT-qPCR is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis, a promising oilseed crop known for its polyunsaturated fatty acid (PUFA-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt, BestKeeper, geNorm, and NormFinder were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE, actin (ACT and phospholipase A22 (PLA were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13, cyclophilin (CYC and elongation factor-1alpha (EF1α were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.

  20. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Science.gov (United States)

    Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu

    2015-01-01

    Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi. PMID:26047338

  1. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    Science.gov (United States)

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  2. Selection of reference genes for normalisation of real-time RT-PCR in brain-stem death injury in Ovis aries

    Directory of Open Access Journals (Sweden)

    Fraser John F

    2009-07-01

    Full Text Available Abstract Background Heart and lung transplantation is frequently the only therapeutic option for patients with end stage cardio respiratory disease. Organ donation post brain stem death (BSD is a pre-requisite, yet BSD itself causes such severe damage that many organs offered for donation are unusable, with lung being the organ most affected by BSD. In Australia and New Zealand, less than 50% of lungs offered for donation post BSD are suitable for transplantation, as compared with over 90% of kidneys, resulting in patients dying for lack of suitable lungs. Our group has developed a novel 24 h sheep BSD model to mimic the physiological milieu of the typical human organ donor. Characterisation of the gene expression changes associated with BSD is critical and will assist in determining the aetiology of lung damage post BSD. Real-time PCR is a highly sensitive method involving multiple steps from extraction to processing RNA so the choice of housekeeping genes is important in obtaining reliable results. Little information however, is available on the expression stability of reference genes in the sheep pulmonary artery and lung. We aimed to establish a set of stably expressed reference genes for use as a standard for analysis of gene expression changes in BSD. Results We evaluated the expression stability of 6 candidate normalisation genes (ACTB, GAPDH, HGPRT, PGK1, PPIA and RPLP0 using real time quantitative PCR. There was a wide range of Ct-values within each tissue for pulmonary artery (15–24 and lung (16–25 but the expression pattern for each gene was similar across the two tissues. After geNorm analysis, ACTB and PPIA were shown to be the most stably expressed in the pulmonary artery and ACTB and PGK1 in the lung tissue of BSD sheep. Conclusion Accurate normalisation is critical in obtaining reliable and reproducible results in gene expression studies. This study demonstrates tissue associated variability in the selection of these

  3. Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates.

    Science.gov (United States)

    Smiljanic, M; Kaase, M; Ahmad-Nejad, P; Ghebremedhin, B

    2017-07-10

    Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. Among the carbapenem-resistant isolates the genes bla KPC , bla VIM , bla NDM or bla OXA were detected. Both RT-PCR assays detected all bla KPC , bla VIM and bla NDM in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii.

  4. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae.

    Directory of Open Access Journals (Sweden)

    Yifan Zhai

    Full Text Available To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR data, normalization relative to reliable reference gene(s is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin, were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population, and abiotic (photoperiod, temperature conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper and one web-based comprehensive tool (RefFinder were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.

  5. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  6. Clinical utility of RT-PCR in assessing HER 2 gene expression versus traditional IHC and FISH in breast cancer patients.

    Science.gov (United States)

    Suryavanshi, Moushumi; Mehta, Anurag; Jaipuria, Jiten; Kumar, Dushyant; Vishwakarma, Gayatri; Panigrahi, Manoj Kumar; Verma, Haristuti; Saifi, Mumtaz; Sharma, Sanjeev; Tandon, Simran; Doval, D C; Das, Bhudev C

    2018-02-09

    would have benefited from RT-PCR testing if it was used as a first-line test. If RT-PCR would have been used as a second-line test among those with IHC score 2 (n = 43), then only 6 patients would have been assigned a conclusive RT-PCR category (category 1 or 3) translating to a clinical benefit of 14% (6/43) as a second-line test. As a second-line test it had 51% probability to prove more cost-effective than the conventional pathway, provided the cost of RT-PCR was 0.4 times the cost of IHC. Also in a three-step pathway, RT-PCR upfront would have 56% probability of higher cost-benefit provided the cost of RT-PCR was 0.1 times the cost of IHC. RT-PCR results were found to be suboptimal to IHC in terms of discriminative ability and clinical benefit; thus, it is unlikely to replace IHC as a first-line test in the near future.

  7. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...... tumors as being amplified. Interestingly, all these scored 2+ with the HercepTest, but were negative using FISH. We believe that real-time quantitative PCR analysis of HER-2 DNA amplification following microdissection represents a useful supplementary or perhaps even an alternative technique...

  8. Validation of a Real Time PCR for Classical Swine Fever Diagnosis

    Directory of Open Access Journals (Sweden)

    Natanael Lamas Dias

    2014-01-01

    Full Text Available The viral disease classical swine fever (CSF, caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5′NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5′NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF.

  9. Validation of a real time PCR for classical Swine Fever diagnosis.

    Science.gov (United States)

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Erica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves; Camargos, Marcelo Fernandes

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5'NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5'NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF.

  10. Validation of a Real Time PCR for Classical Swine Fever Diagnosis

    Science.gov (United States)

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Érica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5′NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5′NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF. PMID:24818039

  11. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis.

    Science.gov (United States)

    Nguyen, Duc Quan; Eamens, Andrew L; Grof, Christopher P L

    2018-01-01

    Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail ( Setaria viridis ) has recently been proposed as a potential experimental model for the study of C 4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens -mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis ( S. viridis ). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE / THERONINE - PROTEIN PHOSPHATASE 2A ( PP2A ), 5 '- ADENYLYLSULFATE REDUCTASE 6 ( ASPR6 ) and DUAL SPECIFICITY PHOSPHATASE ( DUSP ) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A , ASPR6 and DUSP , were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE ( CAD ) genes across the same tissues. This approach readily demonstrated the suitably of the three

  12. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    Science.gov (United States)

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  13. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  14. Evaluation of the Xpert Flu test and comparison with in-house real-time RT-PCR assays for detection of influenza virus from 2008 to 2011 in Marseille, France.

    Science.gov (United States)

    Salez, N; Ninove, L; Thirion, L; Gazin, C; Zandotti, C; de Lamballerie, X; Charrel, R N

    2012-04-01

    Rapid documentation of respiratory specimens can have an impact on the management of patients and their relatives in terms of preventive and curative measures. We compared the results of the Xpert(®) Flu assay (Cepheid) with three real-time RT-PCR assays using 127 nasopharyngeal samples, of which 75 were positive for influenza A (with 52 identified as A/H1N1-2009) and 52 were positive for influenza B. The Xpert(®) Flu assay presented a quasi-absence of non-interpretable tests, and showed sensitivity and specificity of 100% and 100% for Flu A, 98.4% and 100% for A/H1N1-2009, and 80.7% and 100% for Flu B. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  15. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    Science.gov (United States)

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  16. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  17. Development of a primer–probe energy transfer based real-time PCR for the detection of Swine influenza virus

    DEFF Research Database (Denmark)

    Kowalczyk, Andrzej; Markowska-Daniel, Iwona; Rasmussen, Thomas Bruun

    2013-01-01

    Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer–probe energy transfer (PriProET) for the detection of SIV RNA was developed...... of the specific product amplification. The assay is specific for influenza virus with a sensitivity of detection limit of approximately 10 copies of RNA by PCR. Based on serial dilutions of SIV, the detection limit of the assay was approximately 0.003 TCID50/ml for H1N1 A/Swine/Poland/KPR9/2004 virus. The Pri...

  18. Introducing Undergraduate Students to Real-Time PCR

    Science.gov (United States)

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  19. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear.

    Science.gov (United States)

    Hassanpour, Gholamreza; Mirhendi, Hossein; Mohebali, Mehdi; Raeisi, Ahmad; Zeraati, Hojjat; Keshavarz, Hossein

    2016-01-01

    We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan- Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. A single primer/probe set for pan-species Plasmodium -specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum . All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.

  20. Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean

    Directory of Open Access Journals (Sweden)

    Renata Stolf-Moreira

    2011-01-01

    Full Text Available The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR, genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress, and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity. The raw cycle threshold (Ct data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M, and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.

  1. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    Science.gov (United States)

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level

  2. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    Science.gov (United States)

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  3. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a

    Directory of Open Access Journals (Sweden)

    Shuai Peng

    2018-05-01

    Full Text Available The powerful Quantitative real-time PCR (RT-qPCR was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni, as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v ethanol. The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.

  4. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae

    Directory of Open Access Journals (Sweden)

    Caihua Shi

    2016-07-01

    Full Text Available The soil insect Bradysia odoriphaga (Diptera: Sciaridae causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR. This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga.

  5. Multiplex Real-Time PCR for Detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) Genes from Selective Enrichments from Animals and Retail Meat

    Science.gov (United States)

    Velasco, Valeria; Sherwood, Julie S.; Rojas-García, Pedro P.; Logue, Catherine M.

    2014-01-01

    The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using

  6. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL genes from selective enrichments from animals and retail meat.

    Directory of Open Access Journals (Sweden)

    Valeria Velasco

    Full Text Available The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat. The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus, mecA (associated with methicillin resistance and PVL (virulence factor, and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68-0.88 (from substantial to almost perfect agreement and 0.29-0.77 (from fair to substantial agreement for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond that expected by chance to moderate agreement for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA

  7. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-07-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.

  8. Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Andersen, M. T.; Dalsgaard, Anders

    2005-01-01

    species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs. Conclusions: The rt-PCR was specific for Campylobacter jejuni, C...... by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig faeces....

  9. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  10. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  11. Comparison of reverse-transcription real-time PCR and immunohistochemistry for the detection of canine distemper virus infection in raccoons in Ontario, Canada.

    Science.gov (United States)

    Nemeth, Nicole M; Oesterle, Paul T; Campbell, G Douglas; Ojkic, Davor; Jardine, Claire M

    2018-03-01

    Canine distemper virus (CDV) is a widespread morbillivirus that causes subclinical to fatal infections in domestic and wild carnivores. Raccoons ( Procyon lotor) are CDV reservoirs and suffer from associated disease. Aspects of pathogenesis may lead to difficulty in the interpretation of commonly used testing modalities, such as reverse-transcription real-time (RT-rt)PCR and immunohistochemistry (IHC). The reliance upon such tests is greater for wildlife, which are often submitted as carcasses with no clinical history. We compared CDV RT-rtPCR results to immunohistochemistry (the gold standard) in tissues from 74 raccoons. These tests had high kappa agreement (lymph node: 0.9335; lung: 0.8671) and a negative correlation between IHC score and threshold cycle (Ct) value for lymph node and lung (Spearman rank correlation coefficient [ r s ] = -0.8555 and -0.8179, respectively; p < 0.00001). An RT-rtPCR Ct value of 30 in lung and lymph node with sensitivity and specificity of 92.3 and 92.6% and 86.8 and 96.4%, respectively, was suitable for determining CDV involvement. Conjunctival swabs provide an alternative for distemper diagnosis, as there was a strong correlation between Ct values of conjunctival swabs and tissues ( r s = -0.8498, p < 0.00001, n = 46). This information will aid in more efficient and accurate diagnoses in individuals, small-scale outbreaks, and epidemiologic investigations in wildlife.

  12. ABO Blood Group Genotyping by Real-time PCR in Kazakh Population

    Directory of Open Access Journals (Sweden)

    Pavel Tarlykov

    2014-12-01

    Full Text Available Introduction. ABO blood group genotyping is a new technology in hematology that helps prevent adverse transfusion reactions in patients. Identification of antigens on the surface of red blood cells is based on serology; however, genotyping employs a different strategy and is aimed directly at genes that determine the surface proteins. ABO blood group genotyping by real-time PCR has several crucial advantages over other PCR-based techniques, such as high rapidity and reliability of analysis. The purpose of this study was to examine nucleotide substitutions differences by blood types using a PCR-based method on Kazakh blood donors.Methods. The study was approved by the Ethics Committee of the National Center for Biotechnology. Venous blood samples from 369 healthy Kazakh blood donors, whose blood types had been determined by serological methods, were collected after obtaining informed consent. The phenotypes of the samples included blood group A (n = 99, B (n = 93, O (n = 132, and AB (n = 45. Genomic DNA was extracted using a salting-out method. PCR products of ABO gene were sequenced on an ABI 3730xl DNA analyzer (Applied Biosystems. The resulting nucleotide sequences were compared and aligned against reference sequence NM_020469.2. Real-time PCR analysis was performed on CFX96 Touch™ Real-Time PCR Detection System (BioRad.Results. Direct sequencing of ABO gene in 369 samples revealed that the vast majority of nucleotide substitutions that change the ABO phenotype were limited to exons 6 and 7 of the ABO gene at positions 261, 467, 657, 796, 803, 930 and 1,060. However, genotyping of only three of them (261, 796 and 803 resulted in identification of major ABO genotypes in the Kazakh population. As a result, TaqMan probe based real-time PCR assay for the specific detection of genotypes 261, 796 and 803 was developed. The assay did not take into account several other mutations that may affect the determination of blood group, because they have a

  13. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear

    Directory of Open Access Journals (Sweden)

    Gholamreza HASSANPOUR

    2016-12-01

    Full Text Available Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria.Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction.Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR.Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.

  14. Avaliação das técnicas de RT-PCR e heminested RT-PCR em cérebros de cães com sinais neurológicos compatíveis com cinomose

    Directory of Open Access Journals (Sweden)

    Adriana Cortez

    2015-12-01

    Full Text Available The diagnostic value of RT-PCR and hemi-nested RT-PCR (hnRT-PCR was compared in brain samples of dogs presenting neurological signs compatible with canine distemper. Samples of central nervous system (CNS were collected from 68 dogs and tested by direct immunofluorescence test (RFID and, independent of the results, they were stored at -20°C for at least three years. They were submitted to the RT-PCR and hnRT-PCR techniques aiming to determine the gene responsible for the viral nucleoprotein decoding. Fifty-nine samples were positive for RIFD, 40 for RT-PCR (Kappa = 0.358 and 54 for hnRT-PCR (Kappa = 0.740. All nine RIFD negative samples were also negative for RT-PCR and hnRT-PCR. In spite of the storage duration and proper sample conditions, the estimated accordance between hnRT-PCR and RIFD demonstrated that hnRT-PCR technique can be applied in retrospective studies.

  15. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Hout, David R; Schweitzer, Brock L; Lawrence, Kasey; Morris, Stephan W; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly; Saltman, David L

    2017-08-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase ( ALK ) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off Δ C t of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK.

  16. MINIX4RT: real-time interprocess communications facilities

    OpenAIRE

    Pessolani, Pablo Andrés

    2006-01-01

    MINIX4RT es una extensión del conocido Sistema Operativo MINIX que incorpora servicios de Tiempo Real Estricto en un nuevo microkernel pero manteniendo compatibilidad con las versiones anteriores del MINIX estándar. La Comunicación entre Procesos es un mecanismo que permite hacer extensible a un Sistema Operativo, pero debe estar libre de Inversión de Prioridades para ser utilizado en aplicaciones de Tiempo Real. Como las primitivas de MINIX no disponen de esta funcionalidad, se incorporar...

  17. Detection and quantification of Roundup Ready soybean residues in sausage samples by conventional and real-time PCR.

    OpenAIRE

    MARCELINO-GUIMARÃES, F. C.; GUIMARÃES, M. F. M.; DE-BARROS, E. G.

    2009-01-01

    The increasing presence of products derived from genetically modified (GM) plants in human and animal diets has led to the development of detection methods to distinguish biotechnology-derived foods from conventional ones. The conventional and real-time PCR have been used, respectively, to detect and quantify GM residues in highly processed foods. DNA extraction is a critical step during the analysis process. Some factors such as DNA degradation, matrix effects, and the presence of PCR inhibi...

  18. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples.

    Science.gov (United States)

    Mehta, Rohini; Birerdinc, Aybike; Hossain, Noreen; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair; Baranova, Ancha

    2010-05-21

    Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system.

  19. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples

    Directory of Open Access Journals (Sweden)

    Afendy Arian

    2010-05-01

    Full Text Available Abstract Background Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Results Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. Conclusions We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system.

  20. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  2. Development of a Real-time PCR test for porcine group A rotavirus diagnosis

    Directory of Open Access Journals (Sweden)

    Elizabeth C.M. Marconi

    2015-01-01

    Full Text Available Group A Rotavirus (RVA is one of the most common causes of diarrhea in humans and several animal species. A SYBR-Green Real-Time polymerase chain reaction (PCR was developed to diagnose RVA from porcine fecal samples, targeting amplification of a 137-bp fragment of nonstructural protein 5 (NSP5 gene using mRNA of bovine NADH-desidrogenase-5 as exogenous internal control. Sixty-five samples were tested (25 tested positive for conventional PCR and genetic sequencing. The overall agreement (kappa was 0.843, indicating 'very good' concordance between tests, presenting 100% of relative sensitivity (25+ Real Time PCR/25+ Conventional PCR and 87.5% of relative sensitivity (35- Real Time PCR/40- Conventional PCR. The results also demonstrated high intra- and inter-assay reproducibility (coefficient of variation ≤1.42%; thus, this method proved to be a fast and sensitive approach for the diagnosis of RVA in pigs.

  3. Simultaneous Detection of Ricin and Abrin DNA by Real-Time PCR (qPCR

    Directory of Open Access Journals (Sweden)

    Roman Wölfel

    2012-08-01

    Full Text Available Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5′-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  4. Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2017-05-01

    Full Text Available Chinese tallow (Sapium sebiferum L. is a promising landscape and bioenergy plant. Measuring gene expression by quantitative real-time polymerase chain reaction (qRT-PCR can provide valuable information on gene function. Stably expressed reference genes for normalization are a prerequisite for ensuring the accuracy of the target gene expression level among different samples. However, the reference genes in Chinese tallow have not been systematically validated. In this study, 12 candidate reference genes (18S, GAPDH, UBQ, RPS15, SAND, TIP41, 60S, ACT7, PDF2, APT, TBP, and TUB were investigated with qRT-PCR in 18 samples, including those from different tissues, from plants treated with sucrose and cold stresses. The data were calculated with four common algorithms, geNorm, BestKeeper, NormFinder, and the delta cycle threshold (ΔCt. TIP41 and GAPDH were the most stable for the tissue-specific experiment, GAPDH and 60S for cold treatment, and GAPDH and UBQ for sucrose stresses, while the least stable genes were 60S, TIP41, and 18S respectively. The comprehensive results showed APT, GAPDH, and UBQ to be the top-ranked stable genes across all the samples. The stability of 60S was the lowest during all experiments. These selected reference genes were further validated by comparing the expression profiles of the chalcone synthase gene in Chinese tallow in different samples. The results will help to improve the accuracy of gene expression studies in Chinese tallow.

