WorldWideScience

Sample records for stellar objects x-ray

  1. Young Stellar Objects from Soft to Hard X-rays

    Science.gov (United States)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  2. X-ray survey of the Pleiades: dependence of X-ray luminosity on stellar age

    International Nuclear Information System (INIS)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G.S.; Golub, L.; Harnden, F.R.; Rosner, R.

    1984-01-01

    The study of X-ray emission of stellar clusters, allows to decouple the influence of some individual stellar parameters, as initial conditions, composition and age, on the stellar X-ray function. The authors report preliminary results from an Einstein X-ray survey of the Pleiades. (Auth.)

  3. A Theoretical Model of X-Ray Jets from Young Stellar Objects

    Energy Technology Data Exchange (ETDEWEB)

    Takasao, Shinsuke; Suzuki, Takeru K. [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2017-09-20

    There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.

  4. Solar and Stellar X-ray Cycles

    Science.gov (United States)

    Martens, P. C. H.; SADE Team

    2004-05-01

    Stern et al. have shown that Yohkoh-SXT full disk X-ray irradiance shows an 11 year cycle with an max/min amplitude ratio of a factor 30. Similar cyclic X-ray variation in Sun-like stars observed by ROSAT and its predecessors is observed in only a few cases and limited to a factor two or three. We will show, by means of detailed bandpass comparisons, that this discrepancy cannot be ascribed to the differences in energy response between SXT and the stellar soft X-ray detectors. Is the Sun exceptional? After centuries of geocentric and heliocentric worldviews we find this a difficult proposition to entertain. But perhaps the Sun is a member of a small class of late-type stars with large amplitudes in their X-ray cycles. The stellar X-ray observations listed in the HEASARC catalog are too sparse to verify this hypothesis. To resolve these and related questions we have proposed a small low-cost stellar X-ray spectroscopic imager originally called SADE to obtain regular time series from late and early-type stars and accretion disks. This instrument is complimentary to the much more advanced Chandra and XMM-Newton observatories, and allows them to focus on those sources that require their full spatial and spectral resolution. We will describe the basic design and spectroscopic capability of SADE and show it meets the mission requirements.

  5. X-ray sources associated with young stellar objects in the star formation region CMa R1

    Science.gov (United States)

    Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

    2013-07-01

    In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X-ray

  6. X-ray search for dark lens objects

    Science.gov (United States)

    Hattori, M.; Ikebe, Y.; Asaoka, I.; Takeshima, T.; Mihara, T.; Boehringer, H.; Tsuru, T. G.; Tamura, T.

    1996-01-01

    The quasi-stellar object (QSO) MG 2016+112 is searched for and probably identified as an X-ray cluster of galaxies by the Advanced Satellite for Cosmology and Astrophysics (ASCA) observations. The MG 2016+112 is a gravitational lensed system with three confirmed lensed images of the QSO at a redshift of 3.27. The X-ray spectrum suggests that the new record of the highest redshift of clusters of galaxies, from which X-ray and iron K-line emission were detected, was reached.

  7. SUZAKU OBSERVATION OF STRONG FLUORESCENT IRON LINE EMISSION FROM THE YOUNG STELLAR OBJECT V1647 ORI DURING ITS NEW X-RAY OUTBURST

    International Nuclear Information System (INIS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Richmond, Michael; Weintraub, David A.

    2010-01-01

    The Suzaku X-ray satellite observed the young stellar object (YSO) V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in 2008 August. During the 87 ks observation with a net exposure of 40 ks, V1647 Ori showed a high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other YSOs. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT ∼ 5 keV). It also shows a fluorescent iron Kα line with a remarkably large equivalent width (EW) of ∼600 eV. Such a large EW suggests that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Kα line, so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  8. Stellar winds in binary X-ray systems

    Science.gov (United States)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  9. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  10. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    International Nuclear Information System (INIS)

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-01-01

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V ∼ 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age ∼ sun . The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II λ4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be ∼> 10 M sun , even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, ∼> 25 M sun , with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  11. Extreme Radio Flares and Associated X-Ray Variability from Young Stellar Objects in the Orion Nebula Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Reid, Mark J.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Rivilla, Victor M. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Rau, Urvashi; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2017-08-01

    Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look for the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.

  12. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  13. Stellar X-ray sources

    International Nuclear Information System (INIS)

    Katz, J.I.; Washington Univ., St. Louis, MO

    1988-01-01

    I Review some of the salient accomplishments of X-rap studies of compact objects. Progress in this field has closely followed the improvement of observational methods, particularly in angular resolution and duration of exposure. Luminous compact X-ray sources are accreting neutron stars or black holes. Accreting neutron stars may have characteristic temporal signatures, but the only way to establish that an X-ray source is a black hole is to measure its mass. A rough phenomenological theory is succesful, but the transport of angular momentum in accretion flows is not onderstood. A number of interesting complications have been observed, including precessing accretion discs, X-ray bursts, and the acceleration of jets in SS433. Many puzzles remain unsolved, including the excitation of disc precession, the nature of the enigmatic A- and gamma-ray source Cyg X-3, the mechanism by which slowly spinning accreting neutron stars lose angular momentum, and the superabundance of X-ray sources in globular clusters. 41 refs.; 5 figs

  14. The Einstein Observatory stellar X-ray database

    International Nuclear Information System (INIS)

    Harnden, F.R. Jr.; Sciortino, S.; Micela, G.; Maggio, A.; Schmitt, J.H.M.M.

    1990-01-01

    We present the motivation for and methodology followed in constructing the Einstein Observatory Stellar X-ray Database from a uniform analysis of nearly 4000 Imaging Proportional Counter fields obtained during the life of this mission. This project has been implemented using the INGRES database system, so that statistical analyses of the properties of detected X-ray sources are relatively easily and flexibly accomplished. Some illustrative examples will furnish a general view both of the kind and amount of the archived information and of the statistical approach used in analyzing the global properties of the data. (author)

  15. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  16. Columbia University OSO-8 instrument for stellar and solar X-ray spectroscopy and polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R S [Columbia Univ., New York (USA). Columbia Astrophysics Lab.

    1976-08-01

    A spectrometer and a polarimeter consisting of large-area panels of mosaic crystals have been constructed and prepared for use in the OSO-8 satellite. The instrumentation is planned for study of stellar and solar X-ray spectra between 1.8-8 keV and stellar X-ray polarization at 2.6 keV. Aspects of the design which enable the instrument to make measurements of the diverse range of stellar and solar phenomena are described. Some of the unique features, such as high sensitivity, high temporal resolution, and spectral range, are discussed. The applicability of the spectrometer and polarimeter to various current problems in X-ray astronomy is considered.

  17. Stellar-mass black holes and ultraluminous x-ray sources.

    Science.gov (United States)

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  18. Colliding Stellar Winds Structure and X-ray Emission

    Science.gov (United States)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  19. Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age

    Science.gov (United States)

    Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.

    1985-01-01

    The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.

  20. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    Science.gov (United States)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  1. X-ray constraints on the number of stellar mass black holes in the inner parsec

    International Nuclear Information System (INIS)

    Deegan, Patrick; Nayakshin, Sergei

    2006-01-01

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above L x ∼ 10 33 erg s -1 at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''

  2. Stellar and solar X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Novick, R [Columbia Univ., New York (USA)

    1975-12-01

    The scientific motivation for X-ray polarimetry is discussed with particular emphasis on the information that might be obtained on the binary X-ray pulsars in addition to a number of other classes of objects including solar flares. Detailed discussions are given for Thomson-scattering and Bragg-crystal polarimeters with numerical estimates for the sensitivity of various existing and proposed instruments.

  3. X-ray constraints on the number of stellar mass black holes in the inner parsec

    Science.gov (United States)

    Deegan, Patrick; Nayakshin, Sergei

    2006-12-01

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above Lx ~ 1033 erg s-1 at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''.

  4. X-ray constraints on the number of stellar mass black holes in the inner parsec

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, Patrick; Nayakshin, Sergei [University of Leicester, University Road, Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above L{sub x} {approx} 10{sup 33} erg s{sup -1} at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''.

  5. X-ray stars observed in LAMOST spectral survey

    Science.gov (United States)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  6. Compact stellar X-ray sources

    NARCIS (Netherlands)

    Lewin, W.H.G.; van der Klis, M.

    2006-01-01

    X-ray astronomy is the prime available window on astrophysical compact objects: black holes, neutron stars and white dwarfs. In the last ten years new observational opportunities have led to an explosion of knowledge in this field. This book provides a comprehensive overview of the astrophysics of

  7. Thermal x-rays and deuterium production in stellar flares

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1977-01-01

    The x-ray spectrum of flares is shown to be necessarily thermal up to greater than or equal to 200 keV because the self magnetic field of any electron stream required for a thick or thin target source is inconsistently large. The resulting flare model can then be related to stellar luminosity, convection and magnetic fields to result in a maximum possible γ-burst (Mullan, 1976) and continuous x-ray flux. One of the most striking isotopic anomalies observed is the extreme enrichment of Helium (3) in some solar flares and the mysterious depletion of deuterium. It is discussed how deuterium may be produced and emitted in the largest flares associated with γ-bursts but in amounts insufficient to support the tentative conclusion of Colemen and Worden

  8. X-rays from stars

    Science.gov (United States)

    Güdel, Manuel

    2004-07-01

    Spectroscopic studies available from Chandra and XMM-Newton play a pivotal part in the understanding of the physical processes in stellar (magnetic and non-magnetic) atmospheres. It is now routinely possible to derive densities and to study the influence of ultraviolet radiation fields, both of which can be used to infer the geometry of the radiating sources. Line profiles provide important information on bulk mass motions and attenuation by neutral matter, e.g. in stellar winds. The increased sensitivity has revealed new types of X-ray sources in systems that were thought to be unlikely places for X-rays: flaring brown dwarfs, including rather old, non-accreting objects, and terminal shocks in jets of young stars are important examples. New clues concerning the role of stellar high-energy processes in the modification of the stellar environment (ionization, spallation, etc.) contribute significantly to our understanding of the "astro-ecology" in forming planetary systems. Technological limitations are evident. The spectral resolution has not reached the level where bulk mass motions in cool stars become easily measurable. Higher resolution would also be important to perform X-ray "Doppler imaging" in order to reconstruct the 3-D distribution of the X-ray sources around a rotating star. Higher sensitivity will be required to perform high-resolution spectroscopy of weak sources such as brown dwarfs or embedded pre-main-sequence sources. A new generation of satellites such as Constellation-X or XEUS should pursue these goals.

  9. The Effect of Broadband Soft X-Rays in SO2-Containing Ices: Implications on the Photochemistry of Ices toward Young Stellar Objects

    Science.gov (United States)

    Pilling, S.; Bergantini, A.

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (˜keV) photoelectrons and low-energy (˜eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was on the order of (2-7) × 10-18 cm2. The ice temperature does not seem to affect the stability of SO2 in the presence of X-rays. Formation cross sections of new species produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

  10. THE EFFECT OF BROADBAND SOFT X-RAYS IN SO2-CONTAINING ICES: IMPLICATIONS ON THE PHOTOCHEMISTRY OF ICES TOWARD YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Pilling, S.; Bergantini, A.

    2015-01-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (∼keV) photoelectrons and low-energy (∼eV) induced secondary electrons) in the ice mixtures containing H 2 O:CO 2 :NH 3 :SO 2 (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO 2 -containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H 2 O 2 , H 3 O + , SO 3 , CO, and OCN − . The dissociation cross section of parental species was on the order of (2–7) × 10 −18 cm 2 . The ice temperature does not seem to affect the stability of SO 2 in the presence of X-rays. Formation cross sections of new species  produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments

  11. X-ray studies of BL Lacertae objects

    International Nuclear Information System (INIS)

    Madejski, G.M.

    1986-01-01

    This thesis presents spectral x-ray data for BL Lac objects observed by the IPC and MPC aboard the Einstein Observatory and interprets that data in a context of their overall radiation spectra using synchrotron and synchrotron self-Compton models. The objects considered are: OJ 287, PKS 0735 + 178, I Zw 186, PKS 0548-322, Mkn 180, BL Lacertae, PKS 2155-304, H 0414-009 and H 0323 + 022. X-ray spectra of BL Lac objects are well described by a power law model with a low energy cutoff due to absorption within the own Galaxy. The best fit values of the energy spectral index α in the IPC (0.2-4.0 keV) band range from 0.73 to 2.35, with a mean of 1.2 and rms spread of 0.51. No single, universal index can fit the spectra of all objects. For all objects except PKS 0735 + 178, the x-ray spectrum is an extrapolation of the infrared/optical UV spectrum; in PKS 0735 + 178, the x-ray spectrum lies significantly below such an extrapolation. The overall electromagnetic distribution in those objects is interpreted as arising due to the synchrotron process in at least two spatial regions, with sizes respectively ∼10 18 cm for the radio component and ∼10 16 cm for the optical component. In objects where the x-ray spectrum lies on the extrapolation of the infrared-optical-ultraviolet spectrum, the x-ray emission is interpreted also to be due to the synchrotron process

  12. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    Science.gov (United States)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  13. Results from X-ray measurements on the Wendelstein W7-AS stellarator

    International Nuclear Information System (INIS)

    Weller, A.; Brakel, R.; Burhenn, R.; Hacker, H.; Lazaros, A.

    1991-01-01

    X-ray imaging measurements have contributed to studies of the plasma equilibrium, plasma fluctuations, impurity radiation and impurity transport effects in the advanced stellarator Wendelstein W7-AS (R = 2 m, a = 17 cm). In addition, time resolved electron temperature profiles are deduced from X-ray intensity ratios according to the two absorber foil method. The plasma is generated and heated by fundamental and 2nd harmonic ECRH (P ≤ 800 kW at 70 GHz). Neutral beam injection heating (P ≤ 1.5 MW) was applied also, assisted by D 2 pellet injection. (orig.)

  14. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    International Nuclear Information System (INIS)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-01-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres

  15. Results from X-ray measurements on the Wendelstein W7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Weller, A; Brakel, R; Burhenn, R; Hacker, H; Lazaros, A [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)

    1990-01-01

    X-ray imaging measurements have contributed to studies of the plasma equilibrium, plasma fluctuations, impurity radiation and impurity transport effects in the advanced stellarator Wendelstein W7-AS (R=2 m, a=17 cm). In addition, time resolved electron temperature profiles are deduced from X-ray intensity ratios according to the two absorber foil method. The plasma is generated and heated by fundamental and 2{sup nd} harmonic ECRH (P{le}800 kW at 70 GHz). Neutral beam injection heating (P{le}1.5 MW) was applied also, assisted by D{sub 2} pellet injection. (author) 8 refs., 7 figs.

  16. Variability of Massive Young Stellar Objects in Cygnus-X

    Science.gov (United States)

    Thomas, Nancy H.; Hora, J. L.; Smith, H. A.

    2013-01-01

    Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  17. X-ray emission due to interaction of SN1987A ejecta with its progenitor's stellar-wind matter

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1990-06-01

    The progenitor of the supernova 1987A, Sk-69 202 probably had lost a considerable amount of mass in its stellar wind in the past evolutionary track through a red supergiant to a blue supergiant. In about 10 years, the expanding ejecta of SN1987A will catch up to collide with the wind matter ejected in the red supergiant phase. Shocks due to the collision will heat up the ejecta and the wind matter to cause an enhancement of thermal X-ray emission lasting for several decades. We predict the X-ray light curve and the spectrum as well as the epoch of the enhancement intending to encourage future X-ray observations, which will give a clue for the study of such peculiar stellar evolution with a blueward transition as Sk-69 202. (author)

  18. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations. This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.

  19. Introductory Overview of Intermediate-luminosity X-ray Objects

    Science.gov (United States)

    Colbert, E. J. M.

    2001-05-01

    Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.

  20. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    Science.gov (United States)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for X-ray

  1. THE EFFECT OF BROADBAND SOFT X-RAYS IN SO{sub 2}-CONTAINING ICES: IMPLICATIONS ON THE PHOTOCHEMISTRY OF ICES TOWARD YOUNG STELLAR OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Pilling, S.; Bergantini, A., E-mail: sergiopilling@pq.cnpq.br [Universidade do Vale do Paraíba (UNIVAP), Laboratório de Astroquímica e Astrobiologia (LASA), São José dos Campos, SP (Brazil)

    2015-10-01

    We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (∼keV) photoelectrons and low-energy (∼eV) induced secondary electrons) in the ice mixtures containing H{sub 2}O:CO{sub 2}:NH{sub 3}:SO{sub 2} (10:1:1:1) at two different temperatures (50 and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO{sub 2}-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high-vacuum portable chamber from the Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In situ analyses were performed by a Fourier transform infrared spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H{sub 2}O{sub 2}, H{sub 3}O{sup +}, SO{sub 3}, CO, and OCN{sup −}. The dissociation cross section of parental species was on the order of (2–7) × 10{sup −18} cm{sup 2}. The ice temperature does not seem to affect the stability of SO{sub 2} in the presence of X-rays. Formation cross sections of new species  produced were also determined. Molecular half-lives at ices toward YSOs due to the presence of incoming soft X-rays were estimated. The low values obtained employing two different models of the radiation field of YSOs (TW Hydra and typical T-Tauri star) reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.

  2. X-ray time and spectral variability as probes of ultraluminous x-ray sources

    Science.gov (United States)

    Pasham, Dheeraj Ranga Reddy

    A long-standing debate in the field of ultraluminous X-ray sources (ULXs: luminosities > 3x1039 ergs s-1) is whether these objects are powered by stellar-mass black holes (mass range of 3-25 solar masses) undergoing hyper-accretion/emission or if they host the long-sought after class of intermediate-mass black holes (mass range of a few 100-1000 solar masses) accreting material at sub-Eddington rates. We present X-ray time and energy spectral variability studies of ULXs in order to understand their physical environments and accurately weigh their compact objects. A sample of ULXs exhibit quasi-periodic oscillations (QPOs) with centroid frequencies in the range of 10-200 mHz. The nature of the power density spectra (PDS) of these sources is qualitatively similar to stellar-mass black holes when they exhibit the so-called type-C low-frequency QPOs (frequency range of 0.2-15 Hz). However, the crucial difference is that the characteristic frequencies within the PDS of ULXs, viz., the break frequencies and the centroid frequencies of the QPOs, are scaled down by a factor of approximately 10-100 compared to stellar-mass black holes. It has thus been argued that the ULX mHz QPOs are the type-C low-frequency QPO analogs of stellar-mass black holes and that the observed difference in the frequencies (a fewx0.01 Hz compared with a few Hz) is due to the presence of intermediate-mass black holes ( MULX = (QPOstellar-mass black hole }/QPOULX)xM stellar-mass black hole, where M and QPO are the mass and the QPO frequency, respectively) within these ULXs. We analyzed all the archival XMM-Newton X-ray data of ULXs NGC 5408 X-1 and M82 X-1 in order to test the hypothesis that the ULX mHz QPOs are the type-C analogs by searching for a correlation between the mHz QPO frequency and the energy spectral power-law index as type-C QPOs show such a dependence. From our multi-epoch timing and spectral analysis of ULXs NGC 5408 X-1 and M82 X-1, we found that the mHz QPOs of these sources vary

  3. Swift X-ray monitoring of stellar coronal variability

    Science.gov (United States)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  4. The nature of 50 Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    Science.gov (United States)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-Álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-06-01

    We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with the Burst Alert Telescope (BAT) instrument onboard the Swift satellite and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star. Based on observations obtained from the following observatories: Cerro Tololo Interamerican Observatory (Chile); Astronomical Observatory of Bologna in Loiano (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Radcliffe telescope of the South African Astronomical Observatory (Sutherland, South Africa); Sloan Digital Sky Survey; Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain) and New Technology Telescope (NTT) of La Silla Observatory, Chile.

  5. The ultraviolet to X-ray continua of BL Lac objects

    International Nuclear Information System (INIS)

    George, I.M.; Warwick, R.S.; McHardy, I.M.

    1988-01-01

    The results from EXOSAT observations of three X-ray bright BL Lacertae objects, Mrk 501, 1218 + 304 and Mrk 180 are presented. All three sources have soft power-law X-ray spectra with low-energy cut-offs consistent with absorption in the line-of-sight gas column density through our own galaxy. The three objects also exhibit significant spectral variability in the X-ray band on time-scales ranging from a few days to a year. In each case, X-ray flux and spectral index appear to be correlated, in the sense that the X-ray spectrum hardens as the source brightens. The intrinsic ultraviolet to X-ray spectrum of these and several other X-ray bright BL Lac objects can be modelled as a power-law continuum of energy index ∼1.0 below about 0.1 keV, above which the spectral slope steepens. (author)

  6. Identifying Bright X-Ray Beasts

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the

  7. Ultraviolet radiation from stellar flares and the coronal X-ray emission for dwarf-Me stars

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, J.G.; Butler, C.J. (Armagh Observatory, Northern Ireland (UK))

    1985-01-31

    The authors correlate Einstein observations of the X-ray flux of quiescent dMe stars with the time-averaged energy emitted by flares in the Johnson-U band, showing that the X-ray energy emitted by the coronae of these stars is about an order of magnitude greater than the U-band flare energy. From the estimate of the ratio of the total radiation emitted to the U-band flux, it is possible that, if a similar amount of energy were dissipated in the stellar atmosphere, then the observed flare events could heat the coronae of these stars.

  8. Very Luminous X-ray Point Sources in Starburst Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.

    Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.

  9. A Catalog of Candidate Intermediate-Luminosity X-Ray Objects

    Science.gov (United States)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039.0 ergs s-1) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000 km s-1 from the Third Reference Catalog of Bright Galaxies. We have defined the cutoff LX for IXOs so that it is well above the Eddington luminosity of a 1.4 Msolar black hole (1038.3 ergs s-1), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra and XMM-Newton, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than nonelliptical galaxies with IXOs and note that they are not likely to be merely high-mass X-ray binaries with beamed X-ray emission, as may be the case for IXOs in starburst galaxies. Approximately half of the IXOs with multiple observations show X-ray variability, and many (19) of the IXOs have faint optical counterparts in DSS optical B-band images. Follow-up observations of these objects should be helpful in identifying their nature.

  10. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  11. The donor star of the X-ray pulsar X1908+075

    Science.gov (United States)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  12. RX J1759.4+6638: An x-ray selected quasars at a redshift of 4.320

    Science.gov (United States)

    Henry, J. P.; Gioia, I. M.; Boehringer, H.; Bower, R. G.; Briel, U. G.; Hasinger, G. H.; Aragon-Salamanca, A.; Castander, F. J.; Ellis, R. S.; Huchra, J. P.

    1994-01-01

    We report the discovery of an x-ray selected Quasi-Stellar Objects (QSO) at a redshift of 4.320 +/- 0.005. This is the most distant x-ray selected object known, and it is the eighth most distant QSO known. The properties of this QSO are very similar to other QSOs at redshifts greater than 4. The x-ray discovery of this object, and that of high redshift clusters of galaxies, shows that present x-ray surveys are reaching depths competitive with other methods.

  13. Starspot variability as an X-ray radiation proxy

    Science.gov (United States)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-05-01

    Stellar X-ray emission plays an important role in the study of exoplanets as a proxy for stellar winds and as a basis for the prediction of extreme ultraviolet (EUV) flux, unavailable for direct measurements, which in their turn are important factors for the mass-loss of planetary atmospheres. Unfortunately, the detection thresholds limit the number of stars with the directly measured X-ray fluxes. At the same time, the known connection between the sunspots and X-ray sources allows using of the starspot variability as an accessible proxy for the stellar X-ray emission. To realize this approach, we analysed the light curves of 1729 main-sequence stars with rotation periods 0.5 X-ray to bolometric luminosity ratio Rx. As a result, the regressions for stellar X-ray luminosity Lx(P, Teff) and its related EUV analogue LEUV were obtained for the main-sequence stars. It was shown that these regressions allow prediction of average (over the considered stars) values of log (Lx) and log (LEUV) with typical errors of 0.26 and 0.22 dex, respectively. This, however, does not include the activity variations in particular stars related to their individual magnetic activity cycles.

  14. Technology development of the soft X-ray tomography system in Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Schülke, M., E-mail: mathias.schuelke@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Cardella, A.; Hathiramani, D.; Mettchen, S.; Thomsen, H.; Weißflog, S.; Zacharias, D. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: ► Engineering and design of soft X-ray Multi Camera Tomography System. ► Requirements of in-vessel diagnostics in Wendelstein 7-X. ► Development of internal cooling system including FEM-Analysis. ► Development of lateral shield system with testing for microwave stray radiation compatibility. ► Development of multipin feedthrough including welding qualification and leak tests. -- Abstract: The engineering and design of the soft X-ray Multi Camera Tomography System (XMCTS) in Wendelstein 7-X stellarator (W7-X) must fulfill several additional requirements compared to short pulse machines. The XMCTS has to withstand irradiation and electron cyclotron microwave loads in addition to being ultra high vacuum compatible, having low magnetic permeability and using low neutron activation materials (e.g. Co ≤ 2000 ppm). A further difficulty is the limited space inside the plasma vessel, which requires special engineering solutions. After detailed design development, supported by finite element analyses, prototypes have been manufactured and tested. At the end all test results have successfully proven that the components fulfill the requirements and that reliable and stable measurements will be possible with the XMCTS diagnostics during W7-X operation. The paper describes the design and the technological development, in particular on the electric multipin feedthrough (UHV barrier between in vessel detectors and the preamplifiers), the active cooling of the electronic components (reducing dark current/noise increase), the pneumatic shutter (protection of the detectors from sputtering and during baking) and the fiber optics illumination system (calibration of the detectors)

  15. Tracking Non-stellar Objects on Ground and in Space

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    Many space exploration missions require a fast, early and accurate detection of a specific target. E.g. missions to asteroids, x-ray source missions or interplanetary missions.A second generation star tracker may be used for accurate detection of non-stellar objects of interest for such missions......, simply by listing all objects detected in an image not being identified as a star. Of course a lot of deep space objects will be listed too, especially if the detection threshold is set to let faint object pass through. Assuming a detection threshold of, say mv 7 (the Hipparcos catalogue is complete...... objects that do not move. For stationary objects no straightforward procedure exists to reduce the size of the list, but in the case the user has an approximate knowledge of which area to search the amount of data may be reduced substantially. In the case of a mission to an asteroid, the above described...

  16. X-ray bursters and the X-ray sources of the galactic bulge

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Joss, P.C.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In this article we shall discuss the observed X-ray, optical, infrared and radio properties of the galactic bulge sources, with an emphasis on those that produce type I X-ray bursts. There is persuasive evidence that these burst sources and many other galactic bulge sources are neutron stars in low-mass, close-binary stellar systems. (orig./WL)

  17. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Oskinova, L. M.; Hainich, R.; Sun, W.; Chen, Y.; Evans, C. J.; Hénault-Brunet, V.; Chu, Y.-H.; Gruendl, R. A.; Gallagher, J. S. III; Guerrero, M. A.; Güdel, M.; Silich, S.; Nazé, Y.; Reyes-Iturbide, J.

    2013-01-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  18. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  19. X-ray bursters and the X-ray sources of the galactic bulge

    Science.gov (United States)

    Lewin, W. H. G.; Joss, P. C.

    An attempt is made to distill from observational and theoretical information on the galactic bulge X-ray sources in general, and on the X-ray burst sources in particular, those aspects which seem to have the greatest relevance to the understanding of these sources. Galactic bulge sources appear to be collapsed objects of roughly solar mass, in most cases neutron stars, which are accreting matter from low-mass stellar companions. Type I bursts seem to result from thermonuclear flashes in the surface layers of some of these neutron stars, while the type II bursts from the Rapid Burster are almost certainly due to an instability in the accretion flow onto a neutron star. It is concluded that the studies cited offer a new and powerful observational handle on the fundamental properties of neutron stars and of the interacting binary systems in which they are often contained.