  5. AmbientRT - real time system software support for data centric sensor networks

    NARCIS (Netherlands)

    Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.

    We present the architecture and design of a real time operating system for mobile wireless sensor networks. AmbientRT is being developed for environments with very limited resources in order to relieve the burden of the developer and to efficiently use the resources of the node. This paper presents

  6. AmbientRT - real time system software support for data centric sensor networks

    NARCIS (Netherlands)

    Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.

    2004-01-01

    We present the architecture and design of a real time operating system for mobile wireless sensor networks. AmbientRT is being developed for environments with very limited resources in order to relieve the burden of the developer and to efficiently use the resources of the node. This paper presents

  7. Optimisation of the RT-PCR detection of immunomagnetically enriched carcinoma cells

    International Nuclear Information System (INIS)

    Raynor, Michael; Stephenson, Sally-Anne; Walsh, David CA; Pittman, Kenneth B; Dobrovic, Alexander

    2002-01-01

    Immunomagnetic enrichment followed by RT-PCR (immunobead RT-PCR) is an efficient methodology to identify disseminated carcinoma cells in the blood and bone marrow. The RT-PCR assays must be both specific for the tumor cells and sufficiently sensitive to enable detection of single tumor cells. We have developed a method to test RT-PCR assays for any cancer. This has been investigated using a panel of RT-PCR markers suitable for the detection of breast cancer cells. In the assay, a single cell line-derived tumor cell is added to 100 peripheral blood mononuclear cells (PBMNCs) after which mRNA is isolated and reverse transcribed for RT-PCR analysis. PBMNCs without added tumor cells are used as specificity controls. The previously studied markers epidermal growth factor receptor (EGFR), mammaglobin 1 (MGB1), epithelial cell adhesion molecule (EpCAM/TACSTD1), mucin 1 (MUC1), carcinoembryonic antigen (CEA) were tested. Two new epithelial-specific markers ELF3 and EphB4 were also tested. MUC1 was unsuitable as strong amplification was detected in 100 cell PBMNC controls. Expression of ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 was found to be both specific for the tumor cell, as demonstrated by the absence of a signal in most 100 cell PBMNC controls, and sensitive enough to detect a single tumor cell in 100 PBMNCs using a single round of RT-PCR. ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 are appropriate RT-PCR markers for use in a marker panel to detect disseminated breast cancer cells after immunomagnetic enrichment

  8. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  9. Assessing reference genes for accurate transcript normalization using quantitative real-time PCR in pearl millet [Pennisetum glaucum (L. R. Br].

    Directory of Open Access Journals (Sweden)

    Prasenjit Saha

    Full Text Available Pearl millet [Pennisetum glaucum (L. R.Br.], a close relative of Panicoideae food crops and bioenergy grasses, offers an ideal system to perform functional genomics studies related to C4 photosynthesis and abiotic stress tolerance. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR provides a sensitive platform to conduct such gene expression analyses. However, the lack of suitable internal control reference genes for accurate transcript normalization during qRT-PCR analysis in pearl millet is the major limitation. Here, we conducted a comprehensive assessment of 18 reference genes on 234 samples which included an array of different developmental tissues, hormone treatments and abiotic stress conditions from three genotypes to determine appropriate reference genes for accurate normalization of qRT-PCR data. Analyses of Ct values using Stability Index, BestKeeper, ΔCt, Normfinder, geNorm and RefFinder programs ranked PP2A, TIP41, UBC2, UBQ5 and ACT as the most reliable reference genes for accurate transcript normalization under different experimental conditions. Furthermore, we validated the specificity of these genes for precise quantification of relative gene expression and provided evidence that a combination of the best reference genes are required to obtain optimal expression patterns for both endogeneous genes as well as transgenes in pearl millet.

  10. Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples.

    Science.gov (United States)

    Stark, D; Al-Qassab, S E; Barratt, J L N; Stanley, K; Roberts, T; Marriott, D; Harkness, J; Ellis, J T

    2011-01-01

    The aim of this study was to describe the first development and evaluation of a multiplex tandem PCR (MT-PCR) assay for the detection and identification of 4 common pathogenic protozoan parasites, Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis, from human clinical samples. A total of 472 fecal samples submitted to the Department of Microbiology at St. Vincent's Hospital were included in the study. The MT-PCR assay was compared to four real-time PCR (RT-PCR) assays and microscopy by a traditional modified iron hematoxylin stain. The MT-PCR detected 28 G. intestinalis, 26 D. fragilis, 11 E. histolytica, and 9 Cryptosporidium sp. isolates. Detection and identification of the fecal protozoa by MT-PCR demonstrated 100% correlation with the RT-PCR results, and compared to RT-PCR, MT-PCR exhibited 100% sensitivity and specificity, while traditional microscopy of stained fixed fecal smears exhibited sensitivities and specificities of 56% and 100% for Cryptosporidium spp., 38% and 99% for D. fragilis, 47% and 97% for E. histolytica, and 50% and 100% for G. intestinalis. No cross-reactivity was detected in 100 stool samples containing various other bacterial, viral, and protozoan species. The MT-PCR assay was able to provide rapid, sensitive, and specific simultaneous detection and identification of the four most important diarrhea-causing protozoan parasites that infect humans. This study also highlights the lack of sensitivity demonstrated by microscopy, and thus, molecular methods such as MT-PCR must be considered the diagnostic methods of choice for enteric protozoan parasites.

  11. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    OpenAIRE

    Benshui Shu; Jingjing Zhang; Gaofeng Cui; Ranran Sun; Veeran Sethuraman; Xin Yi; Guohua Zhong

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this...

  12. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    Science.gov (United States)

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  13. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Cerna, M.; Cole, R.; Fitzek, M.; Kallenbach, A.; Lueddecke, K.; McCarthy, P.J.; Scarabosio, A.; Schneider, W.; Sips, A.C.C.; Treutterer, W.; Vrancic, A.; Wenzel, L.; Yi, H.; Behler, K.; Eich, T.; Eixenberger, H.; Fuchs, J.C.; Haas, G.; Lexa, G.

    2010-01-01

    The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

  14. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L., E-mail: Louis.Giannone@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Cerna, M. [National Instruments, Austin, TX 78759-3504 (United States); Cole, R.; Fitzek, M. [Unlimited Computer Systems GmbH, 82393 Iffeldorf (Germany); Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Lueddecke, K. [Unlimited Computer Systems GmbH, 82393 Iffeldorf (Germany); McCarthy, P.J. [Department of Physics, University College Cork, Association EURATOM-DCU, Cork (Ireland); Scarabosio, A.; Schneider, W.; Sips, A.C.C.; Treutterer, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Vrancic, A.; Wenzel, L.; Yi, H. [National Instruments, Austin, TX 78759-3504 (United States); Behler, K.; Eich, T.; Eixenberger, H.; Fuchs, J.C.; Haas, G.; Lexa, G. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany)

    2010-07-15

    The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

  15. Design and Performance of the CDC Real-Time Reverse Transcriptase PCR Swine Flu Panel for Detection of 2009 A (H1N1) Pandemic Influenza Virus▿†‡

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-01-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10−1.3∼−0.7 50% infectious doses (ID50) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation. PMID:21593260

  16. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  17. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba skin biopsies

    Directory of Open Access Journals (Sweden)

    Casini Silvia

    2006-09-01

    Full Text Available Abstract Background Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. Results Ten commonly used housekeeping genes (HKGs were partially sequenced in the striped dolphin (Stenella coeruleoalba and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH and tyrosine 3-monooxygenase (YWHAZ always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4 and S18 (RPS18 also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC, phosphoglycerate kinase 1 (PGK1, hypoxanthine ribosyltransferase (HPRT1 and β-2-microglobin (B2M show variable expression

  18. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages.

    Science.gov (United States)

    Zarivi, Osvaldo; Cesare, Patrizia; Ragnelli, Anna Maria; Aimola, Pierpaolo; Leonardi, Marco; Bonfigli, Antonella; Colafarina, Sabrina; Poma, Anna Maria; Miranda, Michele; Pacioni, Giovanni

    2015-08-01

    The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; β-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; β-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable

  19. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  20. Increased efficacy for in-house validation of real-time PCR GMO detection methods.

    Science.gov (United States)

    Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H

    2010-03-01

    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.

  1. Real-Time PCR in HIV/Trypanosoma cruzi Coinfection with and without Chagas Disease Reactivation: Association with HIV Viral Load and CD4+ Level

    Science.gov (United States)

    de Freitas, Vera Lúcia Teixeira; da Silva, Sheila Cristina Vicente; Sartori, Ana Marli; Bezerra, Rita Cristina; Westphalen, Elizabeth Visone Nunes; Molina, Tatiane Decaris; Teixeira, Antonio R. L.; Ibrahim, Karim Yaqub; Shikanai-Yasuda, Maria Aparecida

    2011-01-01

    Background Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4+ cells or the CD4+/CD8+ ratio. Conclusions qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4+ cells/mm3 and the CD4+/CD8+ ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy. PMID

  2. Variation in Bluetongue virus real-time reverse transcription polymerase chain reaction assay results in blood samples of sheep, cattle, and alpaca.

    Science.gov (United States)

    Brito, Barbara P; Gardner, Ian A; Hietala, Sharon K; Crossley, Beate M

    2011-07-01

    Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.

  3. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    Science.gov (United States)

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  4. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    Science.gov (United States)

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  5. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

    NARCIS (Netherlands)

    Ramakers, Christian; Ruijter, Jan M.; Deprez, Ronald H. Lekanne; Moorman, Antoon F. M.

    2003-01-01

    Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR

  6. Cloning and evaluation of reference genes for quantitative real-time PCR analysis in Amorphophallus

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-04-01

    Full Text Available Quantitative real-time reverse transcription PCR (RT-qPCR has been widely used in the detection and quantification of gene expression levels because of its high accuracy, sensitivity, and reproducibility as well as its large dynamic range. However, the reliability and accuracy of RT-qPCR depends on accurate transcript normalization using stably expressed reference genes. Amorphophallus is a perennial plant with a high content of konjac glucomannan (KGM in its corm. This crop has been used as a food source and as a traditional medicine for thousands of years. Without adequate knowledge of gene expression profiles, there has been no report of validated reference genes in Amorphophallus. In this study, nine genes that are usually used as reference genes in other crops were selected as candidate reference genes. These putative sequences of these genes Amorphophallus were cloned by the use of degenerate primers. The expression stability of each gene was assessed in different tissues and under two abiotic stresses (heat and waterlogging in A. albus and A. konjac. Three distinct algorithms were used to evaluate the expression stability of the candidate reference genes. The results demonstrated that EF1-a, EIF4A, H3 and UBQ were the best reference genes under heat stress in Amorphophallus. Furthermore, EF1-a, EIF4A, TUB, and RP were the best reference genes in waterlogged conditions. By comparing different tissues from all samples, we determined that EF1-α, EIF4A, and CYP were stable in these sets. In addition, the suitability of these reference genes was confirmed by validating the expression of a gene encoding the small heat shock protein SHSP, which is related to heat stress in Amorphophallus. In sum, EF1-α and EIF4A were the two best reference genes for normalizing mRNA levels in different tissues and under various stress treatments, and we suggest using one of these genes in combination with 1 or 2 reference genes associated with different

  7. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    Science.gov (United States)

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  8. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  9. Real-time PCR quantification of human complement C4A and C4B genes

    Directory of Open Access Journals (Sweden)

    Fust George

    2006-01-01

    Full Text Available Abstract Background The fourth component of human complement (C4, an essential factor of the innate immunity, is represented as two isoforms (C4A and C4B in the genome. Although these genes differ only in 5 nucleotides, the encoded C4A and C4B proteins are functionally different. Based on phenotypic determination, unbalanced production of C4A and C4B is associated with several diseases, such as systemic lupus erythematosus, type 1 diabetes, several autoimmune diseases, moreover with higher morbidity and mortality of myocardial infarction and increased susceptibility for bacterial infections. Despite of this major clinical relevance, only low throughput, time and labor intensive methods have been used so far for the quantification of C4A and C4B genes. Results A novel quantitative real-time PCR (qPCR technique was developed for rapid and accurate quantification of the C4A and C4B genes applying a duplex, TaqMan based methodology. The reliable, single-step analysis provides the determination of the copy number of the C4A and C4B genes applying a wide range of DNA template concentration (0.3–300 ng genomic DNA. The developed qPCR was applied to determine C4A and C4B gene dosages in a healthy Hungarian population (N = 118. The obtained data were compared to the results of an earlier study of the same population. Moreover a set of 33 samples were analyzed by two independent methods. No significant difference was observed between the gene dosages determined by the employed techniques demonstrating the reliability of the novel qPCR methodology. A Microsoft Excel worksheet and a DOS executable are also provided for simple and automated evaluation of the measured data. Conclusion This report describes a novel real-time PCR method for single-step quantification of C4A and C4B genes. The developed technique could facilitate studies investigating disease association of different C4 isotypes.

  10. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Validation of a norovirus multiplex real-time RT-PCR assay for the detection of norovirus GI and GII from faeces samples.

    LENUS (Irish Health Repository)

    Jones, S

    2011-01-01

    Norovirus is a leading cause of infectious non-bacterial gastroenteritis. The virus is highly contagious and has multiple modes of transmission, presenting a growing challenge to hospital-based healthcare. In this study, a total of 120 stool samples are tested for the presence of norovirus GI and GII by the Roche two-step Lightcycler 2.0 assay incorporating primers and probes produced by TIB Molbiol, and the results are compared with results from the National Virus Reference Laboratory. The Roche\\/TIB Molbiol assay produced 51 positive results and 69 negative results. Discrepancy analysis was performed for six conflicting results using a second real-time polymerase chain reaction (PCR) assay (Roche\\/TIB Molbiol) and this confirmed that four of the five discrepant positive results were true positives. A single discrepant negative result generated by the Roche assay remained negative using the second assay. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated to be 98%, 98.6%, 98.0% and 98.6%, respectively. Melting curve analysis was used to differentiate genogroups I and II and this showed that 92% of strains belonged to genogroup II.

  12. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    Science.gov (United States)

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Lactase Non-Persistence Genotyping: Comparison of Two Real-Time PCR Assays and Assessment of Concomitant Fructose/Sorbitol Malabsorption Rates.

    Science.gov (United States)

    Enko, Dietmar; Pollheimer, Verena; Németh, Stefan; Pühringer, Helene; Stolba, Robert; Halwachs-Baumann, Gabriele; Kriegshäuser, Gernot

    2016-01-01

    Genetic testing is a standard technique for the diagnosis of primary adult-type hypolactasia, also referred to as lactase non-persistence. The aim of this study was to compare the lactase gene (LCT) C/T-13910 polymorphism genotyping results of two commercially available real-time (RT)-PCR assays in patients referred to our outpatient clinic for primary lactose malabsorption testing. Furthermore, concomitant conditions of fructose/sorbitol malabsorption were assessed. Samples obtained from 100 patients were tested in parallel using the LCT T-13910C ToolSet for Light Cycler (Roche, Rotkreuz, Switzerland) and the LCT-13910C>T RealFast Assay (ViennaLab Diagnostics GmbH, Vienna, Austria). Additionally, patients were also screened for the presence of fructose/sorbitol malabsorption by functional hydrogen (H2)/methane (CH4) breath testing (HMBT). Cohen's Kappa (κ) was used to calculate the agreement between the two genotyping methods. The exact Chi-Square test was performed to compare fructose/sorbitol HMBT with LCT genotyping results. Twenty-one (21.0%) patients had a LCT C/C-13910 genotype suggestive of lactase non-persistence, and 79 (79.0%) patients were identified with either a LCT T/C-13910 or T/T-13910 genotype (i.e., lactase persistence). In all genotype groups, concordance between the two RT-PCR assays was 100%. Cohen's κ demonstrated perfect observed agreement (p sorbitol malabsorption was observed in 13/100 (13.0%) and 25/100 (25.0%) individuals, respectively. Both RT-PCR assays are robust and reliable LCT genotyping tools in a routine clinical setting. Concomitant fructose and/or sorbitol malabsorption should be considered in individuals with suspected lactase-non-persistence. However, standardization of clinical interpretation of laboratory HMBT results is required.

  15. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    Science.gov (United States)

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.

  16. Real-Time PCR using a PCR Microchip with Integrated Thermal System and Polymer Waveguides for the Detection of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. By using the integrated optical system of the real-time PCR chip, cadF – a virulence gene of Campylobacter jejuni, could specifically be detected. Two different DNA binding dyes, SYTOX...

  17. Comparison of RT-PCR-Dot blot hybridization based on radioisotope 32P with conventional RT-PCR and commercial ELISA Assays for blood screening of HIV-1

    International Nuclear Information System (INIS)

    Maria Lina R; Andi Yasmon

    2011-01-01

    There are many commercial ELISA and rapid test kits that have been used for blood screening; however, the kits can give false positive and negative results. Therefore, RT-PCR (Reverse Transcription Polymerase Chain Reaction) - Dot Blot Hybridization based on radioisotope 32 P (RDBR) method was developed in this research, to compare the method with the conventional RT-PCR and commercial ELISA Enzyme-Linked lmmunosorbent Assay) kit. This method is efficient for screening of large blood specimens and surveillance study. Eighty seven samples were used and serum of the samples were tested by ELISA to detect HIV-1. The HIV-l RNA genome was extracted from plasma samples and tested using the RT-PCR and RDBR methods. Of 87 samples that were tested, the rates of positive testing of the RT-PCR, the RDBR, and the ELISA were 71.26%, 74.71%, and 80.46%, respectively. The RDBR (a combination of RTPCR and dot blot hybridization) was more sensitive than conventional RT-PCR by showing 3.45% in increase number of positive specimens. The results showed that of 9 samples (10.34%) were negative RDBR and positive ELISA, while 4 samples (4.60%) were negative ELISA and positive RDBR. The two methods showed slightly difference in the results but further validation is still needed. However, RDBR has high potential as an alternative method for screening of blood in large quantities when compared to method of conventional RT-PCR and ELISA. (author)

  18. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  19. Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR

    Directory of Open Access Journals (Sweden)

    Bahman Navidshad

    2012-02-01

    Full Text Available The applications of conventional culture-dependent assays to quantify bacteria populations are limited by their dependence on the inconsistent success of the different culture-steps involved. In addition, some bacteria can be pathogenic or a source of endotoxins and pose a health risk to the researchers. Bacterial quantification based on the real-time PCR method can overcome the above-mentioned problems. However, the quantification of bacteria using this approach is commonly expressed as absolute quantities even though the composition of samples (like those of digesta can vary widely; thus, the final results may be affected if the samples are not properly homogenized, especially when multiple samples are to be pooled together before DNA extraction. The objective of this study was to determine the correlation coefficients between four different methods of expressing the output data of real-time PCR-based bacterial quantification. The four methods were: (i the common absolute method expressed as the cell number of specific bacteria per gram of digesta; (ii the Livak and Schmittgen, ΔΔCt method; (iii the Pfaffl equation; and (iv a simple relative method based on the ratio of cell number of specific bacteria to the total bacterial cells. Because of the effect on total bacteria population in the results obtained using ΔCt-based methods (ΔΔCt and Pfaffl, these methods lack the acceptable consistency to be used as valid and reliable methods in real-time PCR-based bacterial quantification studies. On the other hand, because of the variable compositions of digesta samples, a simple ratio of cell number of specific bacteria to the corresponding total bacterial cells of the same sample can be a more accurate method to quantify the population.

  20. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System.

    Science.gov (United States)

    DeShields, Joseph B; Bomberger, Rachel A; Woodhall, James W; Wheeler, David L; Moroz, Natalia; Johnson, Dennis A; Tanaka, Kiwamu

    2018-02-23

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis.

  1. Detection of Campylobacter spp. in chicken fecal samples by real-time PCR

    DEFF Research Database (Denmark)

    Lund, Marianne; Nordentoft, Steen; Pedersen, Karl

    2004-01-01

    A real-time PCR assay for detecting thermophilic Campylobacter spp. directly in chicken feces has been developed. DNA was isolated from fecal material by using magnetic beads followed by PCR with a prealiquoted PCR mixture, which had been stored at -18degreesC. Campylobacter could be detected...

  2. Aplicación de RT-Linux en el control de motores de pasos. Parte II; Appication of RT-Linux in the Control of Steps Motors. Part II

    Directory of Open Access Journals (Sweden)

    Ernesto Duany Renté

    2011-02-01

    Full Text Available Este trabajo complementa al presentado anteriormente: "Aplicación de RT-Linux en el control de motoresde pasos. Primera parte", de manera que se puedan relacionar a las tareas de adquisición y control para laobtención de un sistema lo más exacto posible. Las técnicas empleadas son las de tiempo real aprovechandolas posibilidades del microkernel RT-Linux y los software libres contenidos en sistemas Unix/Linux. Lasseñales se obtienen mediante un conversor AD y mostradas en pantalla empleando el Gnuplot.  The work presented in this paper is a complement to the control and acquisition tasks which were explainedin "Application of RT-Linux in the Control of Steps Motors. First Part", so that those both real time taskscan be fully related in order to make the whole control system more accurate. The employed techniquesare those of Real Time Taking advantage of the possibilities of the micro kernel RT-Linux and the freesoftware distributed in the Unix/Linux operating systems. The signals are obtained by means of an ADconverter and are shown in screen using Gnuplot.

  3. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

    DEFF Research Database (Denmark)

    Svingen, Terje; Letting, Heidi; Hadrup, Niels

    2015-01-01

    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or...... ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a...

  4. Development of a Rapid Real-Time PCR Method as a Tool To Quantify Viable Photobacterium phosphoreum Bacteria in Salmon (Salmo salar) Steaks

    DEFF Research Database (Denmark)

    Macé, Sabrina; Mamlouk, Kelthoum; Chipchakova, Stoyka

    2013-01-01

    A specific real-time PCR quantification method combined with a propidium monoazide sample treatment step was developed to determine quantitatively the viable population of the Photobacterium phosphoreum species group in raw modified-atmosphere-packed salmon. Primers were designed to amplify a 350......-bp fragment of the gyrase subunit B gene (gyrB) of P. phosphoreum. The specificity of the two primers was demonstrated by using purified DNA from 81 strains of 52 different bacterial species. When these primers were used for real-time PCR in pure culture, a good correlation (R2 of 0.99) was obtained...... between this method and conventional enumeration on marine agar (MA). Quantification was linear over 5 log units as confirmed by using inoculated salmon samples. On naturally contaminated fresh salmon, the new real-time PCR method performed successfully with a quantification limit of 3 log CFU...

  5. RT-PCR for confirmation of echovirus 30 isolated in Belém, Brazil

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes C. Gomes

    Full Text Available Echovirus (Echo 30 or human enterovirus B is the most frequent enterovirus associated with meningitis cases. Epidemics and outbreaks of this disease caused by Echo 30 have occurred in several countries. In Brazil, Echo 30 has been isolated from sporadic cases and outbreaks that occurred mainly in the south and southeast regions. We used RT-PCR to examine Echo 30 isolates from meningitis cases detected from March 2002 to December 2003 in Belém, state of Pará, in northern Brazil. The patients were attended in a Basic Health Unit (State Health Secretary of Pará, where cerebrospinal fluid (CSF was collected and stored in liquid nitrogen. Weekly visits were made by technicians from Evandro Chagas Institute to the health unit and samples were stored at -70ºC in the laboratory until use. HEp-2 and RD cell lines were used for viral isolation and neutralization with specific antisera for viral identification. RNA extraction was made using Trizol reagent. The RT-PCR was made in one step, and the total mixture (50 µL was composed of: RNA, reaction buffer, dNTP, primers, Rnase inhibitor, reverse transcriptase, Taq polymerase and water. The products were visualized in agarose gel stained with ethidium bromide, visualized under UV light. Among the 279 CSF samples examined, 30 (10.7% were EV positive, 29 being Echo 30 and one was Cox B. Nineteen Echo 30 were examined with RT-PCR; 18 tested positive (762 and 494 base pairs. The use of this technique permitted viral identification in less time than usual, which benefits the patient and is of importance for public-health interventions.

  6. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects.

    Science.gov (United States)

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.

  8. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    Directory of Open Access Journals (Sweden)

    Benshui Shu

    2018-04-01

    Full Text Available Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  9. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions.

    Science.gov (United States)

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Sethuraman, Veeran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura . In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  10. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.).

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Ramiro, Daniel Alves; De Martin, Valentina de Fátima; Carrer, Helaine

    2014-07-22

    Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. This study proposes a first broad

  11. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcio

    2010-03-01

    Full Text Available Abstract Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR. Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references

  12. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    Science.gov (United States)

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in

  13. Direct recovery of infectious Pestivirus from a full-length RT-PCR amplicon

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Hoffmann, Bernd

    2008-01-01

    This study describes the use of a novel and rapid long reverse transcription (RT)-PCR for the generation of infectious full-length cDNA of pestiviruses. To produce rescued viruses, full-length RT-PCR amplicons of 12.3 kb, including a T7-promotor, were transcribed directly in vitro, and the result......This study describes the use of a novel and rapid long reverse transcription (RT)-PCR for the generation of infectious full-length cDNA of pestiviruses. To produce rescued viruses, full-length RT-PCR amplicons of 12.3 kb, including a T7-promotor, were transcribed directly in vitro......, and the resulting RNA transcripts were electroporated into ovine cells. Infectious virus was obtained after one cell culture passage. The rescued viruses had a phenotype similar to the parental Border Disease virus strain. Therefore, direct generation of infectious pestiviruses from full-length RT-PCR cDNA products...

  14. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR

    NARCIS (Netherlands)

    Huijsdens, Xander W.; Linskens, Ronald K.; Mak, Mariëtte; Meuwissen, Stephan G. M.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2002-01-01

    The use of real-time quantitative PCR (5' nuclease PCR assay) as a tool to study the gastrointestinal microflora that adheres to the colonic mucosa was evaluated. We developed primers and probes based on the 16S ribosomal DNA gene sequences for the detection of Escherichia coli and Bacteroides

  15. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    Science.gov (United States)

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Real time polymerase chain reaction in diagnosis of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Tashfeen, S.; Ahmed, S.; Bhatti, F.A.; Ali, N.

    2014-01-01

    Objective: To compare the sensitivity and specificity of Real Time Polymerase Chain Reaction (RT-PCR) with conventional cytogenetics in diagnosis of chronic myeloid leukemia. Study Design: A cross-sectional, analytical study. Place and Duration of Study: The Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2010 to January 2012. Methodology: A total number of 40 patients were studied, in which all were diagnosed as CML on peripheral blood and bone marrow aspiration. The subjects were tested for the presence of Philadelphia (Ph) chromosome by cytogenetics and BCR-ABL fusion gene by RT-PCR. 2-3 ml of venous blood was collected, half in sodium heparin (anti-coagulant) for cytogenetics and half in EDTA for PCR. For cytogenetics, cells were cultured for 72 hours in RPMI 1640 medium and examined by arresting in metaphase using Colchicine to identify Philadelphia chromosome. For PCR, RNA extraction was done by Tri Reagent LS (MRC, USA) and cDNA was synthesized using reverse transcriptase and gene specific primer. RT- PCR was done on ABI-7500. The positive samples were identified when fluorescence exceeded threshold limit. Results of cytogenetics and RT PCR were compared. Results: Out of the 40 patients, PCR showed 37 (92.5%) were positive and 3 (7.5%) were negative for BCR-ABL fusion gene, whereas in cytogenetics 28 (70%) were positive for Ph chromosome and 12 (30%) were negative for Ph chromosome. Sensitivity and specificity of cytogenetics was 75.6% and 100% respectively. Conclusion: Real time PCR as compared to cytogenetics is less tedious, gives quick results, does not require multiple sampling due to culture failure and can be done on peripheral blood. (author)

  17. Comparison of the sensitivity and specificity of real-time PCR and in situ hybridization in HPV16 and 18 detection in archival cervical cancer specimens

    Directory of Open Access Journals (Sweden)

    Beata Biesaga

    2012-07-01

    Full Text Available The aim of this study was to analyze the correlation between real-time PCR (RT-PCR treated as a reference method and in situ hybridization with tyramide amplification system (ISH-TSA in the detection of HPV16 and 18 infection and the assessment of viral genome status. The study was performed on cervical cancer biopsies fixed in 10% neutral buffered formalin and embedded in paraffin obtained from 85 women. TaqMan-based 5’exonuclease RT-PCR with type-specific primers was used to assess HPV16 and 18 infections and genome status. Viral infection and genome status was also assessed by ISH-TSA. RT-PCR revealed 76 (89.4%, and ISH-TSA 81 (95.3% cancers with HPV16 and 18 infections. The ISH-TSA sensitivity and specificity were: 96.1% and 11.1% compared to RT-PCR. The difference between these techniques in HPV detection was significant (p = 0.000. Among 76 HPV16/18 positive cancers in RT-PCR, there were 30 (39.5% with integrated and 46 (60.5% with mixed viral genome form. According to ISH-TSA, there were 39 (51.3% samples with integrated and 37 with mixed form (48.7%. The sensitivity and specificity of ISH-TSA in genome status assessment were 70.0% and 60.9%, respectively. The difference between RT-PCR and ISH-TSA in genome state detection was not statistically significant (p = 0.391. These results suggest that ISH-TSA shows insufficient specificity in HPV detection for use in clinical practice. However, this assay could be applied for viral genome status assessment.

  18. Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR.

    Science.gov (United States)

    Rönner, Anna-Clara; Lindmark, Hans

    2007-06-01

    Campylobacter jejuni infection is a significant cause of foodborne gastroenteritis worldwide. Consumption and handling of poultry products is believed to be the primary risk factor for campylobacteriosis. Risk assessments require quantitative data, and C. jejuni is enumerated usually by direct plating, which sometimes allows growth of non-Campylobacter bacteria. The objective of the present study was to develop a quantitative real-time PCR method (q-PCR) for enumerating C. jejuni in chicken rinse without a culturing step. The procedure to obtain the template for the PCR assay involved (i) filtration of 10 ml of chicken rinse, (ii) centrifugation of the sample, and (iii) total DNA extraction from the pellet obtained using a commercial DNA extraction kit. The detection limit of the method was comparable to that for plating 100 microl of chicken rinse on modified charcoal cefoperazone deoxycholate agar, and the detection limit could be further improved 10-fold by concentrating the DNA eluate by ethanol precipitation. A close correlation for spiked chicken rinse was obtained for the results of the quantitative real-time PCR method and direct plating (r = 0.99). The coefficient of correlation for the methods was 0.87 when samples from chicken carcasses on the slaughter line were analyzed, whereas a lower correlation (r = 0.76) was obtained when samples from retail carcasses were analyzed. Greater variation in the proportion of dead and/or viable but not culturable Campylobacter types in the retail samples may explain the decreased correlation between the methods. Overall, the new method is simple and fast and the results obtained are closely correlated with those for direct plating for samples containing a low proportion of dead Campylobacter cells.

  19. Validation of a Non-Specific Dye Real-Time PCR Assay for Porcine Adulteration in Meatball Using ND5 Primer

    Directory of Open Access Journals (Sweden)

    Tri Joko Raharjo

    2017-07-01

    Full Text Available Porcine adulteration in meatball samples were analyzed using real-time polymerase chain reaction (RT-PCR, based on the ND5 primer obtained by previous study. This work consisted of three stages which were annealing temperature optimization, method validation, and application. DNA template was extracted using phenol-CIAA (chloroform-iso amyl alcohol method. The optimum annealing temperature for ND5 primers (forward primer 5'-CATTCGCCTCACTCACATTAACC-3' and reverse primer 5'-AAGAGAGAGTTCTACGGTCTGTAG-3' was 58.0 °C, obtained after testing annealing at 50.5 to 59.5 °C gradient temperature with 5 °C interval. Melting curve analysis was done at 65.0 to 95.0 °C, with increasing temperature for 0.5 °C per 2 sec. Method was validated for its specificity, precision and limit of detection. RT-PCR method with ND5 primers produced 227 bp DNA fragment with 78.50 °C Tm value. From eight commercial meatball samples, one was detected containing porcine. The methods showed high specificity and precision, with experimentally determined limits for porcine were no less than 1%.

  20. Analysis of gene expression in small numbers of purified hemopoietic progenitor cells by RT-PCR.

    Science.gov (United States)

    Ziegler, B L; Lamping, C P; Thoma, S J; Fliedner, T M

    1995-05-01

    Primitive hemopoietic stem cells represent the most probable targets for genetic alterations due to exposure to ionizing irradiation or chemical carcinogens. We have applied a two-step protocol for the purification of CD34+HLA-DR-/low hemopoietic progenitor cells from cord blood (CB). CD34+ cells were isolated by monoclonal antibody (mAb) against CD34 (My10) and immunomagnetic beads. Beads were cleaved off the CD34+ cells by enzymatic treatment with chymopapain. Due to chymopapain-resistance of epitopes recognized by the used mAbs purity control of CD34+ cells and separation into CD34+HLA-DR-/low and CD34+HLA-DR+ subsets could be performed by using flow cytometry. Two miniaturized procedures were applied to isolate poly(A)+ mRNA for the reverse transcription polymerase chain reaction (RT-PCR) from small numbers of CD34+HLA-DR-/low cells. In five experiments, the mean purity of immunomagnetically isolated CD34+ cells was 93.8% +/- 3.9. Flow cytometry sorting of CD34+ cells resulted in pure CD34+HLA-DR-/low populations (purity > 98.8%; range 98.8% to 99.9%; viability > 96%) with an average yield of 2600 +/- 800 cells/5 x 10(7) low density CB cells. By RT-PCR using both poly(A)+ mRNA isolation procedures, sequences corresponding to CD34 and beta 2-microglobulin were amplified from as few as 20 cells. Furthermore, a sequence-independent RT-PCR (SIP-RT-PCR) was applied to amplify the cDNA derived from five erythroblasts isolated from a burst-forming unit-erythroid (BFU-E). Upon hybridization, full-length c-fos message was detected in the SIP-RT-PCR amplified material. Our data demonstrate that gene expression can be detected at the transcriptional level in small numbers of hemopoietic progenitor cells. In addition, the SIP-RT-PCR may allow the amplification of unique mRNA species when subtractive hybridization procedures are performed. The presented data should be useful to analyze gene expression in rare subsets of radiation-exposed immature hemopoietic stem

  1. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    Science.gov (United States)

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  2. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    Science.gov (United States)

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  3. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    Science.gov (United States)

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  4. Direct quantification of fungal DNA from soil substrate using real-time PCR.

    Science.gov (United States)

    Filion, Martin; St-Arnaud, Marc; Jabaji-Hare, Suha H

    2003-04-01

    Detection and quantification of genomic DNA from two ecologically different fungi, the plant pathogen Fusarium solani f. sp. phaseoli and the arbuscular mycorrhizal fungus Glomus intraradices, was achieved from soil substrate. Specific primers targeting a 362-bp fragment from the SSU rRNA gene region of G. intraradices and a 562-bp fragment from the F. solani f. sp. phaseoli translation elongation factor 1 alpha gene were used in real-time polymerase chain reaction (PCR) assays conjugated with the fluorescent SYBR(R) Green I dye. Standard curves showed a linear relation (r(2)=0.999) between log values of fungal genomic DNA of each species and real-time PCR threshold cycles and were quantitative over 4-5 orders of magnitude. Real-time PCR assays were applied to in vitro-produced fungal structures and sterile and non-sterile soil substrate seeded with known propagule numbers of either fungi. Detection and genomic DNA quantification was obtained from the different treatments, while no amplicon was detected from non-seeded non-sterile soil samples, confirming the absence of cross-reactivity with the soil microflora DNA. A significant correlation (Pgenomic DNA of F. solani f. sp. phaseoli or G. intraradices detected and the number of fungal propagules present in seeded soil substrate. The DNA extraction protocol and real-time PCR quantification assay can be performed in less than 2 h and is adaptable to detect and quantify genomic DNA from other soilborne fungi.

  5. A rapid and direct real time PCR-based method for identification of Salmonella spp

    DEFF Research Database (Denmark)

    Rodriguez-Lazaro, D.; Hernández, Marta; Esteve, T.

    2003-01-01

    The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan((R)) technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated ...

  6. The diagnosis of microorganism involved in infective endocarditis (IE by polymerase chain reaction (PCR and real-time PCR: A systematic review

    Directory of Open Access Journals (Sweden)

    Reza Faraji

    2018-02-01

    Full Text Available Broad-range bacterial rDNA polymerase chain reaction (PCR followed by sequencing may be identified as the etiology of infective endocarditis (IE from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery.

  7. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    Science.gov (United States)

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  8. A MIQE-compliant real-time PCR assay for Aspergillus detection.