  20. X-ray image processing software for computing object size and object location coordinates from acquired optical and x-ray images

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Shyam Sunder; Tiwari, Railesha; Panday, Lokesh; Panday, Jeet; Suri, Nitin

    2004-01-01

    X-ray and Visible image data processing software has been developed in Visual Basic for real time online and offline image information processing for NDT and Medical Applications. Software computes two dimension image size parameters from its sharp boundary lines by raster scanning the image contrast data. Code accepts bit map image data and hunts for multiple tumors of different sizes that may be present in the image definition and then computes size of each tumor and locates its approximate center for registering its location coordinates. Presence of foreign metal and glass balls industrial product such as chocolate and other food items imaged out using x-ray imaging technique are detected by the software and their size and position co-ordinates are computed by the software. Paper discusses ways and means to compute size and coordinated of air bubble like objects present in the x-ray and optical images and their multiple existences in image of interest. (author)

  1. Scientists Find X Rays from Stellar Winds That May Play Significant Role in Galactic Evolution

    Science.gov (United States)

    2001-09-01

    Colorful star-forming regions that have captivated stargazers since the advent of the telescope 400 years ago contain gas thousands of times more energetic than previously recognized, powered by colliding stellar winds. This multimillion-degree gas radiated as X rays is one of the long-sought sources of energy and elements in the Milky Way galaxy's interstellar medium. A team led by Leisa Townsley, a senior research associate in astronomy and astrophysics at Penn State University, uncovered this wind phenomenon in the Rosette Nebula, a stellar nursery. With the Chandra X-ray Observatory, the team found that the most massive stars in the nebula produce winds that slam into each other, create violent shocks, and infuse the region with 6-million-degree gas. The findings are presented in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra." "A ghostly glow of diffuse X-ray emission pervades the Rosette Nebula and perhaps many other similar star-forming regions throughout the Galaxy," said Townsley. "We now have a new view of the engine lighting the beautiful Rosette Nebula and new evidence for how the interstellar medium may be energized." Townsley and her colleagues created a striking X-ray panorama of the Rosette Molecular Cloud from four images with Chandra's Advanced CCD Imaging Spectrometer. This is a swath of the sky nearly 100 light years across sprayed with hundreds of X-ray-emitting young stars. In one corner of the Rosette Molecular Cloud lies the Rosette Nebula, called an "H II region" because the hydrogen gas there has been stripped of its electrons due to the strong ultraviolet radiation from its young stars. This region, about 5,000 light years away in the constellation Monoceros, the Unicorn, has long been a favorite among amateur astronomers. The wispy, colorful display is visible with small telescopes. The Chandra survey reveals, for the first time, 6-million-degree gas at the center of the Rosette Nebula, occupying a

  2. Radio Videos of Orion Protostars (with X-ray Colors!)

    Science.gov (United States)

    Forbrich, Jan; Wolk, Scott; Menten, Karl; Reid, Mark; Osten, Rachel

    2013-07-01

    High-energy processes in Young Stellar Objects (YSOs) can be observed both in X-rays and in the centimetric radio wavelength range. While the past decade has brought a lot of progress in the field of X-ray observations of YSOs, (proto)stellar centimetric radio astronomy has only recently begun to catch up with the advent of the newly expanded Karl G. Jansky Very Large Array (JVLA). The enhanced sensitivity is fundamentally improving our understanding of YSO radio properties by providing unprecedented sensitivity and thus spectral as well as temporal resolution. As a result, it is becoming easier to disentangle coronal-type nonthermal radio emission emanating from the immediate vicinity of YSOs from thermal emission on larger spatial scales, for example ionized material at the base of outflows. Of particular interest is the correlation of the by now relatively well-characterized X-ray flaring variability with the nonthermal radio variability. We present first results of multi-epoch simultaneous observations using Chandra and the JVLA, targeting the Orion Nebula Cluster and highlighting the capabilities of the JVLA for radio continuum observations of YSOs.

  3. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    Science.gov (United States)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  4. Sixa-silicon x-ray array

    International Nuclear Information System (INIS)

    Taylor, I.

    1995-01-01

    Full text: The Spectrum-X-Gamma (SRG) satellite is scheduled for launch in 1995-96. Mission objectives include broad and narrow band imaging spectroscopy over a wide range of energies from the EUV through hard X-rays with an emphasis on studying galactic and extragalactic X-ray sources. Timing and moderate resolution spectroscopy can be performed with the solid state spectrometer SIXA (Silicon X-Ray Array), placed on the focal plane of the SODART telescope with total effective area of 1150 cm 2 at 6 keV (for f = 8 in telescope). The detector consists of 19 circular Si(Li) pixels, each with an active diameter of 9.2 min and thickness of 3 min. A radiative cooler will be used to bring the detector to the proper operating temperature (120-130 K). The energy range 0.5-20 keV is divided into 1024 channels of 20 eV size. Photons can be recorded with 30 μs time resolution and 160-200 eV (1-7 keV) energy resolution. Potential observing programmes (for e.g. time-resolved Iron Kα line spectroscopy) include stellar coronae, cataclysmic variables and X-ray binaries; accretion discs and coronae of neutron stars and black hole candidates; supernova remnants, active galactic nuclei and clusters of galaxies. (author)

  5. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  6. X-ray emission from stars: a sharper and deeper view of our galaxy

    International Nuclear Information System (INIS)

    Vaiana, G.S.

    1990-01-01

    This article focusses on an aspect of the Einstein Observatory x-ray stellar results which will become more completely addressed as we enter the second decade of the Einstein data reduction, as new observations finally become available, and as new satellites are being planned for the future, namely x-ray stars as a subclass of all galactic and extragalactic x-ray sources. The aim is to produce a reference stellar x-ray list. Much has been learnt about the totality of the data set and the stellar data in particular. (author)

  7. Simultaneous radio and x-ray activity in SS 433

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.; Johnston, K.J.; Grindlay, J.E.

    1982-01-01

    Simultaneous observations at radio and X-ray wavelengths of flarelike events in SS 433 were made during 1979 October 5-9 and 19-22. The radio spectra show evidence for low-frequency absorption, which may be due to either synchrotron self-absorption or free-free absorption by a stellar wind. In the latter case, a model is developed indicating that clouds of relativistic gas are generated at least 10 14 cm from the stellar object and are swept outward through the stellar wind by highly collimated beams. A mass loss of approx.10 -5 M/sub sun/ yr -1 and an outflow speed of approx.1000 km s -1 are consistent with the data. The beam velocities (0.26c) are found to be consistent with the previous optical and radio data. The X-ray emission is evidently nonthermal and closely related to the radio flares, particularly during the event on October 5-9. The behavior during the second event on October 19-22 is considerably more complex. The source of the X-ray radiation is either synchrotron or inverse Compton emission. No clear cut decision is permitted by the data, although the latter mechanism seems to be an inevitable consequence of the known presence of both ultrarelativistic electrons and a high optical stellar luminosity. The inverse Compton mechansim is considered in more detail in the context of the model used to explain the radio behavior. The complexity of the October 19-22 data seems to defy' any simple model

  8. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Science.gov (United States)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  9. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)], E-mail: chenglin@bnu.edu.cn; Ding Xunliang; Liu Zhiguo; Pan Qiuli; Chu Xuelian [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)

    2007-08-15

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  10. X-ray Ionization of Heavy Elements Applied to Protoplanetary Disks

    NARCIS (Netherlands)

    Ádámkovics, Máté; Glassgold, Alfred E.; Meijerink, Rowin

    The consequences of the Auger effect on the population of heavy-element ions are analyzed for the case of relatively cool gas irradiated by keV X-rays with intended applications to the accretion disks of young stellar objects. Highly charged ions are rapidly reduced to the doubly charged state in

  11. X-ray microscopy study of track membranes and biological objects

    International Nuclear Information System (INIS)

    Artioukov, I.A.; Levashov, V.E.; Struk, I.I.; Vinogradov, A.V.; Asadchikov, V.E.; Mchedlishvili, B.V.; Postnov, A.A.; Vilensky, A.I.; Zagorsky, D.L.; Gulimova, V.I.; Saveliev, S.V.; Kurohtin, A.N.; Popov, A.V.

    2000-01-01

    The development of two types of X-ray microscopy applying to the organic objects investigation (biological samples and polymer matrix) is reported. Polymer track membranes were investigated using Schwarzchild X-ray microscope with 20 nm wavelength. Pore diameters down to 0.2 μm were clearly imaged. Contact X-ray microscopy at 0.229 nm wavelength was used to obtain clear images of inner structure of native biological samples. High contrast together with the high resolution (about 2-3 μm) allowed us to use this method for quantitative analysis of demineralization process taking place in the skeleton of amphibious after several weeks of weightlessness on biosputnik board

  12. X-ray fluoroscopy spatio-temporal filtering with object detection

    International Nuclear Information System (INIS)

    Aufrichtig, R.; Wilson, D.L.; University Hospitals of Cleveland, OH

    1995-01-01

    One potential way to reduce patient and staff x-ray fluoroscopy dose is to reduce the quantum exposure to the detector and compensate the additional noise with digital filtering. A new filtering method, spatio-temporal filtering with object detection, is described that reduces noise while minimizing motion and spatial blur. As compared to some conventional motion-detection filtering schemes, this object-detection method incorporates additional a priori knowledge of image content; i.e. much of the motion occurs in isolated long thin objects (catheters, guide wires, etc.). The authors create object-likelihood images and use these to control spatial and recursive temporal filtering such as to reduce blurring the objects of interest. They use automatically computed receiver operating characteristic (ROC) curves to optimize the object-likelihood enhancement method and determine that oriented matched filter kernels with 4 orientations are appropriate. The matched filter kernels are simple projected cylinders. The authors demonstrate the method on several representative x-ray fluoroscopy sequences to which noise is added to simulate very low dose acquisitions. With processing, they find that noise variance is significantly reduced with slightly less noise reduction near moving objects. They estimate an effective exposure reduction greater than 80%

  13. X-ray and gamma-ray transmission computed tomographic imaging of archaeological objects

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Susan Maria Sipaun

    2004-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-section images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography or computed-aided tomography. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper presents a brief overview of X-ray or gamma-ray transmission tomography. It is not intended to be a technical treatise but is hoped that it would raise awareness and promote opportunities for further collaboration amongst the nuclear research community, including archaeologists and those in the conservation profession. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. In addition, a few examples of CT images for archaeological objects are presented. The examples were purposely chosen to illustrate clearly and precisely the fundamental concepts of this sophisticated field. (Author)

  14. Einstein X-ray observations of Herbig Ae/Be stars

    Science.gov (United States)

    Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.

  15. Rapid X-ray and optical variability in the X-ray selected BL Lacertae object IE 1402.3 + 0416

    International Nuclear Information System (INIS)

    Giommi, P.; Barr, P.; Gioia, I.M.; Maccacaro, T.; Schild, R.; Harvard-Smithsonian Center for Astrophysics, Cambridge)

    1986-01-01

    Results from X-ray and optical observations of the X-ray-discovered BL Lac object 1E 1402.3 + 0416 are presented, where the X-ray measurements were carried out with the Channel Multiplier Array (CMA) and Medium Energy experiment (ME) detectors on board Exosat. These measurements revealed an intensity decrease by a factor of two on a time scale of a few hours. At maximum flux, the source was significantly greater than at the time of the Einstein Image Proportional Counter (IPC) discovery observation. The 2-6 keV X-ray spectrum was determined by the ME experiment, and IPC, HRI, and CMA data were subsequently compared. The source varied over the years by a factor of five; its brightest state was within the last three years. It is noted that a redshift greater than 0.2 would require that anisotropic emission mechanisms be invoked. 18 references

  16. An X-ray and infrared survey of the Lynds 1228 cloud core

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Rebull, Luisa [Spitzer Science Center/Caltech, M/S 220-6, 1200 East California Blvd., Pasadena, CA 91125 (United States); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: rebull@ipac.caltech.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2014-04-01

    The nearby Lynds 1228 (L1228) dark cloud at a distance of ∼200 pc is known to harbor several young stars including the driving sources of the giant HH 199 and HH 200 Herbig-Haro (HH) outflows. L1228 has previously been studied at optical, infrared, and radio wavelengths but not in X-rays. We present results of a sensitive 37 ks Chandra ACIS-I X-ray observation of the L1228 core region. Chandra detected 60 X-ray sources, most of which are faint (<40 counts) and non-variable. Infrared counterparts were identified for 53 of the 60 X-ray sources using archival data from the Two Micron All-Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer. Object classes were assigned using mid-IR colors for those objects with complete photometry, most of which were found to have colors consistent with extragalactic background sources. Seven young stellar object candidates were identified including the class I protostar HH 200-IRS which was detected as a faint hard X-ray source. No X-ray emission was detected from the luminous protostar HH 199-IRS. We summarize the X-ray and infrared properties of the detected sources and provide IR spectral energy distribution modeling of high-interest objects including the protostars driving the HH outflows.

  17. An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2

    Science.gov (United States)

    Kwan, Stephanie; Lau, Ryan M.; Jencson, Jacob; Kasliwal, Mansi M.; Boyer, Martha L.; Ofek, Eran; Masci, Frank; Laher, Russ

    2018-03-01

    We present an optical and infrared (IR) study of IC 10 X-2, a high-mass X-ray binary in the galaxy IC 10. Previous optical and X-ray studies suggest that X-2 is a Supergiant Fast X-ray Transient: a large-amplitude (factor of ∼100), short-duration (hours to weeks) X-ray outburst on 2010 May 21. We analyze R- and g-band light curves of X-2 from the intermediate Palomar Transient Factory taken between 2013 July 15 and 2017 February 14 that show high-amplitude (≳1 mag), short-duration (≲8 days) flares and dips (≳0.5 mag). Near-IR spectroscopy of X-2 from Palomar/TripleSpec show He I, Paschen-γ, and Paschen-β emission lines with similar shapes and amplitudes as those of luminous blue variables (LBVs) and LBV candidates (LBVc). Mid-IR colors and magnitudes from Spitzer/Infrared Array Camera photometry of X-2 resemble those of known LBV/LBVcs. We suggest that the stellar companion in X-2 is an LBV/LBVc and discuss possible origins of the optical flares. Dips in the optical light curve are indicative of eclipses from optically thick clumps formed in the winds of the stellar counterpart. Given the constraints on the flare duration (0.02–0.8 days) and the time between flares (15.1 ± 7.8 days), we estimate the clump volume filling factor in the stellar winds, f V , to be 0.01interpret the origin of the optical flares as the accretion of clumps formed in the winds of an LBV/LBVc onto the compact object.

  18. THE STELLAR MASS–HALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.5< z< 1 IN THE CDFS WITH CSI

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-01-01

    Since z∼1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ∼8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ∼3%–4% of the total mass of group halos with masses 10 12.8 stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar–halo mass relation is σ∼0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar–halo mass relation since z≲1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies

  19. On the Masses of the quasi-stellar objects

    International Nuclear Information System (INIS)

    Burbidge, G.; Perry, J.

    1976-01-01

    If it is assumed that the gas giving rise to the emission and absorption lines in quasi-stellar objects has been driven out of the central object by radiation pressure, arguments based on the dynamics of radiation-driven gas flows enable us to establish limits on the central masses and the rates of mass loss. For QSOs at cosmological distances it is found that the masses of the central objects must lie in the range 5 x 10 7 M/sub sun/approximately-less-thanMapproximately-less-than2 x 10 9 m/sub sun/ and that the mass loss rates should be M/Mapprox. =10 -7 yr -1 . If the QSOs are local objects, the upper limits to the masses are about 2 x 10 7 M/sub sun/

  20. Characterizing the X-ray & Stellar Wind Environment in the ~1 Gyr Late Heavy Bombardment System Eta Corvi

    Science.gov (United States)

    Lisse, Carey

    2012-09-01

    We propose a 40 ksec ACIS-S observation of the 1 Gyr old system Eta Corvi, the site of an on-going Late Heavy Bombardment (Lisse et al. 2012), in order to determine the spectrum of x-ray radiation in the burgeoning system, its origin in the stellar coronae and circumstellar debris belts, and its impact on the water and organics recently delivered to a rocky planet in the terrestrial habitability zone.

  1. Exploring the X-Ray Universe

    Science.gov (United States)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale. This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  2. Novelty detection of foreign objects in food using multi-modal X-ray imaging

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Emerson, Monica Jane; Clemmensen, Line Katrine Harder

    2016-01-01

    In this paper we demonstrate a method for novelty detection of foreign objects in food products using grating-based multimodal X-ray imaging. With this imaging technique three modalities are available with pixel correspondence, enhancing organic materials such as wood chips, insects and soft...... plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X......-ray absorption imaging, a novelty detection scheme based on well known image- and statistical analysis techniques is proposed. The results show that the presented method gives superior recognition results and highlights the advantage of grating-based imaging....

  3. VizieR Online Data Catalog: Intermediate-luminosity X-ray objects catalog (Colbert+, 2002)

    Science.gov (United States)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039erg/s) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000km/s from the Third Reference Catalog of Bright Galaxies. (2 data files).

  4. Mass transfer in stellar X-ray sources

    International Nuclear Information System (INIS)

    Verbunt, F.

    1982-01-01

    This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)

  5. Gravitational effects of condensate dark matter on compact stellar objects

    International Nuclear Information System (INIS)

    Li, X.Y.; Wang, F.Y.; Cheng, K.S.

    2012-01-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed

  6. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    International Nuclear Information System (INIS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-01-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  7. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?

    Science.gov (United States)

    Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.

    2018-04-01

    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.

  8. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    Directory of Open Access Journals (Sweden)

    Bidzina Kapanadze

    2018-03-01

    Full Text Available The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-energy peaked BL Lacertae sources (HBLs that are bright at X-rays and provide us with an effective tool to study the details related to the physics of the emitting particles. The X-ray emission of these sources is widely accepted to be a synchrotron radiation from the highest-energy electrons, and the complex spectral variability observed in this band reflects the injection and radiative evolution of freshly-accelerated particles. The detection of sub-hour X-ray flux variability is very important since it can be related to the small-scale jet turbulent structures or triggered by unstable processes occurring in the vicinity of a central supermassive black hole. We summarize the fastest X-ray variability instances detected in bright HBLs and discuss their physical implications.

  9. Soft X-ray observations of two BL Lacertae objects - markarian 421 and 501

    International Nuclear Information System (INIS)

    Singh, K.P.; Garmire, G.P.

    1985-01-01

    This paper reports on the soft X-ray (0.15-2.8 keV) observations of two BL Lacertae-type objects, viz., Mrk 421 and Mrk 501. The observations were made with the low-energy detectors on the HEAO 1 satellite during the period 1977 August-1978 December. Steep, soft X-ray power-law spectra with photon index Gamma = 3 are found for both Mrk 421 and Mrk 501. The power-law models are found to give a significantly better fit than the thermal models to the observed pulse-height spectra of Mrk 421 and Mrk 501. Day-to-day soft X-ray (0.25 keV band) intensity variations are observed only in Mrk 501. No significant change is found in Gamma from both the BL Lac objects during the period of observations. However, the sum of all the X-ray observations from 1976 until 1980 can be understood in terms of two spectral components of variable intensity to account for the X-ray emission observed between 0.15 and 20 keV from Mrk 421 and Mrk 501. 24 references

  10. Spectral properties of blazars. I. Objects observed in the far-ultraviolet. II. An X-ray observed sample

    International Nuclear Information System (INIS)

    Ghisellini, G.; Maraschi, L.; Treves, A.; Tanzi, E. G.; Milano Universita, Italy; CNR, Istituto di Fisica Cosmica, Milan, Italy)

    1986-01-01

    All blazars observed with the IUE are studied and shown to form a well-defined subgroup according to their spectral properties. These properties are discussed with respect to theoretical models and are compared with those of quasars. Radio, ultraviolet, and X-ray fluxes are used to construct composite spectral indices, and systematic differences between X-ray selected and otherwise selected objects are discussed. It is confirmed that X-ray selected objects have flatter overall spectra, and are therefore weaker radio emitters relative to their X-ray emission than objects selected otherwise. It is found that X-ray selected blazars have the same average X-ray luminosity as blazars selected otherwise and are underluminous at UV and radio frequencies. This finding is used to argue that the radio-weak, X-ray selected BL Lac objects are, in terms of space density, the dominant members of the blazar population. The results are interpreted in the framework of synchrotron emission models involving relativistic plasma jets. 134 references

  11. Spectral properties of blazars. I. Objects observed in the far-ultraviolet. II. An X-ray observed sample

    Energy Technology Data Exchange (ETDEWEB)

    Ghisellini, G.; Maraschi, L.; Treves, A.; Tanzi, E. G.

    1986-11-01

    All blazars observed with the IUE are studied and shown to form a well-defined subgroup according to their spectral properties. These properties are discussed with respect to theoretical models and are compared with those of quasars. Radio, ultraviolet, and X-ray fluxes are used to construct composite spectral indices, and systematic differences between X-ray selected and otherwise selected objects are discussed. It is confirmed that X-ray selected objects have flatter overall spectra, and are therefore weaker radio emitters relative to their X-ray emission than objects selected otherwise. It is found that X-ray selected blazars have the same average X-ray luminosity as blazars selected otherwise and are underluminous at UV and radio frequencies. This finding is used to argue that the radio-weak, X-ray selected BL Lac objects are, in terms of space density, the dominant members of the blazar population. The results are interpreted in the framework of synchrotron emission models involving relativistic plasma jets. 134 references.

  12. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt...... outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre....

  13. X-ray investigations of the hot ISM

    Science.gov (United States)

    Sanders, W. T.

    1993-01-01

    At energies less than one keV, the intensity of the galactic x-ray background dominates that of the extragalactic background in almost every direction on the sky. Below 1/4 keV, the galactic x-ray background has a galactic stellar component, but the dominant emitter seems to be hot interstellar matter. The origin of the general 3/4 keV x-ray background remains uncertain, but one component must also be the contribution from hot interstellar matter. An overview is given of recent x-ray investigations of the hot interstellar medium using data from the ROSAT X-ray Telescope/Position-Sensitive Proportional Counter (XRT/PSPC) instrument. Several prominent features in the low energy x-ray background that are interpreted as fossil supernova remnants are discussed.

  14. Dual view x-ray inspection system for foreign objects detection in canned food

    Science.gov (United States)

    Lu, Zhiwen; Peng, Ningsong

    2013-04-01

    X-ray inspection technique for foreign objects in food products can determine and mark the presence of contaminants within the product by using image processing and pattern recognition technique on the X-ray transmission images. This paper presents the dual view X-ray inspection technique for foreign objects in food jar via analyzing the weak points of the traditional single view X-ray inspection technique. In addition, a prototype with the new technique is developed in accordance with glass splinters detection within the food jar (glass jar especially) which is a typical tickler. Some algorithms such as: adaptive image segmentation based on contour tracking, nonlinear arctan function transform and etc., are applied to improve image quality and achieve effective inspection results. The false recognition rate is effectively reduced and the detection sensitivity is highly enhanced. Finally the actual test results of this prototype are given.

  15. Method of making tomographic images of X-rayed objects

    International Nuclear Information System (INIS)

    Eickel, R.

    1979-01-01

    A tomographic image of a selected layer of a stationary object is made by moving the source of X-rays along a first path at one side of the selected layer and by moving an ionography imaging chamber which contains a dielectric receptor sheet along a second path at the other side of the selected layer. The movement of the sheet is synchronized with movement of the source of X-rays and includes a translatory movement in a direction counter to the direction of movement of the source, a pivotal movement to maintain the sheet in a plane which is normal to the central beam of the bundle of X-rays, and a sidewise movement to vary the distance between the selected layer and the sheet so that the length of the projection of selected layer upon the sheet remains unchanged. If the sheet is rectangular, the pivotal movement is performed about an axis which is located in the plane of the selected layer and is parallel to the shorter sides of the sheet

  16. X-ray emission from BL Lac objects: Comparison to the synchrotron self-Compton models

    International Nuclear Information System (INIS)

    Schwartz, D.A.; Madejski, G.; Ku, W.H.-M.

    1982-01-01

    As one part of our joint study of the X-ray properties of BL Lac objects, the authors compare the measured X-ray flux densities with those predicted using the synchrotron self-Compton (SSC) formalism (Jones et al. 1974). Naive application of the formalism predicts X-ray fluxes from 10 -3 to 10 5 those observed. They therefore ask what we can learn by simply assuming the SSC mechanism, and looking for ways to reconcile the observed and measured X-ray fluxes. This paper reports investigation of beaming factors due to relativistic ejection of a radiation source which is isotropic in its own rest frame. The authors conclude that large Lorentz factors, GAMMA approximately > 10, do not apply to BL Lac objects as a class. (Auth.)

  17. Non-LTE model atmospheres for supersoft X-ray sources

    Science.gov (United States)

    Rauch, T.; Werner, K.

    2010-02-01

    In the last decade, X-ray observations of hot stellar objects became available with unprecedented resolution and S/N ratio. For an adequate interpretation, fully metal-line blanketed Non-LTE model-atmospheres are necessary. The Tübingen Non-LTE Model Atmosphere Package (TMAP) can calculate such model atmospheres at a high level of sophistication. Although TMAP is not especially designed for the calculation of spectral energy distributions (SEDs) at extreme photospheric parameters, it can be employed for the spectral analysis of burst spectra of novae like V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.

  18. A set of X-ray test objects for quality control in television fluoroscopy

    International Nuclear Information System (INIS)

    Hay, G.A.; Clarke, O.F.; Coleman, N.J.; Cowen, A.R.

    1985-01-01

    The history of performance testing in Leeds of television fluoroscopic systems is briefly outlined. Using the visual, physical and technological requirements as a basis, a set of nine test objects for quality control in television fluoroscopy is described. The factors measured by the test objects are listed in the introduction; the test objects and their function are fully described in the remainder of the paper. The test objects, in conjunction with a television oscilloscope, give both subjective and objective information about the X-ray system. Three of the test objects enable the physicist or engineer to adjust certain aspects of the performance of the X-ray system. The set of nine test objects is available commercially. (author)

  19. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    Energy Technology Data Exchange (ETDEWEB)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States)

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  20. Objective quantification of pulmonary effects in X-ray chest images

    International Nuclear Information System (INIS)

    Oliveira, Marcela de; Giacomini, Guilherme; Alvarez, Matheus; Pereira, Paulo M.C.; Ribeiro, Sergio M.; Pina, Diana R. de

    2016-01-01

    Tuberculosis (TB) is an infectious lung disease of great concern worldwide. Even after treatment, TB leaves pulmonary sequelae that compromise the quality of life of patients. The exam of diagnostic imaging done more frequently is the X-ray chest. The evaluation of pulmonary involvement of these patients is performed visually by the radiologist. The detection and quantification aided by computer systems are of great importance for the more accurate assessment of pulmonary involvement. The objective of this study was to evaluate computationally the reduction of lung damage in X-ray of chest in patients treated with two different medication regimens. (author)

  1. Stellar-Mass Black Holes in the Solar Neighborhood

    CERN Document Server

    Chisholm, J S R; Kolb, Edward W; Chisholm, James R.; Dodelson, Scott; Kolb, Edward W.

    2003-01-01

    We search for nearby, isolated, accreting, ``stellar-mass'' (3 to $100M_\\odot$) black holes. Models suggest a synchrotron spectrum in visible wavelengths and some emission in X-ray wavelengths. Of 3.7 million objects in the Sloan Digital Sky Survey Early Data Release, about 150,000 have colors and properties consistent with such a spectrum, and 47 of these objects are X-ray sources from the ROSAT All Sky Survey. Optical spectra exclude seven of these. We give the positions and colors of these 40 black-hole candidates, as well as a measure of their distances from the stellar loci in color--color space. We discuss uncertainties the expected number of sources, and the contribution of black holes to local dark matter.

  2. Automated X-ray television complex for testing large dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, Eh.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1992-01-01

    An automated X-ray television complex on the base of matrix gas-dischage large-area (2.1x1.0 m) converter for testing large cargoes and containers, as well as for inductrial article diagnostics is described. The complex pulsed operation with the 512 kbytes television digital memory unit provides for testing dynamic objects under minimal doses (20-100 μR)

  3. X-ray topographic method of investigation of phase objects

    International Nuclear Information System (INIS)

    Levonyan, L.V.

    2001-01-01

    The intensity distribution of the monochromatized synchrotron radiation transmitting through the phase object and crystal-analyzer in Laue geometry is considered. It is shown that the local angular deviation of the incident radiation caused by the refraction on structural inhomogeneities of the object under investigation is directly transferred to the X-ray topographic image. In the absence of the phase object the latter consists of parallel straight fringes with a slowly decreasing period. The presence of the phase object changes the shape and period of fringes. The influence of the spatial and temporal coherence on the image is discussed. 5 refs

  4. Stellar magnetic activity

    International Nuclear Information System (INIS)

    Schrijver, C.J.

    1986-01-01

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  5. Vacuum birefringence and the x-ray polarization from black-hole accretion disks

    Science.gov (United States)

    Caiazzo, Ilaria; Heyl, Jeremy

    2018-04-01

    In the next decade, x-ray polarimetry will open a new window on the high-energy Universe, as several missions that include an x-ray polarimeter are currently under development. Observations of the polarization of x rays coming from the accretion disks of stellar-mass and supermassive black holes are among the new polarimeters' major objectives. In this paper, we show that these observations can be affected by the quantum electrodynamic (QED) effect of vacuum birefringence: after an x-ray photon is emitted from the accretion disk, its polarization changes as the photon travels through the accretion disk's magnetosphere, as a result of the vacuum becoming birefringent in the presence of a magnetic field. We show that this effect can be important for black holes in the energy band of the upcoming polarimeters and has to be taken into account in a complete model of the x-ray polarization that we expect to detect from black-hole accretion disks, both for stellar mass and for supermassive black holes. We find that, for a chaotic magnetic field in the disk, QED can significantly decrease the linear polarization fraction of edge-on photons, depending on the spin of the hole and on the strength of the magnetic field. This effect can provide, for the first time, a direct way to probe the magnetic field strength close to the innermost stable orbit of black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  6. X-ray Polarization from Black Holes: GEMS Scientific White Paper

    OpenAIRE

    Schnittman, Jeremy; Angelini, Lorella; Baring, Matthew; Baumgartner, Wayne; Black, Kevin; Dotson, Jessie; Ghosh, Pranab; Harding, Alice; Hill, Joanne; Jahoda, Keith; Kaaret, Phillip; Kallman, Tim; Krawczynski, Henric; Krolik, Julian; Lai, Dong

    2013-01-01

    We present here a summary of the scientific goals behind the Gravity and Extreme Magnetism SMEX (GEMS) X-ray polarimetry mission's black hole (BH) observing program. The primary targets can be divided into two classes: stellar-mass galactic BHs in accreting binaries, and super-massive BHs in the centers of active galactic nuclei (AGN). The stellar-mass BHs can in turn be divided into various X-ray spectral states: thermal-dominant (disk), hard (radio jet), and steep power-law (hot corona). Th...

  7. Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.

    2003-03-01

    We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.

  8. High-energy X-ray observations of extragalactic objects

    International Nuclear Information System (INIS)

    Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Lewin, W.; Kendziorra, E.; Staubert, R.

    1981-01-01

    During a balloon flight from Alice Springs, Australia, six extragalactic sources which are known as potential X-ray sources have been observed in hard X-rays (E > 20 keV). We present X-ray spectra of 3C 273 and Cen-A as well as upper limits on 3C 120, MKN 509, NGC 5506, and MR 2251-178. (orig.)

  9. The X-ray properties of normal galaxies

    Science.gov (United States)

    Fabbiano, G.

    1986-01-01

    X-ray observations with the Einstein satellite have shown that normal galaxies of all morphological types are spatially extended sources of X-ray emission with luminosities in the range of L(x) of about 10 to the 39th to 10 to the 41st erg/s. Although this is only a small fraction of the total energy output of a normal galaxy, X-ray observations are uniquely suited to study phenomena that are otherwise elusive. In X-rays one can study directly the end products of stellar evolution (SNRs and compact remnants). X-ray observations have led to the discovery of gaseous outflows linked to starburst nuclear activity in spiral galaxies and to the detection of a hot interstellar medium in early-type galaxies. Through X-ray observations it is possible to set constraints on structural galaxy parameters, such as the mass of elliptical galaxies, and perhaps get new insight on the origin of cosmic rays and the properties of the magnetic fields of spiral galaxies.

  10. Energy Feedback from X-ray Binaries in the Early Universe

    Science.gov (United States)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  11. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  12. Disentangling the gamma-ray emission towards Cygnus X: Sh2-104

    Science.gov (United States)

    Gotthelf, Eric

    2015-09-01

    We have just discovered distinct X-ray emission coincident with VER J2018+363, a TeV source recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. NuSTAR reveals a hard point source and a diffuse nebula adjacent to and possibly part of Sh2-104, a compact HII region containing several young massive stellar clusters. There is reasonable evidence that these X-rays probe the origin of the gamma-ray flux, however, unrelated extragalactic sources need to be excluded. We propose a short Chandra observation to localize the X-ray emission to identify a putative pulsar or stellar counterpart(s). This is an important step to fully understand the energetics of the MGRO J2019+37 complex and the production of gamma-rays in star formation regions, in general.

  13. A CENSUS OF THE SUPERSOFT X-RAY SOURCES IN M31

    International Nuclear Information System (INIS)

    Orio, Marina; Nelson, Thomas; Bianchini, Antonio; Di Mille, Francesco; Harbeck, Daniel

    2010-01-01

    We examined X-ray, ultraviolet, and optical archival data of 89 supersoft X-ray sources (SSS) in M31. We studied the timescales of X-ray variability and searched UV and optical counterparts. Almost a third of the SSS are known classical or recurrent novae, and at least half of the others exhibit the same temporal behavior as post-outburst novae. Non-stellar objects among SSS seem to be rare: less than 10% of the classified SSS turned out to be supernova remnants, and only one source has been identified with an active galactic nucleus in the background. Not more than 20% of the SSS that are not coincident with observed novae are persistent or recurrent X-ray sources. A few of these long-lasting sources show characteristics in common with other SSS identified as white dwarf (WD) close binaries in the Magellanic Clouds and in the Galaxy, including variability on timescales of minutes, possibly indicating the spin period of a WD. Such objects are likely to be low-mass X-ray binaries with a massive WD. A third of the non-nova SSS are in regions of recent star formation, often at the position of an O or B star, and we suggest that they may be high-mass X-ray binaries. If these sources host a massive hydrogen-burning WD, as it seems likely, they may become Type Ia supernovae (SNe Ia), constituting the star formation dependent component of the SNe Ia rate.

  14. Mass accretion rate fluctuations in black hole X-ray binaries

    NARCIS (Netherlands)

    Rapisarda, S.

    2017-01-01

    This thesis is about the first systematic and quantitative application of propagating mass accretion rate fluctuations models to black hole X-ray binaries. Black hole X-ray binaries are systems consisting of a solar mass star orbiting around a stellar mass black hole. Eventually, the black hole

  15. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R. [Institute for Physics and Astronomy, University Potsdam, 14476 Potsdam (Germany); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245 (United States); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States); Pollock, A. M. T., E-mail: lida@astro.physik.uni-potsdam.de [European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, Villanueva de la Canada, 28691 Madrid (Spain)

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  16. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  17. High-Frequency X-ray Variability Detection in A Black Hole Transient with USA.

    Energy Technology Data Exchange (ETDEWEB)

    Shabad, Gayane

    2000-10-16

    Studies of high-frequency variability (above {approx}100 Hz) in X-ray binaries provide a unique opportunity to explore the fundamental physics of spacetime and matter, since the orbital timescale on the order of several milliseconds is a timescale of the motion of matter through the region located in close proximity to a compact stellar object. The detection of weak high-frequency signals in X-ray binaries depends on how well we understand the level of Poisson noise due to the photon counting statistics, i.e. how well we can understand and model the detector deadtime and other instrumental systematic effects. We describe the preflight timing calibration work performed on the Unconventional Stellar Aspect (USA) X-ray detector to study deadtime and timing issues. We developed a Monte Carlo deadtime model and deadtime correction methods for the USA experiment. The instrumental noise power spectrum can be estimated within {approx}0.1% accuracy in the case when no energy-dependent instrumental effect is present. We also developed correction techniques to account for an energy-dependent instrumental effect. The developed methods were successfully tested on USA Cas A and Cygnus X-1 data. This work allowed us to make a detection of a weak signal in a black hole candidate (BHC) transient.

  18. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    Science.gov (United States)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  19. Cosmic-ray-modified stellar winds. III. A numerical iterative approach

    International Nuclear Information System (INIS)

    Ko, C.M.; Jokipii, J.R.; Webb, G.M.

    1988-01-01

    A numerical iterative method is used to determine the modification of a stellar wind flow with a termination shock by the galactic cosmic rays. A two-fluid model consisting of cosmic rays and thermal stellar wind gas is used in which the cosmic rays are coupled to the background flow via scattering with magnetohydrodynamic waves or irregularities. A polytropic model is used to describe the thermal stellar wind gas, and the cosmic-rays are modeled as a hot, low-density gas with negligible mass flux. The positive galactic cosmic-ray pressure gradient serves to brake the outflowing stellar wind gas, and the cosmic rays modify the location of the critical point of the wind, the location of the shock, the wind fluid velocity profile, and the thermal gas entropy constants on both sides of the shock. The transfer of energy to the cosmic rays results in an outward radial flux of cosmic-ray energy. 21 references

  20. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  1. Probing the clumpy winds of giant stars with high mass X-ray binaries

    Science.gov (United States)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  2. Objective for EUV microscopy, EUV lithography, and x-ray imaging

    Science.gov (United States)

    Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip

    2016-05-03

    Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.

  3. X-RAY IRRADIATION OF THE LkCa 15 PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Guedel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria)

    2013-03-01

    LkCa 15 in the Taurus star-forming region has recently gained attention as the first accreting T Tauri star likely to host a young protoplanet. High spatial resolution infrared observations have detected the suspected protoplanet within a dust-depleted inner gap of the LkCa 15 transition disk at a distance of {approx}15 AU from the star. If this object's status as a protoplanet is confirmed, then LkCa 15 will serve as a unique laboratory for constraining physical conditions within a planet-forming disk. Previous models of the LkCa 15 disk have accounted for disk heating by the stellar photosphere but have ignored the potential importance of X-ray ionization and heating. We report here the detection of LkCa 15 as a bright X-ray source with Chandra. The X-ray emission is characterized by a cool, heavily absorbed plasma component at kT {sub cool} Almost-Equal-To 0.3 keV and a harder component at kT {sub hot} Almost-Equal-To 5 keV. We use the observed X-ray properties to provide initial estimates of the X-ray ionization and heating rates within the tenuous inner disk. These estimates and the observed X-ray properties of LkCa 15 can be used as a starting point for developing more realistic disk models of this benchmark system.

  4. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition)

    NARCIS (Netherlands)

    Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J.

    2006-01-01

    We present a new edition of the catalogue of high-mass X-ray binaries in the Galaxy. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 114 high-mass X-ray binaries,

  5. Detection of soft X-rays from α Lyrae and eta Bootis with an imaging X-ray telescope

    International Nuclear Information System (INIS)

    Topka, K.; Fabricant, D.; Harnden, F.R. Jr.; Gorenstein, P.; Rosner, R.

    1979-01-01

    Two nearby stars have been detected in the soft X-ray band with an imaging X-ray telescope flown aboard two sounding rockets. The exposure times were 4.8 and 4.5 s for the images of the AO V star α Lyrae (Vega) and the GO IV star eta Bootis, respectively. Laboratory measurements rule out the possibility that the observed signals were due to UV contamination. These X-ray observations imply luminosities of L/sub X/(0.2--0.8 keV) approx. =3 x 10 28 ergs s -1 for Vega and L/sub X/(0.15--1.5 keV) approx. =1 x 10 29 ergs s -1 for eta Boo. A coronal interpretation of the X-rays from Vega is in serious conflict with simple convective models for early-type main-sequence stars. Magnetic field activity may be responsible for heating the corona, as has been suggested for the Sun. In the case of eta Boo, a coronal interpretation is also favored; however, if the unseen companion of eta Boo is degenerate, the X-ray emission may instead originate in a stellar wind accreting upon a white dwarf or neutron star

  6. X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model.

    Science.gov (United States)

    Gasilov, Sergei V; Coan, Paola

    2012-09-01

    Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.

  7. Time variability of X-ray binaries: observations with INTEGRAL. Modeling

    International Nuclear Information System (INIS)

    Cabanac, Clement

    2007-01-01

    The exact origin of the observed X and Gamma ray variability in X-ray binaries is still an open debate in high energy astrophysics. Among others, these objects are showing aperiodic and quasi-periodic luminosity variations on timescales as small as the millisecond. This erratic behavior must put constraints on the proposed emission processes occurring in the vicinity of the neutrons star or the stellar mass black-hole held by these objects. We propose here to study their behavior following 3 different ways: first we examine the evolution of a particular X-ray source discovered by INTEGRAL, IGR J19140+0951. Using timing and spectral data given by different instruments, we show that the source type is plausibly consistent with a High Mass X-ray Binary hosting a neutrons star. Subsequently, we propose a new method dedicated to the study of timing data coming from coded mask aperture instruments. Using it on INTEGRAL/ISGRI real data, we detect the presence of periodic and quasi-periodic features in some pulsars and micro-quasars at energies as high as a hundred keV. Finally, we suggest a model designed to describe the low frequency variability of X-ray binaries in their hardest state. This model is based on thermal comptonization of soft photons by a warm corona in which a pressure wave is propagating in cylindrical geometry. By computing both numerical simulations and analytical solution, we show that this model should be suitable to describe some of the typical features observed in X-ray binaries power spectra in their hard state and their evolution such as aperiodic noise and low frequency quasi-periodic oscillations. (author) [fr

  8. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  9. Automated x-ray television complex for inspecting standard-size dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, E.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1993-01-01

    An automated x-ray television complex based on a matrix gas-discharge converter having a large area (2.1 x 1.0 m) for inspecting standard-size freight and containers and for diagnosing industrial articles is presented. The pulsed operating mode of the complex with a 512K digital television storage makes it possible to inspect dynamic objects with a minimum dose load (20--100 μR). 6 refs., 5 figs

  10. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    Science.gov (United States)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  11. Method and apparatus for producing and selectively directing x-rays to different points on an object

    International Nuclear Information System (INIS)

    Haimson, J.

    1981-01-01

    The invention relates to apparatus suitable for use in a computer tomography X-ray scanner. High intensity X-rays are produced and directed towards the object of interest from any of a plurality of preselected coplanar points spaced from the object and spaced radially about a line through the object. There are no moving parts. The electron beam, which produces X-rays as a consequence of impact with the target, is directed selectively to preselected points on the stationary target. Beam-direction compensates for the beam spreading effect of space charge forces acting on the beam, and beam-shaping shapes the beam to a predetermined cross-sectional configuration at its point of incidence with the target. Beam aberrations including sextupole aberrations are corrected. (U.K.)

  12. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  13. Mass loss from OB supergiants in x-ray binary systems

    International Nuclear Information System (INIS)

    Alme, M.L.; Wilson, J.R.

    1975-01-01

    A study of the atmospheres of OB supergiants in x-ray binary systems indicates that when the stellar surface is close enough to the saddle in the gravitational potential to provide a mass transfer rate adequate to power a compact x-ray source, large-amplitude variations in the rate of mass flow occur. 9 references

  14. Spitzer Observations of the X-ray Sources of NGC 4485/90

    Science.gov (United States)

    Vazquez, Gerardo A.; Colbert, E.; Hornschemeier, A.; Malhotra, S.; Roberts, T.; Ward, M.

    2006-06-01

    The mechanism for forming (or igniting) so-called Ultra-Luminous X- ray sources (ULXs) is very poorly understood. In order to investigate the stellar and gaseous environment of ULXs, we have observed the nearby starburst galaxy system NGC 4485/90 with Spitzer's IRAC and IRS instruments. High-quality mid-infrared images and spectra are used to characterize the stellar history of stars near the ULXs, and the ionization state of the surrounding gas. NGC 4485/90 fortuitively hosts six ULXs, and we have analyzed IRAC images and IRS spectra of all six regions. We also observed two "comparison" regions with no X-ray sources. Here we present our preliminary findings on the similarities and differences between the stellar and gaseous components near the ULXs.

  15. Connecting optical and X-ray tracers of galaxy cluster relaxation

    Science.gov (United States)

    Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie

    2018-04-01

    Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.

  16. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  17. IGR J17329-2731: The birth of a symbiotic X-ray binary

    Science.gov (United States)

    Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.

    2018-05-01

    We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

  18. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  19. X-ray heating and the optical light curve of HZ Herculis

    International Nuclear Information System (INIS)

    Perrenod, S.C.; Shields, G.A.

    1975-01-01

    We discuss theoretically the optical light curve of HZ Her, the binary companion of the pulsed X-ray source Her X-1. Using model stellar atmospheres, we construct light curves that are in agreement with UBV photometry of HZ Her except for the sharpness of the minimum. Unlike previous authors, we find that heating of the photosphere of HZ Her by the observed X-ray flux is sufficient to explain the amplitude of the light variations in each color, if the X-ray emission persists at HZ Her throughout the 35-day ON-OFF CYCLE. We rule out a corona surrounding HZ Her as the source of the extra light near minimum, and we also rule out a model wherein the extra light is caused by a stellar wind that electron-scatters optical light emitted by the photosphere of the hot side of the star

  20. EXPLORING THE DIVERSITY OF GROUPS AT 0.1 < z < 0.8 WITH X-RAY AND OPTICALLY SELECTED SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Connelly, J. L. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Wilman, David J.; Finoguenov, Alexis; Saglia, Roberto [Max Planck Institute for Extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., D-85741 Garching (Germany); Hou, Annie; Parker, Laura C.; Henderson, Robert D. E. [Department of Physics and Astronomy, McMaster University, Hamilton ON L8S4M1 (Canada); Mulchaey, John S. [Observatories of the Carnegie Institution, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); McGee, Sean L.; Balogh, Michael L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bower, Richard G. [Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

    2012-09-10

    We present the global group properties of two samples of galaxy groups containing 39 high-quality X-ray-selected systems and 38 optically (spectroscopically) selected systems in coincident spatial regions at 0.12 < z < 0.79. The total mass range of the combined sample is {approx}(10{sup 12}-5) Multiplication-Sign 10{sup 14} M{sub Sun }. Only nine optical systems are associable with X-ray systems. We discuss the confusion inherent in the matching of both galaxies to extended X-ray emission and of X-ray emission to already identified optical systems. Extensive spectroscopy has been obtained and the resultant redshift catalog and group membership are provided here. X-ray, dynamical, and total stellar masses of the groups are also derived and presented. We explore the effects of utilizing different centers and applying three different kinds of radial cut to our systems: a constant cut of 1 Mpc and two r{sub 200} cuts, one based on the velocity dispersion of the system and the other on the X-ray emission. We find that an X-ray-based r{sub 200} results in less scatter in scaling relations and less dynamical complexity as evidenced by results of the Anderson-Darling and Dressler-Schectman tests, indicating that this radius tends to isolate the virialized part of the system. The constant and velocity dispersion based cuts can overestimate membership and can work to inflate velocity dispersion and dynamical and stellar mass. We find L{sub X} -{sigma} and M{sub stellar}-L{sub X} scaling relations for X-ray and optically selected systems are not dissimilar. The mean fraction of mass found in stars, excluding intracluster light, for our systems is {approx}0.014 with a logarithmic standard deviation of 0.398 dex. We also define and investigate a sample of groups which are X-ray underluminous given the total group stellar mass. For these systems the fraction of stellar mass contributed by the most massive galaxy is typically lower than that found for the total population of

  1. A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources

    Science.gov (United States)

    Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong

    2018-05-01

    Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.

  2. DIM light on Black Hole X-ray Transients

    OpenAIRE

    Dubus, Guillaume

    2005-01-01

    The current model for the outburst of stellar-mass black holes X-ray binaries is the disk instability model (DIM). An overview of this model and a discussion of its theoretical and observational challenges are given.

  3. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  4. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  5. Non-destructive investigations of Swiss museums objects with neutron and x-ray imaging methods

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Deschler, E.; Pernet, L.; Vontobel, P.

    2004-01-01

    Many objects of archaeological relevance found in Switzerland are from the Celtic and Roman era. Because of their uniqueness in most cases it is demanded to perform any investigation with such samples non-destructively. Depending on the structure and size of the objects a transmission experiment performed either with X-ray or neutron can alight inner structures, composition, defects or the principles of the manufacturing procedures. Furthermore, the treatment by conservators and restaurateurs becomes visible in many cases. This report describes some examples of such investigations. In the case of neutron investigations, beside the transmission imaging as a radiograph the three-dimensional structure was observed with a tomography technique. For X-ray radiography, the images were obtained in the same digital format because the similar experimental method (imaging plates) was applied. It becomes evident in the described examples that the combination and complementary use of both methods (neutrons and X-ray) brings insights in different aspects of the samples properties and treatment. This approach to study museums objects stored and exhibit in Switzerland can be extrapolated to other countries where these techniques are also simultaneously available in order to investigate other objects of relevance. The European network COST-G8 entitled 'Non-destructive analysis and testing of museum objects' can help to support initiatives in this direction. (author)

  6. X-ray holography: X-ray interactions and their effects

    International Nuclear Information System (INIS)

    London, R.A.; Trebes, J.E.; Rosen, M.D.

    1988-01-01

    The authors summarize a theoretical study of the interactions of x-rays with a biological sample during the creation of a hologram. The choice of an optimal wavelength for x-ray holography is discussed, based on a description of scattering by objects within an aqueous environment. The problem of the motion resulting from the absorption of x-rays during a short exposure is described. The possibility of using very short exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculation on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed. 12 refs., 2 figs

  7. QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE

    International Nuclear Information System (INIS)

    Kim, Dae-Won; Protopapas, Pavlos; Alcock, Charles; Trichas, Markos; Byun, Yong-Ik; Khardon, Roni

    2011-01-01

    We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ∼80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million light curves, and found 1620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  8. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  10. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  11. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    Science.gov (United States)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  12. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-01-01

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L X . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f X /f g ) and the equivalent width of the Hβ emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs); we have not

  13. X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics

    Science.gov (United States)

    Frasca, A.; Biazzo, K.; Alcalá, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.

    2017-06-01

    Aims: A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage and membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. Methods: We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and log g), veiling (r), radial (RV), and projected rotational velocity (vsini) from X-shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as Hα, Hβ, Ca II, and Na I lines. Results: We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low log g values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all Class III sources have Hα fluxes that are compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. Young stellar objects with transitional disks display both high and low Hα fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (Lacc) derived from the Balmer continuum excess. This rules out that the relationships between Lacc and line luminosities found in previous works are simply due to calibration effects. We also found that the Ca II-IRT flux ratio, FCaII8542/FCaII8498, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high

  14. Low-energy gamma rays from Cygnus X-1

    International Nuclear Information System (INIS)

    Roques, J.P.; Mandrou, P.; Lebrun, F.; Paul, J.

    1985-08-01

    Cyg X-1 was observed by the CESR balloon borne telescope OPALE, in June 1976. The high-energy spectrum of the source, which was in its ''superlow state'', was seen to extend well beyond 1 MeV. In this paper, the observed low-energy γ-ray component of Cyg X-1 is compared with the predictions of recent models involving accretion onto a stellar black hole, and including a possible contribution from the pair-annihilation 511 keV γ-ray line

  15. LINE FORMATION IN SPECTRA OF X-RAY NOVAE

    OpenAIRE

    Suleimanov, V. F.; Shimansky, V. V.

    2017-01-01

    Results of X-ray Novae (XN) optical spectra computation are presented. The continuum and Balmer line are calculated. The model of XN as a self-irradiated accretion disk is used. Local (for given radius) disk atmospheres as model stellar atmospheres, heated due to external X-ray radiation are treated. Changes of spectra shape and equivalent widths of the Balmer lines depending from the luminosity and some others accretion disk parameters are investigated. The comparison of GRO JO422+32 observe...

  16. Environments of High Luminosity X-Ray Sources in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.

    2003-12-01

    We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts 99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER grant.

  17. Searching for Axions from Celestial Objects with the X-Ray Telescope at CAST

    CERN Document Server

    Guthörl, T

    2009-01-01

    The CAST (CERN Solar Axion Telescope) experiment is designed to detect axions from the sun by making use of the inverse Primakoff effekt i.e. reconversion of axions into X-ray photons under the influence of a strong magnetic field. In order to track the sun the magnet used is mounted to a moveable device. This movability can also be used to track celestial objects of interest such as the galactic centre or Scorpio X-1, which is the brightest X-ray source besides the sun. The data gained with the CCD detector during trackings of these objects are analysed in this work. Since no signal above background can be observed an upper limit on the free parameter flux times axion-photon coupling constant^2 is determined. This upper limit in turn can be used to calculate a maximum energy loss due to axion emission for both the galactic centre and Sco X-1. The results presented in this work imply that e.g. the galactic centre can emit axions with up to 10^42 W without being detected by CAST.

  18. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    Science.gov (United States)

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  19. Development of x-ray laminography under an x-ray microscopic condition

    International Nuclear Information System (INIS)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-01-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  20. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    Science.gov (United States)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  1. A PILOT DEEP SURVEY FOR X-RAY EMISSION FROM fuvAGB STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sanz-Forcada, J.; Sánchez Contreras, C. [Astrobiology Center (CSIC-INTA), ESAC campus, E-28691 Villanueva de la Canada, Madrid (Spain); Stute, M. [Institute for Astronomy and Astrophysics, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen (Germany)

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ∼(0.002–0.2) L{sub ⊙} and the X-ray-emitting plasma temperatures are ∼(35–160) × 10{sup 6} K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  2. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  3. X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey

    Science.gov (United States)

    Terashima, Yuichi; Suganuma, Makoto; Akiyama, Masayuki; Greene, Jenny E.; Kawaguchi, Toshihiro; Iwasawa, Kazushi; Nagao, Tohru; Noda, Hirofumi; Toba, Yoshiki; Ueda, Yoshihiro; Yamashita, Takuji

    2018-01-01

    We construct a sample of X-ray-bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. Fifty-three X-ray sources satisfying i-band magnitude fainter than 23.5 mag and X-ray counts with the EPIC-PN detector larger than 70 are selected from 9.1 deg2, and their spectral energy distributions (SEDs) and X-ray spectra are analyzed. Forty-four objects with an X-ray to i-band flux ratio FX/Fi > 10 are classified as extreme X-ray-to-optical flux sources. Spectral energy distributions of 48 among 53 are represented by templates of type 2 AGNs or star-forming galaxies and show the optical signature of stellar emission from host galaxies in the source rest frame. Infrared/optical SEDs indicate a significant contribution of emission from dust to the infrared fluxes, and that the central AGN is dust obscured. The photometric redshifts determined from the SEDs are in the range of 0.6-2.5. The X-ray spectra are fitted by an absorbed power-law model, and the intrinsic absorption column densities are modest (best-fit log NH = 20.5-23.5 cm-2 in most cases). The absorption-corrected X-ray luminosities are in the range of 6 × 1042-2 × 1045 erg s-1. Twenty objects are classified as type 2 quasars based on X-ray luminsosity and NH. The optical faintness is explained by a combination of redshifts (mostly z > 1.0), strong dust extinction, and in part a large ratio of dust/gas.

  4. X-ray interferometric Fourier holography

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2016-01-01

    The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

  5. Operations of a non-stellar object tracker in space

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif; Betto, Maurizio

    1999-01-01

    The ability to detect and track non-stellar objects by utilizing a star tracker may seem rather straight forward, as any bright object, not recognized as a star by the system is a non stellar object. However, several pitfalls and errors exist, if a reliable and robust detection is required. To te...

  6. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    Science.gov (United States)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  7. Cosmic-ray acceleration at stellar wind terminal shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Forman, M.A.; Axford, W.I.

    1985-01-01

    Steady-state, spherically symmetric, analytic solutions of the cosmic-ray transport equations, applicable to the problem of acceleration of cosmic rays at the terminal shock to a stellar wind, are studied. The spectra, gradients, and flow patterns of particle modulated and accelerated by the stellar wind and shock are investigated by means of monoenergetic-source solutions at finite radius, as well as solutions with monoenergetic and power-law Galactic spectra. The solutions obtained apply in the test particle limit in which the cosmic rays do not modify the background flow. The solutions show a characteristic power-law momentum spectrum for accelerated particles and a more complex spectrum of particles that are decelerated in the stellar wind. The power-law spectral index depends on the compression ratio of the shock and on the modulation parameters characterizing propagation conditions in the upstream and downstream regions of the shock. Solutions of the transport equations for the total density N (integrated over all energies), pressure P/sub c/, and energy flux F/sub c/ of Galactic cosmic rays interacting with a stellar wind and shock are also studied. The density N(r) increases with radius r, and for strong shocks with large enough modulation parameters, there may be a significant enhancement of the pressure of weakly relativistic particles near the shock compared to the cosmic-ray background pressure P/sub infinity/. The emergent energy flux at infinity is of the order of 4π R 2 V 1 P/sub infinity/ (V 1 is wind velocity upstream of the shock, R is shock radius)

  8. The Intermediate-mass Young Stellar Object 08576nr292: Discovery of A Disk-Jet System

    NARCIS (Netherlands)

    Ellerbroek, L.E.; Kaper, L.; Bik, A.; de Koter, A.; Horrobin, M.; Puga, E.; Sana, H.; Waters, L.B.F.M.

    2011-01-01

    We present observations of the embedded massive young stellar object (YSO) candidate 08576nr292, obtained with X-shooter and SINFONI on the ESO Very Large Telescope (VLT). The flux-calibrated, medium-resolution X-shooter spectrum (300–2500 nm) includes over 300 emission lines, but no (photospheric)

  9. Chief objectives of the development of X-ray equipment engineering in Russia

    International Nuclear Information System (INIS)

    Blinov, N.N.; Varshavskij, Yu.V.; Zelikman, M.I.