    Directory of Open Access Journals (Sweden)

    Gemma L Johnson

    Full Text Available The polymerase chain reaction (PCR is widely used as a diagnostic tool in clinical laboratories and is particularly effective for detecting and identifying infectious agents for which routine culture and microscopy methods are inadequate. Invasive fungal disease (IFD is a major cause of morbidity and mortality in immunosuppressed patients, and optimal diagnostic criteria are contentious. Although PCR-based methods have long been used for the diagnosis of invasive aspergillosis (IA, variable performance in clinical practice has limited their value. This shortcoming is a consequence of differing sample selection, collection and preparation protocols coupled with a lack of standardisation of the PCR itself. Furthermore, it has become clear that the performance of PCR-based assays in general is compromised by the inadequacy of experimental controls, insufficient optimisation of assay performance as well as lack of transparency in reporting experimental details. The recently published "Minimum Information for the publication of real-time Quantitative PCR Experiments" (MIQE guidelines provide a blueprint for good PCR assay design and unambiguous reporting of experimental detail and results. We report the first real-time quantitative PCR (qPCR assay targeting Aspergillus species that has been designed, optimised and validated in strict compliance with the MIQE guidelines. The hydrolysis probe-based assay, designed to target the 18S rRNA DNA sequence of Aspergillus species, has an efficiency of 100% (range 95-107%, a dynamic range of at least six orders of magnitude and limits of quantification and detection of 6 and 0.6 Aspergillus fumigatus genomes, respectively. It does not amplify Candida, Scedosporium, Fusarium or Rhizopus species and its clinical sensitivity is demonstrated in histological material from proven IA cases, as well as concordant PCR and galactomannan data in matched broncho-alveolar lavage and blood samples. The robustness

  9. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions.

    Science.gov (United States)

    Wu, Qingzhong; Prager, Katherine C; Goldstein, Tracey; Alt, David P; Galloway, Renee L; Zuerner, Richard L; Lloyd-Smith, James O; Schwacke, Lori

    2014-08-11

    Several real-time PCR assays are currently used for detection of pathogenic Leptospira spp.; however, few methods have been described for the successful evaluation of clinical urine samples. This study reports a rapid assay for the detection of pathogenic Leptospira spp. in California sea lions Zalophus californianus using real-time PCR with primers and a probe targeting the lipL32 gene. The PCR assay had high analytic sensitivity-the limit of detection was 3 genome copies per PCR volume using L. interrogans serovar Pomona DNA and 100% analytic specificity; it detected all pathogenic leptospiral serovars tested and none of the non-pathogenic Leptospira species (L. biflexa and L. meyeri serovar Semaranga), the intermediate species L. inadai, or the non-Leptospira pathogens tested. Our assay had an amplification efficiency of 1.00. Comparisons between the real-time PCR assay and culture isolation for detection of pathogenic Leptospira spp. in urine and kidney tissue samples from California sea lions showed that samples were more often positive by real-time PCR than by culture methods. Inclusion of an internal amplification control in the real-time PCR assay showed no inhibitory effects in PCR negative samples. These studies indicated that our real-time PCR assay has high analytic sensitivity and specificity for the rapid detection of pathogenic Leptospira species in urine and kidney tissue samples.

  10. Simultaneous detection and identification of four cherry viruses by two step multiplex RT-PCR with an internal control of plant nad5 mRNA.

    Science.gov (United States)

    Noorani, Md Salik; Awasthi, Prachi; Sharma, Maheshwar Prasad; Ram, Raja; Zaidi, Aijaz Asgar; Hallan, Vipin

    2013-10-01

    A multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed and standardized for the simultaneous detection of four cherry viruses: Cherry virus A (CVA, Genus; Capillovirus), Cherry necrotic rusty mottle virus (CNRMV, unassigned species of the Betaflexiviridae), Little cherry virus 1 (LChV-1, Genus; Closterovirus) and Prunus necrotic ringspot virus (PNRSV, Genus; Ilarvirus) with nad5 as plant internal control. A reliable and quick method for total plant RNA extraction from pome and stone fruit trees was also developed. To minimize primer dimer formation, a single antisense primer for CVA and CNRMV was used. A mixture of random hexamer and oligo (dT) primer was used for cDNA synthesis, which was highly suited and economic for multiplexing. All four viruses were detected successfully by mRT-PCR in artificially created viral RNA mixture and field samples of sweet cherry. The identity of the viruses was confirmed by sequencing. The assay could detect above viruses in diluted cDNA (10(-4)) and RNA (10(-3), except PNRSV which was detected only till ten times lesser dilution). The developed mRT-PCR will not only be useful for the detection of viruses from single or multiple infections of sweet cherry plants but also for other stone and pome fruits. The developed method will be therefore quite helpful for virus indexing, plant quarantine and certification programs. This is the first report for the simultaneous detection of four cherry viruses by mRT-PCR. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An Endogenous Murine Leukemia Viral Genome Contaminant in a Commercial RT-PCR Kit is Amplified Using Standard Primers for XMRV

    Directory of Open Access Journals (Sweden)

    Miyazawa Takayuki

    2010-12-01

    Full Text Available Abstract During pilot studies to investigate the presence of viral RNA of xenotropic murine leukemia virus (MLV-related virus (XMRV infection in sera from chronic fatigue syndrome (CFS patients in Japan, a positive band was frequently detected at the expected product size in negative control samples when detecting a partial gag region of XMRV using a one-step RT-PCR kit. We suspected that the kit itself might have been contaminated with small traces of endogenous MLV genome or XMRV and attempted to evaluate the quality of the kit in two independent laboratories. We purchased four one-step RT-PCR kits from Invitrogen, TaKaRa, Promega and QIAGEN in Japan. To amplify the partial gag gene of XMRV or other MLV-related viruses, primer sets (419F and 1154R, and GAG-I-F and GAG-I-R which have been widely used in XMRV studies were employed. The nucleotide sequences of the amplicons were determined and compared with deposited sequences of a polytropic endogenous MLV (PmERV, XMRV and endogenous MLV-related viruses derived from CFS patients. We found that the enzyme mixtures of the one-step RT-PCR kit from Invitrogen were contaminated with RNA derived from PmERV. The nucleotide sequence of a partial gag region of the contaminant amplified by RT-PCR was nearly identical (99.4% identity to a PmERV on chromosome 7 and highly similar (96.9 to 97.6% to recently identified MLV-like viruses derived from CFS patients. We also determined the nucleotide sequence of a partial env region of the contaminant and found that it was almost identical (99.6% to the PmERV. In the investigation of XMRV infection in patients of CFS and prostate cancer, researchers should prudently evaluate the test kits for the presence of endogenous MLV as well as XMRV genomes prior to PCR and RT-PCR tests.

  12. Real Time Physiological Status Monitoring (RT-PSM): Accomplishments, Requirements, and Research Roadmap

    Science.gov (United States)

    2016-03-01

    actionable information. With many lessons learned , the first implementation of real time physiological monitoring (RT-PSM) uses thermal-work strain... Bidirectional Inductive On-Body Network (BIONET) for WPSM Develop sensor links and processing nodes on-Soldier and non-RF links off-Soldier Elintrix...recent sleep watches (e.g., BASIS Peak, Intel Corp.) are attempting to parse sleep quality beyond duration and interruptions into deep and REM sleep

  13. Statistical aspects of quantitative real-time PCR experiment design

    Czech Academy of Sciences Publication Activity Database

    Kitchen, R.R.; Kubista, Mikael; Tichopád, Aleš

    2010-01-01

    Roč. 50, č. 4 (2010), s. 231-236 ISSN 1046-2023 R&D Projects: GA AV ČR IAA500520809 Institutional research plan: CEZ:AV0Z50520701 Keywords : Real-time PCR * Experiment design * Nested analysis of variance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.527, year: 2010

  14. Validation of Suitable Reference Genes for RT-qPCR Data in Achyranthes bidentata Blume under Different Experimental Conditions

    Directory of Open Access Journals (Sweden)

    Jinting Li

    2017-05-01

    Full Text Available Real-time quantitative polymerase chain reaction (RT-qPCR is a sensitive technique for gene expression studies. However, choosing the appropriate reference gene is essential to obtain reliable results for RT-qPCR assays. In the present work, the expression of eight candidate reference genes, EF1-α (elongation factor 1-α, GAPDH (glyceraldehyde 3-phosphate dehydrogenase, UBC (ubiquitin-conjugating enzyme, UBQ (polyubiquitin, ACT (actin, β-TUB (β-tubulin, APT1 (adenine phosphoribosyltransferase 1, and 18S rRNA (18S ribosomal RNA, was evaluated in Achyranthes bidentata samples using two algorithms, geNorm and NormFinder. The samples were classified into groups according to developmental stages, various tissues, stresses (cold, heat, drought, NaCl, and hormone treatments (MeJA, IBA, SA. Suitable combination of reference genes for RT-qPCR normalization should be applied according to different experimental conditions. In this study, EF1-α, UBC, and ACT genes were verified as the suitable reference genes across all tested samples. To validate the suitability of the reference genes, we evaluated the relative expression of CAS, which is a gene that may be involved in phytosterol synthesis. Our results provide the foundation for gene expression analysis in A. bidentata and other species of Amaranthaceae.

  15. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  16. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  17. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  18. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    Science.gov (United States)

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Internally controlled, generic real-time PCR for quantification and multiplex real-time PCR with serotype-specific probes for serotyping of dengue virus infections

    NARCIS (Netherlands)

    Menting, Sandra; Thai, Khoa T. D.; Nga, Tran T. T.; Phuong, Hoang L.; Klatser, Paul; Wolthers, Katja C.; Binh, Tran Q.; de Vries, Peter J.; Beld, Marcel

    2011-01-01

    Dengue has become a global public health problem and a sensitive diagnostic test for early phase detection can be life saving. An internally controlled, generic real-time PCR was developed and validated by testing serial dilutions of a DENV positive control RNA in the presence of a fixed amount of

  20. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR.

    Science.gov (United States)

    Mwaengo, D; Lorenzo, G; Iglesias, J; Warigia, M; Sang, R; Bishop, R P; Brun, A

    2012-10-01

    Diagnostic methods allowing for rapid identification of pathogens are crucial for controlling and preventing dissemination after disease outbreaks as well as for use in surveillance programs. For arboviruses, detection of the presence of virus in their arthropod hosts is important for monitoring of viral activity and quantitative information is useful for modeling of transmission dynamics. In this study, molecular detection of Rift Valley fever virus (RVFV) in mosquito samples from the 2006 to 2007 East African outbreaks was performed using quantitative real-time PCR assay (qRT-PCR). Specific RVFV sequence-based primer/fluorogenic (TaqMan) probe sets were derived from the L and S RNA segments of the virus. Both primer-probe L and S segment-based combinations detected genomic RVFV sequences, with generally comparable levels of sensitivity. Viral loads from three mosquito species, Aedes mcintoshi, Aedes ochraceus and Mansonia uniformis were estimated and significant differences of between 5- and 1000-fold were detected between Ae. mcintoshi and M. uniformis using both the L and S primer-probe-based assays. The genetic relationships of the viral sequences in mosquito samples were established by partial M segment sequencing and assigned to the two previously described viral lineages defined by analysis of livestock isolates obtained during the 2006-2007 outbreak, confirming that similar viruses were present in both the vector and mammalian host. The data confirms the utility of qRT-PCR for identification and initial quantification of virus in mosquito samples during RVFV outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  2. Diagnostic efficacy of a real time-PCR assay for Chlamydia trachomatis infection in infertile women in north India

    Directory of Open Access Journals (Sweden)

    Benu Dhawan

    2014-01-01

    Full Text Available Background & objectives: Little is known about the prevalence of Chlamydia trachomatis infection in Indian women with infertility. To improve the diagnosis of C. trachomatis infection in developing countries, there is an urgent need to establish cost-effective molecular test with high sensitivity and specificity. This study was conducted to determine the diagnostic utility of a real time-PCR assay for detention of C. trachomatis infection in infertile women attending an infertility clinic in north India. The in house real time-PCR assay was also compared with a commercial real-time PCR based detection system. Methods: Endocervical swabs, collected from 200 infertile women were tested for C. trachomatis by three different PCR assays viz. in-house real time-PCR targeting the cryptic plasmid using published primers, along with omp1 gene and cryptic plasmid based conventional PCR assays. Specimens were also subjected to direct fluorescence assay (DFA and enzyme immunoassay (EIA Performance of in-house real time-PCR was compared with that of COBAS Taqman C. trachomatis Test, version 2.0 on all in-house real time-PCR positive sample and 30 consecutive negative samples. Results: C. trachomatis infection was found in 13.5 per cent (27/200 infertile women by in-house real time-PCR, 11.5 per cent (23/200 by cryptic plasmid and/or omp1 gene based conventional PCR, 9 per cent (18/200 by DFA and 6.5 per cent (7/200 by EIA. The in-house real time-PCR exhibited a sensitivity and specificity of 100 per cent, considering COBAS Taqman CT Test as the gold standard. The negative and positive predictive values of the in-house real time-PCR were 100 per cent. The in-house real time-PCR could detect as low as 10 copies of C. trachomatis DNA per reaction. Interpretation & conclusions: In-house real time-PCR targeting the cryptic plasmid of C. trachomatis exhibited an excellent sensitivity and specificity similar to that of COBAS Taqman CT Test, v2.0 for detection of C

  3. Red blood cells in cerebrospinal fluid as possible inhibitory factor for enterovirus RT-PCR

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    Full Text Available ABSTRACT The presence of hemoglobin in samples are considered an important inhibitory factor for polymerase chain reaction (PCR. The aim of this study was to examine the influence of red blood cells (RBCs in cerebrospinal fluid (CSF as an inhibitory factor to reverse transcription polymerase chain reaction (RT-PCR for enteroviruses (EV. Forty-four CSF samples from patients showing characteristics of viral meningitis were assessed for EV by RT-PCR. Viral RNA extracted with guanidine isothyocianate buffer and virus detection was performed by in-house nested PCR. Positivity for EV RT-PCR was higher in CSF samples without RBCs than in samples with RBCs: 13(26% and 36(9.2%, p = 0.001. In the group with positive EV RT-PCR, the mean + SD CSF RBC was 37 ± 183 cell/mm3; the group with negative results had 580 + 2,890 cell/mm3 (p = 0.007. The acceptable upper limit for CSF RBCs that could not influence RT-PCR was 108 cells/mm3. CSF samples with negative results for EV RT-PCR have more erythrocytes.

  4. Improved quantification accuracy for duplex real-time PCR detection of genetically modified soybean and maize in heat processed foods

    Directory of Open Access Journals (Sweden)

    CHENG Fang

    2013-04-01

    Full Text Available Real-time PCR technique has been widely used in quantitative GMO detection in recent years.The accuracy of GMOs quantification based on the real-time PCR methods is still a difficult problem,especially for the quantification of high processed samples.To develop the suitable and accurate real-time PCR system for high processed GM samples,we made ameliorations to several real-time PCR parameters,including re-designed shorter target DNA fragment,similar lengths of amplified endogenous and exogenous gene targets,similar GC contents and melting temperatures of PCR primers and TaqMan probes.Also,one Heat-Treatment Processing Model (HTPM was established using soybean flour samples containing GM soybean GTS 40-3-2 to validate the effectiveness of the improved real-time PCR system.Tested results showed that the quantitative bias of GM content in heat processed samples were lowered using the new PCR system.The improved duplex real-time PCR was further validated using processed foods derived from GM soybean,and more accurate GM content values in these foods was also achieved.These results demonstrated that the improved duplex real-time PCR would be quite suitable in quantitative detection of high processed food products.

  5. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus.

    Science.gov (United States)

    Ambagala, A; Fisher, M; Goolia, M; Nfon, C; Furukawa-Stoffer, T; Ortega Polo, R; Lung, O

    2017-10-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot-and-mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field-deployable assay would support local decision-making during an FMDV outbreak. Here we report validation of a novel reverse transcription-insulated isothermal PCR (RT-iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT ™ analyser that automatically analyses data and displays '+' or '-' results. The FMDV RT-iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro-transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross-reactivity with viruses causing similar clinical diseases in cloven-hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory-based real-time RT-PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco ™ mini transportable magnetic bead-based, automated extraction system was used. This assay provides a potentially useful field-deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD-free countries or for routine diagnostics in endemic countries with less structured laboratory systems. © 2016 Her Majesty the Queen in Right of Canada.

  6. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses.

    Science.gov (United States)

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C

    2016-06-03

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established.

  7. Application and evaluation of RT-PCR-ELISA for the nucleoprotein and RT-PCR for detection of low-pathogenic H5 and H7 subtypes of avian influenza virus

    DEFF Research Database (Denmark)

    Dybkær, Karen; Munch, Mette; Handberg, Kurt J.

    2004-01-01

    Three 1-tube Reverse Transcriptase Polymerase Chain Reactions (RT-PCR) directed against the genes encoding the nucleoprotein (NP) and the H5 and H7 hemagglutinin (HA) gene, respectively, were used for detection of avian influenza virus (AIV) in various specimens. A total of 1,040 samples...... originating from chickens experimentally infected with 2 different low pathogenic avian influenza viruses, from domestic ducks and from wild aquatic birds were examined. The outcome of 1) the universal AIV RT-PCR including a PCR-enzyme-linked immunosorbent assay (ELISA) procedure directed against NP (NP RT...

  8. Evaluation of an Improved U.S. Food and Drug Administration Method for the Detection of Cyclospora cayetanensis in Produce Using Real-Time PCR.

    Science.gov (United States)

    Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J

    2017-07-01

    Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for

  9. Detection of infectious bronchitis virus with the use of real-time quantitative reverse transcriptase-PCR and correlation with virus detection in embryonated eggs.