    1997-01-01

    Based on the world tendencies in the development of X-ray diagnostic instruments the main problems int he development of domestic X-ray diagnostic equipment engineering are analyzed. Variant of basic equipment for modern X-ray room for digital biomedical radiography is proposed. Tendencies int he instrumentation of X-ray diagnosis are the following ones: X-ray computerized tomograph creation, development of telecontrolled X-ray computerized. complexes for biomedical X-ray complexes for digital biomedical radiography, automation of the film development

  10. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    Science.gov (United States)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  11. Matching microlensing events with X-ray sources

    Science.gov (United States)

    Sartore, N.; Treves, A.

    2012-03-01

    Aims: The detection of old neutron stars and stellar mass black holes in isolation is one of the most sought after goals of compact object astrophysics. Microlensing surveys may help in achieving this aim because the lensing mechanism is independent of the emission properties of the lens. Several black hole candidates have indeed been detected by means of microlensing observations have been reported in the literature. The identification of counterparts, especially in the X-rays, would be a strong argument in favor of the compact nature of these lenses. Methods: We perform a cross-correlation between the catalogs of microlensing events produced by the OGLE, MACHO, and MOA teams, and those of X-rays sources from the data acquired by the XMM-Newton and Chandra satellites. On the basis of our previous work, we select only microlensing events with durations longer than one hundred days, which should contain a large fraction of lenses as compact objects. Our matching criterion takes into account the positional coincidence on the sky. Results: We find a single match between a microlensing event, OGLE-2004-BLG-081 (tE ~ 103 days), and the X-ray source 2XMM J180540.5-273427. The angular separation is ~0.5 arcsec, i.e. well within the 90% error box of the X-ray source. The hardness ratios reported in the 2XMM catalog imply that it has a hard spectrum with a peak between 2 keV and 4.5 keV or it has a softer but highly absorbed spectrum. Moreover, the microlensing event is not fully constrained, and other authors propose a possible association of the source star with either a flaring cataclysmic variable or a RS Canum Venaticorum-like star. Conclusions: The very small angular separation (within uncertainties) is a strong indicator that 2XMM J180540.5-273427 is the X-ray counterpart of the OGLE event. However, the uncertainties in the nature of both the lensed system and the lens itself challenge the interpretation of 2XMM J180540.5-273427 as the first confirmed isolated black

  12. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    Science.gov (United States)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  13. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    Science.gov (United States)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  14. Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts

    Science.gov (United States)

    Rao, A. R.; Vahia, M. N.

    1994-01-01

    The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.

  15. Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames.

    Science.gov (United States)

    Ayyer, Kartik; Philipp, Hugh T; Tate, Mark W; Elser, Veit; Gruner, Sol M

    2014-02-10

    Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.

  16. SMSS J130522.47-293113.0: a high-latitude stellar X-ray source with pc-scale outflow relics?

    Science.gov (United States)

    Da Costa, G. S.; Soria, R.; Farrell, S. A.; Bayliss, D.; Bessell, M. S.; Vogt, F. P. A.; Zhou, G.; Points, S. D.; Beers, T. C.; López-Sánchez, Á. R.; Bannister, K. W.; Bell, M.; Hancock, P. J.; Burlon, D.; Gaensler, B. M.; Sadler, E. M.; Tingay, S.; Keller, S. C.; Schmidt, B. P.; Tisserand, P.

    2018-06-01

    We report the discovery of an unusual stellar system SMSS J130522.47-293113.0. The optical spectrum is dominated by a blue continuum together with emission lines of hydrogen, neutral, and ionized helium, and the N III, C III blend at ˜4640-4650 Å. The emission-line profiles vary in strength and position on time-scales as short as 1 d, while optical photometry reveals fluctuations of as much as ˜0.2 mag in g on time-scales as short as 10-15 min. The system is a weak X-ray source (f0.3-10 = (1.2 ± 0.1) × 10-13 ergs cm2 s-1 in the 0.3-10 keV band) but is not detected at radio wavelengths (3σ upper limit of 50 μJy at 5.5 GHz). The most intriguing property of the system, however, is the existence of two `blobs', a few arcsec in size, that are symmetrically located 3{^'.}8 (2.2 pc for our preferred system distance of ˜2 kpc) each side of the central object. The blobs are detected in optical and near-IR broad-band images but do not show any excess emission in H α images. We discuss the interpretation of the system, suggesting that the central object is most likely a nova-like CV, and that the blobs are relics of a pc-scale accretion-powered collimated outflow.

  17. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  18. Clumpy wind accretion in Supergiant X-ray Binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  19. Radiation-driven winds in x-ray binaries

    International Nuclear Information System (INIS)

    Friend, D.B.; Castor, J.I.

    1982-01-01

    We discuss the properties of a radiation-driven stellar wind in an X-ray binary system. The Castor, Abbott, Klein line-driven wind model is used, but the effects of the compact companion (gravity and continuum radiation pressure) and the centrifugal force due to orbital motion are included. These forces destroy the spherical symmetry of the wind and can make the mass loss and accretion strong functions of the size of the primary relative to its critical potential lobe. We in most systems the wind alone could power the X-ray emission. It also appears that, in the evolution of these systems, there would be a continuous transition from wind accretion to critical potential lobe overflow. The model is also used to make a prediction about the nature of a suspected binary system which is not known to be an X-ray emitter

  20. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    OpenAIRE

    Bidzina Kapanadze

    2018-01-01

    The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-e...

  1. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    Biswajit Paul

    2017-09-07

    Sep 7, 2017 ... Various recent studies of reprocessing of X-rays in the accretion disk surface .... accretion rate is considered to be the only variable fac- tor that determines ... stellar wind, and any intervening interstellar mate- rial. Reprocessed ...

  2. Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)

    Science.gov (United States)

    Fuse, Christopher R.; Malespina, Alysa

    2017-01-01

    Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.

  3. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    International Nuclear Information System (INIS)

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.

    2013-01-01

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z ∼ 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z ∼ 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z ∼ 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z ∼> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  5. Ray-tracing analysis of electron-cyclotron-resonance heating in straight stellarators

    International Nuclear Information System (INIS)

    Kato, K.

    1983-05-01

    A ray-tracing computer code is developed and implemented to simulate electron cyclotron resonance heating (ECRH) in stellarators. A straight stellarator model is developed to simulate the confinement geometry. Following a review of ECRH, a cold plasma model is used to define the dispersion relation. To calculate the wave power deposition, a finite temperature damping approximation is used. 3-D ray equations in cylindrical coordinates are derived and put into suitable forms for computation. The three computer codes, MAC, HERA, and GROUT, developed for this research, are described next. ECRH simulation is then carried out for three models including Heliotron E and Wendelstein VII A. Investigated aspects include launching position and mode scan, frequency detuning, helical effects, start-up, and toroidal effects. Results indicate: (1) an elliptical waveguide radiation pattern, with its long axis oriented half-way between the toroidal axis and the saddle point line, is more efficient than a circular one; and (2) mid-plane, high field side launch is favored for both O- and X-waves

  6. The universe in X-rays

    CERN Document Server

    Hasinger, Günther

    2008-01-01

    In the last 45 years, X-ray astronomy has become an integral part of modern astrophysics and cosmology. There is a wide range of astrophysical objects and phenomena, where X-rays provide crucial diagnostics. In particular they are well suited to study hot plasmas and matter under extreme physical conditions in compact objects. This book summarizes the present status of X-ray astronomy in terms of observational results and their astrophysical interpretation. It is written for students, astrophysicists as well a growing community of physicists interested in the field. An introduction including historical material is followed by chapters on X-ray astronomical instrumentation. The next two parts summarize in 17 chapters the present knowledge on various classes of X-ray sources in the galactic and extragalactic realm. While the X-ray astronomical highlights discussed in this book are mainly based on results from ROSAT, ASCA, RXTE, BeppoSAX, Chandra and XMM-Newton, a final chapter provides an outlook on observation...

  7. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  8. Simultaneous X-ray, ultraviolet, and optical observations of the BL Lacertae object PKS 2155-304

    International Nuclear Information System (INIS)

    Treves, A.; Morini, M.; Chiappetti, L.; Fabian, A.; Falomo, R.

    1989-01-01

    A series of observations at optical, UV, and X-ray frequencies of PKS 2155-304, one of the brightest BL Lac objects is reported. Spectral fits given for various epochs show that the medium energy data are well fitted by single power laws plus absorption, with energy index between 1.5 and 2. Marginal evidence for an absorption edge at about 7 keV is found, as is evidence for some spectral depression at about 1 keV. This may be modeled with an edge at 660 + or - 26 eV with optical depth tau = 1.8 + or - 0.2. Energy distributions on several occasions are reconstructed, and the optical, UV, and X-ray intensities are found to be correlated in all cases but one. The variability amplitudes decrease and the time scales increase with decreasing frequency. These results indicate a synchrotron origin for the X-rays and distinct but connected emission regions for the X-ray, UV, and optical bands. 46 refs

  9. X-ray observations of solar flares with the Einstein Observatory

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Fink, H.; Harnden, F.R. Jr.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1987-01-01

    The first Einstein Observatory Imaging Proportional Counter (IPC) observations of solar flares are presented. These flares were detected in scattered X-ray light when the X-ray telescope was pointed at the sunlit earth. The propagation and scattering of solar X-rays in the earth's atmosphere are discussed in order to be able to deduce the solar X-ray flux incident on top of the atmosphere from scattered X-ray intensity measurements. After this correction, the scattered X-ray data are interpreted as full-disk observations of the sun obtained with the same instrumentation used for observations of flares on other stars. Employing the same data analysis and interpretation techniques, extremely good agreement is found between the physical flare parameters deduced from IPC observations and known properties of compact loop flares. This agreement demonstrates that flare observations with the IPC can reveal physical parameters such as temperature and density quite accurately in the solar case and therefore suggests that the interpretations of stellar X-ray flare observations are on a physically sound basis. 26 references

  10. X-RAY EMISSION AND DYNAMICS FROM LARGE DIAMETER SUPERBUBBLES: THE CASE OF THE N70 SUPERBUBBLE

    International Nuclear Information System (INIS)

    Rodriguez-Gonzalez, A.; Velazquez, P. F.; Esquivel, A.; Toledo-Roy, J. C.; Rosado, M.; Reyes-Iturbide, J.

    2011-01-01

    The morphology, dynamics, and thermal X-ray emission of the superbubble N70 are studied by means of three-dimensional hydrodynamic simulations carried out with the YGUAZU-A code. We consider three possible scenarios: the superbubble being the product of a single supernova remnant, of the stellar winds from an OB association, or of the joint action of stellar winds and a supernova (SN) event. Our results show that, in spite of the fact that all scenarios produce bubbles with the observed physical size, only those in which the bubble is driven by stellar winds and an SN event successfully explain the general morphology, dynamics, and X-ray luminosity of N70. Our models predict temperatures in excess of 10 8 K at the interior of the superbubble; however, the density is too low and thermal X-ray emission above 2 keV is too faint to be detected.

  11. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    Science.gov (United States)

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  12. A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kóspál, Ágnes [Konkoly Observatory, Research Center for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Salter, Demerese M. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2016-12-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.

  13. On the expected γ-ray emission from nearby flaring stars

    Science.gov (United States)

    Ohm, S.; Hoischen, C.

    2018-02-01

    Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a γ-ray burst. In this work, we estimate the expected γ-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding π0-decay γ-ray emission could be detectable from stellar superflares with ground-based γ-ray telescopes. On the other hand, the detection of γ-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of γ-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.

  14. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  15. Radio continuum emission from young stellar objects in L1641

    International Nuclear Information System (INIS)

    Morgan, J.A.; Snell, R.L.; Strom, K.M.

    1990-01-01

    The results of a 6 and 20 cm radio continuum survey of young stellar objects in the L1641 region located south of the Orion Nebula are presented. Four are identified as low-luminosity young stellar objects in L1641 and three more as Herbig-Haro or Herbig-Haro-like objects. These objects have bolometric luminosities between 80 and 300 solar, and their 6-20 cm spectral index suggests optically thick, free-free emission. They are characterized by a rising spectrum between 2.2 and 25 microns, have no optical counterparts, and are associated with stellar wind activity. Thus, detectable radio continuum emission may be produced only by the youngest and most luminous objects in L1641. 34 refs

  16. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.

    Science.gov (United States)

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-03-26

    Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging.

  17. Compact stellar object: the formation and structure

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)

  18. X-Pinch And Its Applications In X-ray Radiograph

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Liu Rui; Zhao Tong; Zeng Naigong; Zhao Yongchao; Du Yanqiang

    2009-01-01

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 μm to 5 μm and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, and for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.

  19. On the Spatially Resolved Star Formation History in M51. II. X-Ray Binary Population Evolution

    Science.gov (United States)

    Lehmer, B. D.; Eufrasio, R. T.; Markwardt, L.; Zezas, A.; Basu-Zych, A.; Fragos, T.; Hornschemeier, A. E.; Ptak, A.; Tzanavaris, P.; Yukita, M.

    2017-12-01

    We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star formation event. We first utilize detailed stellar population synthesis modeling of far-UV-to-far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star formation histories (SFHs) on subgalactic (≈400 pc) scales. Next, we use the ≈850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star formation rate (SFR) per stellar mass ({M}\\star ) and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age Our best-fit model indicates that the XRB XLF per unit stellar mass declines in normalization, by ˜3-3.5 dex, and steepens in slope from ≈10 Myr to ≈10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how XRB XLFs evolve with age.

  20. Ultraviolet, X-ray, and infrared observations of HDE 226868 equals Cygnus X-1

    Science.gov (United States)

    Treves, A.; Chiappetti, L.; Tanzi, E. G.; Tarenghi, M.; Gursky, H.; Dupree, A. K.; Hartmann, L. W.; Raymond, J.; Davis, R. J.; Black, J.

    1980-01-01

    During April, May, and July of 1978, HDE 226868, the optical counterpart of Cygnus X-1, was repeatedly observed in the ultraviolet with the IUE satellite. Some X-ray and infrared observations have been made during the same period. The general shape of the spectrum is that expected from a late O supergiant. Strong absorption features are apparent in the ultraviolet, some of which have been identified. The equivalent widths of the most prominent lines appear to be modulated with the orbital phase. This modulation is discussed in terms of the ionization contours calculated by Hatchett and McCray, for a binary X-ray source in the stellar wind of the companion.

  1. LONG-TERM X-RAY VARIABILITY STUDY OF IC342 FROM XMM-NEWTON OBSERVATIONS

    International Nuclear Information System (INIS)

    Mak, Daisy S. Y.; Pun, Chun S. J.; Kong, Albert K. H.

    2011-01-01

    We presented the results of an analysis of four XMM-Newton observations of the starburst galaxy IC342 taken over a four-year span from 2001 to 2005, with an emphasis on investigating the long-term flux and spectral variability of the X-ray point sources. We detected a total of 61 X-ray sources within 35' x 30' of the galaxy down to a luminosity of (1-2) x 10 37 erg s -1 depending on the local background. We found that 39 of the 61 detected sources showed long-term variability, in which 26 of them were classified as X-ray transients. We also found 19 sources exhibiting variations in hardness ratios or undergoing spectral transitions among observations, and were identified as spectral variables. In particular, eight of the identified X-ray transients showed spectral variability in addition to flux variability. The diverse patterns of variability observed are indicative of a population of X-ray binaries. We used X-ray colors, flux and spectral variability, and in some cases the optical or radio counterparts to classify the detected X-ray sources into several stellar populations. We identified a total of 11 foreground stars, 1 supersoft source (SSS), 3 quasisoft sources (QSSs), and 2 supernova remnants (SNRs). The identified SSS/QSSs are located near or on the spiral arms, associated with young stellar populations; the 2 SNRs are very close to the starburst nucleus where current star formation activities are dominated. We also discovered a spectral change in the nuclear source of IC342 for the first time by a series of X-ray spectrum analysis.

  2. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  3. The X-ray Telescope of the CAST Experiment

    CERN Document Server

    Kotthaus, Rainer; Friedrich, P.; Kang, D.; Hartmann, R.; Kuster, M.; Lutz, G.; Strüder, L.

    2005-01-01

    The CERN Axion Solar Telescope (CAST) searches for solar axions employing a 9 Tesla superconducting dipole magnet equipped with 3 independent detection systems for X-rays from axion-photon conversions inside the 10 m long magnetic field. Results of the first 6 months of data taking in 2003 imply a 95 % CL upper limit on the axion-photon coupling constant of 1.16x10(-10) GeV(-1) for axion masses < 0.02 eV. The most sensitive detector of CAST is a X-ray telescope consisting of a Wolter I type mirror system and a fully depleted pn-CCD as focal plane detector. Exploiting the full potential of background suppression by focussing X-rays emerging from the magnet bore, the axion sensitivity obtained with telescope data taken in 2004, for the first time in a controlled laboratory experiment, will supersede axion constraints derived from stellar energy loss arguments.

  4. Einstein Observatory survey of X-ray emission from solar-type stars - the late F and G dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, A.; Sciortino, S.; Vaiana, G.S.; Majer, P.; Bookbinder, J.

    1987-04-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age. 62 references.

  5. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    Science.gov (United States)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  6. X-ray microscope with a Wolter mirror

    International Nuclear Information System (INIS)

    Watanabe, Norio; Aoki, Sadao

    2003-01-01

    A Wolter mirror as an objective of an X-ray microscope is described. In comparison with other optical elements, a Wolter mirror has several advantages, such as a large numerical aperture and no chromatic aberration. Recent developments of fabrication process enabled us to make a Wolter mirror objective for X-rays. The fabrication process and the applications to a soft X-ray microscope and an X-ray fluorescence microscope are described. (author)

  7. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    International Nuclear Information System (INIS)

    Hou, Meicun; Li, Zhiyuan

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10 36 erg s −1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10 35 erg s −1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission

  8. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  9. X-ray Transient Sources (Multifrequency Laboratories The Case of the Prototype A0535+26/HDE 245770

    Directory of Open Access Journals (Sweden)

    F. Giovannelli

    2011-01-01

    Full Text Available The goal of this paper is to discuss the behaviour of the X-ray transient source A0535+26 which is considered for historical reasons and for the huge amount of multifrequency data, spread over a period of 35 years, as the prototype of this class of objects. Transient sources are formed by a Be star — the primary — and a neutron star X-ray pulsar — the secondary — and constitute a sub-class of X-ray binary systems. We will emphasize the discovery of low-energy indicators of high-energy processes. They are UBVRI magnitudes and Balmer lines of the optical companion. Particular unusual activity of the primary star — usually at the periastron passage of the neutron star – indicates that an X-ray flare is drawing near. The shape and intensity of X-ray outbursts are dependent on the strength of the activity of the primary. We derive the optical orbital period of the system as 110.856 ± 0.02 days. By using the optical flare of December 5, 1981 (here after 811205-E that triggered the subsequent X-ray outburst of December 13, 1981, we derive the ephemeris of the system as JD Popt−outb = JD0 (2, 444, 944 ± n(110.856 ± 0.02. Thus the passage of the neutron star at the periastron occurs with a periodicity of 110.856 ± 0.02 days and the different kinds of X-ray outbursts of A0535+26 — following the definitions reported in the review by Giovannelli & Sabau-Graziati (1992 — occur just after ∼ 8 days. The delay between optical and X-ray outbursts is just the transit time of the material coming out from the optical companion to reach the neutron star X-ray pulsar. The occurrence of X-ray “normal outbursts”, “anomalous outbursts” or “casual outbursts” is dependent on the activity of the Be star: “quiet state: steady stellar wind”, “excited state: stellar wind plus puffs of material”, and “expulsion of a shell”, respectively. In the latter case, the primary manifests a strong optical activity and the consequent strong

  10. Star Formation In Nearby Clouds (SFiNCs): X-Ray and Infrared Source Catalogs and Membership

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S.; Feigelson, Eric D.; Richert, Alexander J. W.; Ota, Yosuke [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kuhn, Michael A. [Instituto de Fisica y Astronomia, Universidad de Valparaiso, Gran Bretana 1111, Playa Ancha, Valparaiso (Chile); Millennium Institute of Astrophysics, MAS (Chile); Bate, Matthew R. [Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4SB (United Kingdom); Garmire, Gordon P. [Huntingdon Institute for X-Ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2017-04-01

    The Star Formation in Nearby Clouds (SFiNCs) project is aimed at providing a detailed study of the young stellar populations and of star cluster formation in the nearby 22 star-forming regions (SFRs) for comparison with our earlier MYStIX survey of richer, more distant clusters. As a foundation for the SFiNCs science studies, here, homogeneous data analyses of the Chandra X-ray and Spitzer mid-infrared archival SFiNCs data are described, and the resulting catalogs of over 15,300 X-ray and over 1,630,000 mid-infrared point sources are presented. On the basis of their X-ray/infrared properties and spatial distributions, nearly 8500 point sources have been identified as probable young stellar members of the SFiNCs regions. Compared to the existing X-ray/mid-infrared publications, the SFiNCs member list increases the census of YSO members by 6%–200% for individual SFRs and by 40% for the merged sample of all 22 SFiNCs SFRs.

  11. The Imaging X-ray Polarimetry Explorer (IXPE

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    Full Text Available The Imaging X-ray Polarimetry Explorer (IXPE expands observation space by simultaneously adding polarization to the array of X-ray source properties currently measured (energy, time, and location. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially in systems under extreme physical conditions. Keywords: X-ray astronomy, X-ray polarimetry, X-ray imaging

  12. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.; Broos, Patrick S.; Townsley, Leisa K.; Luhman, Kevin L. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Naylor, Tim [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); Povich, Matthew S. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.

  13. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  14. Physical models for the hypothesized F(nu) varies as the inverse of nu infrared to X-ray continuum of quasi-stellar objects

    International Nuclear Information System (INIS)

    Stein, W.A.

    1991-01-01

    Models for producing the large ultraviolet bump, low-energy X-rays and the hypothesized F(nu) varies as the inverse of nu IR to X-ray continua of QSOs are investigated. Thermal Comptonization in a hot corona of an accretion disk appears to offer the best potential. However, under the energy input conditions in QSOs a corona will reach T above 100 million K. It must be optically thin, so as to not Comptonize the accretion disk ultraviolet emission to an unacceptable extent. However, it then cannot Comptonize a low-frequency source to an F(nu) varies as the inverse of nu continuum extending from the infrared to X-rays. An inner corona, possibly optically thick because of n varies as the sq rt of r density increase, is required for the F(nu) varies as the inverse of nu continuum, but it cannot therefore cover the UV-emitting accretion disk. However, then a Wien peak associated with this inner volume may be implied at 10 keV, contrary to observations. 42 refs

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  16. X-ray speckle correlation interferometer

    International Nuclear Information System (INIS)

    Eisenhower, Rachel; Materlik, Gerhard

    2000-01-01

    Speckle Pattern Correlation Interferometry (SPCI) is a well-established technique in the visible-light regime for observing surface disturbances. Although not a direct imaging technique, SPCI gives full-field, high-resolution information about an object's motion. Since x-ray synchrotron radiation beamlines with high coherent flux have allowed the observation of x-ray speckle, x-ray SPCI could provide a means to measure strains and other quasi-static motions in disordered systems. This paper therefore examines the feasibility of an x-ray speckle correlation interferometer

  17. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy

    Science.gov (United States)

    Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.

    2018-04-01

    The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  18. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  19. Warm gas towards young stellar objects in Corona Australis

    DEFF Research Database (Denmark)

    Lindberg, Johan; Jørgensen, Jes Kristian; D. Green, Joel

    2014-01-01

    The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an interm......The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated...... by an intermediate-mass young star. We study the effects on the warm gas and dust in a group of low-mass young stellar objects from the irradiation by the young luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented...... Be star R CrA. Our results show that a nearby luminous star does not increase the molecular excitation temperatures in the warm gas around a young stellar object (YSO). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated...

  20. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cool, Richard J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Zhu Guangtun [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  1. X-ray backscatter imaging with a spiral scanner

    International Nuclear Information System (INIS)

    Bossi, R.H.; Cline, J.L.; Friddell, K.D.

    1989-01-01

    X-ray backscatter imaging allows radiographic inspections to be performed with access to only one side of the object. A collimated beam of radiation striking an object will scatter x-rays by Compton scatter and x-ray fluorescence. A detector located on the source side of the part will measure the backscatter signal. By plotting signal strength as gray scale intensity vs. beam position on the object, an image of the object can be constructed. A novel approach to the motion of the collimated incident beam is a spiral scanner. The spiral scanner approach, described in this paper, can image an area of an object without the synchronized motion of the object or detector, required by other backscatter imaging techniques. X-ray backscatter is particularly useful for flaw detection in light element materials such as composites. The ease of operation and the ability to operate non-contact from one side of an object make x-ray backscatter imaging of increasing interest to industrial inspection problems

  2. X1908+075: An X-Ray Binary with a 4.4 Day Period

    Science.gov (United States)

    Wen, Linqing; Remillard, Ronald A.; Bradt, Hale V.

    2000-04-01

    X1908+075 is an optically unidentified and highly absorbed X-ray source that appeared in early surveys such as Uhuru, OSO 7, Ariel 5, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range 2-12 mcrab at 2-10 keV, and the position was localized to ~0.5d. We use the Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor (ASM) to confirm our expectation that a particular Einstein/IPC detection (1E 1908.4+0730) provides the correct position for X1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~8 mcrab (1.5-12 keV) over a 3 yr interval beginning in 1996 February. Furthermore, we detect a period of 4.400+/-0.001 days with a false-alarm probability less than 10-7. The folded light curve is roughly sinusoidal, with an amplitude that is 26% of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X1908+075 is an X-ray binary with a high-mass companion star.

  3. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    International Nuclear Information System (INIS)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-01-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit

  4. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    Science.gov (United States)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  5. UNDERSTANDING THE UNUSUAL X-RAY EMISSION PROPERTIES OF THE MASSIVE, CLOSE BINARY WR 20a: A HIGH ENERGY WINDOW INTO THE STELLAR WIND INITIATION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-11-10

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  6. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    International Nuclear Information System (INIS)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Günther, H. M.; Chen, C. H.; Grady, C. A.

    2017-01-01

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10 29 erg s −1 , consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L x  > 6 × 10 25 erg s −1 within 2′ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT Apec  = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L x  ∼ 2 × 10 29 erg s −1 argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10 6 years. At 10 28 –10 29 erg s −1 X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  7. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  8. X-rays Provide a New Way to Investigate Exploding Stars

    Science.gov (United States)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is

  9. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  10. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  11. Cosmic ray-modified stellar winds. I. Solution topologies and singularities

    International Nuclear Information System (INIS)

    Ko, C.M.; Webb, G.M.

    1987-01-01

    In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P/sub c/)-space, or a two-dimensional hypersurface of singularities in (r, u, P/sub c/, dP/sub c/dr)-space, where r, u, and P/sub c/ are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points. 64 references

  12. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  13. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    International Nuclear Information System (INIS)

    Kondo, Y.; Worrall, D.M.; Mushotzky, R.F.; Hackney, R.L.; Hackney, K.R.H.; Oke, J.B.; Yee, H.K.C.; Neugebauer, G.; Matthews, K.; Feldman, P.A.; Brown, R.L.

    1981-01-01

    Quasi-simultaneous observations of the BL Lac object Mrk 501 were performed for the first time at X-ray, ultraviolet, visible infrared, and radio frequencies. As the BL Lac objects are known to vary in their flux, such a ''quasi-instantaneous'' spectral energy profile is necessary in order to describe properly the energy generation mechanism. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid-UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical-radio emission cannot be accounted for by a single power law. Several theoretical models have been considered for the emission mechanism. In some cases quantitative comparison with the data is not practical. However, most of the models are, at least, not inconsistent with the observations. A quantitative comparison has been peformed with the synchroton self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object has been underestimated by a factor of about 3 or 4

  14. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  15. NuSTAR Search for Hard X-ray Emission from the Star Formation Regions in Sh2-104

    Science.gov (United States)

    Gotthelf, Eric V.

    2016-04-01

    We present NuSTAR hard X-ray observations of Sh2-104, a compact Hii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh2-104 lies 3XMM J201744.7+365045 and nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1+/-1.0)E22 1/cm^2 and photon index Gamma = 2.1+/-0.1. Based on possible long-term flux variation and lack of detected pulsations (Sh2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37.

  16. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and 99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  17. Sensors for x-ray astronomy satellite

    International Nuclear Information System (INIS)

    Makino, Fumiyoshi; Kondo, Ichiro; Nishioka, Yonero; Kameda, Yoshihiko; Kubo, Masaki.