    Science.gov (United States)

    Roh, Ha-Jung; Hilt, Deborah A; Jackwood, Mark W

    2014-09-01

    Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays have been used to detect the presence of challenge virus when the efficacy of infectious bronchitis virus (IBV) vaccine against field viruses is being experimentally evaluated. However, federal guidelines for licensing IBV vaccines indicate that challenge-virus detection following vaccination is to be conducted in embryonated eggs. In this study, we examined qRT-PCR data with the use of universal and type-specific primers and probe sets for IBV detection and compared those data with challenge-virus detection in embryonated eggs to determine if the two methods of evaluating vaccine efficacy are comparable. In addition, we tested the qRT-PCR assays on thermocyclers from two different manufacturers. We found the universal IBV primers and probe set to be comparable to challenge-virus detection in embryonated eggs. However, for some IBV types (Mass41 and Conn on the SmartCycler II and Ark, Mass41, Conn, and GA98 on the ABI 7500) the qRT-PCR assay was more sensitive than virus detection in embryonated eggs. This may simply be due to the universal IBV qRT-PCR assay being more sensitive than virus detection in eggs or to the assay detecting nucleic acid from nonviable virus. This finding is important and needs to be considered when evaluating challenge-virus detection for vaccination and challenge studies, because qRT-PCR could potentially identify positive birds that would otherwise be negative by virus detection in embryonated eggs; thus it could lead to a more stringent measure of vaccine efficacy. We also found that the IBV type-specific primers and probe sets designed in this study were in general less sensitive than the universal IBV primers and probe set. Only the Ark-DPI-spedcific assay on the SmartCycler II and the Ark-DPI-, Mass41-, and DE072/GA98- (for detection of GA98 virus only) specific assays on the ABI 7500 were comparable in sensitivity to virus detection in eggs. We

  10. Real-time PCR improves Helicobacter pylori detection in patients with peptic ulcer bleeding.

    Directory of Open Access Journals (Sweden)

    María José Ramírez-Lázaro

    Full Text Available BACKGROUND AND AIMS: Histological and rapid urease tests to detect H. pylori in biopsy specimens obtained during peptic ulcer bleeding episodes (PUB often produce false-negative results. We aimed to examine whether immunohistochemistry and real-time PCR can improve the sensitivity of these biopsies. PATIENTS AND METHODS: We selected 52 histology-negative formalin-fixed paraffin-embedded biopsy specimens obtained during PUB episodes. Additional tests showed 10 were true negatives and 42 were false negatives. We also selected 17 histology-positive biopsy specimens obtained during PUB to use as controls. We performed immunohistochemistry staining and real-time PCR for 16S rRNA, ureA, and 23S rRNA for H. pylori genes on all specimens. RESULTS: All controls were positive for H. pylori on all PCR assays and immunohistochemical staining. Regarding the 52 initially negative biopsies, all PCR tests were significantly more sensitive than immunohistochemical staining (p<0.01. Sensitivity and specificity were 55% and 80% for 16S rRNA PCR, 43% and 90% for ureA PCR, 41% and 80% for 23S rRNA PCR, and 7% and 100% for immunohistochemical staining, respectively. Combined analysis of PCR assays for two genes were significantly more sensitive than ureA or 23S rRNA PCR tests alone (p<0.05 and marginally better than 16S rRNA PCR alone. The best combination was 16S rRNA+ureA, with a sensitivity of 64% and a specificity of 80%. CONCLUSIONS: Real-time PCR improves the detection of H. pylori infection in histology-negative formalin-fixed paraffin-embedded biopsy samples obtained during PUB episodes. The low reported prevalence of H. pylori in PUB may be due to the failure of conventional tests to detect infection.

  11. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    Science.gov (United States)

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  12. Comparative evaluation of serum, FTA filter-dried blood and oral fluid as sample material for PRRSV diagnostics by RT-qPCR in a small-scale experimental study.

    Science.gov (United States)

    Steinrigl, Adolf; Revilla-Fernández, Sandra; Wodak, Eveline; Schmoll, Friedrich; Sattler, Tatjana

    2014-01-01

    Recently, research into alternative sample materials, such as oral fluid or filter-dried blood has been intensified, in order to facilitate cost-effective and animal-friendly sampling of individuals or groups of pigs for diagnostic purposes. The objective of this study was to compare the sensitivity of porcine reproductive and respiratory syndrome virus (PRRSV)-RNA detection by reverse transcription quantitative real-time PCR (RT-qPCR) in serum, FTA filter-dried blood and oral fluid sampled from individual pigs. Ten PRRSV negative pigs were injected with an EU-type PRRSV live vaccine. Blood and oral fluid samples were taken from each pig before, and 4, 7, 14 and 21 days after vaccination. All samples were then analyzed by PRRSV RT-qPCR. In serum, eight often pigs tested RT-qPCR positive at different time points post infection. Absolute quantification showed low serum PRRSV-RNA loads in most samples. In comparison to serum, sensitivity of PRRSV-RNA detection was strongly reduced in matched FTA filter-dried blood and in oral fluid from the same pigs. These results indicate that with low PRRSV-RNA loads the diagnostic sensitivity of PRRSV-RNA detection by RT-qPCR achieved with serum is currently unmatched by either FTA filter-dried blood or oral fluid.

  13. Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar.

    Science.gov (United States)

    Liang, Shih-Yu; Hsia, Kan-Tai; Chan, Yun-Hsien; Fan, Chia-Kwung; Jiang, Donald Dah-Shyong; Landt, Olfert; Ji, Dar-Der

    2010-08-01

    A single-tube multiprobe real-time PCR assay for simultaneous detection of Entamoeba histolytica and Entamoeba dispar was developed. One primer pair with 2 species-specific probes was designed based on new SSU RNA regions of the ribosomal DNA-containing episome. The sensitivity is 1 parasite per milliliter of feces and thus superior to the conventional nested PCR and comparable to other published real-time PCR protocols. The applicability for clinical diagnosis was validated with 218 stool specimens from patients. A total of 51 E. histolytica and 39 E. dispar positive samples was detected by the multiprobe real-time PCR compared to 39 and 22 by routine nested PCR diagnosis. The detection rate of Entamoeba species for the multiprobe real-time PCR assays was significantly higher than the nested PCR (40.8% vs. 28.0%, P Entamoeba moshkovskii, Giardia lamblia , Cryptosporidium sp., Escherichia coli , or other nonpathogenic enteric parasites. The multiprobe real-time PCR assay is simple and rapid and has high specificity and sensitivity. The assay could streamline the laboratory diagnosis procedure and facilitate epidemiological investigation.

  14. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    Science.gov (United States)

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  15. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...

  16. [REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].

    Science.gov (United States)

    Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A

    2015-01-01

    Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.

  17. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  18. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  19. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  20. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay.

    Science.gov (United States)

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.

  1. Sampling methods for rumen microbial counts by Real-Time PCR techniques

    Directory of Open Access Journals (Sweden)

    S. Puppo

    2010-02-01

    Full Text Available Fresh rumen samples were withdrawn from 4 cannulated buffalo females fed a fibrous diets in order to quantify bacteria concentration in the rumen by Real-Time PCR techniques. To obtain DNA of a good quality from whole rumen fluid, eight (M1-M8 different pre-filtration methods (cheese cloths, glass-fibre and nylon filter in combination with various centrifugation speeds (1000, 5000 and 14,000 rpm were tested. Genomic DNA extraction was performed either on fresh or frozen samples (-20°C. The quantitative bacteria analysis was realized according to Real-Time PCR procedure for Butyrivibrio fibrisolvens reported in literature. M5 resulted the best sampling procedure allowing to obtain a suitable genomic DNA. No differences were revealed between fresh and frozen samples.

  2. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    Science.gov (United States)

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach.

    Directory of Open Access Journals (Sweden)

    Iveta Svobodová

    Full Text Available Detection and characterization of circulating cell-free fetal DNA (cffDNA from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods' performance parameters-standard curve linearity, detection limit and measurement precision-were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438.

  4. [Real-time PCR in rapid diagnosis of Aeromonas hydrophila necrotizing soft tissue infections].

    Science.gov (United States)

    Kohayagawa, Yoshitaka; Izumi, Yoko; Ushita, Misuzu; Niinou, Norio; Koshizaki, Masayuki; Yamamori, Yuji; Kaneko, Sakae; Fukushima, Hiroshi

    2009-11-01

    We report a case of rapidly progressive necrotizing soft tissue infection and sepsis followed by a patient's death. We suspected Vibrio vulnificus infection because the patient's underlying disease was cirrhosis and the course extremely rapid. No microbe had been detected at death. We extracted DNA from a blood culture bottle. SYBR green I real-time PCR was conducted but could not detect V. vulnificus vvh in the DNA sample. Aeromonas hydrophila was cultured and identified in blood and necrotized tissue samples. Real-time PCR was conducted to detect A. hydrophila ahh1, AHCYTOEN and aerA in the DNA sample extracted from the blood culture bottle and an isolated necrotized tissue strain, but only ahh1 was positive. High-mortality in necrotizing soft tissue infections makes it is crucial to quickly detect V. vulnificus and A. hydrophila. We found real-time PCR for vvh, ahh1, AHCYTOEN, and aerA useful in detecting V. vulnificus and A. hydrophila in necrotizing soft tissue infections.

  5. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    Science.gov (United States)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  6. Stability of Reference Genes for Messenger RNA Quantification by Real-Time PCR in Mouse Dextran Sodium Sulfate Experimental Colitis.

    Directory of Open Access Journals (Sweden)

    Nour Eissa

    Full Text Available Many animal models have been developed to characterize the complexity of colonic inflammation. In dextran sodium sulfate (DSS experimental colitis in mice the choice of reference genes is critical for accurate quantification of target genes using quantitative real time PCR (RT-qPCR. No studies have addressed the performance of reference genes in mice DSS-experimental colitis. This study aimed to determine the stability of reference genes expression (RGE in DSS-experimental murine colitis.Colitis was induced in male C57BL/6 mice using DSS5% for 5 days, control group received water. RNA was extracted from inflamed and non-inflamed colon. Using RT-qPCR, comparative analysis of 13 RGE was performed according to predefined criteria and relative colonic TNF-α and IL-1β gene expression was determined by calculating the difference in the threshold cycle.Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh, β-actin (Actb, or β2-microglobulin (β2m showed the highest variability within the inflamed and control groups. Conversely, TATA-box-binding protein (Tbp and eukaryotic translation elongation factor 2 (Eef2 were not affected by inflammation and were the most stable genes. Normalization of colonic TNF-α and IL-1β mRNA levels was dependent on the reference gene used. Depending on the genes used to normalize the data, statistical significance varied from significant when TBP / Eef2 were used to non-significant when Gapdh, Actb or β2m were used.This study highlights the appropriate choice of RGE to ensure adequate normalization of RT-qPCR data when using this model. Suboptimal RGE may explain controversial results from published studies. We recommend using Tbp and Eef2 instead of Gapdh, Actb or β2m as reference genes.

  7. Detection of Tumor Markers in Prostate Cancer and Comparison of Sensitivity between Real Time and Nested PCR

    OpenAIRE

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-01-01

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivi...

  8. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    Science.gov (United States)

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  9. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    Science.gov (United States)

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Analytical Performance of Four Polymerase Chain Reaction (PCR and Real Time PCR (qPCR Assays for the Detection of Six Leishmania Species DNA in Colombia

    Directory of Open Access Journals (Sweden)

    Cielo M. León

    2017-10-01

    Full Text Available Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR, limit of detection (LoD and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia. Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  11. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    Science.gov (United States)

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  12. Evaluation Study of the Tactical Atmospheric Modeling System/Real-Time (TAMS-RT) at NPMOC San Diego

    National Research Council Canada - National Science Library

    Reiss, Arthur

    1999-01-01

    ...) has been developed by the Naval Research Lab in Monterey, California to meet this task. A forecast system employing COAMPS, called the Tactical Atmospheric Mesoscale System- Real Time (TAMS-RT...

  13. Improved detection of canine Angiostrongylus vasorum infection using real-time PCR and indirect ELISA.

    Science.gov (United States)

    Jefferies, Ryan; Morgan, Eric R; Helm, Jenny; Robinson, Matthew; Shaw, Susan E

    2011-12-01

    This study reports the development of a real-time PCR assay and an indirect ELISA to improve on current detection of canine Angiostrongylus vasorum infection. A highly specific fluorescent probe-based, real-time PCR assay was developed to target the A. vasorum second internal transcribed spacer region and detected DNA in EDTA blood, lung tissue, broncho-alveolar larvage fluid, endotracheal mucus, pharyngeal swabs and faecal samples. PCR was fast (∼1 h), highly efficient when using EDTA blood samples, consistently detected a single molecule of parasite DNA and did not amplify DNA from other parasitic nematodes or definitive host species. An indirect ELISA was also developed using the soluble protein fraction from adult A. vasorum worms. Some cross-reactive antigen recognition was observed when tested against sera from dogs infected with Crenosoma vulpis (n = 8), Toxocara canis (n = 5) and Dirofilaria immitis (n = 5). This was largely overcome by setting the cut-off for a positive result at an appropriately high level. Field evaluation of the real-time PCR and ELISA was conducted by testing sera and EDTA blood from dogs with suspected A. vasorum infection (n = 148) and compared with the Baermann's larval migration test in faeces. Thirty-one dogs were positive by at least one test. Of these, 20 (65%) were detected by the Baermann method, 18 (58%) by blood PCR, 24 (77%) by ELISA and 28 (90%) by blood PCR and ELISA together. Combined testing using real-time PCR and ELISA therefore improved the detection rate of A. vasorum infection and holds promise for improved clinical diagnosis and epidemiological investigation.

  14. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    Science.gov (United States)

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; PPCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil.

    Science.gov (United States)

    Fischer, Carlo; Torres, Maria C; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A; Charrel, Rémi N; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C; Rodrigues, Cintia D S; Kümmerer, Beate M; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix

    2017-11-01

    The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.

  16. Lineage-Specific Real-Time RT-PCR for Yellow Fever Virus Outbreak Surveillance, Brazil

    OpenAIRE

    Fischer, Carlo; Torres, Maria C.; Patel, Pranav; Moreira-Soto, Andres; Gould, Ernest A.; Charrel, Rémi N.; de Lamballerie, Xavier; Nogueira, Rita Maria Ribeiro; Sequeira, Patricia C.; Rodrigues, Cintia D.S.; Kümmerer, Beate M.; Drosten, Christian; Landt, Olfert; Bispo de Filippis, Ana Maria; Drexler, Jan Felix

    2017-01-01

    The current yellow fever outbreak in Brazil prompted widespread yellow fever virus (YFV) vaccination campaigns, imposing a responsibility to distinguish between vaccine- and wild-type YFV-associated disease. We developed novel multiplex real-time reverse transcription PCRs that differentiate between vaccine and American wild-type YFV. We validated these highly specific and sensitive assays in an outbreak setting.

  17. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Meng Sun

    Full Text Available The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA, elongation factor 1 (EF1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, ribosomal protein S13 (RPS13, ribosomal protein S20 (RPS20, tubulin (TUB, and β-actin (ACTB were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1 were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands. 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults. 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C. To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83 was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  18. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  19. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA

    NARCIS (Netherlands)

    Kiselinova, Maja; Pasternak, Alexander O.; de Spiegelaere, Ward; Vogelaers, Dirk; Berkhout, Ben; Vandekerckhove, Linos

    2014-01-01

    Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been

  20. RT-PCR for detection of all seven genotypes of Lyssavirus genus.

    Science.gov (United States)

    Vázquez-Morón, S; Avellón, A; Echevarría, J E

    2006-08-01

    The Lyssavirus genus includes seven species or genotypes named 1-7. Rabies genotypes correlate with geographical distribution and specific hosts. Co-circulation of different lyssaviruses, imported cases, and the presence of unknown viruses, such as Aravan, Khujand, Irkut and West Caucasian Bat Virus, make it necessary to use generic methods able to detect all lyssaviruses. Primer sequences were chosen from conserved regions in all genotypes in order to optimise a generic RT-PCR. Serial dilutions of 12 RNA extracts from all seven Lyssavirus genotypes were examined to compare the sensitivity of the RT-PCR standardised in this study with a published RT-PCR optimised for EBLV1 detection and capable of amplifying RNA from all seven lyssaviruses. All seven genotypes were detected by both RT-PCRs, however, the sensitivity was higher with the new version of the test. Twenty samples submitted for rabies diagnosis were tested by the new RT-PCR. Eight out of 20 samples from six dogs, one horse and one bat were found positive, in agreement with immunofluorescence results. Seven samples from terrestrial mammals were genotype 1 and one from a bat was genotype 5. In conclusion, this method can be used to complement immunofluorescence for the diagnosis of rabies, enabling the detection of unexpected lyssaviruses during rabies surveillance.

  1. A new real-time PCR assay for rapid identification of the S. aureus/MRSA strains

    Directory of Open Access Journals (Sweden)

    Ivan Manga

    2013-01-01

    Full Text Available The Methicillin-resistant Staphylococcus aureus (MRSA with the livestock-associated MRSA (LA-MRSA are of great interest to scientists and general public. The aim of our study was to present a new more rapid and reliable diagnostic method working on the RT-PCR platform applicable for monitoring of MRSA/S. aureus. The parallel testing of the S. aureus specific nuc gene sequence and the mecA gene sequence was utilised for this purpose. A collection of ten S. aureus/MRSA reference strains, fifteen genetically related non S. aureus reference strains and fifty-six environmental samples was employed for estimation of the assay performance and parameters. The environmental samples acquired in the Czech livestock farms were represented with the livestock and human nasal mucosae or skin swabs, the slaughter meat swabs and were chosen preferentially from individuals with previously confi rmed or suspected positive MRSA/S. aureus cases. The classic selective cultivation approach with the biochemical test and agar disk diffusion test was accepted as reference diagnostic method. As there were no culture positive samples that were negative using RT-PCR, our method featured with 100% sensitivity in comparison to reference method. The limit of detection allowed to identify from tens to hundreds copies of S. aureus/MRSA genome. Further, the RT-PCR assay featured with 100% inclusivity and 95% exclusivity at Cq value below 30. These parameters suggested on powerful and reliable diagnostic method with real potential of practical utilisation. We consider our method as ideal for testing of individual suspected colonies, when the results can be acquired in less than 1.5 hour.

  2. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR.