    1980-01-01

    For the purpose of observing the cosmic X-ray, the cosmic X-ray astronomy satellite (CORSA-b, named ''Hakucho'', Japanese for cygnus,) was launched Feb. 21, 1979 by Institute of Space and Aeronautical Science, University of Tokyo. The primary objectives of the satellite are: to perform panoramic survey of the space for X-ray bursts and to perform the spectral and temporal measurement of X-ray sources. The very soft X-ray sensor for X-ray observation and the horizon sensor for spacecraft attitude sensing were developed by Toshiba Corporation under technical support by University of Tokyo and Nagoya University for ''Hakucho''. The features of these sensors are outlined in this paper. (author)

  18. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832–093

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.

    2017-01-01

    −093, is detected up to ~30 keV and is well-described by an absorbed power-law model with a best-fit photon index . A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245−0921539 is (90% C.L.), much less than previously reported. A search for a pulsar spin...... of XMMU J183245−0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission...

  19. Quasi-simultaneous observations of the BL Lac object MK 501 in X-ray, UV, visible, IR and radio frequencies

    Science.gov (United States)

    Kondo, D. M.; Worrall, D. M.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. H.; Oke, J. B.; Yee, H.; Neugebauer, G.; Matthews, K.; Feldman, P. A.

    1980-01-01

    Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four.

  20. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  1. Intracluster age gradients in numerous young stellar clusters

    Science.gov (United States)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  2. Applications of RIGAKU Dmax Rapid II micro-X-ray diffractometer in the analysis of archaeological metal objects

    Science.gov (United States)

    Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária

    2017-04-01

    During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results

  3. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10 6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ∼10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  4. Velocity-Resolved [Ne III] from X-Ray Irradiated Sz 102 Microjets

    Science.gov (United States)

    Liu, C.-F.; Shang, H.; Walter, F. M.; Herczeg, G. J.

    2014-03-01

    Neon emission lines are good indicators of high-excitation regions close to a young stellar system because of their high ionization potentials and large critical densities. We have discovered [Ne III] .3869 emission from the microjet of low-mass young star Sz 102. Spectroastrometric analysis of the two-dimensional [Ne III] spectral image obtained from the archival high-dispersion (R - 33,000) Very Large Telescope/UVES spectra suggests that the emission consists of two velocity components spatially separated by ~ 0.''3. The stronger redshifted component is centered at ~ +21 km s-1 with a line width of ~ 140 km s-1, and the weaker blueshifted component at ~ -90 km s-1 with a larger line width of ~ 190 km s-1. Both components have large line widths that extend across the systemic velocity, suggesting their origin from diverging streamlines of a wide-angle wind. Optical line ratio diagnostics indicate that Sz 102 drives a pair of hot (T . 2 ◊ 104 K) and ionized (ne . 2 ◊ 104 cm-3) jets. The blueshifted jet has on average ~ 50% higher temperature and electron density. We suggest that the jet is ionized by an embedded hard X-ray source close to the driving region. Freezing-in of the ionization state is consistent with the flow speed and the Ne2+ recombination timescales. We postulate that these X-rays originate from hard coronae or stellar flares; the hard (keV) X-ray photons ionize neon in the inner wind, while the soft X-rays are mostly absorbed by the accretion funnel. These postulates await validation from high-sensitivity X-ray and subarcsecond resolution optical observations.

  5. Development of portable X-ray diffractometer equipped with X-ray fluorescence spectrometer and its application to archaeology

    International Nuclear Information System (INIS)

    Yamashita, Daisuke; Ishizaki, Atsushi; Uda, Masayuki

    2009-01-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to obtain a diffraction pattern and a fluorescence spectrum in air from one and the same small area of a specimen. The reason why the portable XRD with an XRF spectrometer was specially designed for archaeology may be understood from the following facts: (1) some objects exhibited in museums are not allowed to be transferred from the open air to a vacuum, even if their volumes are small; (2) some objects are very difficult to move from their original sites; (3) some parts of exhibits are extremely fragile and cannot be examined in a vacuum; and (4) information on the chemical composition and structure from the same area of an object offers a better understanding of the constitutive materials of the object. Some examples of the use of a portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer in the field are also introduced. Experimental results of Sho-kannon, Snew's mask and Tutankhamun's golden mask are shown here. (author)

  6. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    Science.gov (United States)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  7. Constraining the physics of the r-mode instability in neutron stars with X-ray and ultraviolet observations

    NARCIS (Netherlands)

    Haskell, B.; Degenaar, N.; Ho, W.C.G.

    2012-01-01

    Rapidly rotating neutron stars in low-mass X-ray binaries may be an interesting source of gravitational waves (GWs). In particular, several modes of stellar oscillation may be driven unstable by GW emission, and this can lead to a detectable signal. Here we illustrate how current X-ray and

  8. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  9. X-ray novae - what are they

    International Nuclear Information System (INIS)

    Wennfors, B.

    1976-01-01

    Ten of the two hundred cosmic X-ray sources exhibit characteristics in their emissions analogous to novae, i.e. after a rapid increase in luminosity, lasting about three days, follows a period of about a month with a slow decrease, and thereafter a rapid decrease to invisibility. The spectra of such sources are discussed in general terms and brief descriptions are given of the five which have been identified with optical objects. Three models for the history of X-ray novae, all based on X-ray emission from a compact object in an orbit very near a larger star, are discussed. (JIW)

  10. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [Planetary Exploration Branch, Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Wolk, S. J. [Chandra X-ray Center, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Günther, H. M. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, NE83-569, Cambridge, MA 02139 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Grady, C. A., E-mail: carey.lisse@jhuapl.edu, E-mail: damian.christian@csun.edu, E-mail: swolk@cfa.harvard.edu, E-mail: hgunther@mit.edu, E-mail: cchen@stsci.edu, E-mail: carol.a.grady@nasa.gov [Eureka Scientific and Goddard Space Flight Center, Code 667, NASA-GSFC, Greenbelt, MD 20771 (United States)

    2017-02-01

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  11. Intense soft x-rays from RS Ophiuchi during the 1985 outburst

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.; Bode, M.F.; Barr, P.

    1985-01-01

    Intense soft x-ray emission with a characteristic temperature of a few million degrees has been detected from the recurrent nova RS Oph approximately two months after its January 1985 optical outburst. This is the first detection of x-rays from such a system at outburst. The x-radiation is interpreted as emission from circumstellar gas that is shock heated by the passage of the blast wave from the nova explosion. The rapid decline of the x-ray flux between about 60 and 90 days after the outburst probably occurs because the blast wave has reached the edge of the volume filled, between outbursts, by the stellar wind of the red giant component of the binary system. Residual x-ray emission detected from RS Oph 250 days after the outburst is interpreted as coming from the surface of a white dwarf, at a temperature of approx.300,000K, where thermonuclear burning is persisting. 7 refs., 3 figs

  12. X-FEL revolution - X-ray lasers to probe matter

    International Nuclear Information System (INIS)

    Collet, E.; Cammarata, M.; Harmand, M.; Couprie, M.E.

    2015-01-01

    X-ray free electron lasers (X-FEL) are now able to generate X-ray pulses of a few femto-seconds (1 fs = 10"-"1"5 s), which allows the real-time observation of the movements of atoms. The changes in the structure of a material can be seen whatever the material, this is illustrated with the PYP protein (that is the photo-receptor of a bacterium), the changes between an initial state and 100 ps after light excitation show the displacement of the atoms of the protein. The brightness of X-FEL can be so high that it allows the study of nano-metric structures but it enables X-FEL radiation to ionize matter and the crystal sample may be destroyed, this becomes the new limit of X-FEL applied to crystallography. Another application of X-FEL to structure studies is to allow the study of systems that are not crystal systems like macromolecules, proteins or even viruses. Hundreds of patterns of X-ray diffractions of an object are combined to form a 3-dimensional image of the object in the wave vector space and it is then possible but very complex to deduce the real 3-dimensional structure of the object. (A.C.)

  13. Approximation of a foreign object using x-rays, reference photographs and 3D reconstruction techniques.

    Science.gov (United States)

    Briggs, Matt; Shanmugam, Mohan

    2013-12-01

    This case study describes how a 3D animation was created to approximate the depth and angle of a foreign object (metal bar) that had become embedded into a patient's head. A pre-operative CT scan was not available as the patient could not fit though the CT scanner, therefore a post surgical CT scan, x-ray and photographic images were used. A surface render was made of the skull and imported into Blender (a 3D animation application). The metal bar was not available, however images of a similar object that was retrieved from the scene by the ambulance crew were used to recreate a 3D model. The x-ray images were then imported into Blender and used as background images in order to align the skull reconstruction and metal bar at the correct depth/angle. A 3D animation was then created to fully illustrate the angle and depth of the iron bar in the skull.

  14. Star formation history of Canis Major OB1. II. A bimodal X-ray population revealed by XMM-Newton

    Science.gov (United States)

    Santos-Silva, T.; Gregorio-Hetem, J.; Montmerle, T.; Fernandes, B.; Stelzer, B.

    2018-02-01

    Aims: The Canis Major OB1 Association has an intriguing scenario of star formation, especially in the region called Canis Major R1 (CMa R1) traditionally assigned to a reflection nebula, but in reality an ionized region. This work is focussed on the young stellar population associated with CMa R1, for which our previous results from ROSAT, optical, and near-infrared data had revealed two stellar groups with different ages, suggesting a possible mixing of populations originated from distinct star formation episodes. Methods: The X-ray data allow the detected sources to be characterized according to hardness ratios, light curves, and spectra. Estimates of mass and age were obtained from the 2MASS catalogue and used to define a complete subsample of stellar counterparts for statistical purposes. Results: A catalogue of 387 XMM-Newton sources is provided, of which 78% are confirmed as members or probable members of the CMa R1 association. Flares (or similar events) were observed for 13 sources and the spectra of 21 bright sources could be fitted by a thermal plasma model. Mean values of fits parameters were used to estimate X-ray luminosities. We found a minimum value of log(LX [erg/s] ) = 29.43, indicating that our sample of low-mass stars (M⋆ ≤ 0.5 M⊙), which are faint X-ray emitters, is incomplete. Among the 250 objects selected as our complete subsample (defining our "best sample"), 171 are found to the east of the cloud, near Z CMa and dense molecular gas, of which 50% of them are young (10 Myr). The opposite happens to the west, near GU CMa, in areas lacking molecular gas: among 79 objects, 30% are young and 50% are older. These findings confirm that a first episode of distributed star formation occurred in the whole studied region 10 Myr ago and dispersed the molecular gas, while a second, localized episode (<5 Myr) took place in the regions where molecular gas is still present.

  15. THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6

    International Nuclear Information System (INIS)

    Ignace, R.; Gayley, K. G.; Hamann, W.-R.; Oskinova, L. M.; Huenemoerder, D. P.; Pollock, A. M. T.; McFall, M.

    2013-01-01

    We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds

  16. THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6

    Energy Technology Data Exchange (ETDEWEB)

    Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245 (United States); Hamann, W.-R.; Oskinova, L. M. [Institute for Physics and Astronomy, University Potsdam, D-14476 Potsdam (Germany); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Pollock, A. M. T. [European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, Villanueva de la Cañada, E-28691 Madrid (Spain); McFall, M., E-mail: ignace@etsu.edu [Department of Physics, 191 W. Woodruff Avenue, Ohio State University, Columbus, OH 43210 (United States)

    2013-09-20

    We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.

  17. EXCLUSION OF COSMIC RAYS IN PROTOPLANETARY DISKS: STELLAR AND MAGNETIC EFFECTS

    International Nuclear Information System (INIS)

    Cleeves, L. Ilsedore; Adams, Fred C.; Bergin, Edwin A.

    2013-01-01

    Cosmic rays (CRs) are thought to provide an important source of ionization in the outermost and densest regions of protoplanetary disks; however, it is unknown to what degree they are physically present. As is observed in the solar system, stellar winds can inhibit the propagation of CRs within the circumstellar environment and subsequently into the disk. In this work, we explore the hitherto neglected effects of CR modulation by both stellar winds and magnetic field structures and study how these processes act to reduce disk ionization rates. We construct a two-dimensional protoplanetary disk model of a T-Tauri star system, focusing on ionization from stellar and interstellar FUV, stellar X-ray photons, and CRs. We show that stellar winds can power a heliosphere-like analog, i.e., a ''T-Tauriosphere,'' diminishing CR ionization rates by several orders of magnitude at low to moderate CR energies (E CR ≤ 1 GeV). We explore models of both the observed solar wind CR modulation and a highly simplified estimate for ''elevated'' CR modulation as would be expected from a young T-Tauri star. In the former (solar analog) case, we estimate the ionization rate from galactic CRs to be ζ CR ∼ (0.23-1.4) × 10 –18 s –1 . This range of values, which we consider to be the maximum CR ionization rate for the disk, is more than an order of magnitude lower than what is generally assumed in current models for disk chemistry and physics. In the latter elevated case, i.e., for a ''T-Tauriosphere,'' the ionization rate by CRs is ζ CR ∼ –20 s –1 , which is 1000 times smaller than the interstellar value. We discuss the implications of a diminished CR ionization rate on the gas physics by estimating the size of the resulting magnetorotational instability dead zones. Indeed, if winds are as efficient at CR modulation as predicted here, short-lived radionuclides (now extinct) would have provided the major source of ionization (ζ RN ∼ 7.3 × 10 –19 s –1 ) in the planet

  18. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D H ∼ 20 cm -2 . The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR ∼ (1-8) x 10 11 L sun . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M * ) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M * , respectively, we constrain the relation L gal HX = αM * + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) x 10 28 erg s -1 M -1 sun and β = (1.62 ± 0.22) x 10 39 erg s -1 (M sun yr -1 ) -1 . This scaling provides a more physically meaningful estimate of L gal HX , with ∼0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M * ∼>5.9 x 10 -11 yr -1 , a factor of ∼2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M * ∼> 10 -9 yr -1 , appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions

  19. The X-ray Astronomy Recovery Mission

    Science.gov (United States)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  20. PROBING WOLF–RAYET WINDS: CHANDRA/HETG X-RAY SPECTRA OF WR 6

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P.; Schulz, N. S. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Hamann, W.-R.; Oskinova, L.; Shenar, T. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Nichols, J. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 34, Cambridge, MA 02138 (United States); Pollock, A. M. T., E-mail: dph@space.mit.edu, E-mail: ken.gayley@gmail.com, E-mail: wrh@astro.physik.uni-potsdam.de, E-mail: lida@astro.physik.uni-potsdam.de, E-mail: shtomer@astro.physik.uni-potsdam.de, E-mail: ignace@mail.etsu.edu, E-mail: jnichols@cfa.harvard.edu [European Space Agency, ESAC, Apartado 78, E-28691 Villanueva de la Cañada (Spain)

    2015-12-10

    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.

  1. Heavy X-ray obscuration in the most luminous galaxies discovered by WISE

    Science.gov (United States)

    Vito, F.; Brandt, W. N.; Stern, D.; Assef, R. J.; Chen, C.-T. J.; Brightman, M.; Comastri, A.; Eisenhardt, P.; Garmire, G. P.; Hickox, R.; Lansbury, G.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.

    2018-03-01

    Hot dust-obscured galaxies (DOGs) are hyperluminous (L8-1000 μm > 1013 L⊙) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most luminous (Lbol ≳ 1014 L⊙) known hot DOGs at z = 2-4.6. Five of them are covered by long-exposure (10-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116-0505) is a Compton-thick candidate, with column density NH = (1.0-1.5) × 1024 cm-2 derived from X-ray spectral fitting. The remaining 15 hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 are individually detected; therefore, we applied a stacking analysis to investigate their average emission. From hardness ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be log NH (cm-2) > 23.5 and LX ≳ 1044 erg s-1, which are consistent with results for individually detected sources. We also investigated the LX-L6 μm and LX-Lbol relations, finding hints that hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured quasi-stellar objects are needed to derive solid conclusions.

  2. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  3. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  4. The Einstein/CFA stellar survey - Overview of the data and interpretation of results

    Science.gov (United States)

    Vaiana, G. S.

    1981-01-01

    Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.

  5. The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656

    Energy Technology Data Exchange (ETDEWEB)

    Ribó, M.; Paredes, J. M.; Marcote, B.; Moldón, J.; Paredes-Fortuny, X. [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Munar-Adrover, P. [INAF/IAPS-Roma, I-00133 Roma (Italy); Iwasawa, K. [ICREA, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Casares, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Migliari, S. [European Space Astronomy Centre, Apartado/P.O. Box 78, Villanueva de la Canada, E-28691 Madrid (Spain)

    2017-02-01

    MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra /VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identify the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10{sup −15} erg cm{sup −2} s{sup −1} in the 0.5–8 keV energy range and a luminosity of L {sub X} ≃ 3 × 10{sup 30} erg s{sup −1} at a 2.6 kpc distance. For a 5 M{sub ⊙} BH this translates into ≃5 × 10{sup −9} L {sub Edd}. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μ Jy beam{sup −1}. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.

  6. Interests and instrument: a micro-history of object Wh.3469 (X-ray powder diffraction camera, ca. 1940).

    Science.gov (United States)

    Scheffler, Robin Wolfe

    2009-12-01

    This paper presents a micro-history of an object in the collection of the Whipple Museum of the History of Science (accession no. Wh.3469), with an emphasis on how Wh.3469 reflects a hybrid of two different interwar British X-ray crystallographic communities, namely those based in WL Bragg's physics laboratory at the Victoria University of Manchester and the Crystallographic Laboratory at the University of Cambridge. It explores connections between Wh.3469's final design and construction and the different interests each community had in X-ray crystallography.

  7. X-ray backscatter radiography. Intrusive instead of penetrating, X-ray shadow phenomenon

    International Nuclear Information System (INIS)

    Wrobel, Norma; Kolkoori, Sanjeevareddy; Osterloh, Kurt; European Federation for Non-Destructive Testing

    2013-01-01

    Generally, the primary practical advantage of X-ray backscattering radiography is that there is no need to place a detector on the side of the specimen opposite to the source. Such a situation usually is encountered whenever the specimen is not only standing right in front of a wall or even inside a wall but also if the specimen is such big that radiography is not possible because of the layer thickness to be penetrated. The method used here differs fundamentally from the conventional method to interrogate the object with a scanning beam ('pencil beam') and to collect the whole backscattered radiation from the area. The object is fully illuminated by a (uncollimated) cone beam. Here, the image is recorded with a camera of absorbent material (tungsten, lead), which contains a matrix detector as the image receiver. The optical effect is generated by a special twisted slit collimator which operates according to an extended pinhole camera. The independent positioning of source and camera allows a variable irradiation geometry which causes different images as a result. As a consequence, a complex object in front of a backscattering wall appears completely different than standing alone. So X-ray backscatter images have to be interpreted according to their illumination with X-rays and their surroundings. (orig.)

  8. Optical Monitoring of Young Stellar Objects

    Science.gov (United States)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  9. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  10. Classification of X-ray sources in the XMM-Newton serendipitous source catalog: Objects of special interest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Webb, Natalie A.; Barret, Didier, E-mail: dlin@ua.edu [CNRS, IRAP, 9 Avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France)

    2014-01-01

    We analyze 18 sources that showed interesting properties of periodicity, very soft spectra, and/or large long-term variability in X-rays in our project of classification of sources from the 2XMMi-DR3 catalog, but were poorly studied in the literature, in order to investigate their nature. Two hard sources show X-ray periodicities of ∼1.62 hr (2XMM J165334.4–414423) and ∼2.1 hr (2XMM J133135.2–315541) and are probably magnetic cataclysmic variables. One source, 2XMM J123103.2+110648, is an active galactic nucleus (AGN) candidate showing very soft X-ray spectra (kT ∼ 0.1 keV) and exhibiting an intermittent ∼3.8 hr quasi-periodic oscillation. There are six other very soft sources (with kT < 0.2 keV), which might be in other galaxies with luminosities between ∼10{sup 38}-10{sup 42} erg s{sup –1}. They probably represent a diverse group that might include objects such as ultrasoft AGNs and cool thermal disk emission from accreting intermediate-mass black holes. Six highly variable sources with harder spectra are probably in nearby galaxies with luminosities above 10{sup 37} erg s{sup –1} and thus are great candidates for extragalactic X-ray binaries. One of them (2XMMi J004211.2+410429, in M31) is probably a new-born persistent source, having been X-ray bright and hard in 0.3-10 keV for at least four years since it was discovered entering an outburst in 2007. Three highly variable hard sources appear at low galactic latitudes and have maximum luminosities below ∼10{sup 34} erg s{sup –1} if they are in our Galaxy. Thus, they are great candidates for cataclysmic variables or very faint X-ray transients harboring a black hole or neutron star. Our interpretations of these sources can be tested with future long-term X-ray monitoring and multi-wavelength observations.

  11. Comparative study of radiation dose between digital panoramic X-ray unit and general panoramic X-ray unit

    International Nuclear Information System (INIS)

    Li Qingshan; Duan Tao; Wang Xiaoyun; Zhao Li; Dong Jian; Wei Lei

    2010-01-01

    Objective: To compare the actual dose of patients who receive the same medical practice by either digital panoramic X-ray unit and general panoramic X-ray unit and give evidence for better selection of oral X-ray examination method. Methods: Round sheet lithium fluoride (LiF) thermoluminescent dosimeters (TLD) were used. The experiment was divided into natural background contrast group, general panoramic X-ray children group, general panoramic X-ray adults group, digital panoramic X-ray children group and digital panoramic X-ray adults group. The dosimeter of natural background radiation was placed at the office of the doctor, the dosimeters of general panoramic X-ray children group and general panoramic X-ray adults group were irradiated by different conditions according to the clinical application of panoramic X-ray to children and adults, the dosimeters of digital panoramic X-ray children group and digital panoramic X-ray adults group were irradiated by different conditions according to the clinical application of digital panoramic X-ray to children and adults. The thermoluminescent dosimeter was used to count and calculate the exposure doses in various groups. Results: The dose of children exposed in general panoramic X-ray unit was 1.28 times of that in digital panoramic X-ray unit, there was significant difference (t=6.904, P<0.01). The dose of adults exposed in general panoramic X-ray unit was 1.55 times of that in the digital panoramic X-ray unit, there also was significant difference (t=-11.514. P< 0.01). Conclusion: The digital panoramic X-ray unit can reduce the dose of patients, so the digital panoramic X-ray unit should be used as far as possible. (authors)

  12. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  13. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  14. An HST Survey of Intermediate Luminosity X-ray Objects

    Science.gov (United States)

    Roye, E. W.; Colbert, E. J. M.; Heckman, T.; Ptak, R. F.; van der Marel, R. P.

    2003-03-01

    We searched for optical counterparts to 54 Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs) using HST WFPC2 archive data, and have uncovered a high yield of intriguing possible correlations. A total of 124 IXOs were identified from searching all of the Chandra ACIS archival galaxy data as of July 17, 2002. Archival WFPC2 data were available for 54 of these IXOs. The optical data utilized in this study consisted of 121 HST WFPC2 associations (stacked images). We will discuss the various methods used to register the HST WFPC2 images with the Chandra X-ray images. Our preliminary analysis indicates that 37 ( ˜70%) of the 54 IXOs have at least one 4 sigma counterpart within 1" of the IXO position, and ˜25% have unique counterparts (mostly in elliptical galaxies). The detection limit of the counterparts was typically 24-25 magnitudes in B, V, and R. The absolute magnitudes of many of the found counterparts appeared to correspond roughly to either the expected magnitudes for globular clusters, or the expected magnitudes for the brightest stars. Initial results illustrate that of the 37 IXOs with counterparts, 25 ( ˜70%) were in spiral, irregular, and merger galaxies, where the counterparts were often diffuse or clump-like sources. The counterparts found in elliptical galaxies were primarily single luminous point-sources, most likely globular clusters. We will discuss the results of color analysis for fields where counterparts in multiple bands exist, particularly for cases where a single counterpart is found. A preliminary finding in elliptical galaxies is that globular clusters associated with IXOs tend to be red, suggesting that IXOs are not found in metal-poor globular clusters.

  15. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    Science.gov (United States)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  16. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    Science.gov (United States)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  17. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  18. Understanding X-ray cargo imaging

    International Nuclear Information System (INIS)

    Chen Gongyin

    2005-01-01

    Cargo imaging is the field of imaging large objects, usually cargo containers, trains, trucks or boats. Transmission imaging with photons, especially X-rays of up to 9 MV is the dominant current technique, providing compelling details of the contents of objects this large. This paper discusses the physics aspects of a good X-ray cargo imaging system. The basic performance requirements, such as penetration, contrast and resolution and the components of a cargo imaging system are introduced. The imaging process is divided in this paper into three stages: forming information (probing the object), recording information and presenting information (image display). Their impact on performance is analyzed

  19. CHANDRA AND XMM-NEWTON X-RAY OBSERVATIONS OF THE HYPERACTIVE T TAURI STAR RY TAU

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), Univ. of Colorado, Boulder, CO 80309-0389 (United States); Audard, Marc [Dept. of Astronomy, University of Geneva, Ch. d’Ecogia 16, CH-1290 Versoix (Switzerland); Güdel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: marc.audard@unige.ch, E-mail: manuel.guedel@univie.ac.at [Dept. of Astrophysics, Univ. of Vienna, Türkenschanzstr. 17, A-1180 Vienna (Austria)

    2016-07-20

    We present results of pointed X-ray observations of the accreting jet-driving T Tauri star RY Tau using Chandra and XMM-Newton . We obtained high-resolution grating spectra and excellent-quality CCD spectra and light curves with the objective of identifying the physical mechanisms underlying RY Tau’s bright X-ray emission. Grating spectra reveal numerous emission lines spanning a broad range of temperature superimposed on a hot continuum. The X-ray emission measure distribution is dominated by very hot plasma at T {sub hot} ∼ 50 MK, but higher temperatures were present during flares. A weaker cool plasma component is also present as revealed by low-temperature lines such as O viii. X-ray light curves show complex variability consisting of short-duration (∼hours) superhot flares accompanied by fluorescent Fe emission at 6.4 keV superimposed on a slowly varying (∼one day) component that may be tied to stellar rotation. The hot flaring component is undoubtedly of magnetic (e.g., coronal) origin. Soft- and hard-band light curves undergo similar slow variability implying that at least some of the cool plasma shares a common magnetic origin with the hot plasma. Any contribution to the X-ray emission from cool shocked plasma is small compared to the dominant hot component but production of individual low-temperature lines such as O viii in an accretion shock is not ruled out.

  20. X-ray luminosity by matter accretion on a neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, L [Bologna Univ. (Italy). Ist. di Fisica; Fortini, P L [Instituto di Astronomia, Bologna (Italy); Gualdi, C; Callegari, G [Ferrara Univ. (Italy). Ist. di Fisica

    1980-11-20

    When the accretion rate on a non magnetic neutron star is determined by stellar wind and not by overflowing the Roche lobe, it is shown that X-ray luminosity cannot exceed 10sup(36)-10sup(37) erg/sec. This very low limit is essentially set by radiation pressure which causes an effective braking on the falling matter.

  1. X-Ray Scaling Relations of Early-type Galaxies

    Science.gov (United States)

    Babyk, Iu. V.; McNamara, B. R.; Nulsen, P. E. J.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Pulido, F. A.; Edge, A. C.

    2018-04-01

    X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies (ETGs) using archival Chandra X-ray Observatory observations. Consistent with earlier studies, the scaling relations, L X ∝ T 4.5±0.2, M ∝ T 2.4±0.2, and L X ∝ M 2.8±0.3, are significantly steeper than expected from self-similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight L X –T correlation for low-luminosity systems (i.e., below 1040 erg s‑1) are at variance with hydrodynamical simulations, which generally predict higher temperatures for low-luminosity galaxies. We also investigate the relationship between total mass and pressure, Y X = M g × T, finding M\\propto {Y}X0.45+/- 0.04. We explore the gas mass to total mass fraction in ETGs and find a range of 0.1%–1.0%. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from β-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.

  2. Objective quantification of pulmonary effects in X-ray chest images; Quantificacao objetiva das sequelas pulmonares em imagens de raios-X de torax

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcela de; Giacomini, Guilherme; Alvarez, Matheus; Pereira, Paulo M.C.; Ribeiro, Sergio M.; Pina, Diana R. de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil)

    2016-07-01

    Tuberculosis (TB) is an infectious lung disease of great concern worldwide. Even after treatment, TB leaves pulmonary sequelae that compromise the quality of life of patients. The exam of diagnostic imaging done more frequently is the X-ray chest. The evaluation of pulmonary involvement of these patients is performed visually by the radiologist. The detection and quantification aided by computer systems are of great importance for the more accurate assessment of pulmonary involvement. The objective of this study was to evaluate computationally the reduction of lung damage in X-ray of chest in patients treated with two different medication regimens. (author)

  3. CHANDRA X-RAY DETECTION OF THE ENIGMATIC FIELD STAR BP Psc

    International Nuclear Information System (INIS)

    Kastner, Joel H.; Montez, Rodolfo; Rodriguez, David; Zuckerman, B.; Perrin, Marshall D.; Grosso, Nicolas; Forveille, Thierry; Graham, James R.