    Science.gov (United States)

    Qin, Li-Xuan; Beyer, Richard P; Hudson, Francesca N; Linford, Nancy J; Morris, Daryl E; Kerr, Kathleen F

    2006-01-17

    There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes

  3. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Morris Daryl E

    2006-01-01

    Full Text Available Abstract Background There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. Results We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch and a sequence-based method of background adjustment (as in gcRMA as the most important factors in methods' performances. However, we found poor reliability for methods

  4. Detection of bacterial species involved in perimplantitis concerned with cultural and RT-PCR

    Directory of Open Access Journals (Sweden)

    Marcello Gatti

    2010-06-01

    Full Text Available Dental implants offer new treatment options for edentulous either partially or completely, now represent a viable alternative to conventional fixed protheses. Dental implants are colonized by a flora dominated by Gram-positive facultative aerobic, while in patients with bone loss and formation of pockets peri-implant diseases was found a significant difference in the composition of microflora, bacteria, Gram-negative anaerobes in particular Fusobacterium spp., Treponema denticola (Spirochetes, Tannerella forsythensis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia as interim black-pigmented bacteria, Porphyromonas gingivalis, often in high concentrations. Aims. The purpose of this study was to identify those at risk of perimplantitis using 2 techniques: RT-PCR examination of trade and culture. The results were compared taking into consideration the advantages and disadvantages of both methods. Materials and methods.We studied 24 patients (14 women and 10 men, aged, women between 43 and 76 years, with an average of 63.8 + / - 10.9 years, men between 45 and 88 years with a average of 64.3 years + / - 12.5 years. Was performed a double levy of sub-gingival plaque at multiple sites that had an implant CAL (clinical attachment level> 4mm in order to assess the microbiological identification with the two techniques: Examining culture and Real-Time PCR of Commerce ( Gum-Sunstar that identifies 4 bacterial species: A. actinomycetemcomitans (A.a., P.gingivalis (P.g., T.forsythensis (T.f., and T.denticola (T.d.. Results. All patients studied were positive to both tests with charger high: the consideration of tenure, with CFU / ml > 105, was positive in 66.6% of samples by:T.f., and P.g., in 12.5% for A.a., while T.d. not been sought by examining culture, the RT-PCR was positive, with high loads, in 95.8% of samples for T.f., in 79.1% for P.g., in 12.5% for A.a. and 20.8% for T.d.The test crop showed the presence of even P.intermedia in 91

  5. Sensitive Quantification of Aflatoxin B1 in Animal Feeds, Corn Feed Grain, and Yellow Corn Meal Using Immunomagnetic Bead-Based Recovery and Real-Time Immunoquantitative-PCR

    Directory of Open Access Journals (Sweden)

    Dinesh Babu

    2014-12-01

    Full Text Available Aflatoxins are considered unavoidable natural mycotoxins encountered in foods, animal feeds, and feed grains. In this study, we demonstrate the application of our recently developed real-time immunoquantitative PCR (RT iq-PCR assay for sensitive detection and quantification of aflatoxins in poultry feed, two types of dairy feed (1 and 2, horse feed, whole kernel corn feed grains, and retail yellow ground corn meal. Upon testing methanol/water (60:40 extractions of the above samples using competitive direct enzyme linked immunosorbent assay, the aflatoxin content was found to be <20 μg/kg. The RT iq-PCR assay exhibited high antigen hook effect in samples containing aflatoxin levels higher than the quantification limits (0.1–10 μg/kg, addressed by comparing the quantification results of undiluted and diluted extracts. In testing the reliability of the immuno-PCR assay, samples were spiked with 200 μg/kg of aflatoxin B1, but the recovery of spiked aflatoxin was found to be poor. Considering the significance of determining trace levels of aflatoxins and their serious implications for animal and human health, the RT iq-PCR method described in this study can be useful for quantifying low natural aflatoxin levels in complex matrices of food or animal feed samples without the requirement of extra sample cleanup.

  6. Field evaluation of an open and polyvalent universal HIV-1/SIVcpz/SIVgor quantitative RT-PCR assay for HIV-1 viral load monitoring in comparison to Abbott RealTime HIV-1 in Cameroon.

    Science.gov (United States)

    Guichet, Emilande; Aghokeng, Avelin; Eymard-Duvernay, Sabrina; Vidal, Nicole; Ayouba, Ahidjo; Mpoudi Ngole, Eitel; Delaporte, Eric; Ciaffi, Laura; Peeters, Martine

    2016-11-01

    With the increasing demand of HIV viral load (VL) tests in resource-limited countries (RLCs) there is a need for assays at affordable cost and able to quantify all known HIV-1 variants. VLs obtained with a recently developed open and polyvalent universal HIV-1/SIVcpz/SIVgor RT-qPCR were compared to Abbott RealTime HIV-1 assay in Cameroon. On 474 plasma samples, characterized by a wide range of VLs and a broad HIV-1 group M genetic diversity, 97.5% concordance was observed when using the lower detection limit of each assay. When using the threshold of 3.00 log 10 copies/mL, according to WHO guidelines to define virological failure (VF) in RLCs, the concordance was 94.7%, 360/474 versus 339/474 patients were identified with VF with the new assay and Abbott RealTime HIV-1, respectively. Higher VLs were measured with the new assay, +0.47 log 10 copies/mL (95% CI; 0.42-0.52) as shown with Bland-Altman analysis. Eleven samples from patients on VF with drug resistance were not detected by Abbott RealTime HIV-1 versus two only with the new assay. Overall, our study showed that the new assay can be easily implemented in a laboratory in RLCs with VL experience and showed good performance on a wide diversity of HIV-1 group M variants. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay.

    Science.gov (United States)

    Pabbaraju, Kanti; Wong, Sallene; Gill, Kara; Fonseca, Kevin; Tipples, Graham A; Tellier, Raymond

    2016-10-01

    In the recent past, arboviruses such as Chikungunya (CHIKV) and Zika (ZIKV) have increased their area of endemicity and presented as an emerging global public health threat. To design an assay for the simultaneous detection of ZIKV, CHIKV and Dengue (DENV) 1-4 from patients with symptoms of arboviral infection. This would be advantageous because of the similar clinical presentation typically encountered with these viruses and their co-circulation in endemic areas. In this study we have developed and validated a triplex real time reverse transcription PCR assay using hydrolysis probes targeting the non-structural 5 (NS5) region of ZIKV, non-structural protein 4 (nsP4) from CHIKV and 3' untranslated region (3'UTR) of DENV 1-4. The 95% LOD by the triplex assay was 15 copies/reaction for DENV-1 and less than 10 copies/reaction for all other viruses. The triplex assay was 100% specific and did not amplify any of the other viruses tested. The assay was reproducible and adaptable to testing different specimen types including serum, plasma, urine, placental tissue, brain tissue and amniotic fluid. This assay can be easily implemented for diagnostic testing of patient samples, even in a high throughput laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. No control genes required: Bayesian analysis of qRT-PCR data.

    Directory of Open Access Journals (Sweden)

    Mikhail V Matz

    Full Text Available Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process.In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts. Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests.Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  9. No control genes required: Bayesian analysis of qRT-PCR data.

    Science.gov (United States)

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  10. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Linke Sonja

    2006-01-01

    Full Text Available Abstract Background Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. Results To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 107 starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110 and seemed to be very high in some isolates. Conclusion We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly

  11. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    Science.gov (United States)

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  13. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT-PCR is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT-PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT-PCR analyses involving watermelon.

  14. Performance Evaluation of the Real-Q Cytomegalovirus (CMV) Quantification Kit Using Two Real-Time PCR Systems for Quantifying CMV DNA in Whole Blood.

    Science.gov (United States)

    Park, Jong Eun; Kim, Ji Youn; Yun, Sun Ae; Lee, Myoung Keun; Huh, Hee Jae; Kim, Jong Won; Ki, Chang Seok

    2016-11-01

    Standardized cytomegalovirus (CMV) DNA quantification is important for managing CMV disease. We evaluated the performance of the Real-Q CMV Quantification Kit (Real-Q assay; BioSewoom, Korea) using whole blood (WB), with nucleic acid extraction using MagNA Pure 96 (Roche Diagnostics, Germany). Real-time PCR was performed on two platforms: the 7500 Fast real-time PCR (7500 Fast; Applied Biosystems, USA) and CFX96 real-time PCR detection (CFX96; Bio-Rad, USA) systems. The WHO international standard, diluted with CMV-negative WB, was used to validate the analytical performance. We used 90 WB clinical samples for comparison with the artus CMV RG PCR kit (artus assay; Qiagen, Germany). Limits of detections (LODs) in 7500 Fast and CFX96 were 367 and 479 IU/mL, respectively. The assay was linear from the LOD to 10⁶ IU/mL (R² ≥0.9886). The conversion factors from copies to IU in 7500 Fast and CFX96 were 0.95 and 1.06, respectively. Compared with the artus assay, for values 1,000 copies/mL, 73.3% and 80.6% of samples in 7500 Fast and CFX96, respectively, had real-time PCR platforms.

  15. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    Science.gov (United States)

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  16. RT-PCR-ELISA as a tool for diagnosis of low-pathogenicity avian influenza

    DEFF Research Database (Denmark)

    Dybkaer, Karen; Munch, Mette; Handberg, Kurt Jensen

    2003-01-01

    A one-tube reverse transcriptase/polymerase chain reaction coupled with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) was developed for the rapid detection of avian influenza virus (AIV) in clinical specimens. A total of 419 swab pools were analyzed from chickens experimentally infected wit...... of the twenty-three VI-positive specimens were negative when tested by RT-PCR-ELISA. The diagnostic sensitivity and specificity of the RT-PCR-ELISA was 91% and 97%, respectively, using VI in SPF eggs as the gold reference standard....

  17. Real-time PCR for the early detection and quantification of Coxiella burnetii as an alternative to the murine bioassay.

    Science.gov (United States)

    Howe, Gerald B; Loveless, Bonnie M; Norwood, David; Craw, Philip; Waag, David; England, Marilyn; Lowe, John R; Courtney, Bernard C; Pitt, M Louise; Kulesh, David A

    2009-01-01

    Real-time PCR was used to analyze archived blood from non-human primates (NHP) and fluid samples originating from a well-controlled Q fever vaccine efficacy trial. The PCR targets were the IS1111 element and the com1 gene of Coxiella burnetii. Data from that previous study were used to evaluate real-time PCR as an alternative to the use of sero-conversion by mouse bioassay for both quantification and early detection of C. burnetii bacteria. Real-time PCR and the mouse bioassay exhibited no statistical difference in quantifying the number of microorganisms delivered in the aerosol challenge dose. The presence of C. burnetii in peripheral blood of non-human primates was detected by real-time PCR as early after exposure as the mouse bioassay with results available within hours instead of weeks. This study demonstrates that real-time PCR has the ability to replace the mouse bioassay to measure dosage and monitor infection of C. burnetii in a non-human primate model.

  18. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples.

    Science.gov (United States)

    Leach, L; Zhu, Y; Chaturvedi, S

    2018-02-01

    Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.

  19. Evaluation of a Multiplex Real-Time Reverse Transcriptase PCR Assay for Detection and Differentiation of Influenza Viruses A and B during the 2001-2002 Influenza Season in Israel

    Science.gov (United States)

    Hindiyeh, Musa; Levy, Virginia; Azar, Roberto; Varsano, Noemi; Regev, Liora; Shalev, Yael; Grossman, Zehava; Mendelson, Ella

    2005-01-01

    The ability to rapidly diagnose influenza virus infections is of the utmost importance in the evaluation of patients with upper respiratory tract infections. It is also important for the influenza surveillance activities performed by national influenza centers. In the present study we modified a multiplex real-time reverse transcriptase PCR (RT-PCR) assay (which uses TaqMan chemistry) and evaluated it for its ability to detect and concomitantly differentiate influenza viruses A and B in 370 patient samples collected during the 2001-2002 influenza season in Israel. The performance of the TaqMan assay was compared to those of a multiplex one-step RT-PCR with gel detection, a shell vial immunofluorescence assay, and virus isolation in tissue culture. The TaqMan assay had an excellent sensitivity for the detection of influenza viruses compared to that of tissue culture. The overall sensitivity and specificity of the TaqMan assay compared to the results of culture were 98.4 and 85.5%, respectively. The sensitivity and specificity of the TaqMan assay for the detection of influenza virus A alone were 100 and 91.1%, respectively. On the other hand, the sensitivity and specificity for the detection of influenza virus B alone were 95.7 and 98.7%, respectively. The rapid turnaround time for the performance of the TaqMan assay (4.5 h) and the relatively low direct cost encourage the routine use of this assay in place of tissue culture. We conclude that the multiplex TaqMan assay is highly suitable for the rapid diagnosis of influenza virus infections both in well-established molecular biology laboratories and in reference clinical laboratories. PMID:15695650

  20. Duplex Real-Time PCR Assay Distinguishes Aedes aegypti From Ae. albopictus (Diptera: Culicidae) Using DNA From Sonicated First-Instar Larvae.

    Science.gov (United States)

    Kothera, Linda; Byrd, Brian; Savage, Harry M

    2017-11-07

    Aedes aegypti (L.) and Ae. albopictus (Skuse) are important arbovirus vectors in the United States, and the recent emergence of Zika virus disease as a public health concern in the Americas has reinforced a need for tools to rapidly distinguish between these species in collections made by vector control agencies. We developed a duplex real-time PCR assay that detects both species and does not cross-amplify in any of the other seven Aedes species tested. The lower limit of detection for our assay is equivalent to ∼0.03 of a first-instar larva in a 60-µl sample (0.016 ng of DNA per real-time PCR reaction). The assay was sensitive and specific in mixtures of both species that reflected up to a 2,000-fold difference in DNA concentration. In addition, we developed a simple protocol to extract DNA from sonicated first-instar larvae, and used that DNA to test the assay. Because it uses real-time PCR, the assay saves time by not requiring a separate visualization step. This assay can reduce the time needed for vector control agencies to make species identifications, and thus inform decisions about surveillance and control. Published by Oxford University Press on behalf of Entomological Society of America 2017 This work is written by US Government employees and is in the public domain in the US.

  1. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants.

    Science.gov (United States)

    Cnops, Lieselotte; Tannich, Egbert; Polman, Katja; Clerinx, Jan; Van Esbroeck, Marjan

    2012-10-01

    To evaluate the use of a genus-specific PCR that combines high sensitivity with the detection of different Schistosoma species for diagnosis in international travellers and migrants in comparison to standard microscopy. The genus-specific real-time PCR was developed to target the 28S ribosomal RNA gene of the major human Schistosoma species. It was validated for analytical specificity and reproducibility and demonstrated an analytical sensitivity of 0.2 eggs per gram of faeces. Its diagnostic performance was further evaluated on 152 faecal, 32 urine and 38 serum samples from patients presenting at the outpatient clinic of the Institute of Tropical Medicine in Antwerp (Belgium). We detected Schistosoma DNA in 76 faecal (50.0%) and five urine (15.6%) samples of which, respectively, nine and one were not detected by standard microscopy. Only two of the 38 serum samples of patients with confirmed schistosomiasis were positive with the presently developed PCR. Sequence analysis on positive faecal samples allowed identification of the Schistosoma species complex. The real-time PCR is highly sensitive and may offer added value in diagnosing imported schistosomiasis. The genus-specific PCR can detect all schistosome species that are infectious to humans and performs very well with faeces and urine, but not in serum. © 2012 Blackwell Publishing Ltd.

  2. Standardization and application of real-time polymerase chain reaction for rapid detection of bluetongue virus

    Directory of Open Access Journals (Sweden)

    I. Karthika Lakshmi

    2018-04-01

    Full Text Available Aim: The present study was designed to standardize real-time polymerase chain reaction (PCR for detecting the bluetongue virus from blood samples of sheep collected during outbreaks of bluetongue disease in the year 2014 in Andhra Pradesh and Telangana states of India. Materials and Methods: A 10-fold serial dilution of Plasmid PUC59 with bluetongue virus (BTV NS3 insert was used to plot the standard curve. BHK-21 and KC cells were used for in vitro propagation of virus BTV-9 at a TCID50/ml of 105 ml and RNA was isolated by the Trizol method. Both reverse transcription -PCR and real-time PCR using TaqMan probe were carried out with RNA extracted from virus-spiked culture medium and blood to compare the sensitivity by means of finding out the limit of detection (LoD. The results were verified by inoculating the detected and undetected dilutions onto cell cultures with further cytological (cytopathic effect and molecular confirmation (by BTV-NS1 group-specific PCR. The standardized technique was then applied to field samples (blood for detecting BTV. Results: The slope of the standard curve obtained was -3.23, and the efficiency was 103%. The LoD with RT-PCR was 8.269Ex103 number of copies of plasmid, whereas it was 13 with real-time PCR for plasmid dilutions. Similarly, LoD was determined for virus-spiked culture medium, and blood with both the types of PCR and the values were 103 TCID 50/ml and 104 TCID 50/ml with RT-PCR and 10° TCID 50/ml and 102 TCID 50/ml with real-time PCR, respectively. The standardized technique was applied to blood samples collected from BTV suspected animals; 10 among 20 samples were found positive with Cq values ranging from 27 to 39. The Cq value exhibiting samples were further processed in cell cultures and were confirmed to be BT positive. Likewise, Cq undetected samples on processing in cell cultures turned out to be BTV negative. Conclusion: Real-time PCR was found to be a very sensitive as well as reliable method

  3. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer.

    Science.gov (United States)

    Chalabala, Jan; Uhlig, Frank; Slavíček, Petr

    2018-03-29

    Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

  4. Validation of tumor markers in central nervous system germ cell tumors by real-time reverse transcriptase polymerase chain reaction using formalin-fixed paraffin-embedded tissues.

    Science.gov (United States)

    Kim, Dowhan; Lee, Da Hye; Choi, Junjeong; Shim, Kyu Won; Kim, Se Hoon

    2013-01-01

    The therapeutic protocols for treatment of germinomas and non-germinomatous germ cell tumors (NGGCTs) are completely different, so it is important to distinguish pure germinomas from NGGCTs. As it can be difficult to diagnose by morphology alone, immunohisto-chemistry (IHC) has been widely used as an ancillary test to improve diagnostic accuracy. However, IHC has limitations due to the misinterpretation of results or the aberrant loss of immunoreactivity. However, real-time RT-PCR has certain advantages over IHC, including its quantitative nature. The aim of our study was to evaluate the usefulness of real-time RT-PCR on formalin-fixed paraffin-embedded (FFPE) tissue blocks for the diagnosis of germ cell tumors of the central nervous system. We selected eight markers of germ cell tumors using a literature search, and validated them using real-time RT-PCR. Among them, POU5F1, NANOG and TGFB2 were statistically significant (P=0.05) in multiple comparisons (MANOVA) of three groups (pure germinomas, mature teratomas and malignant germ cell tumors). Two-group (pure germinomas and NGGCTs) discriminant analysis achieved a 70.0% success rate in cross-validation. We concluded that real-time RT-PCR using FFPE tissue has adequate validating power comparable to IHC in the diagnosis of central nervous system germ cell tumors; therefore, when IHC is not available, not conclusive or not informative, RT-PCR is a potential alternative to a repeat biopsy.

  5. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs

    DEFF Research Database (Denmark)

    Henritzi, Dinah; Zhao, Na; Starick, Elke

    2016-01-01

    diagnostic methods which allow for cost-effective large-scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic....... Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific......Background A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine...

  6. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  7. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    Science.gov (United States)

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  8. Development of a Real-Time PCR for a Sensitive One-Step Coprodiagnosis Allowing both the Identification of Carnivore Feces and the Detection of Toxocara spp. and Echinococcus multilocularis

    Science.gov (United States)

    Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence

    2016-01-01

    Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes. With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. PMID:26969697

  9. Development of a Real-Time PCR for a Sensitive One-Step Coprodiagnosis Allowing both the Identification of Carnivore Feces and the Detection of Toxocara spp. and Echinococcus multilocularis.

    Science.gov (United States)

    Knapp, Jenny; Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence

    2016-05-15

    Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinera and strawberry

    DEFF Research Database (Denmark)

    Mamarabadi, Mojtaba; Jensen, Birgit; Jensen, Søren Dan Funck

    2008-01-01

    Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two endoglucan......Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two...... endoglucanase genes from C. rosea strain IK726 was analyzed using real-time RT-PCR in vitro and in strawberry leaves during interaction with B. cinerea. Specific primers were designed for ß-tubulin genes from C. rosea and B. cinerea, respectively, and a gene encoding a DNA-binding protein (DBP) from strawberry......, allowing in situ activity assessment of each fungus in vitro and during their interaction on strawberry leaves. Growth of B. cinerea was inhibited in all pathogen-antagonist interactions while the activity of IK726 was slightly increased. In all in vitro interactions, four of the six genes were upregulated...

  11. Human papillomavirus detection using the Abbott RealTime high-risk HPV tests compared with conventional nested PCR coupled to high-throughput sequencing of amplification products in cervical smear specimens from a Gabonese female population.

    Science.gov (United States)

    Moussavou-Boundzanga, Pamela; Koumakpayi, Ismaël Hervé; Labouba, Ingrid; Leroy, Eric M; Belembaogo, Ernest; Berthet, Nicolas

    2017-12-21

    Cervical cancer is the fourth most common malignancy in women worldwide. However, screening with human papillomavirus (HPV) molecular tests holds promise for reducing cervical cancer incidence and mortality in low- and middle-income countries. The performance of the Abbott RealTime High-Risk HPV test (AbRT) was evaluated in 83 cervical smear specimens and compared with a conventional nested PCR coupled to high-throughput sequencing (HTS) to identify the amplicons. The AbRT assay detected at least one HPV genotype in 44.57% of women regardless of the grade of cervical abnormalities. Except for one case, good concordance was observed for the genotypes detected with the AbRT assay in the high-risk HPV category determined with HTS of the amplicon generated by conventional nested PCR. The AbRT test is an easy and reliable molecular tool and was as sensitive as conventional nested PCR in cervical smear specimens for detection HPVs associated with high-grade lesions. Moreover, sequencing amplicons using an HTS approach effectively identified the genotype of the hrHPV identified with the AbRT test.

  12. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean.

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    Full Text Available Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.

  13. Detection and identification of dengue virus isolates from Brazil by a simplified reverse transcription - polymerase chain reaction (RT-PCR method

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO Luiz Tadeu Moraes

    1997-01-01

    Full Text Available We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination

  14. Circadian transitions in radiation dose-dependent augmentation of mRNA levels for DNA damage-induced genes elicited by accurate real-time RT-PCR quantification

    International Nuclear Information System (INIS)

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko

    2010-01-01

    Molecular mechanisms of intracellular response after DNA-damage by exposure to ionizing radiation have been studied. In the case of cells isolated from living body of human and experimental animals, alteration of the responsiveness by physiological oscillation such as circadian rhythm must be considered. To examine the circadian variation in the response of p53-responsible genes p21, mdm2, bax, and puma, we established a method to quantitate their mRNA levels with high reproducibility and accuracy based on real-time reverse transcription polymerase chain reaction (RT-PCR) and compared the levels of responsiveness in mouse hemocytes after diurnal irradiation to that after nocturnal irradiation. Augmentations of p21 and mdm2 mRNA levels with growth-arrest and of puma mRNA before apoptosis were confirmed by time-course experiment in RAW264.7, and dose-dependent increases in the peak levels of all the RNA were shown. Similarly, the relative RNA levels of p21, mdm2, bax, and puma per glyceraldehyde-3-phosphate dehydrogenase (GAPDH) also increased dose-dependently in peripheral blood and bone marrow cells isolated from whole-body-irradiated mice. Induction levels of all messages reduced by half after nighttime irradiation as compared with daytime irradiation in blood cells. In marrow cells, nighttime irradiation enhanced the p21 and mdm2 mRNA levels than daytime irradiation. No significant difference in bax or puma mRNA levels was observed between nighttime and daytime irradiation in marrow cells. This suggests that early-stage cellular responsiveness in DNA damage-induced genes is modulated between diurnal and nocturnal irradiation. (author)

  15. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  16. Simultaneous detection of enteropathogenic viruses in buffalos faeces using multiplex reverse transcription-polymerase chain reaction (mRT-PCR

    Directory of Open Access Journals (Sweden)

    U. Pagnini

    2010-02-01

    Full Text Available A multiplex reverse transcription- polymerase chain reaction (mRT-PCR assay that detects Bovine Viral Diarrhoea Virus, Bovine Coronavirus, and Group A Rotaviruses in infected cell-culture fluids and clinical faecal samples is described. One hundred twenty faecal samples from buffalo calves with acute gastroenteritis were tested. The mRT-PCR was validated against simplex RT-PCR with published primers for Pestivirus, Coronavirus and Rotavirus. The multiplex RT-PCR was equally sensitive and specific in detecting viral infections compared with simplex RT-PCR. The mRT-PCR readily identified viruses by discriminating the size of their amplified gene products. This mRT-PCR may be a sensitive and rapid assay for surveillance of buffalo enteric viruses in field specimens. This novel multiplex RT-PCR is an attractive technique for the rapid, specific, and cost-effective laboratory diagnosis of acute gastroenteritis.

  17. [Comparison of two different real-time PCR systems in postmortem diagnosis of tuberculosis in paraffin-embedded tissues].

    Science.gov (United States)

    Yağmur, Gülhan; Albayrak, Nurhan; Daş, Taner; Yıldırım, Muzaffer; Ozgün, Ayşe; Büyük, Yalçın

    2014-10-01

    Tuberculosis (TB) is one of those infections with high morbidity and mortality in all around the world. Hundreds of people died from this disease without diagnosed or due to resistant strains in Turkey. Therefore, it is important to identify postmortem cases who have died from tuberculosis. Molecular methods have been widely used as well as conventional methods in the diagnosis of tuberculosis. The aim of this study was to compare the two different real-time polymerase chain reaction (Rt-PCR) system in the postmortem diagnosis of Mycobacterium tuberculosis infections in paraffin-embedded tissues. A total of 40 paraffin-embedded tissue samples [lung (n= 35), brain (n= 2), heart (n= 2), lymph node (n= 1)] in which histopathologic findings consistent with TB (necrotizing granulomatous inflammation, gelatinous caseous pneumonia, necrotic fibrous nodul) obtained from 37 autopsy cases (31 male, 6 female; age range: 25-85 yrs) were included in the study. Paraffin-embedded tissues were deparafinized with xylene and ethyl alcohol and then DNA isolation was done with QIAsymphony DSP Virus/Pathogen Midi kit in the QIAsymphony device. DNA amplification process was performed by Rt-PCR using the kit Artus® M. tuberculosis RG-PCR in the Rotor-Gene® Q device (Qiagen, Germany). Likewise, after deparafinization process, samples placed in the cartridge and isolation and Rt-PCR was performed by Xpert® MTB/RIF (Cepheid, USA) system, simultaneosly. Seventeen and 20 out of the 40 paraffin-embedded tissues yielded positive results with Qiagen and Xpert system, respectively. M.tuberculosis DNA was found positive in 13 (32.5%) and negative in 16 (40%) of the samples by both of the systems, exhibiting 72.5% (29/40) of concordance. On the other hand, seven (17.5%) samples that were positive with Xpert system yielded negative result with the Qiagen, while four (10%) samples that were positive with Qiagen yielded negative result with the Xpert system. Of the 20 positive cases detected with

  18. Quantification of viable spray-dried potential probiotic lactobacilli using real-time PCR

    Directory of Open Access Journals (Sweden)

    Radulović Zorica

    2012-01-01

    Full Text Available The basic requirement for probiotic bacteria to be able to perform expected positive effects is to be alive. Therefore, appropriate quantification methods are crucial. Bacterial quantification based on nucleic acid detection is increasingly used. Spray-drying (SD is one of the possibilities to improve the survival of probiotic bacteria against negative environmental effects. The aim of this study was to investigate the survival of spray-dried Lactobacillus plantarum 564 and Lactobacillus paracasei Z-8, and to investigate the impact on some probiotic properties caused by SD of both tested strains. Besides the plate count technique, the aim was to examine the possibility of using propidium monoazide (PMA in combination with real-time polymerase chain reaction (PCR for determining spray-dried tested strains. The number of intact cells, Lb. plantarum 564 and Lb. paracasei Z-8, was determined by real-time PCR with PMA, and it was similar to the number of investigated strains obtained by the plate count method. Spray-dried Lb. plantarum 564 and Lb. paracasei Z-8 demonstrated very good probiotic ability. It may be concluded that the PMA real-time PCR determination of the viability of probiotic bacteria could complement the plate count method and SD may be a cost-effective way to produce large quantities of some probiotic cultures. [Projekat Ministarstva nauke Republike Srbije, br. 046010

  19. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  20. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    Science.gov (United States)

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...

  1. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification.

    Science.gov (United States)

    Pavšič, Jernej; Žel, Jana; Milavec, Mojca

    2016-01-01

    Digital PCR (dPCR) is beginning to supersede real-time PCR (qPCR) for quantification of nucleic acids in many different applications. Several analytical properties of the two most commonly used dPCR platforms, namely the QX100 system (Bio-Rad) and the 12.765 array of the Biomark system (Fluidigm), have already been evaluated and compared with those of qPCR. However, to the best of our knowledge, direct comparison between the three of these platforms using the same DNA material has not been done, and the 37 K array on the Biomark system has also not been evaluated in terms of linearity, analytical sensitivity and limit of quantification. Here, a first assessment of qPCR, the QX100 system and both arrays of the Biomark system was performed with plasmid and genomic DNA from human cytomegalovirus. With use of PCR components that alter the efficiency of qPCR, each dPCR platform demonstrated consistent copy-number estimations, which indicates the high resilience of dPCR. Two approaches, one considering the total reaction volume and the other considering the effective reaction size, were used to assess linearity, analytical sensitivity and variability. When the total reaction volume was considered, the best performance was observed with qPCR, followed by the QX100 system and the Biomark system. In contrast, when the effective reaction size was considered, all three platforms showed almost equal limits of detection and variability. Although dPCR might not always be more appropriate than qPCR for quantification of low copy numbers, dPCR is a suitable method for robust and reproducible quantification of viral DNA, and a promising technology for the higher-order reference measurement method.

  2. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    OpenAIRE

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DN...

  3. Dengue Virus NS1 Protein as a Diagnostic Marker: Commercially Available ELISA and Comparison to qRT-PCR and Serological Diagnostic Assays Currently Used by the State of Florida

    Directory of Open Access Journals (Sweden)

    Jason H. Ambrose

    2017-01-01

    Full Text Available Background. The proper management of patients infected with dengue virus requires early detection. Here, real-time molecular assays have proven useful but have limitations, whereas ELISAs that detect antibodies are still favored but results are obtained too late to be of clinical value. The production of DENV NS1 peaks early during infection and its detection can combine the advantages of both diagnostic approaches. Methods. This study compared assays currently used for detecting DENV infection at the Florida Department of Health including anti-DENV IgM and IgG ELISAs as well as qRT-PCR, against a commercially available DENV NS1 ELISA. These comparisons were made among a group of 21 human sera. Results. Nine of 14 (64.3% DENV qRT-PCR+ samples were also DENV NS1+. Interestingly, the 5 NS1− samples that were qRT-PCR+ were additionally IgM− and IgG+ suggesting a nonprimary infection. Compared to qRT-PCR, the NS1 assay had a sensitivity of 64.3%, specificity 100%, PPV of 100%, and NPV of 58.3%. Conclusions. The NS1 ELISA performed as expected in known DENV qRT-PCR+ samples; however negative NS1 results for qRT-PCR+ and IgG+ sera seemingly reduced the usefulness of the NS1 ELISA for nonprimary cases. We therefore conclude that diagnosis obtained via DENV NS1 ELISA deserves further investigation.

  4. Application of real-time PCR to postharvest physiology – DNA isolation

    Science.gov (United States)

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  5. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence.

    Science.gov (United States)

    Lotos, Leonidas; Efthimiou, Konstantinos; Maliogka, Varvara I; Katis, Nikolaos I

    2014-03-01

    In this study a two-step RT-PCR assay was developed for the generic detection of poleroviruses. The RdRp coding region was selected as the primers' target, since it differs significantly from that of other members in the family Luteoviridae and its sequence can be more informative than other regions in the viral genome. Species specific RT-PCR assays targeting the same region were also developed for the detection of the six most widespread poleroviral species (Beet mild yellowing virus, Beet western yellows virus, Cucurbit aphid-borne virus, Carrot red leaf virus, Potato leafroll virus and Turnip yellows virus) in Greece and the collection of isolates. These isolates along with other characterized ones were used for the evaluation of the generic PCR's detection range. The developed assay efficiently amplified a 593bp RdRp fragment from 46 isolates of 10 different Polerovirus species. Phylogenetic analysis using the generic PCR's amplicon sequence showed that although it cannot accurately infer evolutionary relationships within the genus it can differentiate poleroviruses at the species level. Overall, the described generic assay could be applied for the reliable detection of Polerovirus infections and, in combination with the specific PCRs, for the identification of new and uncharacterized species in the genus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travellers.

    Science.gov (United States)

    Vo, Thi Kim Duy; Bigot, Patricia; Gazin, Pierre; Sinou, Veronique; De Pina, Jean Jacques; Huynh, Dinh Chien; Fumoux, Francis; Parzy, Daniel

    2007-05-01

    Real-time PCR diagnosis of malaria has advantages over traditional microscopic methods, especially when parasitaemia is low and when dealing with mixed infections. We have developed a new real-time PCR with specific genes in each Plasmodium species present only in one copy to identify the four pathogenic Plasmodium spp. for humans. The sensitivity was less than 25 parasites/microl. No cross-hybridisation was observed with human DNA or among the four Plasmodium spp. Using LightCycler PCR and conventional microscopy, we compared the diagnosis of malaria in patients from Vietnam and in returned European travellers with suspicion of malaria. In patients from Vietnam with suspicion of malaria, one mixed infection was observed by PCR only; the remaining data (54 of 55 patients) correlated with microscopy. In 79 patients without symptoms, low parasitaemia was detected in 7 samples by microscopy and in 16 samples by PCR. In returned travellers, PCR results were correlated with microscopy for all four species in 48 of 56 samples. The eight discrepant results were resolved in favour of real-time PCR diagnosis. This new real-time PCR is a rapid, accurate and efficient method for malaria diagnosis in returned travellers as well as for epidemiological studies or antimalarial efficiency trials in the field.

  7. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR.

    Science.gov (United States)

    Burns, Cara C; Kilpatrick, David R; Iber, Jane C; Chen, Qi; Kew, Olen M

    2016-01-01

    Virologic surveillance is essential to the success of the World Health Organization initiative to eradicate poliomyelitis. Molecular methods have been used to detect polioviruses in tissue culture isolates derived from stool samples obtained through surveillance for acute flaccid paralysis. This chapter describes the use of realtime PCR assays to identify and serotype polioviruses. In particular, a degenerate, inosine-containing, panpoliovirus (panPV) PCR primer set is used to distinguish polioviruses from NPEVs. The high degree of nucleotide sequence diversity among polioviruses presents a challenge to the systematic design of nucleic acid-based reagents. To accommodate the wide variability and rapid evolution of poliovirus genomes, degenerate codon positions on the template were matched to mixed-base or deoxyinosine residues on both the primers and the TaqMan™ probes. Additional assays distinguish between Sabin vaccine strains and non-Sabin strains. This chapter also describes the use of generic poliovirus specific primers, along with degenerate and inosine-containing primers, for routine VP1 sequencing of poliovirus isolates. These primers, along with nondegenerate serotype-specific Sabin primers, can also be used to sequence individual polioviruses in mixtures.

  8. Investigations on the frequency of norovirus contamination of ready-to-eat food items in Istanbul, Turkey, by using real-time reverse transcription PCR.

    Science.gov (United States)

    Yilmaz, Aysun; Bostan, Kamil; Altan, Eda; Muratoglu, Karlo; Turan, Nuri; Tan, Derya; Helps, Christopher; Yilmaz, Huseyin

    2011-05-01

    Investigation of norovirus (NoV) contamination of food items is important because many outbreaks occur after consumption of contaminated shellfish, vegetables, fruits, and water. The frequency of NoV contamination in food items has not previously been investigated in Turkey. The aim of this study was to investigate the frequency of human NoV genogroups (G) I and II in ready-to-eat tomatoes, parsley, green onion, lettuce, mixed salads, and cracked wheat balls. RNA was extracted with the RNeasy Mini Kit, and a real-time reverse transcription (RT) PCR assay was performed using primers specific for NoV GI and GII. Among the 525 samples analyzed, NoV GII was detected in 1 green onion sample and 1 tomato sample by both SYBR Green and TaqMan real-time RT-PCR assays; no GI virus was detected. The Enterobactericaeae and Escherichia coli levels in the NoV-positive green onion were 6.56 and 1.28 log CFU/g, and those in the tomato were 5.55 and 1.30 log CFU/g, respectively. No significant difference in the bacterial levels was found between the NoV-positive and NoV-negative samples. This study is the first in which NoV GII was found in ready-to-eat food collected from Istanbul, Turkey; thus, these foods may be considered a risk to human health. Epidemiological studies and measures to prevent NoV infection should be considered.

  9. Accurate detection and quantification of the fish viral hemorrhagic Septicemia virus (VHSv with a two-color fluorometric real-time PCR assay.

    Directory of Open Access Journals (Sweden)

    Lindsey R Pierce

    Full Text Available Viral Hemorrhagic Septicemia virus (VHSv is one of the world's most serious fish pathogens, infecting >80 marine, freshwater, and estuarine fish species from Eurasia and North America. A novel and especially virulent strain - IVb - appeared in the Great Lakes in 2003, has killed many game fish species in a series of outbreaks in subsequent years, and shut down interstate transport of baitfish. Cell culture is the diagnostic method approved by the USDA-APHIS, which takes a month or longer, lacks sensitivity, and does not quantify the amount of virus. We thus present a novel, easy, rapid, and highly sensitive real-time quantitative reverse transcription PCR (qRT-PCR assay that incorporates synthetic competitive template internal standards for quality control to circumvent false negative results. Results demonstrate high signal-to-analyte response (slope = 1.00±0.02 and a linear dynamic range that spans seven orders of magnitude (R(2 = 0.99, ranging from 6 to 6,000,000 molecules. Infected fishes are found to harbor levels of virus that range to 1,200,000 VHSv molecules/10(6 actb1 molecules with 1,000 being a rough cut-off for clinical signs of disease. This new assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics.

  10. Accurate detection and quantification of the fish viral hemorrhagic Septicemia virus (VHSv) with a two-color fluorometric real-time PCR assay.