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity, log(L X /L bol ), lies in the range -5.8 to -4.2. This is smaller than log(L X /L bol ) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L X /L bol ) range observed for rapidly rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its very recently engulfing a companion star or a giant planet, as the primary star ascended the giant branch.

  4. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  5. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  6. SphinX soft X-ray spectrophotometer: Science objectives, design and performance

    Science.gov (United States)

    Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S. V.; Pertsov, A. A.; Kotov, Yu. D.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2011-06-01

    The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8-15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.

  7. Ultraluminous supersoft X-ray sources

    Science.gov (United States)

    Liu, Jifeng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri

    2017-06-01

    While ultraluminous supersoft X-ray sources (ULSs) bear features for intermediate mass black holes or very massive white dwarfs possibly close to Chandrasekhar mass limit, our recent discovery of processing relativistic baryonic jets from a prototype ULS in M81 demonstrate that they are not IMBHs or WDs, but black holes accreting at super-Eddington rates. This discovery strengthens the recent ideas that ULXs are stellar black holes with supercritical accretion, and provides a vivid manifestation of what happens when a black hole devours too much, that is, it will generate thick disk winds and fire out sub-relativistic baryonic jets along the funnel as predicted by recent numerical simulations.

  8. Two stellar-mass black holes in the globular cluster M22.

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  9. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  10. AN X-RAY SURVEY OF THE YOUNG STELLAR POPULATION OF THE LYNDS 1641 AND IOTA ORIONIS REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pillitteri, I.; Wolk, S. J.; Myers, P.; Walter, F. [SAO-Harvard Center for Astrophysics, Cambridge, MA 02138 (United States); Megeath, S. T. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Allen, L. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bally, J. [University of Colorado, Boulder, CO 80309 (United States); Gagne, M. [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hartman, L. [University of Michigan, Ann Arbor, MI 48109 (United States); Micela, G.; Sciortino, S. [INAF-Osservatorio Astronomico di Palermo, I-90134 Palermo (Italy); Oliveira, J. M. [School of Physical and Geographical Sciences, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Rebull, L.; Stauffer, J., E-mail: ipillitteri@cfa.harvard.edu [CALTECH, Pasadena, CA 91125 (United States)

    2013-05-10

    We present an XMM-Newton survey of the part of the Orion A cloud south of the Orion Nebula. This survey includes the Lynds 1641 (L1641) dark cloud, a region of the Orion A cloud with very few massive stars and hence a relatively low ambient UV flux, and the region around the O9 III star {iota} Orionis. In addition to proprietary data, we used archival XMM data of the Orion Nebula Cluster (ONC) to extend our analysis to a major fraction of the Orion A cloud. We have detected 1060 X-ray sources in L1641 and the {iota} Ori region. About 94% of the sources have Two Micron All Sky Survey and Spitzer counterparts, 204 and 23 being Class II and Class I or protostar objects, respectively. In addition, we have identified 489 X-ray sources as counterparts to Class III candidates, given they are bright in X-rays and appear as normal photospheres at mid-IR wavelengths. The remaining 205 X-ray sources are likely distant active galactic nuclei or other galactic sources not related to Orion A. We find that Class III candidates appear more concentrated in two main clusters in L1641. The first cluster of Class III stars is found toward the northern part of L1641, concentrated around {iota} Ori. The stars in this cluster are more evolved than those in the Orion Nebula. We estimate a distance of 300-320 pc for this cluster showing that it is in the foreground of the Orion A cloud. Another cluster rich in Class III stars is located in L1641 South and appears to be a slightly older cluster embedded in the Orion A cloud. Furthermore, other evolved Class III stars are found north of the ONC toward NGC 1977.

  11. AN X-RAY SURVEY OF THE YOUNG STELLAR POPULATION OF THE LYNDS 1641 AND IOTA ORIONIS REGIONS

    International Nuclear Information System (INIS)

    Pillitteri, I.; Wolk, S. J.; Myers, P.; Walter, F.; Megeath, S. T.; Allen, L.; Bally, J.; Gagné, M.; Gutermuth, R. A.; Hartman, L.; Micela, G.; Sciortino, S.; Oliveira, J. M.; Rebull, L.; Stauffer, J.

    2013-01-01

    We present an XMM-Newton survey of the part of the Orion A cloud south of the Orion Nebula. This survey includes the Lynds 1641 (L1641) dark cloud, a region of the Orion A cloud with very few massive stars and hence a relatively low ambient UV flux, and the region around the O9 III star ι Orionis. In addition to proprietary data, we used archival XMM data of the Orion Nebula Cluster (ONC) to extend our analysis to a major fraction of the Orion A cloud. We have detected 1060 X-ray sources in L1641 and the ι Ori region. About 94% of the sources have Two Micron All Sky Survey and Spitzer counterparts, 204 and 23 being Class II and Class I or protostar objects, respectively. In addition, we have identified 489 X-ray sources as counterparts to Class III candidates, given they are bright in X-rays and appear as normal photospheres at mid-IR wavelengths. The remaining 205 X-ray sources are likely distant active galactic nuclei or other galactic sources not related to Orion A. We find that Class III candidates appear more concentrated in two main clusters in L1641. The first cluster of Class III stars is found toward the northern part of L1641, concentrated around ι Ori. The stars in this cluster are more evolved than those in the Orion Nebula. We estimate a distance of 300-320 pc for this cluster showing that it is in the foreground of the Orion A cloud. Another cluster rich in Class III stars is located in L1641 South and appears to be a slightly older cluster embedded in the Orion A cloud. Furthermore, other evolved Class III stars are found north of the ONC toward NGC 1977.

  12. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  13. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    Science.gov (United States)

    Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.

    1981-01-01

    Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.

  14. X-ray Emission Line Spectroscopy of Nearby Galaxies

    Science.gov (United States)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  15. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2004-01-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kα doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images

  16. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  17. Control of an X-ray cine radiography apparatus

    International Nuclear Information System (INIS)

    Nishio, K.

    1982-01-01

    This patent application describes an X-ray cine radiography apparatus comprising an X-ray tube, an image intensifier for converting the X-rays transmitted through an object into a visual image and a cine camera for picking up the visual image, a photomultiplier detects the brightness of the visual image to produce a brightness signal and a potentiometer detects the actual tube voltage of said X-ray tube. (author)

  18. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  19. Fluorescent scanning x-ray tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  20. Optical and x-ray survey of s-type Markarian galaxies

    International Nuclear Information System (INIS)

    Hutter, D.J.; Mufson, S.L.

    1981-01-01

    We report here the results of a study of 23 compact, lineless Markarian galaxies using broadband optical photometry and x-ray satellite observations. Our photometry shows that the sample can be broken into four groups. In one group (Mrk 180, 421, and 501) are composite objects in which a BL Lacertae object is embedded in an elliptical galaxy. For this group, we present the results of multiepoch x-ray observations using the HEAO-1 and -2 satellites. In addition, we use our photometry to decompose the optical emission into nonthermal and galactic components. In the second group are objects showing a small ultraviolet excess relative to normal galaxies. The x-ray survey indicates that the x-ray luminosity of objects in group 2 is much lower than those in group 1. This suggests that there is an intrinsic difference between objects in groups 1 and 2. The third and fourth groups are objects whose colors are indistinguishable from those of normal field galaxies and those of galactic stars, respectively. No x-ray emission was detected from objects in either of these groups

  1. Optical observations of binary X-ray sources

    International Nuclear Information System (INIS)

    Boynton, P.E.

    1975-01-01

    The contribution to the recent progress in astronomy made by optical observations is pointed out. The optical properties of X-ray sources help to establish the physical nature of these objects. The current observational evidence on the binary X-ray sources HZ Her/Her X-1 and HDE 226868/Cyg X-1 is reported. (P.J.S.)

  2. ECRH scenarios with selective heating of trapped/passing electrons in the W7-X Stellarator

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2015-01-01

    Full Text Available Using specific features of the magnetic equilibrium in the W7-X stellarator, the ECRH scenarios with combined X2 and X3 modes are discussed. The RF beams for operation with X2 and X3 modes need to be launched from low- and, via the remote steering launcher, high-field-side, respectivaly, in the different crosssections of the device where the maximum and minimum of the magnetic field located. The aim is to explore the possibility of selective heating of the different classes of electrons, passing and trapped, by changing direction of the beam for X3 or switching between the beams for X2 and X3 launched from the different ports. The numerical predictions for this kind of experiments in W7-X are performed by coupled transport and ray tracing codes

  3. First light - II. Emission line extinction, population III stars, and X-ray binaries

    Science.gov (United States)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  4. Soft x-ray scanning microtomography with submicron resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1994-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the XIA Beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degrees to +55 degrees. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2 x 10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 Jim, with 100 to 300-nm wide and 65-nm thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent in three-dimensional images rendered from the volumetric set

  5. A discussion of the eccentric binary hypothesis for transient X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.; Goldman, I.

    1979-01-01

    The eccentric binary hypothesis for transient x-ray sources in the framework of the gradual acceleration stellar wind model proposed by Barlow and Cohen is examined. It is found that a consideration of the ratio of maximum to minimum luminosities and of the ratio of the durations of the high and low states, for a typical transient x-ray source, yields a rather high eccentricity, despite the gradual acceleration of the wind. When typical physical parameters for the binary members are taken into account, we find that a consistent description is possible only for very eccentric orbits (e>=0.9), thus the model is inadequate as a general explanation of the x-ray transient phenomenon. The recurrent transient x-ray source 4U 1630-47, which was considered in ihe past to be a realization of the eccentric binary model is studied and it is demonstrated that it cannot be described consistently within the framework of the model, unless the optical primary is very peculiar. (author)

  6. Soft x-ray scanning microtomography with submicrometer resolution

    International Nuclear Information System (INIS)

    McNulty, I.; Haddad, W.S.; Trebes, J.E.; Anderson, E.H.

    1995-01-01

    Scanning soft x-ray microtomography was used to obtain high-resolution three-dimensional images of a microfabricated test object. Using a special rotation stage mounted on the scanning transmission x-ray microscope at the X1A beamline at the National Synchrotron Light Source, we recorded nine two-dimensional projections of the 3D test object over an angular range of -50 degree to +55 degree. The x-ray wavelength was 3.6 nm and the radiation dose to the object per projection was approximately 2x10 6 Gy. The object consisted of two gold patterns supported on transparent silicon nitride membranes, separated by 4.75 μm, with 100- to 300-nm-wide and 65-nm-thick features. We reconstructed a volumetric data set of the test object from the two-dimensional projections using an algebraic reconstruction technique algorithm. Features of the test object were resolved to ∼100 nm in transverse and longitudinal extent with low artifact in three-dimensional images rendered from the volumetric set

  7. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  8. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  9. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    International Nuclear Information System (INIS)

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-01-01

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L X ≥ 10 40 erg s –1 ). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ∼10 M ☉ or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the ∼>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow

  10. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  11. Attempt to explain black hole spin in X-ray binaries by new physics

    International Nuclear Information System (INIS)

    Bambi, Cosimo

    2015-01-01

    It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M s un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)

  12. SphinX x-ray spectrophotometer

    Science.gov (United States)

    Kowaliński, Mirosław

    2012-05-01

    This paper presents assumptions to a PhD thesis. The thesis will be based on the construction of Solar Photometer in X-rays (SphinX). SphinX was an instrument developed to detect the soft X-rays from the Sun. It was flown on board the Russian CORONAS-Photon satellite from January 30, 2009 to the end of November, 2009. During 9 months in orbit SphinX provided an excellent and unique set of observations. It revealed about 750 flares and brightenings. The instrument observed in energy range 1.0 - 15.0 keV with resolution below ~0.5 keV. Here, the SphinX instrument objectives, design, performance and operation principle are described. Below results of mechanical and thermal - vacuum tests necessary to qualify the instrument to use in space environment are presented. Also the calibration results of the instrument are discussed. In particular detail it is described the Electrical Ground Support Equipment (EGSE) for SphinX. The EGSE was used for all tests of the instrument. At the end of the paper results obtained from the instrument during operation in orbit are discussed. These results are compared with the other similar measurements performed from the separate spacecraft instruments. It is suggested design changes in future versions of SphinX.

  13. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru E-mail: ttakeda@md.tsukuba.ac.jp; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu Quanwen; Thet Thet Lwin; Itai, Yuji

    2001-07-21

    Using a monolithic X-ray interferometer having the view size of 25 mmx25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  14. Short Hard Gamma Ray Bursts And Their Afterglows

    CERN Document Server

    Dado, Shlomo

    2009-01-01

    Long duration gamma ray bursts (GRBs) and X-ray flashes (XRFs) are produced by highly- relativistic jets ejected in core-collapse supernova explosions. The origin of short hard gamma-ray bursts (SHBs) has not been established. They may be produced by highly relativistic jets ejected in various processes: mergers of compact stellar objects; large-mass accretion episodes onto compact stars in close binaries or onto intermediate-mass black holes in dense stellar regions; phase transition of compact stars. Natural environments of such events are the dense cores of globular clusters, superstar clusters and young supernova remnants. We have used the cannonball model of GRBs to analyze all Swift SHBs with a well-sampled X-ray afterglow. We show that their prompt gamma-ray emission can be explained by inverse Compton scattering (ICS) of the progenitor's glory light, and their extended soft emission component by ICS of high density light or synchrotron radiation (SR) in a high density interstellar medium within the cl...

  15. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions

    Science.gov (United States)

    Kirichenko, A. S.; Bogachev, S. A.

    2017-09-01

    We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS- Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 - 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is 1.48 ±0.86, which is close to the value obtained previously by Pevtsov et al. ( Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 - 8 Å, the power-law indices for PFF(B) and PFF(Φ) for microflares are 3.87 ±2.16 and 3 ±1.6, respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner-Tucker-Vaiana scaling laws.

  16. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  17. 3D X-Ray Luggage-Screening System

    Science.gov (United States)

    Fernandez, Kenneth

    2006-01-01

    A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination

  18. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  19. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    Science.gov (United States)

    Takeda, Tohoru; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu, Quanwen; Thet-Thet-Lwin; Itai, Yuji

    2001-07-01

    Using a monolithic X-ray interferometer having the view size of 25 mm×25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  20. The MCNP simulation of the X-ray leakage of X-ray security inspection equipment

    International Nuclear Information System (INIS)

    Wang Kai; Liu Bin; Hu Wenchao; Zhao Wei

    2011-01-01

    Objective: To simulate the radiation leakage of the X-ray security inspection equipment used in the subways stations. Methods: We use the MCNP4C code to simulate the X-ray leakage of the equipment during the working process. Result: the biggest amount of radiation received by the body is 8.26 μSv/a, however, if the Lead screens of the X-ray security equipment is intact, the amount of radiation received by the body is only 0.0727 μSv/a. The final. Conclusions: When the baggage get in /out the X-ray security inspection equipment, the gas in Lead screens was made, and then the amount of radiation received by human body increased; The amount of radiation received by the body is close to but still below 10 μSv/a which is the exemption criteria set by the 'safety of radiation sources of ionizing radiation protection and basic standards'(GB18871-2002). (authors)

  1. Development of Object Simulator for Radiation Field of Dental X-Rays

    International Nuclear Information System (INIS)

    Silva, L F; Ferreira, F C L; Sousa, F F; Cardoso, L X; Vasconcelos, E D S; Brasil, L M

    2013-01-01

    In dentistry radiography is of fundamental importance to the dentist can make an accurate diagnosis. For this it is necessary to pay attention to the radiological protection of both the professional and the patient and control image quality for an accurate diagnosis. In this work, quality control tests were performed on X-ray machines in private dental intraoral in the municipality of Marabá, where they measured the diameters of the radiation field to see if these machines are in accordance with the recommendations, thus preventing the patient is exposed to a radiation field higher than necessary. We will study the results of each X-ray machine evaluated. For this we created a phantom to assess the size of the radiation field of X-ray dental, where we measure the radiation field of each device to see if they are in accordance with the recommendations of the ordinance No. 453/98 – MS

  2. Post-operative X-ray morphology: Joints

    International Nuclear Information System (INIS)

    Vogel, H.

    1987-01-01

    The description of X-ray findings after operations with the object of implanting protheses in joints makes up most of the contents of this book. The reconstruction of joints after trauma is only marginally dealt with. Among the various indications for implanting protheses, the replacement of joints destroyed by wear and trauma is the most important. Also considered were X-ray examinations after hallux-valgus operations and plastic surgery on hands and feet, as well as X-ray findings following operations on the lumbar part of the vertebral column (disc surgery). (orig./MG) [de

  3. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  4. Image analysis in x-ray cinefluorography

    Energy Technology Data Exchange (ETDEWEB)

    Ikuse, J; Yasuhara, H; Sugimoto, H [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1979-02-01

    For the cinefluorographic image in the cardiovascular diagnostic system, the image quality is evaluated by means of MTF (Modulation Transfer Function), and object contrast by introducing the concept of x-ray spectrum analysis. On the basis of these results, further investigation is made of optimum X-ray exposure factors set for cinefluorography and the cardiovascular diagnostic system.

  5. The Contribution of Stellar Winds to Cosmic Ray Production

    Science.gov (United States)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  6. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  7. The nature of X-ray sources associated to young clusters around Sh2-296

    Science.gov (United States)

    Gregorio-Hetem, J.; Fernandes, B.; Montmerle, T.

    2014-10-01

    Aiming to unravel the star formation activity in the Canis Major R1 (CMaR1), we have studied the young (Sh2-296. Based on our X-ray data complemented by optical and near-IR data, we discovered, near to GU CMa, a stellar cluster that is older by at least a few Myr than the previously known cluster, around Z CMa, where star formation is still very active. Multi-object optical spectroscopy of our X-ray sources nearby Z CMa was performed with Gemini telescopes to confirm the existence of a mixed population from both older and younger clusters around the edge of Sh2-296. In the present work we show the results for optical counterparts candidates of 45 X-ray sources. Spectral type determination was based on comparison with standard spectra library and fitting the continuum and TiO bands. Typical features of young stars were inspected to confirm the nature of the sample that is mainly classified as T Tauri stars (TTs), since their spectra show the Li I line, one of the indicators of youth. The equivalent width of Hα measured at 10% of the total flux was used to separate Classical TTs (CTTs) from weak-line TTs (WTTs). Among 51 optical counterparts candidates, 38 are young stars: 24% of them are classified as CTTs and 76% are WTTs. However the present results correspond to a small fraction (˜ 15%) of the entire sample of X-ray sources we have detected. Aiming a more representative set of spectra, additional GMOS observations have been performed, as well as another ongoing project (see Santos-Silva et al.) dedicated to studying of the X-ray properties.

  8. X-ray diagnosis of gouty arthritis

    International Nuclear Information System (INIS)

    Quan Gaorong; Luo Jianyun; Huang Shaoying

    2008-01-01

    Objective: The X-ray findings of 38 cases with gouty arthritis were summarized. The X-ray diagnosis and differential diagnosis were discussed to improve the understanding and diagnostic accuracy of this disease. Methods: Combined with literatures, the X-ray findings, pathological and clinical manifestations, laboratory examinations of 38 cases pathologically proved with gouty arthritis were analyzed. Results: The gouty arthritis usually occurred in the small joints of limbs, especially in the first metatarsophalangeal joint. The X-ray findings were dissymmetric swellings of soft tissue, scattered calcified shadow; bony erosion in form of scuttling and honeycomb defect with sharp and hard edge, narrowed joint space and irregular articular surface, emergence of fiber stiffness, even joint malformations and subluxation or dislocation, associated with hyperosteogeny and nearby osteoporosis. Conclusion: Diversification was presented in X-ray findings of gouty arthritis, which can be easily confused with other single or multiple bone joint diseases. As a result, accurate diagnosis should be based on careful analysis about X-ray findings combined with clinical manifestations and laboratory examination. (authors)

  9. The galactic X-ray sources

    International Nuclear Information System (INIS)

    Gursky, H.; Schreier, E.

    1975-01-01

    The current observational evidence on galactic X-ray sources is presented both from an astrophysical and astronomical point of view. The distributional properties of the sources, where they appear in the Galaxy, and certain average characteristics are discussed. In this way, certain properties of the X-ray sources can be deduced which are not apparent in the study of single objects. The properties of individual X-ray sources are then described. The hope is that more can be learnt about neutron stars and black holes, their physical properties, their origin and evolution, and their influence on other galactic phenomena. Thus attention is paid to those elements of data which appear to have the most bearing on these questions. (Auth.)

  10. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  11. PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR

    Energy Technology Data Exchange (ETDEWEB)

    Aird, James; Coil, Alison L.; Moustakas, John; Smith, M. Stephen M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Blanton, Michael R.; Zhu Guangtun [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Burles, Scott M. [D.E. Shaw and Co., L.P., 20400 Stevens Creek Blvd., Suite 850, Cupertino, CA 95014 (United States); Cool, Richard J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2012-02-10

    We present evidence that the incidence of active galactic nuclei (AGNs) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS, and ELAIS-S1) with redshifts from the Prism Multi-object Survey to identify 242 AGNs with L{sub 2-10keV} = 10{sup 42-44} erg s{sup -1} within a parent sample of {approx}25,000 galaxies at 0.2 < z < 1.0 over {approx}3.4 deg{sup 2} and to i {approx} 23. We find that although the fraction of galaxies hosting an AGN at fixed X-ray luminosity rises strongly with stellar mass, the distribution of X-ray luminosities is independent of mass. Furthermore, we show that the probability that a galaxy will host an AGN can be defined by a universal Eddington ratio distribution that is independent of the host galaxy stellar mass and has a power-law shape with slope -0.65. These results demonstrate that AGNs are prevalent at all stellar masses in the range 9.5< log M{sub *}/M{sub sun}<12 and that the same physical processes regulate AGN activity in all galaxies in this stellar mass range. While a higher AGN fraction may be observed in massive galaxies, this is a selection effect related to the underlying Eddington ratio distribution. We also find that the AGN fraction drops rapidly between z {approx} 1 and the present day and is moderately enhanced (factor {approx}2) in galaxies with blue or green optical colors. Consequently, while AGN activity and star formation appear to be globally correlated, we do not find evidence that the presence of an AGN is related to the quenching of star formation or the color transformation of galaxies.

  12. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  13. ARE ALL SHORT-HARD GAMMA-RAY BURSTS PRODUCED FROM MERGERS OF COMPACT STELLAR OBJECTS?

    International Nuclear Information System (INIS)

    Virgili, Francisco J.; Zhang Bing; O'Brien, Paul; Troja, Eleonora

    2011-01-01

    The origin and progenitors of short-hard gamma-ray bursts (GRBs) remain a puzzle and a highly debated topic. Recent Swift observations suggest that these GRBs may be related to catastrophic explosions in degenerate compact stars, denoted as 'Type I' GRBs. The most popular models include the merger of two compact stellar objects (NS-NS or NS-BH). We utilize a Monte Carlo approach to determine whether a merger progenitor model can self-consistently account for all the observations of short-hard GRBs, including a sample with redshift measurements in the Swift era (z-known sample) and the CGRO/BATSE sample. We apply various merger time delay distributions invoked in compact star merger models to derive the redshift distributions of these Type I GRBs, and then constrain the unknown luminosity function of Type I GRBs using the observed luminosity-redshift (L-z) distributions of the z-known sample. The best luminosity function model, together with the adopted merger delay model, is then applied to confront the peak flux distribution (log N-log P distribution) of the BATSE and Swift samples. We find that for all the merger models invoking a range of merger delay timescales (including those invoking a large fraction of 'prompt mergers'), it is difficult to reconcile the models with all the data. The data are instead statistically consistent with the following two possible scenarios. First, that short/hard GRBs are a superposition of compact-star-merger-origin (Type I) GRBs and a population of GRBs that track the star formation history, which are probably related to the deaths of massive stars (Type II GRBs). Second, the entire short/hard GRB population is consistent with a typical delay of 2 Gyr with respect to the star formation history with modest scatter. This may point toward a different Type I progenitor than the traditional compact star merger models.

  14. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  15. Gamma rays from active regions in the galaxy: the possible contribution of stellar winds

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Montmerle, Thierry.

    1982-08-01

    Massive stars release a considerable amount of mechanical energy in the form of strong stellar winds. A fraction of this energy may be transferred to relativistic cosmic rays by diffusive shock acceleration at the wind boundary, and/or in the expanding, turbulent wind itself. Massive stars are most frequently found in OB associations, surrounded by H II regions lying at the edge of dense molecular clouds. The interaction of the freshly accelerated particles with matter gives rise to #betta#-ray emission. In this paper, we first briefly review the current knowledge on the energetics of strong stellar winds from O and Wolf-Rayet stars, as well as from T Tauri stars. Taking into account the finite lifetime of these stars, we then proceed to show that stellar winds dominate the energetics of OB associations during the first 4 to 6 million years, after which supernovae take over. In the solar neighborhood, the star formation rate is constant, and a steady-state situation prevails, in which the supernova contribution is found to be dominant. A small, but meaningful fraction of the CO S-B #betta#-ray sources may be fueled by WR and O stellar winds in OB associations, while the power released by T Tauri stars alone is perhaps insufficient to account for the #betta#-ray emission of nearby dark clouds. Finally, we discuss some controversial aspects of the physics of particle acceleration by stellar winds

  16. X-ray microanalysis in plant physiology

    International Nuclear Information System (INIS)

    Neumann, D.

    1979-01-01

    X-ray microanalysis represents a highly sensitive and modern method for the measurement of ions in the very small compartments of the cell. The limitations of X-ray microanalysis in biological objects exist in the preparation of the tissues and the quantitation of the results. In plant physiology this method has provided several surprising results and new insights for further investigations. (author)

  17. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  18. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    International Nuclear Information System (INIS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation

  19. The Cosmic History of Black Hole Accretion from Chandra X-ray Stacking

    Science.gov (United States)

    Treister, Ezequiel; Urry, C.; Schawinski, K.; Lee, N.; Natarajan, P.; Volonteri, M.; Sanders, D. B.

    2012-05-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are black holes growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. We take advantage of the rich multi-wavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Msec Chandra observations (the deepest X-ray data to date), in order to measure the amount of black hole accretion as a function of cosmic history, from z 0 to z 6. We obtain stacked rest-frame X-ray spectra for samples of galaxies binned in terms of their IR luminosity, stellar mass and other galaxy properties. We find that the AGN fraction and their typical luminosities, and thus black hole accretion rates, increase with IR luminosity and stellar mass. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We find evidence for a strong connection between significant black hole growth events and major galaxy mergers from z 0 to z 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. E.T. and K.S. gratefully acknowledges the support provided by NASA through Chandra Postdoctoral Fellowship Award Numbers PF8-90055 and PF9-00069, respectively issued by the Chandra X-ray Observatory Center. E.T. also thanks support by NASA through Chandra Award SP1-12005X Center of Excellence in Astrophysics and Associated Technologies (PFB 06). C. M. Urry acknowledges support from NSF Grants AST-0407295, AST-0449678, AST-0807570, and Yale University.

  20. X-ray holography with an atomic scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Mityureva, A.A.; Smirnov, V.V., E-mail: valery_smirnov@mail.ru

    2016-08-15

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. - Highlights: • X-ray holography scheme with a reference wave formed by atomic scatterer. • 3D object reconstruction with atomic resolution from the set of holograms. • Simple formula for the distorting factor in reconstruction.

  1. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  2. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    NARCIS (Netherlands)

    Bosch, H. S.; R C Wolf,; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Brauer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodie, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; Konig, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kuhner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stabler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, C.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K. P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupinski, L.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; von Eeten, P.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Funfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; Regana, J. M. G.; Geiger, J.; Geissler, S.; Greuner, H.; Grahl, M.; Gross, S.; Grosman, A.; Grote, H.; Grulke, O.; R. Jaspers,; Szabo, V.

    2013-01-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate

  3. Testing the Formation Mechanism of Sub-Stellar Objects in Lupus (A SOLA Team Study)

    Science.gov (United States)

    De Gregorio-Monsalvo, Itziar; Lopez, C.; Takahashi, S.; Santamaria-Miranda

    2017-06-01

    The international SOLA team (Soul of Lupus with ALMA) has identified a set of pre- and proto-stellar candidates in Lupus 1 and 3 of substellar nature using 1.1mm ASTE/AzTEC maps and our optical to submillimeter database. We have observed with ALMA the most promising pre- and proto-brown dwarfs candidates. Our aims are to provide insights on how substellar objects form and evolve, from the equivalent to the pre-stellar cores to the Class II stage in the low mass regime of star formation. Our sample comprises 33 pre-stellar objects, 7 Class 0 and I objects, and 22 Class II objects.

  4. High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

    Science.gov (United States)

    Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime

    2017-11-01

    The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.

  5. Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes

    Science.gov (United States)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-11-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.

  6. X-ray fluorescence analysis of archaeological finds and art objects: Recognizing gold and gilding

    International Nuclear Information System (INIS)

    Trojek, Tomáš; Hložek, Martin

    2012-01-01

    Many cultural heritage objects were gilded in the past, and nowadays they can be found in archeological excavations or in historical buildings dating back to the Middle Ages, or from the modern period. Old gilded artifacts have been studied using X-ray fluorescence analysis and 2D microanalysis. Several techniques that enable the user to distinguish gold and gilded objects are described and then applied to investigate artifacts. These techniques differ in instrumentation, data analysis and numbers of measurements. The application of Monte Carlo calculation to a quantitative analysis of gilded objects is also introduced. - Highlights: ► Three techniques of gilding identification with XRF analysis are proposed. ► These techniques are applied to gold and gilded art and archeological objects. ► Composition of a substrate material is determined by a Monte Carlo simulation.

  7. Variable X-ray sky with Lobster Eye Telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Inneman, A.; Sveda, L.

    2004-01-01

    The variable X-ray sky requires wide-field monitoring with high sensitivity. We refer on novel X-ray telescopes with high sensitivity as well as large field of view. The results are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, GRBs, X-ray flashes, galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  10. X-rays from comets - a surprising discovery

    CERN Document Server

    CERN. Geneva

    2000-01-01

    Comets are kilometre-size aggregates of ice and dust, which remained from the formation of the solar system. It was not obvious to expect X-ray emission from such objects. Nevertheless, when comet Hyakutake (C/1996 B2) was observed with the ROSAT X-ray satellite during its close approach to Earth in March 1996, bright X-ray emission from this comet was discovered. This finding triggered a search in archival ROSAT data for comets, which might have accidentally crossed the field of view during observations of unrelated targets. To increase the surprise even more, X-ray emission was detected from four additional comets, which were optically 300 to 30 000 times fainter than Hyakutake. For one of them, comet Arai (C/1991 A2), X-ray emission was even found in data which were taken six weeks before the comet was optically discovered. These findings showed that comets represent a new class of celestial X-ray sources. The subsequent detection of X-ray emission from several other comets in dedicated observations confir...

  11. Development of full-field x-ray phase-tomographic microscope based on laboratory x-ray source

    Science.gov (United States)

    Takano, H.; Wu, Y.; Momose, A.

    2017-09-01

    An X-ray phase tomographic microscope that can quantitatively measure the refractive index of a sample in three dimensions with a high spatial resolution was developed by installing a Lau interferometer consisting of an absorption grating and a π/2 phase grating into the optics of an X-ray microscope. The optics comprises a Cu rotating anode X-ray source, capillary condenser optics, and a Fresnel zone plate for the objective. The microscope has two optical modes: a large-field-of-view mode (field of view: 65 μm x 65 μm) and a high-resolution mode (spatial resolution: 50 nm). Optimizing the parameters of the interferometer yields a self-image of the phase grating with 60% visibility. Through the normal fringe-scanning measurement, a twin phase image, which has an overlap of two phase image of opposite contrast with a shear distance much larger than system resolution, is generated. Although artifacts remain to some extent currently when a phase image is calculated from the twin phase image, this system can obtain high-spatial-resolution images resolving 50-nm structures. Phase tomography with this system has also been demonstrated using a phase object.

  12. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  13. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  14. The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1984-01-01

    Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.

  15. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  16. Light curve and pulse profile of the x-ray pulsar Vela X-1

    International Nuclear Information System (INIS)

    Nagase, Fumiaki; Hayakawa, Satio; Makino, Fumiyoshi; Sato, Naohisa; Makishima, Kazuo.

    1983-01-01

    The following properties of the X-ray binary pulsar Vela X-1 are presented by reference to its observations in March 1980. The light curve shows a high state and a low state in the first and second halves of an orbital period, respectively, but they may rather be defined as a soft state and hard state, respectively, since the intensity above 9 keV does not appreciably change between these two states. The energy spectra in these states indicate the presence of circumstellar absorption. The pulse profiles at high (9-22 keV) and low (1-9 keV) energies are different, indicating the absorption by cold matter which is probably in the accretion column. The absorber which is responsible for the soft and hard states is attributed to the stellar wind whose flow pattern is consistent with that obtained from optical absorption spectra. The orbital period is obtained by a combined analysis of X-ray data since 1972. No appreciable change of the period gives a constraint on the dynamical behavior of the binary system. (author)

  17. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  18. X-ray analysis in lung leptospira disease

    International Nuclear Information System (INIS)

    Deng Shiyong; Peng Shi; He Guoman

    2006-01-01

    Objective: To analysis the X-ray signs and subtype of the lung leptospira disease, and improve the undersdand, reduce the error diagnosis of this diseases. Methods: 40 cases of lung leptospira disease were evaluated about the check X-ray sings and clinical data, the check X-ray sings were dynamic observated and typed, and 40 cases had a diagnostic treatment. Results: There were various X-ray changes of lung leptospira disease. in 40 cases, 12 cases (30%) pulmonary marking, 21 cases (52%) little lesions, and 7 cases(18%) lager lesions, respectively. The patients who were correctly diagnosed made a recovery after effective treatment, the patients who were error diagnosed died because of multiple system organ damage. Conclusion: The check X-ray signs in lung leptospira disease have some characteristics. It may play an important role in improving this disease' diagnosis combining the dynamic observation of check X-ray sings with clinical data. (authors)

  19. Next generation x-ray all-sky monitor

    International Nuclear Information System (INIS)

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-01

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10 -15 W/m 2 (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars

  20. CO-ices in embedded Young Stellar Objects

    Science.gov (United States)

    Teixeira, Teresa Cláeira V. S.

    1998-09-01

    significance of the results is discussed. Excellent fits to the nonpolar component of the CO-ices along the observed lines-of-sight are produced with ion irradiated pure CO ices. The possible origin of the ion irradiation is discussed, covering flares on the YSOs, cosmic rays and X-ray and UV processing. Predictions are made for the abundance of CO2 and methanol in the mantles. Furthermore, a comparison is made between the results of observations of CO and H2 O ices towards the Taurus and Ophiuchus dark clouds. The column densities of the ices are compared with the visual extinction, Av, through the clouds, and with the 1.3mm continuum emission from the YSOs. The inclusion of the objects in Taurus observed in this work resulted in the appearance of a discontinuity in the relation between the water-ice column density and Av, at the value of Av for which the optical depth at 3 microns (the wavelength of the water-ice absorption feature) is unity. Finally, all the observations and results discussed throughout the thesis are brought together to address their implications in the current understanding of the conditions in Taurus and Ophiuchus. Thesis and published paper available at http://www.obs.aau.dk/~tct/

  1. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    Science.gov (United States)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  2. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, J.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Morton, E. [Rapiscan Systems, Units 2,3,4, Radnor Park Trading Estate, Congleton, Cheshire CW12 4XJ (United Kingdom); Wells, K. [CVSSP, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2011-10-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52{+-}0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  3. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    International Nuclear Information System (INIS)

    Loveland, J.; Gundogdu, O.; Morton, E.; Wells, K.; Bradley, D.A.

    2011-01-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52±0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  4. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University

  5. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  6. Half a century of cosmic x-ray research

    International Nuclear Information System (INIS)

    Makishima, Kazuo; Takahashi, Tadayuki

    2012-01-01

    The year of 2012, which is the centennial of the cosmic-ray discovery, happens to coincide with the 50th anniversary of the discovery of cosmic X-ray sources. First carried by cosmic-ray physicists, the study of cosmic X-rays has made explosive developments over the last half a century, and has established the X-ray wavelength as an indispensable window onto the Universe. Among a variety of X-ray emitting celestial objects, we choose here neutron stars as a representative, and review the 50 years connecting the dawn era of the research and the state-of-the-art ASTRO-H satellite to be launched in 2014. In this article, 'X-rays' mean energetic photons with energies from 0.1 keV up to a few hundreds keV. (author)

  7. The Giant Flares of the Microquasar Cygnus X-3: X-Rays States and Jets

    Directory of Open Access Journals (Sweden)

    Sergei Trushkin

    2017-11-01

    Full Text Available We report on two giant radio flares of the X-ray binary microquasar Cyg X-3, consisting of a Wolf–Rayet star and probably a black hole. The first flare occurred on 13 September 2016, 2000 days after a previous giant flare in February 2011, as the RATAN-600 radio telescope daily monitoring showed. After 200 days on 1 April 2017, we detected a second giant flare. Both flares are characterized by the increase of the fluxes by almost 2000-times (from 5–10 to 17,000 mJy at 4–11 GHz during 2–7 days, indicating relativistic bulk motions from the central region of the accretion disk around a black hole. The flaring light curves and spectral evolution of the synchrotron radiation indicate the formation of two relativistic collimated jets from the binaries. Both flares occurred when the source went from hypersoft X-ray states to soft ones, i.e. hard fluxes (Swift/BAT 15–50 keV data dropped to zero, the soft X-ray fluxes (MAXI 2–10 keV data staying high, and then later, the binary came back to a hard state. Both similar giant flares indicated the unchanged mechanism of the jets’ formation in Cyg X-3, probably in conditions of strong stellar wind and powerful accretion onto a black hole.

  8. The feasibility of independent observations/detections of GRBs in X-rays

    International Nuclear Information System (INIS)

    Hudec, R.; Skulinova, M.; Pina, L.; Sveda, L.; Semencova, V.; Inneman, A.

    2009-01-01

    According to the observational statistics a large majority of all GRBs exhibit X-ray emission. In addition, a dedicated separate group of GRB, the XRFs, exists which emission dominates in the X-ray spectral range. And the third group of GRB related objects (yet hypothetical) are the group of off-axis observed GRBs (orphan afterglows). These facts justify the consideration of an independent experiment for monitoring, detection and analyses of GRBs and others fast X-ray transients in X-rays. We will present and discuss such experiment based on wide-field X-ray telescopes of Lobster Eye type. The wide field and fine sensitivity of Lobster Eye X-ray All-Sky Monitor make such instruments important tools in study of GRBs and related objects.

  9. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  10. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  11. Nuclear Physical Uncertainties in Modeling X-Ray Bursts

    Science.gov (United States)

    Regis, Eric; Amthor, A. Matthew

    2017-09-01

    Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.

  12. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    Science.gov (United States)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  13. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  14. Development of laser plasma x-ray microscope for living hydrated biological specimens

    International Nuclear Information System (INIS)

    Kado, Masataka; Daido, Hiroyuki

    2005-01-01

    Investigating the structure and the function of life object performing advanced life activity becomes important. In order to investigate the life object, it is necessary to observe living specimens with high spatial resolution and high temporal resolution. Since laser plasma x-ray source has high brightness and short pulse duration, x-ray microscope with the laser plasma x-ray source makes possible to observe living specimens. Such as chromosomes, macrophages, bacterium, and so on have been observed by contact x-ray microscopy. The x-ray images obtained by indirect measurements such as the contact x-ray microscopy have difficulty to avoid artificial effect such as irregular due to developing process. Development of an x-ray microscope with laser plasma x-ray source is necessary to avoid such defects. (author)

  15. STELLAR CORONAE, SOLAR FLARES: A DETAILED COMPARISON OF {sigma} GEM, HR 1099, AND THE SUN IN HIGH-RESOLUTION X-RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Huenemoerder, David P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Phillips, Kenneth J. H. [Visiting Scientist, Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland); Sylwester, Janusz; Sylwester, Barbara, E-mail: dph@space.mit.edu, E-mail: kennethjhphillips@yahoo.com, E-mail: js@cbk.pan.wroc.pl, E-mail: bs@cbk.pan.wroc.pl [Space Research Center, Polish Academy of Sciences, 51-622, Kopernika 11, Wroclaw (Poland)

    2013-05-10

    The Chandra High Energy Transmission Grating Spectrometer (HETG) spectra of the coronally active binary stars {sigma} Gem and HR 1099 are among the highest fluence observations for such systems taken at high spectral resolution in X-rays with this instrument. This allows us to compare their properties in detail to solar flare spectra obtained with the Russian CORONAS-F spacecraft's RESIK instrument at similar resolution in an overlapping bandpass. Here we emphasize the detailed comparisons of the 3.3-6.1 A region (including emission from highly ionized S, Si, Ar, and K) from solar flare spectra to the corresponding {sigma} Gem and HR 1099 spectra. We also model the larger wavelength range of the HETG, from 1.7 to 25 A - having emission lines from Fe, Ca, Ar, Si, Al, Mg, Ne, O, and N-to determine coronal temperatures and abundances. {sigma} Gem is a single-lined coronally active long-period binary which has a very hot corona. HR 1099 is a similar, but shorter period, double-lined system. With very deep HETG exposures we can even study emission from some of the weaker species, such as K, Na, and Al, which are important since they have the lowest first ionization potentials, a parameter well known to be correlated with elemental fractionation in the solar corona. The solar flare temperatures reach Almost-Equal-To 20 MK, comparable to the {sigma} Gem and HR 1099 coronae. During the Chandra exposures, {sigma} Gem was slowly decaying from a flare and its spectrum is well characterized by a collisional ionization equilibrium plasma with a broad temperature distribution ranging from 2 to 60 MK, peaking near 25 MK, but with substantial emission from 50 MK plasma. We have detected K XVIII and Na XI emission which allow us to set limits on their abundances. HR 1099 was also quite variable in X-rays, also in a flare state, but had no detectable K XVIII. These measurements provide new comparisons of solar and stellar coronal abundances, especially at the lowest first

  16. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  17. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    Science.gov (United States)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  18. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    Science.gov (United States)

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  19. Galaxies in x-ray selected clusters and groups in Dark Energy Survey Data I: Stellar mass growth of bright central galaxies since Z similar to 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; Perfecto, R.; Song, J; Desai, S.; Mohr, J. J.; Vikram, V.

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z similar to 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, m(*) proportional to (M-200/1.5 x 10(14)M(circle dot))(0.24 +/- 0.08)(1+z)(-0.19 +/- 0.34), and compare the observed relation to the model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M-200,M-z = 10(13.8)M(circle dot); at z = 1.0: m(*, BCG) appears to have grown by 0.13 +/- 0.11 dex, in tension at the similar to 2.5 sigma significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.

  20. X-ray Spectrometry: Basic principles

    International Nuclear Information System (INIS)

    Carvalho, R.M.; Teixeira, G.J.; Cardoso, R.S.; Peixoto, J.G.P.

    2017-01-01

    The application of X rays requires a study of its spectrum. Intrinsic difficulties of the own method and of all the instrumentation necessary for the accomplishment of this practice were related. The objective was to demonstrate the use of a commercial spectrometer using at room temperature and compare it with spectra theoretically obtained by simulation. As an initial result was that both instrumentation is compatible to be used in an X-ray beam, with and without scattering material and its theoretical data were obtained. (author)

  1. Image quality of medical X-ray systems

    International Nuclear Information System (INIS)

    Hoen, P.J. 't.

    1980-01-01

    The quality of images made by medical X-ray systems can only be properly described if the visual system is also taken into account. In this thesis, the visual threshold contrast of edges, bars and disks has been chosen as the criterion. Since these objects resemble medical objects like tumour-mass outlines, blood vessels and micro-calcifications, a correlation with X-ray practice is possible. Only the conventional X-ray systems are considered, but a brief analysis of computerized tomography is given. Considerable attention is paid to unsharpness and the minimization of its influence on the threshold contrast, to the influence of the noise on the threshold contrast, and to the contrast formation as such. The consequences for the dose administered to the patient are also briefly analysed. (Auth.)

  2. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  3. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  4. Multi-Mounted X-Ray Computed Tomography.

    Science.gov (United States)

    Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng

    2016-01-01

    Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.

  5. THE CONTRIBUTION OF X-RAY BINARIES TO THE EVOLUTION OF LATE-TYPE GALAXIES: EVOLUTIONARY POPULATION SYNTHESIS SIMULATIONS

    International Nuclear Information System (INIS)

    Zuo Zhaoyu; Li Xiangdong

    2011-01-01

    X-ray studies of normal late-type galaxies have shown that non-nuclear X-ray emission is typically dominated by X-ray binaries and provides a useful measure of star formation activity. We have modeled the X-ray evolution of late-type galaxies over the ∼14 Gyr of cosmic history, with an evolutionary population synthesis code developed by Hurley et al. Our calculations reveal a decrease in the X-ray luminosity-to-mass ratio L X /M with time, in agreement with observations. We show that this decrease is a natural consequence of stellar and binary evolution and the mass accumulating process in galaxies. The X-ray-to-optical luminosity ratio L X /L B is found to be fairly constant (around ∼10 30 erg s -1 L -1 B,sun ) and insensitive to the star formation history in the galaxies. The nearly constant value of L X /L B is in conflict with the observed increase in L X /L B from z = 0 to 1.4. The discrepancy may be caused by intense obscured star formation activity that leads to a nonlinear relationship between X-ray and B-band emission.

  6. A comparison of a niobium filter (NIOBI-X) with conventional filters in x-ray radiography

    International Nuclear Information System (INIS)

    Sandborg, M.; Alm Carlsson, G.

    1990-01-01

    A 0.05 mm thick x-ray filter of niobium (NIOBI-X) has been tested and the x-ray image quality and radiation doses have been compared with conventionel x-ray filters of copper and aluminium. The results show that for x-ray tube voltage higher than 50 kV or objects thicker than 50 mm a 0.05 mm thick niobium with benefit can be replaced by a 0.11 mm thick copper filter. (25 refs.) (K.A.E.)

  7. X-ray geometrical smoothing effect in indirect x-ray-drive implosion

    International Nuclear Information System (INIS)

    Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    X-ray geometrical smoothing effect in indirect X-ray drive pellet implosion for inertial confinement fusion has been numerically analyzed. Attainable X-ray driven ablation pressure has been found to be coupled with X-ray irradiation uniformity. (author)

  8. Precision test method by x-ray absorbent clay

    International Nuclear Information System (INIS)

    Nakadai, Toru; Matsukawa, Hideyuki; Sekita, Jun-ichiro; Murakoshi, Atsushi.

    1982-01-01

    In X-ray penetration photography of such as welds with reinforcing metal and castings of complex shape, the X-ray absorbent clay developed to eliminate various disadvantages of the conventional absorbents was further studied for better application. The results of the usage are as follows. Because the X-ray absorbent is clay, it is flexible in form, and gives good adhesion to test objects. In the welds and castings mentioned, it is effective for reducing the scattered ray, accordingly, it results in superior images. The following matters are described: contrast in radiographs, the required conditions for X-ray absorbents in general, the properties of the absorbent (absorption coefficient, consistency, density), improvement in radiographs by means of the X-ray absorbent clay (wall thickness compensation, masking, the application together with narrow-field irradiation photography). (Mori, K.)

  9. Infrared emission from four Be stars optical counterparts of galactic X-ray sources

    International Nuclear Information System (INIS)

    Persi, P.; Ferrari-Toniolo, M.

    1982-01-01

    Preliminary results of our infrared observations from 2.3 up to 10 and 20 microns of the Be-X-ray stars X Per, γ Cas and HDE 245770, indicate the presence of an ionized circumstellar disk with an electron density law of the type nsub(e) proportional to rsup(-3.5). X Per and γ Cas show besides, variable infrared excess at 10μ suggesting variability in the stellar wind. LS I+65 0 010 presents an anomalous infrared energy distribution for a Be star. (Auth.)

  10. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  11. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  12. The difference in backscatter factors of diagnostic X-rays by the difference in the scattering medium and in the objective dose

    International Nuclear Information System (INIS)

    Kato, Hideki; Sakai, Keita; Uchiyama, Mizuki; Suzuki, Kentaro

    2016-01-01

    The diagnostic reference levels (DRLs) of the general X-ray radiography are defined by the absorbed dose of air at the entrance surface with backscattered radiation from a scattering medium. Generally, the entrance surface dose of the general X-ray radiography is calculated from measured air kerma of primary X-ray multiplied by a backscatter factor (BSF). However, the BSF data employed at present used water for scattering medium, and was calculated based on the water-absorbed dose by incident primary photons and backscattered photons from the scattering medium. In the calculation of air dose at the entrance surface defined in DRLs, there are no theoretical consistencies for using BSF based on water dose, and this may be a cause of calculation error. In this paper, we verified the difference in BSF by the difference in the scattering medium and by the difference in the objective dose by means of the Monte Carlo simulation. In this calculation, the scattering medium was set as water and the soft-tissue, and the objective dose was set as air dose, water dose, soft-tissue dose, and skin dose. The difference in BSF calculated by the respective combination was at most about 1.3% and was less than 1% in most cases. In conclusion, even if the entrance surface dose defined by DRLs of general X-ray radiography is calculated using BSF, which set both the scattering medium and the object substance of the absorbed dose as water, a so big error doesn't show. (author)

  13. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  14. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    Science.gov (United States)

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10 41 erg second[Formula: see text]) might harbor NSs. Copyright © 2017, American Association for the Advancement of Science.

  15. Comparison of x-ray output of inverter-type x-ray equipment

    International Nuclear Information System (INIS)

    Asano, Hiroshi; Miyake, Hiroyuki; Yamamoto, Keiichi

    2000-01-01

    The x-ray output of 54 inverter-type x-ray apparatuses used at 18 institutions was investigated. The reproducibility and linearity of x-ray output and variations among the x-ray equipment were evaluated using the same fluorescence meter. In addition, the x-ray apparatuses were re-measured using the same non-invasive instrument to check for variations in tube voltage, tube current, and irradiation time. The non-invasive instrument was calibrated by simultaneously obtaining measurements with an invasive instrument, employing the tube voltage and current used for the invasive instrument, and the difference was calculated. Reproducibility of x-ray output was satisfactory for all x-ray apparatuses. The coefficient of variation was 0.04 or less for irradiation times of 5 ms or longer. In 84.3% of all x-ray equipment, variation in the linearity of x-ray output was 15% or less for an irradiation time of 5 ms. However, for all the apparatuses, the figure was 50% when irradiation time was the shortest (1 to 3 ms). Variation in x-ray output increased as irradiation time decreased. Variation in x-ray output ranged between 1.8 and 2.5 compared with the maximum and minimum values, excluding those obtained at the shortest irradiation time. The relative standard deviation ranged from ±15.5% to ±21.0%. The largest variation in x-ray output was confirmed in regions irradiated for the shortest time, with smaller variations observed for longer irradiation times. The major factor responsible for variation in x-ray output in regions irradiated for 10 ms or longer, which is a relatively long irradiation time, was variation in tube current. Variation in tube current was slightly greater than 30% at maximum, with an average value of 7% compared with the preset tube current. Variations in x-ray output in regions irradiated for the shortest time were due to photographic effects related to the rise and fall times of the tube voltage waveform. Accordingly, in order to obtain constant x-ray

  16. Expanding CME-flare relations to other stellar systems

    Science.gov (United States)

    Moschou, Sofia P.; Drake, Jeremy J.; Cohen, Ofer

    2017-05-01

    Stellar activity is one of the main parameters in exoplanet habitability studies. While the effects of UV to X-ray emission from extreme flares on exoplanets are beginning to be investigated, the impact of coronal mass ejections is currently highly speculative because CMEs and their properties cannot yet be directly observed on other stars. An extreme superflare was observed in X-rays on the Algol binary system on August 30 1997, emitting a total of energy 1.4x 10^{37} erg and making it a great candidate for studying the upper energy limits of stellar superflares in solar-type (GK) stars. A simultaneous increase and subsequent decline in absorption during the flare was also observed and interpretted as being caused by a CME. Here we investigate the dynamic properties of a CME that could explain such time-dependent absorption and appeal to trends revealed from solar flare and CME statistics as a guide. Using the ice-cream cone model that is extensively used in solar physics to describe the three-dimensional CME structure, in combination with the temporal profile of the hydrogen column density evolution, we are able to characterize the CME and estimate its kinetic energy and mass. We examine the mass, kinetic and flare X-ray fluence in the context of solar relations to examine the extent to which such relations can be extrapolated to much more extreme stellar events.

  17. CLASSIFYING X-RAY BINARIES: A PROBABILISTIC APPROACH

    International Nuclear Information System (INIS)

    Gopalan, Giri; Bornn, Luke; Vrtilek, Saeqa Dil

    2015-01-01

    In X-ray binary star systems consisting of a compact object that accretes material from an orbiting secondary star, there is no straightforward means to decide whether the compact object is a black hole or a neutron star. To assist in this process, we develop a Bayesian statistical model that makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a three-dimensional coordinate system derived from X-ray spectral data where the first coordinate is the ratio of counts in the mid- to low-energy band (color 1), the second coordinate is the ratio of counts in the high- to low-energy band (color 2), and the third coordinate is the sum of counts in all three bands. We use this model to estimate the probabilities of an X-ray binary system containing a black hole, non-pulsing neutron star, or pulsing neutron star. In particular, we utilize a latent variable model in which the latent variables follow a Gaussian process prior distribution, and hence we are able to induce the spatial correlation which we believe exists between systems of the same type. The utility of this approach is demonstrated by the accurate prediction of system types using Rossi X-ray Timing Explorer All Sky Monitor data, but it is not flawless. In particular, non-pulsing neutron systems containing “bursters” that are close to the boundary demarcating systems containing black holes tend to be classified as black hole systems. As a byproduct of our analyses, we provide the astronomer with the public R code which can be used to predict the compact object type of XRBs given training data

  18. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Thomlinson, W.; Zhong, Z.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  20. Three-dimensional monochromatic x-ray CT

    Science.gov (United States)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao

    1995-08-01

    In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.

  1. Luck Reveals Stellar Explosion's First Moments

    Science.gov (United States)

    2008-05-01

    Through a stroke of luck, astronomers have witnessed the first violent moments of a stellar explosion known as a supernova. Astronomers have seen thousands of these stellar explosions, but all previous supernovae were discovered days after the event had begun. This is the first time scientists have been able to study a supernova from its very beginning. Seeing one just moments after the event began is a major breakthrough that points the way to unraveling longstanding mysteries about how such explosions really work. Galaxy Before Supernova Explosion NASA's Swift satellite took these images of SN 2007uy in galaxy NGC 2770 before SN 2008D exploded. An X-ray image is on the left; image at right is in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels Galaxy After Supernova Explosion On January 9, 2008, Swift caught a bright X-ray burst from an exploding star. A few days later, SN 2008D appeared in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels "For years, we have dreamed of seeing a star just as it was exploding," said team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University. "This newly-born supernova is going to be the Rosetta Stone of supernova studies for years to come." Theorists had predicted for four decades that a bright burst of X-rays should be produced as the shock wave from a supernova blasts out of the star and through dense material surrounding the star. However, in order to see this burst, scientists faced the nearly-impossible challenge of knowing in advance where to point their telescopes to catch a supernova in the act of exploding. On January 9, luck intervened. Soderberg and her colleagues were making a scheduled observation of the galaxy NGC 2770, 88 million light-years from Earth, using the X-ray telescope on NASA's Swift satellite. During that observation, a bright burst of X-rays

  2. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  3. Properties of gamma-ray burst progenitor stars.

    Science.gov (United States)

    Kumar, Pawan; Narayan, Ramesh; Johnson, Jarrett L

    2008-07-18

    We determined some basic properties of stars that produce spectacular gamma-ray bursts at the end of their lives. We assumed that accretion of the outer portion of the stellar core by a central black hole fuels the prompt emission and that fall-back and accretion of the stellar envelope later produce the plateau in the x-ray light curve seen in some bursts. Using x-ray data for three bursts, we estimated the radius of the stellar core to be approximately (1 - 3) x 10(10) cm and that of the stellar envelope to be approximately (1 - 2) x 10(11) cm. The density profile in the envelope is fairly shallow, with rho approximately r(-2) (where rho is density and r is distance from the center of the explosion). The rotation speeds of the core and envelope are approximately 0.05 and approximately 0.2 of the local Keplerian speed, respectively.

  4. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  5. TU-G-207-00: Emerging Applications of X-Ray Imaging

    International Nuclear Information System (INIS)

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  6. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  7. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  8. Wide field X-ray telescopes: Detecting X-ray transients/afterglows related to gamma ray bursts

    International Nuclear Information System (INIS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul; Rezek, Tomas

    1999-01-01

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited field of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70ies but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster eye type are presented and discussed. Optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed

  9. Detection of X-ray emission from the young low-mass star Rossiter 137B

    Science.gov (United States)

    Vilhu, O.; Linsky, J. L.