    Science.gov (United States)

    Pierce, Lindsey R; Willey, James C; Palsule, Vrushalee V; Yeo, Jiyoun; Shepherd, Brian S; Crawford, Erin L; Stepien, Carol A

    2013-01-01

    Viral Hemorrhagic Septicemia virus (VHSv) is one of the world's most serious fish pathogens, infecting >80 marine, freshwater, and estuarine fish species from Eurasia and North America. A novel and especially virulent strain - IVb - appeared in the Great Lakes in 2003, has killed many game fish species in a series of outbreaks in subsequent years, and shut down interstate transport of baitfish. Cell culture is the diagnostic method approved by the USDA-APHIS, which takes a month or longer, lacks sensitivity, and does not quantify the amount of virus. We thus present a novel, easy, rapid, and highly sensitive real-time quantitative reverse transcription PCR (qRT-PCR) assay that incorporates synthetic competitive template internal standards for quality control to circumvent false negative results. Results demonstrate high signal-to-analyte response (slope = 1.00±0.02) and a linear dynamic range that spans seven orders of magnitude (R(2) = 0.99), ranging from 6 to 6,000,000 molecules. Infected fishes are found to harbor levels of virus that range to 1,200,000 VHSv molecules/10(6) actb1 molecules with 1,000 being a rough cut-off for clinical signs of disease. This new assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics.

  11. Identification of Histoplasma capsulatum from culture extracts by real-time PCR.

    Science.gov (United States)

    Martagon-Villamil, Jose; Shrestha, Nabin; Sholtis, Mary; Isada, Carlos M; Hall, Gerri S; Bryne, Terry; Lodge, Barbara A; Reller, L Barth; Procop, Gary W

    2003-03-01

    We designed and tested a real-time LightCycler PCR assay for Histoplasma capsulatum that correctly identified the 34 H. capsulatum isolates in a battery of 107 fungal isolates tested and also detected H. capsulatum in clinical specimens from three patients that were culture positive for this organism.

  12. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    Science.gov (United States)

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Diagnosis of intestinal parasites in a rural community of Venezuela: Advantages and disadvantages of using microscopy or RT-PCR.

    Science.gov (United States)

    Incani, Renzo Nino; Ferrer, Elizabeth; Hoek, Denise; Ramak, Robbert; Roelfsema, Jeroen; Mughini-Gras, Lapo; Kortbeek, Titia; Pinelli, Elena

    2017-03-01

    A cross-sectional study was carried out to determine the prevalence and diagnostic performance of microscopy and real time PCR (RT-PCR) for 14 intestinal parasites in a Venezuelan rural community with a long history of persistent intestinal parasitic infections despite the implementation of regular anthelminthic treatments. A total of 228 participants were included in this study. A multiplex RT-PCR was used for the detection of Dientamoeba fragilis, Giardia intestinalis, Cryptosporidium sp. and a monoplex RT-PCR for Entamoeba histolytica. Furthermore, a multiplex PCR was performed for detection of Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. Combined microscopy-PCR revealed prevalences of 49.3% for A. lumbricoides, 10.1% for N. americanus (no A. duodenale was detected), 2.0% for S. stercoralis, 40.4% for D. fragilis, 35.1% for G. intestinalis, and 7.9% for E. histolytica/dispar. Significant increases in prevalence at PCR vs. microscopy were found for A. lumbricoides, G. intestinalis and D. fragilis. Other parasites detected by microscopy alone were Trichuris trichiura (25.7%), Enterobius vermicularis (3.4%), Blastocystis sp. (65.8%), and the non-pathogenic Entamoeba coli (28.9%), Entamoeba hartmanni (12.3%), Endolimax nana (19.7%) and Iodamoeba bütschlii (7.5%). Age- but no gender-related differences in prevalences were found for A. lumbricoides, T. trichiura, G. intestinalis, and E. histolytica/dispar. The persistently high prevalences of intestinal helminths are probably related to the high faecal pollution as also evidenced by the high prevalences of non-pathogenic intestinal protozoans. These results highlight the importance of using sensitive diagnostic techniques in combination with microscopy to better estimate the prevalence of intestinal parasites, especially in the case of D. fragilis trophozoites, which deteriorate very rapidly and would be missed by microscopy. In addition, the differentiation between

  14. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    Science.gov (United States)

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  15. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    Science.gov (United States)

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  16. Real-time PCR systems targeting giant viruses of amoebae and their virophages.

    Science.gov (United States)

    Ngounga, Tatsiana; Pagnier, Isabelle; Reteno, Dorine-Gaelle Ikanga; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2013-01-01

    Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.

  17. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  18. A FRET-based real-time PCR assay to identify the main causal agents of New World tegumentary leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pablo Tsukayama

    Full Text Available In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL. The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V. braziliensis, L. (V. panamensis, L. (V. guyanensis, L. (V. peruviana and L. (V. lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST. In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America.

  19. Detecting Newcastle disease virus in combination of RT-PCR with red blood cell absorption

    Directory of Open Access Journals (Sweden)

    Liu Chengqian

    2011-05-01

    Full Text Available Abstract Reverse transcription-polymerase chain reaction (RT-PCR has limited sensitivity when treating complicated samples, such as feces, waste-water in farms, and nucleic acids, protein rich tissue samples, all the factors may interfere with the sensitivity of PCR test or generate false results. In this study, we developed a sensitive RT-PCR, combination of red blood cell adsorption, for detecting Newcastle disease virus (NDV. One pair of primers which was highly homologous to three NDV pathotypes was designed according to the consensus nucleocapsid protein (NP gene sequence. To eliminate the interfere of microbes and toxic substances, we concentrated and purified NDV from varied samples utilizing the ability of NDV binding red blood cells (RBCs. The RT-PCR coupled with red blood cell adsorption was much more sensitive in comparison with regular RT-PCR. The approach could also be used to detect other viruses with the property of hemagglutination, such as influenza viruses.

  20. Comparison of real-time and quantitative polymerase chain reaction assays in detection of cytomegalovirus DNA in clinical specimens

    International Nuclear Information System (INIS)

    Gokahmetoglu, S.; Deniz, E.

    2007-01-01

    To compare the real-time (RT) and qualitative (Q) polymerase chain reaction (PCR) assays for detection of Cytomegalovirus (CMV) DNA. The study took place in the Department of Microbiology, Erciyes University, Kayseri and in Iontek Laboratory, Istanbul, Turkey, from August to December 2006. One hundred and seven clinical specimens from 67 patients were included in the study. Cytomegalovirus DNA was investigated using RT-PCR kit (Fluorion Iontek, Turkey) and Q-PCR kit (Fluorion Iontek, Turkey). Deoxyribonucleic acid sequencing was applied to the samples that yielded discrepant results in both assays. Mac Nema's Chi Square test was used for statistical analysis. Of the specimens, 27 were found positive with both assays: 9 with only RT-PCR, and 11 with only Q-PCR assay. Both assays were found negative in 60 of the specimens. There was a good agreement between the 2 assays in 87(81.3%) of the specimens. There was no statistical significant difference between the assays (p>0.05). Two of the 11 samples that RT-PCR negative Q-PCR positive, and 3 of 9 samples that RT-PCR positive Q-PCR negative were found to be CMV DNA positive by DNA sequencing. A good level of concordance between RT-PCR and Q-PCR assays for CMV DNA detection has been found. (author)

  1. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve.

    Science.gov (United States)

    Rueda-Martínez, Carmen; Fernández, M Carmen; Soto-Navarrete, María Teresa; Jiménez-Navarro, Manuel; Durán, Ana Carmen; Fernández, Borja

    2016-01-01

    Bicuspid aortic valve (BAV) is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40%) incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR) assays. A total of 51 adult (180-240 days old) and 56 old (300-440 days old) animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30), or to the affected strain of hamsters with TAV (n = 45) or BAV (n = 32). The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.

  2. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve.

    Directory of Open Access Journals (Sweden)

    Carmen Rueda-Martínez

    Full Text Available Bicuspid aortic valve (BAV is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40% incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR assays. A total of 51 adult (180-240 days old and 56 old (300-440 days old animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30, or to the affected strain of hamsters with TAV (n = 45 or BAV (n = 32. The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.

  3. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    Science.gov (United States)

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Fast real-time PCR for the detection of crustacean allergen in foods.

    Science.gov (United States)

    Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat

    2012-02-29

    Crustaceans are one of the most common allergens causing severe food reaction. These food allergens are a health problem, and they have become very important; there are various regulations that establish that labeling must be present regarding these allergens to warn consumers. In the present work a fast real-time PCR, by a LNA probe, was developed. This allows the detection of crustaceans in all kinds of products, including processed products in which very aggressive treatments of temperature and pressure during the manufacturing process are used. This methodology provides greater sensitivity and specificity and reduces the analysis time of real-time PCR to 40 min. This methodology was further validated by means of simulating products likely to contain this allergen. For this, products present on the market were spiked with crustacean cooking water. The assay is a potential tool in issues related to the labeling of products and food security to protect the allergic consumer.

  5. PCR em tempo real para diagnóstico da leucose enzoótica bovina Enzootic bovine leukosis real time PCR

    Directory of Open Access Journals (Sweden)

    Natanael Lamas Dias

    2012-08-01

    Full Text Available O objetivo deste trabalho foi realizar a validação de uma reação em cadeia da polimerase em tempo real com o sistema Plexor® (qPCR para o diagnóstico da Leucose Enzoótica Bovina (LEB, por meio da comparação com testes de diagnóstico recomendados pela Organização Mundial de Saúde Animal (OIE. A qPCR foi comparada com duas outras técnicas: a PCR nested (nPCR e a imunodifusão em gel de ágar (IDGA. Das 82 amostras analisadas pela qPCR e nPCR, 79 apresentaram resultados concordantes, sendo a concordância, classificada pelo Índice Kappa, como alta. Entre as PCRs e a IDGA, o número de resultados concordantes foi de 71 e 69, respectivamente, para qPCR e nPCR, sendo a concordância classificada como considerável. A qPCR apresentou altos valores de sensibilidade e especificidade. Os valores preditivos da qPCR observados demonstraram a alta capacidade de classificação dos casos positivos e negativos. A qPCR não foi capaz de detectar três amostras positivas e tem custo ligeiramente superior que a nPCR. Entretanto, a qPCR é uma técnica mais rápida, menos susceptível a contaminações, tem alta sensibilidade, não utiliza e não gera resíduos carcinogênicos. Concluímos que a qPCR pode substituir a nPCR recomendada pela OIE no diagnóstico de rotina em áreas em que a LEB é endêmica, como no Brasil.The goal of this research was to validate a Plexor® real time Polymerase Chain Reaction (qPCR for Enzootic Bovine Leukosis (EBL diagnosis by comparison with methods recommend by the World Animal Health Organization (OIE. The qPCR was compared with two other techniques: the nested PCR (nPCR and to the agar gel immunodiffusion (AGID. Of 82 qPCR and nPCR analysed samples, 79 presented concordant results, being the concordance classified by Kappa Index as high. Between the PCRs and AGID, the number of concordant results was 71 and 69, out of 82, to qPCR and nPCR, respectively, being the concordance classified as considerable, in both

  6. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  7. Expansion of the Real-Time SPoRT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    Science.gov (United States)

    Case, Jonathan L; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.

  8. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  9. Real-time PCR detection of Brucella spp. DNA in lesions and viscera of bovine carcasses.

    Science.gov (United States)

    Sola, Marília Cristina; da Veiga Jardim, Eurione A G; de Freitas, Marcius Ribeiro; de Mesquita, Albenones José

    2014-09-01

    This study reports a real-time PCR assay for the detection of Brucella spp. associated with the FTA® Elute method in lesions observed during sanitary inspections in beef slaughter. Of the total 276 samples, 78 (28.3%) tested positive and 198 (71.7%) negative for Brucella spp. The real-time PCR technique associated with the FTA® Elute method proved to be an important tool for the diagnosis, judgment about and disposal of carcasses and viscera of slaughtered animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Comparison of ELISA and RT-PCR for the detection of Prunus necrotic ring spot virus and prune dwarf virus in almond (Prunus dulcis).

    Science.gov (United States)

    Mekuria, Genet; Ramesh, Sunita A; Alberts, Evita; Bertozzi, Terry; Wirthensohn, Michelle; Collins, Graham; Sedgley, Margaret

    2003-12-01

    A technique based on the reverse transcriptase-polymerase chain reaction (RT-PCR) has been developed to detect the presence of Prunus necrotic ringspot virus (PNRSV) and prune dwarf virus (PDV) simultaneously in almond. This paper presents the results of a 3-year study comparing both enzyme-linked immunosorbent assay (ELISA) and RT-PCR for the detection of PNRSV and PDV using 175 almond leaf samples. Multiplex RT-PCR was found to be more sensitive than ELISA, especially when followed by nested PCR for the detection of PDV. The RT-PCR technique has the added advantage that plant material can be tested at any time throughout the growing season.

  11. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Hackett James R

    2007-08-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan® RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX™ assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis and the likelihood of tumor response to standard chemotherapy regimens (prediction. We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. Results RNA was extracted from formalin fixed paraffin embedded (FPE tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan® reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. Conclusion We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of

  12. Comparison of the Diagnostic Value Between Real-Time Reverse Transcription-Polymerase Chain Reaction Assay and Histopathologic Examination in Sentinel Lymph Nodes for Patients With Gastric Carcinoma.

    Science.gov (United States)

    Kwak, Yoonjin; Nam, Soo Kyung; Shin, Eun; Ahn, Sang-Hoon; Lee, Hee Eun; Park, Do Joong; Kim, Woo Ho; Kim, Hyung-Ho; Lee, Hye Seung

    2016-05-01

    Sentinel lymph node (SLN)-based diagnosis in gastric cancers has shown varied sensitivities and false-negative rates in several studies. Application of the reverse transcription-polymerase chain reaction (RT-PCR) in SLN diagnosis has recently been proposed. A total of 155 SLNs from 65 patients with cT1-2, N0 gastric cancer were examined. The histopathologic results were compared with results obtained by real-time RT-PCR for detecting molecular RNA (mRNA) of cytokeratin (CK)19, carcinoembryonic antigen (CEA), and CK20. The sensitivity and specificity of the multiple marker RT-PCR assay standardized against the results of the postoperative histological examination were 0.778 (95% confidence interval [CI], 0.577-0.914) and 0.781 (95% CI, 0.700-0.850), respectively. In comparison, the sensitivity and specificity of intraoperative diagnosis were 0.819 (95% CI, 0.619-0.937) and 1.000 (95% CI, 0.972-1.000), respectively. The positive predictive value of the multiple-marker RT-PCR assay was 0.355 (95% CI, 0.192-0.546) for predicting non-SLN metastasis, which was lower than that of intraoperative diagnosis (0.813, 95% CI, 0.544-0.960). The real-time RT-PCR assay could detect SLN metastasis in gastric cancer. However, the predictive value of the real-time RT-PCR assay was lower than that of precise histopathologic examination and did not outweigh that of our intraoperative SLN diagnosis. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Soil Baiting, Rapid PCR Assay and Quantitative Real Time PCR to Diagnose Late Blight of Potato in Quarantine Programs

    Directory of Open Access Journals (Sweden)

    Touseef Hussain

    2018-05-01

    Full Text Available Phytophthora infestans (mont de Bary is a pathogen of great concern across the globe, and accurate detection is an important component in responding to the outbreaks of potential disease. Although the molecular diagnostic protocol used in regulatory programs has been evaluated but till date methods implying direct comparison has rarely used. In this study, a known area soil samples from potato fields where light blight appear every year (both A1 and A2 mating type was assayed by soil bait method, PCR assay detection and quantification of the inoculums. Suspected disease symptoms appeared on bait tubers were further confirmed by rapid PCR, inoculums were quantified through Real Time PCR, which confirms presence of P. infestans. These diagnostic methods can be highly correlated with one another. Potato tuber baiting increased the sensitivity of the assay compared with direct extraction of DNA from tuber and soil samples. Our study determines diagnostic sensitivity and specificity of the assays to determine the performance of each method. Overall, molecular techniques based on different types of PCR amplification and Real-time PCR can lead to high throughput, faster and more accurate detection method which can be used in quarantine programmes in potato industry and diagnostic laboratory.

  14. Defining suitable reference genes for RT-qPCR analysis on human sertoli cells after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure.

    Science.gov (United States)

    Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo

    2014-11-01

    Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization.

  15. Quantification of organellar DNA and RNA using real-time PCR.

    Science.gov (United States)

    Weihe, Andreas

    2014-01-01

    Quantitative (real-time) polymerase chain reaction (PCR) allows the measurement of relative organellar gene copy numbers as well as transcript abundance of individual mitochondrial or plastidial genes. Requiring only minute amounts of total DNA or RNA, the described method can replace traditional analyses like Southern or Northern hybridization which require large amounts of organellar nucleic acids and usually provide only semiquantitative data. Here we describe prerequisites, reaction conditions, and data analysis principles, which should be applicable for a wide range of plant species and experimental situations where comparative and precise determination of gene copy numbers or transcript abundance is requested. Sequences of amplification primers for qPCR of organellar genes from Arabidopsis are provided.

  16. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  17. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing.

    Science.gov (United States)

    Trama, Jason P; Adelson, Martin E; Mordechai, Eli

    2007-12-01

    Laboratory diagnosis of molluscum contagiosum virus (MCV) is important as lesions can be confused with those caused by Cryptococcus neoformans, herpes simplex virus, human papillomavirus, and varicella-zoster virus. To develop a rapid method for identifying patients infected with MCV via swab sampling. Two dual-labeled probe real-time PCR assays, one homologous to the p43K gene and one to the MC080R gene, were designed. The p43K PCR was designed to be used in conjunction with Pyrosequencing for confirmation of PCR products and discrimination between MCV1 and MCV2. Both PCR assays were optimized with respect to reaction components, thermocycling parameters, and primer and probe concentrations. The specificities of both PCR assays were confirmed by non-amplification of 38 known human pathogens. Sensitivity assays demonstrated detection of as few as 10 copies per reaction. Testing 703 swabs, concordance between the two real-time PCR assays was 99.9%. Under the developed conditions, Pyrosequencing of the p43K PCR product was capable of providing enough nucleotide sequence to definitively differentiate MCV1 and MCV2. These real-time PCR assays can be used for the rapid, sensitive, and specific detection of MCV and, when combined with Pyrosequencing, can further discriminate between MCV1 and MCV2.

  18. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    Science.gov (United States)

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( Pnested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  19. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    Science.gov (United States)

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR

    NARCIS (Netherlands)

    Mieog, J. C.; Van Oppen, M. J. H.; Berkelmans, R.; Stam, W. T.; Olsen, J. L.

    Understanding the flexibility of the endosymbioses between scleractinian corals and single-cell algae of the genus Symbiodinium will provide valuable insights into the future of coral reefs. Here, a real-time polymerase chain reaction (PCR) assay is presented to accurately determine the cell