    1987-01-01

    Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.

  10. X-ray counterpart candidates for six new γ-ray pulsars

    Science.gov (United States)

    Zyuzin, Dmitry A.; Karpova, Anna V.; Shibanov, Yuriy A.

    2018-05-01

    Using archival X-ray data, we have found point-like X-ray counterpart candidates positionally coincident with six γ-ray pulsars discovered recently in the Fermi Gamma-ray Space Telescope data by the Einstein@Home project. The candidates for PSRs J0002+6216, J0554+3107, J1844-0346, and J1105-6037 are detected with Swift, and those for PSRs J0359+5414 and J2017+3625 are detected with Chandra. Despite a low count statistics for some candidates, assuming plausible constraints on the absorbing column density towards the pulsars, we show that X-ray spectral properties for all of them are consistent with those observed for other pulsars. J0359+5414 is the most reliably identified object. We detect a nebula around it, whose spectrum and extent suggest that this is a pulsar wind nebula powered by the pulsar. Associations of J0002+6216 and J1844-0346 with supernova remnants CTB 1 and G28.6-0.1 are proposed.

  11. Hard X-ray Photoelectric Polarimeter

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to determine the gas mixtures and pressures that would enable a sensitive, hard X-ray polarimeter using existing flight components with the goal of...

  12. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  13. Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters

    Science.gov (United States)

    Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.

    2018-04-01

    Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.

  14. pyXSIM: Synthetic X-ray observations generator

    Science.gov (United States)

    ZuHone, John A.; Hallman, Eric. J.

    2016-08-01

    pyXSIM simulates X-ray observations from astrophysical sources. X-rays probe the high-energy universe, from hot galaxy clusters to compact objects such as neutron stars and black holes and many interesting sources in between. pyXSIM generates synthetic X-ray observations of these sources from a wide variety of models, whether from grid-based simulation codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), to particle-based codes such as Gadget (ascl:0003.001) and AREPO, and even from datasets that have been created “by hand”, such as from NumPy arrays. pyXSIM can also manipulate the synthetic observations it produces in various ways and export the simulated X-ray events to other software packages to simulate the end products of specific X-ray observatories. pyXSIM is an implementation of the PHOX (ascl:1112.004) algorithm and was initially the photon_simulator analysis module in yt (ascl:1011.022); it is dependent on yt.

  15. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  16. X-ray and extreme ultraviolet emission from comets

    Science.gov (United States)

    Lisse, C. M.; Cravens, T. E.; Dennerl, K.

    The discovery of high energy X-ray emission in 1996 from C/1996 B2 (Hyakutake) has created a surprising new class of X-ray emitting objects. The original discovery (Lisse et al., 1996) and subsequent detection of X-rays from 17 other comets (Table 1) have shown that the very soft (E < 1 keV) emission is due to an interaction between the solar wind and the comet's atmosphere, and that X-ray emission is a fundamental property of comets. Theoretical and observational work has demonstrated that charge exchange collisions of highly charged solar wind ions with cometary neutral species is the best explanation for the emission. Now a rapidly changing and expanding field, the study of cometary X-ray emission appears to be able to lead us to a better understanding of a number of physical phenomena: the nature of the cometary coma, other sources of X-ray emission in the solar system, the structure of the solar wind in the heliosphere, and the source of the local soft X-ray background.

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  19. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  20. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  1. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  2. Reflectivity around the gold L-edges of X-ray reector of the soft X-ray telescope onboard ASTRO-H

    DEFF Research Database (Denmark)

    Maeda, Yoshitomo; Kikuchi, Naomichi; Kurashima, Sho

    2017-01-01

    We report the atomic scattering factor in the 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT)9 obtained in the ground based measurements. The large effective area of the SXT covers above 10 keV. In fact, the flight data show the spectra of the celestical objects in the hard X-ray band. I...

  3. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  4. X-ray fluorescence camera for imaging of iodine media in vivo.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  5. Giant Rapid X-ray Flares in Extragalactic Globular Clusters

    Science.gov (United States)

    Irwin, Jimmy

    2018-01-01

    There is only one known class of non-destructive, highly energetic astrophysical object in the Universe whose energy emission varies by more than a factor of 100 on time scales of less than a minute -- soft gamma repeaters/anomalous X-ray pulsars, whose flares are believed to be caused by the energy release from the cracking of a neutron star's surface by very strong magnetic fields. All other known violent, rapid explosions, including gamma-ray bursts and supernovae, are believed to destroy the object in the process. Here, we report the discovery of a second class of non-destructive, highly energetic rapidly flaring X-ray object located within two nearby galaxies with fundamentally different properties than soft gamma repeaters/anomalous X-ray pulsars. One source is located within a suspected globular cluster of the host galaxy and flared one time, while the other source is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the host system. While the nature of these sources is still unclear, the discovery of these sources in decade-old archival Chandra X-ray Observatory data illustrates the under-utilization of X-ray timing as a means to discover new classes of explosive events in the Universe.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  7. Examination procedure for making an X-ray of one layer of an object (body)

    International Nuclear Information System (INIS)

    1977-01-01

    The paper describes experimental equipment with a radiation source such as gamma or X-ray radiation sources, and a radiation detector, which are mechanically coupled with one another. This setup is used for making an X-ray image of one layer of the body. (G.C.)

  8. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  9. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  10. Report of workshop on X-ray and nonlinear optics

    International Nuclear Information System (INIS)

    Nasu, Keiichiro; Namikawa, Kazumichi

    1994-07-01

    As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.)

  11. Report of workshop on X-ray and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Keiichiro; Namikawa, Kazumichi [eds.

    1994-07-01

    As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.).

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of bone cancer . locate foreign objects in soft tissues around or in bones. top of page How should I prepare? Most ... absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more ...

  15. A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle

    Directory of Open Access Journals (Sweden)

    Robert D. Speller

    2011-10-01

    Full Text Available X-ray baggage scanners play a basic role in the protection of airports, customs, and other strategically important buildings and infrastructures. The current technology of baggage scanners is based on x-ray attenuation, meaning that the detection of threat objects relies on how various objects differently attenuate the x-ray beams going through them. This capability is enhanced by the use of dual-energy x-ray scanners, which make the determination of the x-ray attenuation characteristics of a material more precise by taking images with different x-ray spectra, and combining the information appropriately. However, this still has limitations whenever objects with similar attenuation characteristics have to be distinguished. We describe an alternative approach based on a different x-ray interaction phenomenon, x-ray refraction. Refraction is a familiar phenomenon in visible light (e.g., what makes a straw half immersed in a glass of water appear bent, which also takes place in the x-ray regime, only causing deviations at much smaller angles. Typically, these deviations occur at the boundaries of all objects. We have developed a system that, like other “phase contrast” based instruments, is capable of detecting such deviations, and therefore of creating precise images of the contours of all objects. This complements the material-related information provided by x-ray attenuation, and helps contextualizing the nature of the individual objects, therefore resulting in an increase of both sensitivity (increased detection rate and specificity (reduced rate of false positives of baggage scanners.

  16. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  17. Maximum entropy based reconstruction of soft X ray emissivity profiles in W7-AS

    International Nuclear Information System (INIS)

    Ertl, K.; Linden, W. von der; Dose, V.; Weller, A.

    1996-01-01

    The reconstruction of 2-D emissivity profiles from soft X ray tomography measurements constitutes a highly underdetermined and ill-posed inversion problem, because of the restricted viewing access, the number of chords and the increased noise level in most plasma devices. An unbiased and consistent probabilistic approach within the framework of Bayesian inference is provided by the maximum entropy method, which is independent of model assumptions, but allows any prior knowledge available to be incorporated. The formalism is applied to the reconstruction of emissivity profiles in an NBI heated plasma discharge to determine the dependence of the Shafranov shift on β, the reduction of which was a particular objective in designing the advanced W7-AS stellarator. (author). 40 refs, 7 figs

  18. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  19. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  20. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  1. Nanofocusing refractive X-ray lenses

    International Nuclear Information System (INIS)

    Boye, Pit

    2010-01-01

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  2. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  3. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    Science.gov (United States)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  4. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  5. Model Atmosphere Spectrum Fit to the Soft X-Ray Outburst Spectrum of SS Cyg

    Directory of Open Access Journals (Sweden)

    V. F. Suleimanov

    2015-02-01

    Full Text Available The X-ray spectrum of SS Cyg in outburst has a very soft component that can be interpreted as the fast-rotating optically thick boundary layer on the white dwarf surface. This component was carefully investigated by Mauche (2004 using the Chandra LETG spectrum of this object in outburst. The spectrum shows broad ( ≈5 °A spectral features that have been interpreted as a large number of absorption lines on a blackbody continuum with a temperature of ≈250 kK. Because the spectrum resembles the photospheric spectra of super-soft X-ray sources, we tried to fit it with high gravity hot LTE stellar model atmospheres with solar chemical composition, specially computed for this purpose. We obtained a reasonably good fit to the 60–125 °A spectrum with the following parameters: Teff = 190 kK, log g = 6.2, and NH = 8 · 1019 cm−2, although at shorter wavelengths the observed spectrum has a much higher flux. The reasons for this are discussed. The hypothesis of a fast rotating boundary layer is supported by the derived low surface gravity.

  6. Fast and robust ray casting algorithms for virtual X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Duvauchelle, P.; Letang, J.M.; Babot, D.

    2006-01-01

    Deterministic calculations based on ray casting techniques are known as a powerful alternative to the Monte Carlo approach to simulate X- or γ-ray imaging modalities (e.g. digital radiography and computed tomography), whenever computation time is a critical issue. One of the key components, from the viewpoint of computing resource expense, is the algorithm which determines the path length travelled by each ray through complex 3D objects. This issue has given rise to intensive research in the field of 3D rendering (in the visible light domain) during the last decades. The present work proposes algorithmic solutions adapted from state-of-the-art computer graphics to carry out ray casting in X-ray imaging configurations. This work provides an algorithmic basis to simulate direct transmission of X-rays, as well as scattering and secondary emission of radiation. Emphasis is laid on the speed and robustness issues. Computation times are given in a typical case of radiography simulation

  7. Fast and robust ray casting algorithms for virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: Nicolas.Freud@insa-lyon.fr; Duvauchelle, P. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Letang, J.M. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing Using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2006-07-15

    Deterministic calculations based on ray casting techniques are known as a powerful alternative to the Monte Carlo approach to simulate X- or {gamma}-ray imaging modalities (e.g. digital radiography and computed tomography), whenever computation time is a critical issue. One of the key components, from the viewpoint of computing resource expense, is the algorithm which determines the path length travelled by each ray through complex 3D objects. This issue has given rise to intensive research in the field of 3D rendering (in the visible light domain) during the last decades. The present work proposes algorithmic solutions adapted from state-of-the-art computer graphics to carry out ray casting in X-ray imaging configurations. This work provides an algorithmic basis to simulate direct transmission of X-rays, as well as scattering and secondary emission of radiation. Emphasis is laid on the speed and robustness issues. Computation times are given in a typical case of radiography simulation.

  8. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  9. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  10. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, Mayukh; Misra, Ranjeev [Inter-University Center for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India); Antia, H M; Yadav, J S; Chauhan, Jai Verdhan; Chitnis, V R; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P; Shah, Parag [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Agrawal, P C [UM-DAE Center of Excellence for Basic Sciences, University of Mumbai, Kalina, Mumbai 400098 (India); Manchanda, R K [University of Mumbai, Kalina, Mumbai 400098 (India); Paul, B, E-mail: mayukh@iucaa.in [Department of Astronomy and Astrophysics, Raman Research Institute, Bengaluru 560080 (India)

    2017-11-01

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

  11. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  12. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  13. A Deep X-ray Search for the Putative IMBH in Omega Centauri

    Science.gov (United States)

    Haggard, Daryl; Cool, A.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Van Der Marel, R. P.; Anderson, J.

    2013-04-01

    Omega Centauri, the Milky Way's most massive and enigmatic old stellar cluster, offers a treasure trove of astronomical discovery and controversy, including debate about the existence of an intermediate mass black hole (IMBH) buried in the cluster's core. We report preliminary results of deep 290 ksec) Chandra ACIS-I imaging of Omega Cen, which reveals no X-ray source at the cluster center reported by Anderson and van der Marel (2010), or at any other proposed center for the cluster. We discuss the significance of this new X-ray limit for the possible presence of an IMBH in Omega Cen. We also briefly describe our multiwavelength imaging and spectroscopic campaigns, which probe Omega Cen's binary populations, and the light they shed on the cluster's dynamical history.

  14. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  15. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  16. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    Science.gov (United States)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  17. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    Science.gov (United States)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  19. Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions

    Directory of Open Access Journals (Sweden)

    Douglas Rubin

    2011-01-01

    Full Text Available The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates >10-5M⨀yr−1 in the vicinity of ~1″. For present-day mass functions of the form, dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass ≲7M⨀ and a power-law slope ≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.

  20. Gamma radiation associated to stellar formation in the galaxy (cosmic ray astronomy)

    International Nuclear Information System (INIS)

    Casse, Michel.

    1980-05-01

    The gamma ray sky revealed by the COS-B satellite is very peculiar: a few 'gamma ray stars' lying along the galactic plane emerge from a bright milky way. A possible interpretation of this sky is to invoke the existence of regions in which stars, cosmic rays and interstellar matter are very concentrated. A genetic link is established between clouds, stars and cosmic rays: the partial fragmentation of a cloud give birth to stars, the most massive stars accelerate cosmic rays through their supersonic stellar winds, cosmic ray interact in turn with the cloud material to copiously produce high energy gamma rays: a gamma ray source is born

  1. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  2. Can a Bright and Energetic X-Ray Pulsar Be Hiding Amid the Debris of SN 1987A?

    Science.gov (United States)

    Esposito, Paolo; Rea, Nanda; Lazzati, Davide; Matsuura, Mikako; Perna, Rosalba; Pons, José A.

    2018-04-01

    The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the moment of the explosion are consistent with the core-collapse formation of a neutron star. However, no compelling evidence for the presence of a compact object of any kind in SN 1987A has been found yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star survived and, if it did, on its properties. Beginning with an analysis of recent Chandra observations, here we appraise the current observational situation. We derived limits on the X-ray luminosity of a compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s‑1, corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN 1987A of ≈(0.5–1.5) × 1038 erg s‑1. However, a much brighter X-ray source cannot be excluded if, as is likely, it is enshrouded in a cloud of absorbing matter with a metallicity similar to that expected in the outer layers of a massive star toward the end of its life. We found that other limits obtained from various arguments and observations in other energy ranges either are unbinding or allow a similar maximum luminosity of the order of ≈1035 erg s‑1. We conclude that while a pulsar alike the one in the Crab Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample space for an “ordinary” X-ray-emitting young neutron star, born with normal initial spin period, temperature, and magnetic field, to be hiding inside the evolving remnant of SN 1987A.

  3. Quality criteria for chest X-ray image

    International Nuclear Information System (INIS)

    Krieg, R.

    1985-01-01

    A distinction has to be made between invariable and variable criteria in the determination of chest X-ray picture quality criteria. The invariable criteria are defined by the properties of the object and the psychophysiological laws of perception and cognition, and the variable criteria are determined by the prevailing state of the art of technology. An agreement on these criteria is based on the knowledge of the nature and the technical conditions of X-ray picture production and reproduction. The slogan 'the best picture at the lowest dose' dominates, too, the discussion centering around the X-ray picture of the chest, its quality and criteria. (orig./MG) [de

  4. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  5. X-ray radiography for container inspection

    Science.gov (United States)

    Katz, Jonathan I [Clayton, MO; Morris, Christopher L [Los Alamos, NM

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  6. Modern X-ray difraction. X-ray diffractometry for material scientists, physicists, and chemicists

    International Nuclear Information System (INIS)

    Spiess, L.; Schwarzer, R.; Behnken, H.; Teichert, G.

    2005-01-01

    The book yields a comprehensive survey over the applications of X-ray diffraction in fields like material techniques, metallurgy, electrotechniques, machine engineering, as well as micro- and nanotechniques. The necessary fundamental knowledge on X-ray diffraction are mediated foundedly and illustratively. Thereby new techniques and evaluation procedures are presented as well as well known methods. The content: Production and properties of X radiation, diffraction of X radiation, hardware for X-ray diffraction, methods of X-ray diffraction, lattice-constant determination, phase analysis, X-ray profile analysis, crystal structure analysis, X-ray radiographic stress analysis, X-ray radiographic texture analysis, crystal orientation determination, pecularities at thin films, small angle scattering

  7. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  8. Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?

    Science.gov (United States)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan

    2017-07-01

    We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.

  9. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...

  10. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  11. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  12. X-ray Phase Contrast analysis - Digital wavefront development

    International Nuclear Information System (INIS)

    Idir, Mourad; Potier, Jonathan; Fricker, Sebastien; Snigirev, Anatoly; Snigireva, Irina; Modi, M. H.

    2010-01-01

    Optical schemes that enable imaging of the phase shift produced by an object have become popular in the x-ray region, where phase can be the dominant contrast mechanism. The propagation-based technique consists of recording the interference pattern produced by choosing one or several sample-to-detector distances. Pioneering studies, carried out making use of synchrotron radiation, demonstrated that this technique results in a dramatic increase of image contrast and detail visibility, allowing the detection of structures invisible with conventional techniques. An experimental and theoretical study of in-line hard x-ray phase-contrast imaging had been performed. The theoretical description of the technique is based on Fresnel diffraction. As an illustration of the potential of this quantitative imaging technique, high-resolution x-ray phase contrast images of simple objects will be presented.

  13. A development of laser-plasma-based soft x-ray microscope system

    International Nuclear Information System (INIS)

    Nam, Ki Yong; Kim, Kyong Woo; Kim, Kyu Gyeom; Kwon, Young Man; Yoon, Kwon Ha

    2003-01-01

    Soft x-ray nano-imaging microscopy system for biomedical application with a high resolution about 50 nm has been designed and described, and its integrated techniques also have been studied. The system is mainly composed of soft x-ray generation system, nano-scaled control system, x-ray optical device like a condenser or object mirror, a CCD camera coupled with multichannel plate (MCP) and vacuum system. In the system, soft x-ray is generated from the laser-based plasma by focusing Nd:YAG laser beam on tantalum (Ta) target. In an x-ray optical system, a wolter mirror has been considering condensing the x-ray beam on a biological specimen and zone plate was adapted as an object mirror. A Si 3 N 4 was used as specimen holder for keeping a biological sample alive in atmosphere conditions. A back-illuminated-CCD camera coupled with multichannel plate was determined to set up.

  14. A development of laser-plasma-based soft x-ray microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Yong; Kim, Kyong Woo; Kim, Kyu Gyeom; Kwon, Young Man; Yoon, Kwon Ha [X-ray Microscopy Research Center, Wonkwang University, Iksan (Korea, Republic of)

    2003-07-01

    Soft x-ray nano-imaging microscopy system for biomedical application with a high resolution about 50 nm has been designed and described, and its integrated techniques also have been studied. The system is mainly composed of soft x-ray generation system, nano-scaled control system, x-ray optical device like a condenser or object mirror, a CCD camera coupled with multichannel plate (MCP) and vacuum system. In the system, soft x-ray is generated from the laser-based plasma by focusing Nd:YAG laser beam on tantalum (Ta) target. In an x-ray optical system, a wolter mirror has been considering condensing the x-ray beam on a biological specimen and zone plate was adapted as an object mirror. A Si{sub 3}N{sub 4} was used as specimen holder for keeping a biological sample alive in atmosphere conditions. A back-illuminated-CCD camera coupled with multichannel plate was determined to set up.

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  16. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  17. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  18. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  19. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  20. Data reduction and analysis for the graphite crystal X-ray spectrometer and polarimeter experiment flown aboard OSO-8 spacecraft

    Science.gov (United States)

    Novick, R.

    1980-01-01

    The documentation and software programs developed for the reception, initial processing (quickbook), and production analysis of data obtained by solar X-ray spectroscopy, stellar spectroscopy, and X-ray polarimetry experiments on OSO-8 are listed. The effectiveness and sensitivity of the Bragg crystal scattering instruments used are assessed. The polarization data polarimetric data obtained shows that some X-ray sources are polarized and that a larger polarimeter of this type is required to perform the measurements necessary to fully understand the physics of X-ray sources. The scanning Bragg crystal spectrometer was ideally suited for studying rapidly changing solar conditions. Observations of the Crab Nebula and pulsar, Cyg X-1, Cyg X-2, Cyg X-3, Sco X-1, Cen X-3, and Her X-1 are discussed as well as of 4U1656-53 and 4U1820-30. Evidence was obtained for iron line emission from Cyg X-3.

  1. Microfocussing of synchrotron X-rays using X-ray refractive lens

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  2. Application of X-ray radiography to archaeology

    International Nuclear Information System (INIS)

    Miura, Sadatoshi

    1994-01-01

    X-ray imaging techniques including radiography and scanning tomography are now often applied to archaeological and historical objects. In this report results of three imaging techniques are showed: radiography, X-ray scanning tomography and emissiography. X-ray radiography was applied to examine the technique used for a bronze object. The object was one of the national treasure from Horyuji-temple, Dragon-head Pitcher. The examination proved that the pitcher body was separated into three pieces and that the bronze was fairly homogeneous from 3 to 4 mm. The Pitcher was supposed to be made in Japan at the middle of the seventh century. A small gilt bronze statuette was investigated by an industrial X-ray scanner. The statuette about 30 cm high is supposed to be made in the seventh or eighth century. The head of the statuette was scanned by X-rays of 350kV. The computed tomograms revealed an inlaid metal and scraped hollow. It is supposed that the statuette was cast twice. The first casting might have failed causing the hollow and the missing part of the head. The hollow was scraped before the following casting so that the newly cast part would be tightly joined to the body. A piece of metal was inlaid to the missing part. A silver inlaid sword was excavated at a historic site called Etafunayama Kofun in Kumamoto in 1873. Seventy-five letters were discovered on the back of the sword, and they were regarded as important reference in studying Japanese history around the fifth century. However, the letters became illegible because of severe surface corrosion. So emissiography or electron radiography was used. All letters and even the details could be read. (author)

  3. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Ziolkowski, Janusz

    2009-01-01

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F NStoBH ∼ 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F NStoBH ∼ 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only ∼0-2. This is entirely consistent with the observed Galactic sample.

  4. Observations of Ultra-Luminous X-ray Sources, and Implications

    Science.gov (United States)

    Colbert, E. J. M.

    2004-05-01

    I will review observations of Ultra-Luminous X-ray Sources (ULXs; Lx > 1E39 erg/s), in particular those observations that have helped reveal the nature of these curious objects. Some recent observations suggest that ULXs are a heterogenous class. Although ULX phenomenology is not fully understood, I will present some examples from the (possibly overlapping) sub-classes. Since ULXs are the most luminous objects in starburst galaxies, they, and ``normal'' luminous black-hole high-mass X-ray binaries are intimately tied to the global galaxian X-ray-star-formation connection. Further work is needed to understand how ULXs form, and how they are associated with the putative population of intermediate-mass black holes.

  5. Portable x-ray fluorescence spectrometer for Works of art

    International Nuclear Information System (INIS)

    Mendoza, A.; Griesser, A.

    2001-01-01

    X-ray fluorescence is an analytical technique of prier importance in archaeometry, for restoration and art history investigation; it is because of non-destructive and multi-elemental character of the analysis simplicity and high speed of operation, ability to produce immediate analytical results for the objects, which can neither be sampled nor removed to the laboratory Recent advances in X-ray tubes, X-ray detectors and electronic provided an opportunity to produce portable high resolution XRF spectrometers characterized by a good reliability and analytical performance; in this paper a prototype portable XRF spectrometer based on a small size, low power X-ray tube and a thermometrically cooled Si-Pin detector is described. The spectrometer provides a possibility for direct and secondary target excitation geometry use of proper secondary target and filter and size adjustment of the primary photon bean by using a set of different beam collimators; the portable XRF spectrometer was successfully applied to study art objects in the Art History Museum in Vienna, including such objects as old master paintings bronze and brass alloys of antique as well as Renaissance objects and silver/copper coins produced at different locations. Quantitative and Quantitative analysis were amedee depending of the curator questions and discussed from the point of view of art History. The importance of the results for restoration and authentification of the art objects is also emphasized

  6. X-Ray Emission from an Asymmetric Blast Wave and a Massive White Dwarf in the Gamma Ray Emitting Nova V407 CYG

    Science.gov (United States)

    Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura

    2012-01-01

    Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  8. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

    Science.gov (United States)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.

    2018-06-01

    A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

  9. SED Modeling of 20 Massive Young Stellar Objects

    Science.gov (United States)

    Tanti, Kamal Kumar

    In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.

  10. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    Science.gov (United States)

    Watanabe, N.; Sasaya, T.; Imai, Y.; Iwata, S.; Zama, K.; Aoki, S.

    2011-09-01

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  11. Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge

    International Nuclear Information System (INIS)

    Watanabe, N.; Sasaya, T.; Imai, Y.; Iwata, S.; Zama, K.; Aoki, S.

    2011-01-01

    An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.

  12. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  13. A lobster-eye on the x-ray sky

    International Nuclear Information System (INIS)

    Peele, A. G.; Zhang, W.; Gendreau, K. C.; Petre, R.; White, N. E.

    1999-01-01

    We propose an x-ray all-sky monitor for the International Space Station (ISS) that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1 -3.0 keV) for study. Taking advantage of the power telemetry and space available on the ISS we can use a telescope geometry and detectors that will provide better than 4 arc minute resolution of the entire sky in a 1.5 hr duty cycle. To achieve this sensitivity and resolution we use focusing optics based on the lobster-eye geometry. We propose two approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates: this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. A simultaneous development of both approaches with selection of the superior candidate at the end of the development phase is suggested. The instrument is made of a number of modules based on a 2x2 cooled CCD detector array that covers an area of 6x6 cm 2 at the focal plane. Using optics with a radius of curvature of 0.75 m this gives each module a field of view of 9 deg. x 9 deg. The modular approach gives us enormous flexibility in terms of physical arrangement on the ISS so that we may take advantage of clear lines of sight and also in terms of built-in redundancy. We estimate that ∼50 such modules give us instantaneous coverage of 1/10 of the sky. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of

  14. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    Science.gov (United States)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  15. The gamma-ray emitting region of the jet in Cyg X-3

    Science.gov (United States)

    Zdziarski, Andrzej A.; Sikora, Marek; Dubus, Guillaume; Yuan, Feng; Cerutti, Benoit; Ogorzałek, Anna

    2012-04-01

    We study models of the γ-ray emission of Cyg X-3 observed by Fermi. We calculate the average X-ray spectrum during the γ-ray active periods. Then, we calculate spectra from Compton scattering of a photon beam into a given direction by isotropic relativistic electrons with a power-law distribution, both based on the Klein-Nishina cross-section and in the Thomson limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-3, we find that a low-energy break in the electron distribution at a Lorentz factor of ˜300-103 is required by the shape of the observed X-ray/γ-ray spectrum in order to avoid overproducing the observed X-ray flux. The electrons giving rise to the observed γ-rays are efficiently cooled by Compton scattering, and the power-law index of the acceleration process is ≃2.5-3. The bulk Lorentz factor of the jet and the kinetic power before the dissipation region depend on the fraction of the dissipation power supplied to the electrons; if it is ≃1/2, the Lorentz factor is ˜2.5, and the kinetic power is ˜1038 erg s-1, which represents a firm lower limit on the jet power, and is comparable to the bolometric luminosity of Cyg X-3. Most of the power supplied to the electrons is radiated. The broad-band spectrum constrains the synchrotron and self-Compton emission from the γ-ray emitting electrons, which requires the magnetic field to be relatively weak, with the magnetic energy density ≲ a few times 10-3 of that in the electrons. The actual value of the magnetic field strength can be inferred from a future simultaneous measurement of the infrared and γ-ray fluxes.

  16. What Can Simbol-X Do for Gamma-ray Binaries?

    Science.gov (United States)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  17. What Can Simbol-X Do for Gamma-ray Binaries?

    International Nuclear Information System (INIS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-01-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ∼1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61 deg. 303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  18. A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    HD 49798 is a hydrogen depleted subdwarf O6 star and has an X-ray pulsating companion (RX J0648.0-4418). The X-ray pulsating companion is a massive white dwarf. Employing Eggleton's stellar evolution code with the optically thick wind assumption, we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova (SN Ia) in future evolution. This implies that the binary system is a likely candidate of an SN Ia progenitor. We also discuss the possibilities of some other WD + He star systems (e.g. V445 Pup and KPD 1930+2752) for producing SNe Ia. (research papers)

  19. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  20. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...